1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2000 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/param.h> 30 #include <sys/systm.h> 31 #include <sys/bus.h> 32 #include <sys/cpuset.h> 33 #include <sys/interrupt.h> 34 #include <sys/kernel.h> 35 #include <sys/kthread.h> 36 #include <sys/libkern.h> 37 #include <sys/limits.h> 38 #include <sys/lock.h> 39 #include <sys/malloc.h> 40 #include <sys/mutex.h> 41 #include <sys/proc.h> 42 #include <sys/epoch.h> 43 #include <sys/sched.h> 44 #include <sys/smp.h> 45 #include <sys/taskqueue.h> 46 #include <sys/unistd.h> 47 #include <machine/stdarg.h> 48 49 static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues"); 50 static void *taskqueue_giant_ih; 51 static void *taskqueue_ih; 52 static void taskqueue_fast_enqueue(void *); 53 static void taskqueue_swi_enqueue(void *); 54 static void taskqueue_swi_giant_enqueue(void *); 55 56 struct taskqueue_busy { 57 struct task *tb_running; 58 u_int tb_seq; 59 bool tb_canceling; 60 LIST_ENTRY(taskqueue_busy) tb_link; 61 }; 62 63 struct taskqueue { 64 STAILQ_HEAD(, task) tq_queue; 65 LIST_HEAD(, taskqueue_busy) tq_active; 66 struct task *tq_hint; 67 u_int tq_seq; 68 int tq_callouts; 69 struct mtx_padalign tq_mutex; 70 taskqueue_enqueue_fn tq_enqueue; 71 void *tq_context; 72 char *tq_name; 73 struct thread **tq_threads; 74 int tq_tcount; 75 int tq_spin; 76 int tq_flags; 77 taskqueue_callback_fn tq_callbacks[TASKQUEUE_NUM_CALLBACKS]; 78 void *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS]; 79 }; 80 81 #define TQ_FLAGS_ACTIVE (1 << 0) 82 #define TQ_FLAGS_BLOCKED (1 << 1) 83 #define TQ_FLAGS_UNLOCKED_ENQUEUE (1 << 2) 84 85 #define DT_CALLOUT_ARMED (1 << 0) 86 #define DT_DRAIN_IN_PROGRESS (1 << 1) 87 88 #define TQ_LOCK(tq) \ 89 do { \ 90 if ((tq)->tq_spin) \ 91 mtx_lock_spin(&(tq)->tq_mutex); \ 92 else \ 93 mtx_lock(&(tq)->tq_mutex); \ 94 } while (0) 95 #define TQ_ASSERT_LOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_OWNED) 96 97 #define TQ_UNLOCK(tq) \ 98 do { \ 99 if ((tq)->tq_spin) \ 100 mtx_unlock_spin(&(tq)->tq_mutex); \ 101 else \ 102 mtx_unlock(&(tq)->tq_mutex); \ 103 } while (0) 104 #define TQ_ASSERT_UNLOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED) 105 106 void 107 _timeout_task_init(struct taskqueue *queue, struct timeout_task *timeout_task, 108 int priority, task_fn_t func, void *context) 109 { 110 111 TASK_INIT(&timeout_task->t, priority, func, context); 112 callout_init_mtx(&timeout_task->c, &queue->tq_mutex, 113 CALLOUT_RETURNUNLOCKED); 114 timeout_task->q = queue; 115 timeout_task->f = 0; 116 } 117 118 static __inline int 119 TQ_SLEEP(struct taskqueue *tq, void *p, const char *wm) 120 { 121 if (tq->tq_spin) 122 return (msleep_spin(p, (struct mtx *)&tq->tq_mutex, wm, 0)); 123 return (msleep(p, &tq->tq_mutex, 0, wm, 0)); 124 } 125 126 static struct taskqueue_busy * 127 task_get_busy(struct taskqueue *queue, struct task *task) 128 { 129 struct taskqueue_busy *tb; 130 131 TQ_ASSERT_LOCKED(queue); 132 LIST_FOREACH(tb, &queue->tq_active, tb_link) { 133 if (tb->tb_running == task) 134 return (tb); 135 } 136 return (NULL); 137 } 138 139 static struct taskqueue * 140 _taskqueue_create(const char *name, int mflags, 141 taskqueue_enqueue_fn enqueue, void *context, 142 int mtxflags, const char *mtxname __unused) 143 { 144 struct taskqueue *queue; 145 char *tq_name; 146 147 