xref: /freebsd/sys/kern/subr_smp.c (revision 98823b2366390a0577eeb61e0c91cccae862c44f)
1 /*
2  * Copyright (c) 1996, by Steve Passe
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. The name of the developer may NOT be used to endorse or promote products
11  *    derived from this software without specific prior written permission.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  *	$Id: mp_machdep.c,v 1.56 1997/10/06 02:11:32 dyson Exp $
26  */
27 
28 #include "opt_smp.h"
29 #include "opt_vm86.h"
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/proc.h>
35 #include <sys/sysctl.h>
36 
37 #include <vm/vm.h>
38 #include <vm/vm_param.h>
39 #include <vm/pmap.h>
40 #include <vm/vm_kern.h>
41 #include <vm/vm_extern.h>
42 
43 #include <machine/smp.h>
44 #include <machine/apic.h>
45 #include <machine/mpapic.h>
46 #include <machine/segments.h>
47 #include <machine/smptests.h>	/** TEST_DEFAULT_CONFIG, TEST_TEST1 */
48 #include <machine/tss.h>
49 #include <machine/specialreg.h>
50 #include <machine/cpu.h>
51 #include <machine/cputypes.h>
52 
53 #include <i386/i386/cons.h>	/* cngetc() */
54 
55 #if defined(APIC_IO)
56 #include <machine/md_var.h>		/* setidt() */
57 #include <i386/isa/icu.h>		/* IPIs */
58 #include <i386/isa/intr_machdep.h>	/* IPIs */
59 #endif	/* APIC_IO */
60 
61 #if defined(TEST_DEFAULT_CONFIG)
62 #define MPFPS_MPFB1	TEST_DEFAULT_CONFIG
63 #else
64 #define MPFPS_MPFB1	mpfps->mpfb1
65 #endif  /* TEST_DEFAULT_CONFIG */
66 
67 #define WARMBOOT_TARGET		0
68 #define WARMBOOT_OFF		(KERNBASE + 0x0467)
69 #define WARMBOOT_SEG		(KERNBASE + 0x0469)
70 
71 #define BIOS_BASE		(0xf0000)
72 #define BIOS_SIZE		(0x10000)
73 #define BIOS_COUNT		(BIOS_SIZE/4)
74 
75 #define CMOS_REG		(0x70)
76 #define CMOS_DATA		(0x71)
77 #define BIOS_RESET		(0x0f)
78 #define BIOS_WARM		(0x0a)
79 
80 #define PROCENTRY_FLAG_EN	0x01
81 #define PROCENTRY_FLAG_BP	0x02
82 #define IOAPICENTRY_FLAG_EN	0x01
83 
84 
85 /* MP Floating Pointer Structure */
86 typedef struct MPFPS {
87 	char    signature[4];
88 	void   *pap;
89 	u_char  length;
90 	u_char  spec_rev;
91 	u_char  checksum;
92 	u_char  mpfb1;
93 	u_char  mpfb2;
94 	u_char  mpfb3;
95 	u_char  mpfb4;
96 	u_char  mpfb5;
97 }      *mpfps_t;
98 
99 /* MP Configuration Table Header */
100 typedef struct MPCTH {
101 	char    signature[4];
102 	u_short base_table_length;
103 	u_char  spec_rev;
104 	u_char  checksum;
105 	u_char  oem_id[8];
106 	u_char  product_id[12];
107 	void   *oem_table_pointer;
108 	u_short oem_table_size;
109 	u_short entry_count;
110 	void   *apic_address;
111 	u_short extended_table_length;
112 	u_char  extended_table_checksum;
113 	u_char  reserved;
114 }      *mpcth_t;
115 
116 
117 typedef struct PROCENTRY {
118 	u_char  type;
119 	u_char  apic_id;
120 	u_char  apic_version;
121 	u_char  cpu_flags;
122 	u_long  cpu_signature;
123 	u_long  feature_flags;
124 	u_long  reserved1;
125 	u_long  reserved2;
126 }      *proc_entry_ptr;
127 
128 typedef struct BUSENTRY {
129 	u_char  type;
130 	u_char  bus_id;
131 	char    bus_type[6];
132 }      *bus_entry_ptr;
133 
134 typedef struct IOAPICENTRY {
135 	u_char  type;
136 	u_char  apic_id;
137 	u_char  apic_version;
138 	u_char  apic_flags;
139 	void   *apic_address;
140 }      *io_apic_entry_ptr;
141 
142 typedef struct INTENTRY {
143 	u_char  type;
144 	u_char  int_type;
145 	u_short int_flags;
146 	u_char  src_bus_id;
147 	u_char  src_bus_irq;
148 	u_char  dst_apic_id;
149 	u_char  dst_apic_int;
150 }      *int_entry_ptr;
151 
152 /* descriptions of MP basetable entries */
153 typedef struct BASETABLE_ENTRY {
154 	u_char  type;
155 	u_char  length;
156 	char    name[16];
157 }       basetable_entry;
158 
159 /*
160  * this code MUST be enabled here and in mpboot.s.