tq_name = malloc(TASKQUEUE_NAMELEN, M_TASKQUEUE, mflags | M_ZERO); 148 if (tq_name == NULL) 149 return (NULL); 150 151 queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO); 152 if (queue == NULL) { 153 free(tq_name, M_TASKQUEUE); 154 return (NULL); 155 } 156 157 snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue"); 158 159 STAILQ_INIT(&queue->tq_queue); 160 LIST_INIT(&queue->tq_active); 161 queue->tq_enqueue = enqueue; 162 queue->tq_context = context; 163 queue->tq_name = tq_name; 164 queue->tq_spin = (mtxflags & MTX_SPIN) != 0; 165 queue->tq_flags |= TQ_FLAGS_ACTIVE; 166 if (enqueue == taskqueue_fast_enqueue || 167 enqueue == taskqueue_swi_enqueue || 168 enqueue == taskqueue_swi_giant_enqueue || 169 enqueue == taskqueue_thread_enqueue) 170 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE; 171 mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags); 172 173 return (queue); 174 } 175 176 struct taskqueue * 177 taskqueue_create(const char *name, int mflags, 178 taskqueue_enqueue_fn enqueue, void *context) 179 { 180 181 return _taskqueue_create(name, mflags, enqueue, context, 182 MTX_DEF, name); 183 } 184 185 void 186 taskqueue_set_callback(struct taskqueue *queue, 187 enum taskqueue_callback_type cb_type, taskqueue_callback_fn callback, 188 void *context) 189 { 190 191 KASSERT(((cb_type >= TASKQUEUE_CALLBACK_TYPE_MIN) && 192 (cb_type <= TASKQUEUE_CALLBACK_TYPE_MAX)), 193 ("Callback type %d not valid, must be %d-%d", cb_type, 194 TASKQUEUE_CALLBACK_TYPE_MIN, TASKQUEUE_CALLBACK_TYPE_MAX)); 195 KASSERT((queue->tq_callbacks[cb_type] == NULL), 196 ("Re-initialization of taskqueue callback?")); 197 198 queue->tq_callbacks[cb_type] = callback; 199 queue->tq_cb_contexts[cb_type] = context; 200 } 201 202 /* 203 * Signal a taskqueue thread to terminate. 204 */ 205 static void 206 taskqueue_terminate(struct thread **pp, struct taskqueue *tq) 207 { 208 209 while (tq->tq_tcount > 0 || tq->tq_callouts > 0) { 210 wakeup(tq); 211 TQ_SLEEP(tq, pp, "tq_destroy"); 212 } 213 } 214 215 void 216 taskqueue_free(struct taskqueue *queue) 217 { 218 219 TQ_LOCK(queue); 220 queue->tq_flags &= ~TQ_FLAGS_ACTIVE; 221 taskqueue_terminate(queue->tq_threads, queue); 222 KASSERT(LIST_EMPTY(&queue->tq_active), ("Tasks still running?")); 223 KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks")); 224 mtx_destroy(&queue->tq_mutex); 225 free(queue->tq_threads, M_TASKQUEUE); 226 free(queue->tq_name, M_TASKQUEUE); 227 free(queue, M_TASKQUEUE); 228 } 229 230 static int 231 taskqueue_enqueue_locked(struct taskqueue *queue, struct task *task, int flags) 232 { 233 struct task *ins; 234 struct task *prev; 235 struct taskqueue_busy *tb; 236 237 KASSERT(task->ta_func != NULL, ("enqueueing task with NULL func")); 238 /* 239 * Ignore canceling task if requested. 240 */ 241 if (__predict_false((flags & TASKQUEUE_FAIL_IF_CANCELING) != 0)) { 242 tb = task_get_busy(queue, task); 243 if (tb != NULL && tb->tb_canceling) { 244 TQ_UNLOCK(queue); 245 return (ECANCELED); 246 } 247 } 248 249 /* 250 * Count multiple enqueues. 251 */ 252 if (task->ta_pending) { 253 if (__predict_false((flags & TASKQUEUE_FAIL_IF_PENDING) != 0)) { 254 TQ_UNLOCK(queue); 255 return (EEXIST); 256 } 257 if (task->ta_pending < USHRT_MAX) 258 task->ta_pending++; 259 TQ_UNLOCK(queue); 260 return (0); 261 } 262 263 /* 264 * Optimise cases when all tasks use small set of priorities. 265 * In case of only one priority we always insert at the end. 266 * In case of two tq_hint typically gives the insertion point. 267 * In case of more then two tq_hint should halve the search. 268 */ 269 prev = STAILQ_LAST(&queue->tq_queue, task, ta_link); 270 if (!prev || prev->ta_priority >= task->ta_priority) { 271 STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link); 272 } else { 273 prev = queue->tq_hint; 274 if (prev && prev->ta_priority >= task->ta_priority) { 275 ins = STAILQ_NEXT(prev, ta_link); 276 } else { 277 prev = NULL; 278 ins = STAILQ_FIRST(&queue->tq_queue); 279 } 280 for (; ins; prev = ins, ins = STAILQ_NEXT(ins, ta_link)) 281 if (ins->ta_priority < task->ta_priority) 282 break; 283 284 if (prev) { 285 STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link); 286 queue->tq_hint = task; 287 } else 288 STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link); 289 } 290 291 task->ta_pending = 1; 292 if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) != 0) 293 TQ_UNLOCK(queue); 294 if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0) 295 queue->tq_enqueue(queue->tq_context); 296 if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) == 0) 297 TQ_UNLOCK(queue); 298 299 /* Return with lock released. */ 300 return (0); 301 } 302 303 int 304 taskqueue_enqueue_flags(struct taskqueue *queue, struct task *task, int flags) 305 { 306 int res; 307 308 TQ_LOCK(queue); 309 res = taskqueue_enqueue_locked(queue, task, flags); 310 /* The lock is released inside. */ 311 312 return (res); 313 } 314 315 int 316 taskqueue_enqueue(struct taskqueue *queue, struct task *task) 317 { 318 return (taskqueue_enqueue_flags(queue, task, 0)); 319 } 320 321 static void 322 taskqueue_timeout_func(void *arg) 323 { 324 struct taskqueue *queue; 325 struct timeout_task *timeout_task; 326 327 timeout_task = arg; 328 queue = timeout_task->q; 329 KASSERT((timeout_task->f & DT_CALLOUT_ARMED) != 0, ("Stray timeout")); 330 timeout_task->f &= ~DT_CALLOUT_ARMED; 331 queue->tq_callouts--; 332 taskqueue_enqueue_locked(timeout_task->q, &timeout_task->t, 0); 333 /* The lock is released inside. */ 334 } 335 336 int 337 taskqueue_enqueue_timeout_sbt(struct taskqueue *queue, 338 struct timeout_task *timeout_task, sbintime_t sbt, sbintime_t pr, int flags) 339 { 340 int res; 341 342 TQ_LOCK(queue); 343 KASSERT(timeout_task->q == NULL || timeout_task->q == queue, 344 ("Migrated queue")); 345 timeout_task->q = queue; 346 res = timeout_task->t.ta_pending; 347 if (timeout_task->f & DT_DRAIN_IN_PROGRESS) { 348 /* Do nothing */ 349 TQ_UNLOCK(queue); 350 res = -1; 351 } else if (sbt == 0) { 352 taskqueue_enqueue_locked(queue, &timeout_task->t, 0); 353 /* The lock is released inside. */ 354 } else { 355 if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) { 356 res++; 357 } else { 358 queue->tq_callouts++; 359 timeout_task->f |= DT_CALLOUT_ARMED; 360 if (sbt < 0) 361 sbt = -sbt; /* Ignore overflow. */ 362 } 363 if (sbt > 0) { 364 if (queue->tq_spin) 365 flags |= C_DIRECT_EXEC; 366 callout_reset_sbt(&timeout_task->c, sbt, pr, 367 taskqueue_timeout_func, timeout_task, flags); 368 } 369 TQ_UNLOCK(queue); 370 } 371 return (res); 372 } 373 374 int 375 taskqueue_enqueue_timeout(struct taskqueue *queue, 376 struct timeout_task *ttask, int ticks) 377 { 378 379 return (taskqueue_enqueue_timeout_sbt(queue, ttask, ticks * tick_sbt, 380 0, C_HARDCLOCK)); 381 } 382 383 static void 384 taskqueue_task_nop_fn(void *context, int pending) 385 { 386 } 387 388 /* 389 * Block until all currently queued tasks in this taskqueue 390 * have begun execution. Tasks queued during execution of 391 * this function are ignored. 