161  * it follows the very early stages of AP boot by placing values in CMOS ram.
162  * it NORMALLY will never be needed and thus the primitive method for enabling.
163  *
164 #define CHECK_POINTS
165  */
166 
167 #if defined(CHECK_POINTS)
168 #define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
169 #define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
170 
171 #define CHECK_INIT(D);				\
172 	CHECK_WRITE(0x34, (D));			\
173 	CHECK_WRITE(0x35, (D));			\
174 	CHECK_WRITE(0x36, (D));			\
175 	CHECK_WRITE(0x37, (D));			\
176 	CHECK_WRITE(0x38, (D));			\
177 	CHECK_WRITE(0x39, (D));
178 
179 #define CHECK_PRINT(S);				\
180 	printf("%s: %d, %d, %d, %d, %d, %d\n",	\
181 	   (S),					\
182 	   CHECK_READ(0x34),			\
183 	   CHECK_READ(0x35),			\
184 	   CHECK_READ(0x36),			\
185 	   CHECK_READ(0x37),			\
186 	   CHECK_READ(0x38),			\
187 	   CHECK_READ(0x39));
188 
189 #else				/* CHECK_POINTS */
190 
191 #define CHECK_INIT(D)
192 #define CHECK_PRINT(S)
193 
194 #endif				/* CHECK_POINTS */
195 
196 /*
197  * Values to send to the POST hardware.
198  */
199 #define MP_BOOTADDRESS_POST	0x10
200 #define MP_PROBE_POST		0x11
201 #define MPTABLE_PASS1_POST	0x12
202 
203 #define MP_START_POST		0x13
204 #define MP_ENABLE_POST		0x14
205 #define MPTABLE_PASS2_POST	0x15
206 
207 #define START_ALL_APS_POST	0x16
208 #define INSTALL_AP_TRAMP_POST	0x17
209 #define START_AP_POST		0x18
210 
211 #define MP_ANNOUNCE_POST	0x19
212 
213 
214 /** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
215 int	current_postcode;
216 
217 /** XXX FIXME: what system files declare these??? */
218 extern struct region_descriptor r_gdt, r_idt;
219 
220 int	bsp_apic_ready = 0;	/* flags useability of BSP apic */
221 int	mp_ncpus;		/* # of CPUs, including BSP */
222 int	mp_naps;		/* # of Applications processors */
223 int	mp_nbusses;		/* # of busses */
224 int	mp_napics;		/* # of IO APICs */
225 int	boot_cpu_id;		/* designated BSP */
226 vm_offset_t cpu_apic_address;
227 vm_offset_t io_apic_address[NAPICID];	/* NAPICID is more than enough */
228 extern	int nkpt;
229 
230 u_int32_t cpu_apic_versions[NCPU];
231 u_int32_t io_apic_versions[NAPIC];
232 
233 /*
234  * APIC ID logical/physical mapping structures.