392 */ 393 static int 394 taskqueue_drain_tq_queue(struct taskqueue *queue) 395 { 396 struct task t_barrier; 397 398 if (STAILQ_EMPTY(&queue->tq_queue)) 399 return (0); 400 401 /* 402 * Enqueue our barrier after all current tasks, but with 403 * the highest priority so that newly queued tasks cannot 404 * pass it. Because of the high priority, we can not use 405 * taskqueue_enqueue_locked directly (which drops the lock 406 * anyway) so just insert it at tail while we have the 407 * queue lock. 408 */ 409 TASK_INIT(&t_barrier, UCHAR_MAX, taskqueue_task_nop_fn, &t_barrier); 410 STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link); 411 queue->tq_hint = &t_barrier; 412 t_barrier.ta_pending = 1; 413 414 /* 415 * Once the barrier has executed, all previously queued tasks 416 * have completed or are currently executing. 417 */ 418 while (t_barrier.ta_pending != 0) 419 TQ_SLEEP(queue, &t_barrier, "tq_qdrain"); 420 return (1); 421 } 422 423 /* 424 * Block until all currently executing tasks for this taskqueue 425 * complete. Tasks that begin execution during the execution 426 * of this function are ignored. 427 */ 428 static int 429 taskqueue_drain_tq_active(struct taskqueue *queue) 430 { 431 struct taskqueue_busy *tb; 432 u_int seq; 433 434 if (LIST_EMPTY(&queue->tq_active)) 435 return (0); 436 437 /* Block taskq_terminate().*/ 438 queue->tq_callouts++; 439 440 /* Wait for any active task with sequence from the past. */ 441 seq = queue->tq_seq; 442 restart: 443 LIST_FOREACH(tb, &queue->tq_active, tb_link) { 444 if ((int)(tb->tb_seq - seq) <= 0) { 445 TQ_SLEEP(queue, tb->tb_running, "tq_adrain"); 446 goto restart; 447 } 448 } 449 450 /* Release taskqueue_terminate(). */ 451 queue->tq_callouts--; 452 if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0) 453 wakeup_one(queue->tq_threads); 454 return (1); 455 } 456 457 void 458 taskqueue_block(struct taskqueue *queue) 459 { 460 461 TQ_LOCK(queue); 462 queue->tq_flags |= TQ_FLAGS_BLOCKED; 463 TQ_UNLOCK(queue); 464 } 465 466 void 467 taskqueue_unblock(struct taskqueue *queue) 468 { 469 470 TQ_LOCK(queue); 471 queue->tq_flags &= ~TQ_FLAGS_BLOCKED; 472 if (!STAILQ_EMPTY(&queue->tq_queue)) 473 queue->tq_enqueue(queue->tq_context); 474 TQ_UNLOCK(queue); 475 } 476 477 static void 478 taskqueue_run_locked(struct taskqueue *queue) 479 { 480 struct epoch_tracker et; 481 struct taskqueue_busy tb; 482 struct task *task; 483 bool in_net_epoch; 484 int pending; 485 486 KASSERT(queue != NULL, ("tq is NULL")); 487 TQ_ASSERT_LOCKED(queue); 488 tb.tb_running = NULL; 489 LIST_INSERT_HEAD(&queue->tq_active, &tb, tb_link); 490 in_net_epoch = false; 491 492 while ((task = STAILQ_FIRST(&queue->tq_queue)) != NULL) { 493 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link); 494 if (queue->tq_hint == task) 495 queue->tq_hint = NULL; 496 pending = task->ta_pending; 497 task->ta_pending = 0; 498 tb.tb_running = task; 499 tb.tb_seq = ++queue->tq_seq; 500 tb.tb_canceling = false; 501 TQ_UNLOCK(queue); 502 503 KASSERT(task->ta_func != NULL, ("task->ta_func is NULL")); 504 if (!in_net_epoch && TASK_IS_NET(task)) { 505 in_net_epoch = true; 506 NET_EPOCH_ENTER(et); 507 } else if (in_net_epoch && !TASK_IS_NET(task)) { 508 NET_EPOCH_EXIT(et); 509 in_net_epoch = false; 510 } 511 task->ta_func(task->ta_context, pending); 512 513 TQ_LOCK(queue); 514 wakeup(task); 515 } 516 if (in_net_epoch) 517 NET_EPOCH_EXIT(et); 518 LIST_REMOVE(&tb, tb_link); 519 } 520 521 void 522 taskqueue_run(struct taskqueue *queue) 523 { 524 525 TQ_LOCK(queue); 526 taskqueue_run_locked(queue); 527 TQ_UNLOCK(queue); 528 } 529 530 /* 531 * Only use this function in single threaded contexts. It returns 532 * non-zero if the given task is either pending or running. Else the 533 * task is idle and can be queued again or freed. 534 */ 535 int 536 taskqueue_poll_is_busy(struct taskqueue *queue, struct task *task) 537 { 538 int retval; 539 540 TQ_LOCK(queue); 541 retval = task->ta_pending > 0 || task_get_busy(queue, task) != NULL; 542 TQ_UNLOCK(queue); 543 544 return (retval); 545 } 546 547 static int 548 taskqueue_cancel_locked(struct taskqueue *queue, struct task *task, 549 u_int *pendp) 550 { 551 struct taskqueue_busy *tb; 552 int retval = 0; 553 554 if (task->ta_pending > 0) { 555 STAILQ_REMOVE(&queue->tq_queue, task, task, ta_link); 556 if (queue->tq_hint == task) 557 queue->tq_hint = NULL; 558 } 559 if (pendp != NULL) 560 *pendp = task->ta_pending; 561 task->ta_pending = 0; 562 tb = task_get_busy(queue, task); 563 if (tb != NULL) { 564 tb->tb_canceling = true; 565 retval = EBUSY; 566 } 567 568 return (retval); 569 } 570 571 int 572 taskqueue_cancel(struct taskqueue *queue, struct task *task, u_int *pendp) 573 { 574 int error; 575 576 TQ_LOCK(queue); 577 error = taskqueue_cancel_locked(queue, task, pendp); 578 TQ_UNLOCK(queue); 579 580 return (error); 581 } 582 583 int 584 taskqueue_cancel_timeout(struct taskqueue *queue, 585 struct timeout_task *timeout_task, u_int *pendp) 586 { 587 u_int pending, pending1; 588 int error; 589 590 TQ_LOCK(queue); 591 pending = !!(callout_stop(&timeout_task->c) > 0); 592 error = taskqueue_cancel_locked(queue, &timeout_task->t, &pending1); 593 if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) { 594 timeout_task->f &= ~DT_CALLOUT_ARMED; 595 queue->tq_callouts--; 596 } 597 TQ_UNLOCK(queue); 598 599 if (pendp != NULL) 600 *pendp = pending + pending1; 601 return (error); 602 } 603 604 void 605 taskqueue_drain(struct taskqueue *queue, struct task *task) 606 { 607 608 if (!queue->tq_spin) 609 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); 610 611 TQ_LOCK(queue); 612 while (task->ta_pending != 0 || task_get_busy(queue, task) != NULL) 613 TQ_SLEEP(queue, task, "tq_drain"); 614 TQ_UNLOCK(queue); 615 } 616 617 void 618 taskqueue_drain_all(struct taskqueue *queue) 619 { 620 621 if (!queue->tq_spin) 622 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); 623 624 TQ_LOCK(queue); 625 (void)taskqueue_drain_tq_queue(queue); 626 (void)taskqueue_drain_tq_active(queue); 627 TQ_UNLOCK(queue); 628 } 629 630 void 631 taskqueue_drain_timeout(struct taskqueue *queue, 632 struct timeout_task *timeout_task) 633 { 634 635 /* 636 * Set flag to prevent timer from re-starting during drain: 637 */ 638 TQ_LOCK(queue); 639 KASSERT((timeout_task->f & DT_DRAIN_IN_PROGRESS) == 0, 640 ("Drain already in progress")); 641 timeout_task->f |= DT_DRAIN_IN_PROGRESS; 