235  * We oversize these to simplify boot-time config.
236  */
237 int     cpu_num_to_apic_id[NAPICID];
238 int     io_num_to_apic_id[NAPICID];
239 int     apic_id_to_logical[NAPICID];
240 
241 
242 #define NPPROVMTRR	8
243 #define	PPRO_VMTRRphysBase0 0x200
244 #define	PPRO_VMTRRphysMask0 0x201
245 static struct {
246 	u_int64_t base,
247 			  mask;
248 } PPro_vmtrr[NPPROVMTRR];
249 
250 /* Bitmap of all available CPUs */
251 u_int	all_cpus;
252 
253 /* AP uses this PTD during bootstrap */
254 pd_entry_t *bootPTD;
255 
256 /* Hotwire a 0->4MB V==P mapping */
257 extern pt_entry_t *KPTphys;
258 
259 /* Virtual address of per-cpu common_tss */
260 extern struct i386tss common_tss;
261 #ifdef VM86
262 extern struct segment_descriptor common_tssd;
263 extern u_int private_tss;		/* flag indicating private tss */
264 extern u_int my_tr;
265 #endif /* VM86 */
266 
267 /* IdlePTD per cpu */
268 pd_entry_t *IdlePTDS[NCPU];
269 
270 /* "my" private page table page, for BSP init */
271 extern pt_entry_t SMP_prvpt[];
272 
273 /* Private page pointer to curcpu's PTD, used during BSP init */
274 extern pd_entry_t *my_idlePTD;
275 
276 static int smp_started;		/* has the system started? */
277 
278 /*
279  * Local data and functions.
280  */
281 
282 static int	mp_capable;
283 static u_int	boot_address;
284 static u_int	base_memory;
285 
286 static int	picmode;		/* 0: virtual wire mode, 1: PIC mode */
287 static mpfps_t	mpfps;
288 static int	search_for_sig(u_int32_t target, int count);
289 static void	mp_enable(u_int boot_addr);
290 
291 static int	mptable_pass1(void);
292 static int	mptable_pass2(void);
293 static void	default_mp_table(int type);
294 static void	fix_mp_table(void);
295 static void	init_locks(void);
296 static int	start_all_aps(u_int boot_addr);
297 static void	install_ap_tramp(u_int boot_addr);
298 static int	start_ap(int logicalCpu, u_int boot_addr);
299 static void getmtrr(void) ;
300 static void putmtrr(void) ;
301 static void putfmtrr(void) ;
302 
303 
304 /*
305  * Calculate usable address in base memory for AP trampoline code.
306  */
307 u_int
308 mp_bootaddress(u_int basemem)
309 {
310 	POSTCODE(MP_BOOTADDRESS_POST);
311 
312 	base_memory = basemem * 1024;	/* convert to bytes */
313 
314 	boot_address = base_memory & ~0xfff;	/* round down to 4k boundary */
315 	if ((base_memory - boot_address) < bootMP_size)
316 		boot_address -= 4096;	/* not enough, lower by 4k */
317 
318 	return boot_address;
319 }
320 
321 
322 /*
323  * Look for an Intel MP spec table (ie, SMP capable hardware).
324  */
325 int
326 mp_probe(void)
327 {
328 	int     x;
329 	u_long  segment;
330 	u_int32_t target;
331 
332 	POSTCODE(MP_PROBE_POST);
333 
334 	/* see if EBDA exists */
335 	if (segment = (u_long) * (u_short *) (KERNBASE + 0x40e)) {
336 		/* search first 1K of EBDA */
337 		target = (u_int32_t) (segment << 4);
338 		if ((x = search_for_sig(target, 1024 / 4)) >= 0)
339 			goto found;
340 	} else {
341 		/* last 1K of base memory, effective 'top of base' passed in */
342 		target = (u_int32_t) (base_memory - 0x400);
343 		if ((x = search_for_sig(target, 1024 / 4)) >= 0)
344 			goto found;
345 	}
346 
347 	/* search the BIOS */
348 	target = (u_int32_t) BIOS_BASE;
349 	if ((x = search_for_sig(target, BIOS_COUNT)) >= 0)
350 		goto found;
351 
352 	/* nothing found */
353 	mpfps = (mpfps_t)0;
354 	mp_capable = 0;
355 	return 0;
356 
357 found:
358 	/* calculate needed resources */
359 	mpfps = (mpfps_t)x;
360 	if (mptable_pass1())
361 		panic("you must reconfigure your kernel");
362 
363 	/* flag fact that we are running multiple processors */
364 	mp_capable = 1;
365 	return 1;
366 }
367 
368 
369 /*
370  * Startup the SMP processors.
371  */
372 void
373 mp_start(void)
374 {
375 	POSTCODE(MP_START_POST);
376 
377 	/* look for MP capable motherboard */
378 	if (mp_capable)
379 		mp_enable(boot_address);
380 	else
381 		panic("MP hardware not found!");
382 }
383 
384 
385 /*
386  * Print various information about the SMP system hardware and setup.
387  */
388 void
389 mp_announce(void)
390 {
391 	int     x;
392 
393 	POSTCODE(MP_ANNOUNCE_POST);
394 
395 	printf("FreeBSD/SMP: Multiprocessor motherboard\n");
396 	printf(" cpu0 (BSP): apic id: %2d", CPU_TO_ID(0));
397 	printf(", version: 0x%08x", cpu_apic_versions[0]);
398 	printf(", at 0x%08x\n", cpu_apic_address);
399 	for (x = 1; x <= mp_naps; ++x) {
400 		printf(" cpu%d (AP):  apic id: %2d", x, CPU_TO_ID(x));
401 		printf(", version: 0x%08x", cpu_apic_versions[x]);
402 		printf(", at 0x%08x\n", cpu_apic_address);
403 	}
404 
405 #if defined(APIC_IO)
406 	for (x = 0; x < mp_napics; ++x) {
407 		printf(" io%d (APIC): apic id: %2d", x, IO_TO_ID(x));
408 		printf(", version: 0x%08x", io_apic_versions[x]);
409 		printf(", at 0x%08x\n", io_apic_address[x]);
410 	}
411 #else
412 	printf(" Warning: APIC I/O disabled\n");
413 #endif	/* APIC_IO */
414 }
415 
416 /*
417  * AP cpu's call this to sync up protected mode.
418  */
419 void
420 init_secondary(void)
421 {
422 	int	gsel_tss;
423 #ifndef VM86
424 	u_int	my_tr;
425 #endif
426 
427 	r_gdt.rd_limit = sizeof(gdt[0]) * (NGDT + NCPU) - 1;
428 	r_gdt.rd_base = (int) gdt;
429 	lgdt(&r_gdt);			/* does magic intra-segment return */
430 	lidt(&r_idt);
431 	lldt(_default_ldt);
432 
433 	my_tr = NGDT + cpuid;
434 	gsel_tss = GSEL(my_tr, SEL_KPL);
435 	gdt[my_tr].sd.sd_type = SDT_SYS386TSS;
436 	common_tss.tss_esp0 = 0;	/* not used until after switch */
437 	common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
438 	common_tss.tss_ioopt = (sizeof common_tss) << 16;
439 #ifdef VM86
440 	common_tssd = gdt[my_tr].sd;
441 	private_tss = 0;
442 #endif /* VM86 */
443 	ltr(gsel_tss);
444 
445 	load_cr0(0x8005003b);		/* XXX! */
446 
447 	PTD[0] = 0;
448 	pmap_set_opt((unsigned *)PTD);
449 
450 	putmtrr();
451 	putfmtrr();
452 
453 	invltlb();
454 }
455 
456 
457 #if defined(APIC_IO)
458 /*
459  * Final configuration of the BSP's local APIC:
460  *  - disable 'pic mode'.
461  *  - disable 'virtual wire mode'.
462  *  - enable NMI.