642 TQ_UNLOCK(queue); 643 644 callout_drain(&timeout_task->c); 645 taskqueue_drain(queue, &timeout_task->t); 646 647 /* 648 * Clear flag to allow timer to re-start: 649 */ 650 TQ_LOCK(queue); 651 timeout_task->f &= ~DT_DRAIN_IN_PROGRESS; 652 TQ_UNLOCK(queue); 653 } 654 655 void 656 taskqueue_quiesce(struct taskqueue *queue) 657 { 658 int ret; 659 660 TQ_LOCK(queue); 661 do { 662 ret = taskqueue_drain_tq_queue(queue); 663 if (ret == 0) 664 ret = taskqueue_drain_tq_active(queue); 665 } while (ret != 0); 666 TQ_UNLOCK(queue); 667 } 668 669 static void 670 taskqueue_swi_enqueue(void *context) 671 { 672 swi_sched(taskqueue_ih, 0); 673 } 674 675 static void 676 taskqueue_swi_run(void *dummy) 677 { 678 taskqueue_run(taskqueue_swi); 679 } 680 681 static void 682 taskqueue_swi_giant_enqueue(void *context) 683 { 684 swi_sched(taskqueue_giant_ih, 0); 685 } 686 687 static void 688 taskqueue_swi_giant_run(void *dummy) 689 { 690 taskqueue_run(taskqueue_swi_giant); 691 } 692 693 static int 694 _taskqueue_start_threads(struct taskqueue **tqp, int count, int pri, 695 cpuset_t *mask, struct proc *p, const char *name, va_list ap) 696 { 697 char ktname[MAXCOMLEN + 1]; 698 struct thread *td; 699 struct taskqueue *tq; 700 int i, error; 701 702 if (count <= 0) 703 return (EINVAL); 704 705 vsnprintf(ktname, sizeof(ktname), name, ap); 706 tq = *tqp; 707 708 tq->tq_threads = malloc(sizeof(struct thread *) * count, M_TASKQUEUE, 709 M_NOWAIT | M_ZERO); 710 if (tq->tq_threads == NULL) { 711 printf("%s: no memory for %s threads\n", __func__, ktname); 712 return (ENOMEM); 713 } 714 715 for (i = 0; i < count; i++) { 716 if (count == 1) 717 error = kthread_add(taskqueue_thread_loop, tqp, p, 718 &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname); 719 else 720 error = kthread_add(taskqueue_thread_loop, tqp, p, 721 &tq->tq_threads[i], RFSTOPPED, 0, 722 "%s_%d", ktname, i); 723 if (error) { 724 /* should be ok to continue, taskqueue_free will dtrt */ 725 printf("%s: kthread_add(%s): error %d", __func__, 726 ktname, error); 727 tq->tq_threads[i] = NULL; /* paranoid */ 728 } else 729 tq->tq_tcount++; 730 } 731 if (tq->tq_tcount == 0) { 732 free(tq->tq_threads, M_TASKQUEUE); 733 tq->tq_threads = NULL; 734 return (ENOMEM); 735 } 736 for (i = 0; i < count; i++) { 737 if (tq->tq_threads[i] == NULL) 738 continue; 739 td = tq->tq_threads[i]; 740 if (mask) { 741 error = cpuset_setthread(td->td_tid, mask); 742 /* 743 * Failing to pin is rarely an actual fatal error; 744 * it'll just affect performance. 745 */ 746 if (error) 747 printf("%s: curthread=%llu: can't pin; " 748 "error=%d\n", 749 __func__, 750 (unsigned long long) td->td_tid, 751 error); 752 } 753 thread_lock(td); 754 sched_prio(td, pri); 755 sched_add(td, SRQ_BORING); 756 } 757 758 return (0); 759 } 760 761 int 762 taskqueue_start_threads(struct taskqueue **tqp, int count, int pri, 763 const char *name, ...) 764 { 765 va_list ap; 766 int error; 767 768 va_start(ap, name); 769 error = _taskqueue_start_threads(tqp, count, pri, NULL, NULL, name, ap); 770 va_end(ap); 771 return (error); 772 } 773 774 int 775 taskqueue_start_threads_in_proc(struct taskqueue **tqp, int count, int pri, 776 struct proc *proc, const char *name, ...) 