463  */
464 void
465 bsp_apic_configure(void)
466 {
467 	u_char		byte;
468 	u_int32_t	temp;
469 
470 	/* leave 'pic mode' if necessary */
471 	if (picmode) {
472 		outb(0x22, 0x70);	/* select IMCR */
473 		byte = inb(0x23);	/* current contents */
474 		byte |= 0x01;		/* mask external INTR */
475 		outb(0x23, byte);	/* disconnect 8259s/NMI */
476 	}
477 
478 	/* mask lint0 (the 8259 'virtual wire' connection) */
479 	temp = lapic.lvt_lint0;
480 	temp |= APIC_LVT_M;		/* set the mask */
481 	lapic.lvt_lint0 = temp;
482 
483         /* setup lint1 to handle NMI */
484         temp = lapic.lvt_lint1;
485         temp &= ~APIC_LVT_M;		/* clear the mask */
486         lapic.lvt_lint1 = temp;
487 
488 	if (bootverbose)
489 		apic_dump("bsp_apic_configure()");
490 }
491 #endif  /* APIC_IO */
492 
493 
494 /*******************************************************************
495  * local functions and data
496  */
497 
498 /*
499  * start the SMP system
500  */
501 static void
502 mp_enable(u_int boot_addr)
503 {
504 	int     x;
505 #if defined(APIC_IO)
506 	int     apic;
507 	u_int   ux;
508 #endif	/* APIC_IO */
509 
510 	getmtrr();
511 	putfmtrr();
512 
513 	POSTCODE(MP_ENABLE_POST);
514 
515 	/* turn on 4MB of V == P addressing so we can get to MP table */
516 	*(int *)PTD = PG_V | PG_RW | ((u_long)KPTphys & PG_FRAME);
517 	invltlb();
518 
519 	/* examine the MP table for needed info, uses physical addresses */
520 	x = mptable_pass2();
521 
522 	*(int *)PTD = 0;
523 	invltlb();
524 
525 	/* can't process default configs till the CPU APIC is pmapped */
526 	if (x)
527 		default_mp_table(x);
528 
529 	/* post scan cleanup */
530 	fix_mp_table();
531 
532 #if defined(APIC_IO)
533 
534 	/* fill the LOGICAL io_apic_versions table */
535 	for (apic = 0; apic < mp_napics; ++apic) {
536 		ux = io_apic_read(apic, IOAPIC_VER);
537 		io_apic_versions[apic] = ux;
538 	}
539 
540 	/* program each IO APIC in the system */
541 	for (apic = 0; apic < mp_napics; ++apic)
542 		if (io_apic_setup(apic) < 0)
543 			panic("IO APIC setup failure");
544 
545 	/* install a 'Spurious INTerrupt' vector */
546 	setidt(XSPURIOUSINT_OFFSET, Xspuriousint,
547 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
548 
549 	/* install an inter-CPU IPI for TLB invalidation */
550 	setidt(XINVLTLB_OFFSET, Xinvltlb,
551 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
552 
553 	/* install an inter-CPU IPI for CPU stop/restart */
554 	setidt(XCPUSTOP_OFFSET, Xcpustop,
555 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
556 
557 #if defined(TEST_TEST1)
558 	/* install a "fake hardware INTerrupt" vector */
559 	setidt(XTEST1_OFFSET, Xtest1,
560 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
561 #endif  /** TEST_TEST1 */
562 
563 #endif	/* APIC_IO */
564 
565 	/* initialize all SMP locks */
566 	init_locks();
567 
568 	/* start each Application Processor */
569 	start_all_aps(boot_addr);
570 
571 	/*
572 	 * The init process might be started on a different CPU now,
573 	 * and the boot CPU might not call prepare_usermode to get
574 	 * cr0 correctly configured. Thus we initialize cr0 here.