777 { 778 va_list ap; 779 int error; 780 781 va_start(ap, name); 782 error = _taskqueue_start_threads(tqp, count, pri, NULL, proc, name, ap); 783 va_end(ap); 784 return (error); 785 } 786 787 int 788 taskqueue_start_threads_cpuset(struct taskqueue **tqp, int count, int pri, 789 cpuset_t *mask, const char *name, ...) 790 { 791 va_list ap; 792 int error; 793 794 va_start(ap, name); 795 error = _taskqueue_start_threads(tqp, count, pri, mask, NULL, name, ap); 796 va_end(ap); 797 return (error); 798 } 799 800 static inline void 801 taskqueue_run_callback(struct taskqueue *tq, 802 enum taskqueue_callback_type cb_type) 803 { 804 taskqueue_callback_fn tq_callback; 805 806 TQ_ASSERT_UNLOCKED(tq); 807 tq_callback = tq->tq_callbacks[cb_type]; 808 if (tq_callback != NULL) 809 tq_callback(tq->tq_cb_contexts[cb_type]); 810 } 811 812 void 813 taskqueue_thread_loop(void *arg) 814 { 815 struct taskqueue **tqp, *tq; 816 817 tqp = arg; 818 tq = *tqp; 819 taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT); 820 TQ_LOCK(tq); 821 while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) { 822 /* XXX ? */ 823 taskqueue_run_locked(tq); 824 /* 825 * Because taskqueue_run() can drop tq_mutex, we need to 826 * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the 827 * meantime, which means we missed a wakeup. 828 */ 829 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0) 830 break; 831 TQ_SLEEP(tq, tq, "-"); 832 } 833 taskqueue_run_locked(tq); 834 /* 835 * This thread is on its way out, so just drop the lock temporarily 836 * in order to call the shutdown callback. This allows the callback 837 * to look at the taskqueue, even just before it dies. 838 */ 839 TQ_UNLOCK(tq); 840 taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN); 841 TQ_LOCK(tq); 842 843 /* rendezvous with thread that asked us to terminate */ 844 tq->tq_tcount--; 845 wakeup_one(tq->tq_threads); 846 TQ_UNLOCK(tq); 847 kthread_exit(); 848 } 849 850 void 851 taskqueue_thread_enqueue(void *context) 852 { 853 struct taskqueue **tqp, *tq; 854 855 tqp = context; 856 tq = *tqp; 857 wakeup_any(tq); 858 } 859 860 TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, NULL, 861 swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ, 862 INTR_MPSAFE, &taskqueue_ih)); 863 864 TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, NULL, 865 swi_add(NULL, "Giant taskq", taskqueue_swi_giant_run, 866 NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih)); 867 868 TASKQUEUE_DEFINE_THREAD(thread); 869 870 struct taskqueue * 871 taskqueue_create_fast(const char *name, int mflags, 872 taskqueue_enqueue_fn enqueue, void *context) 873 { 874 return _taskqueue_create(name, mflags, enqueue, context, 875 MTX_SPIN, "fast_taskqueue"); 876 } 877 878 static void *taskqueue_fast_ih; 879 880 static void 881 taskqueue_fast_enqueue(void *context) 882 { 883 swi_sched(taskqueue_fast_ih, 0); 884 } 885 886 static void 887 taskqueue_fast_run(void *dummy) 888 { 889 taskqueue_run(taskqueue_fast); 890 } 891 892 TASKQUEUE_FAST_DEFINE(fast, taskqueue_fast_enqueue, NULL, 893 swi_add(NULL, "fast taskq", taskqueue_fast_run, NULL, 894 SWI_TQ_FAST, INTR_MPSAFE, &taskqueue_fast_ih)); 895 896 int 897 taskqueue_member(struct taskqueue *queue, struct thread *td) 898 { 899 int i, j, ret = 0; 900 901 for (i = 0, j = 0; ; i++) { 902 if (queue->tq_threads[i] == NULL) 903 continue; 904 if (queue->tq_threads[i] == td) { 905 ret = 1; 906 break; 907 } 908 if (++j >= queue->tq_tcount) 909 break; 910 } 911 return (ret); 912 } 913