575 	 */
576 	load_cr0(rcr0() | CR0_WP | CR0_AM);
577 }
578 
579 
580 /*
581  * look for the MP spec signature
582  */
583 
584 /* string defined by the Intel MP Spec as identifying the MP table */
585 #define MP_SIG		0x5f504d5f	/* _MP_ */
586 #define NEXT(X)		((X) += 4)
587 static int
588 search_for_sig(u_int32_t target, int count)
589 {
590 	int     x;
591 	u_int32_t *addr = (u_int32_t *) (KERNBASE + target);
592 
593 	for (x = 0; x < count; NEXT(x))
594 		if (addr[x] == MP_SIG)
595 			/* make array index a byte index */
596 			return (target + (x * sizeof(u_int32_t)));
597 
598 	return -1;
599 }
600 
601 
602 static basetable_entry basetable_entry_types[] =
603 {
604 	{0, 20, "Processor"},
605 	{1, 8, "Bus"},
606 	{2, 8, "I/O APIC"},
607 	{3, 8, "I/O INT"},
608 	{4, 8, "Local INT"}
609 };
610 
611 typedef struct BUSDATA {
612 	u_char  bus_id;
613 	enum busTypes bus_type;
614 }       bus_datum;
615 
616 typedef struct INTDATA {
617 	u_char  int_type;
618 	u_short int_flags;
619 	u_char  src_bus_id;
620 	u_char  src_bus_irq;
621 	u_char  dst_apic_id;
622 	u_char  dst_apic_int;
623 }       io_int, local_int;
624 
625 typedef struct BUSTYPENAME {
626 	u_char  type;
627 	char    name[7];
628 }       bus_type_name;
629 
630 static bus_type_name bus_type_table[] =
631 {
632 	{CBUS, "CBUS"},
633 	{CBUSII, "CBUSII"},
634 	{EISA, "EISA"},
635 	{UNKNOWN_BUSTYPE, "---"},
636 	{UNKNOWN_BUSTYPE, "---"},
637 	{ISA, "ISA"},
638 	{UNKNOWN_BUSTYPE, "---"},
639 	{UNKNOWN_BUSTYPE, "---"},
640 	{UNKNOWN_BUSTYPE, "---"},
641 	{UNKNOWN_BUSTYPE, "---"},
642 	{UNKNOWN_BUSTYPE, "---"},
643 	{UNKNOWN_BUSTYPE, "---"},
644 	{PCI, "PCI"},
645 	{UNKNOWN_BUSTYPE, "---"},
646 	{UNKNOWN_BUSTYPE, "---"},
647 	{UNKNOWN_BUSTYPE, "---"},
648 	{UNKNOWN_BUSTYPE, "---"},
649 	{XPRESS, "XPRESS"},
650 	{UNKNOWN_BUSTYPE, "---"}
651 };
652 /* from MP spec v1.4, table 5-1 */
653 static int default_data[7][5] =
654 {
655 /*   nbus, id0, type0, id1, type1 */
656 	{1, 0, ISA, 255, 255},
657 	{1, 0, EISA, 255, 255},
658 	{1, 0, EISA, 255, 255},
659 	{0, 255, 255, 255, 255},/* MCA not supported */
660 	{2, 0, ISA, 1, PCI},
661 	{2, 0, EISA, 1, PCI},
662 	{0, 255, 255, 255, 255}	/* MCA not supported */
663 };
664 
665 
666 /* the bus data */
667 bus_datum bus_data[NBUS];
668 
669 /* the IO INT data, one entry per possible APIC INTerrupt */
670 io_int  io_apic_ints[NINTR];
671 
672 static int nintrs;
673 
674 static int processor_entry	__P((proc_entry_ptr entry, int cpu));
675 static int bus_entry		__P((bus_entry_ptr entry, int bus));
676 static int io_apic_entry	__P((io_apic_entry_ptr entry, int apic));
677 static int int_entry		__P((int_entry_ptr entry, int intr));
678 static int lookup_bus_type	__P((char *name));
679 
680 
681 /*
682  * 1st pass on motherboard's Intel MP specification table.
683  *
684  * initializes:
685  *	mp_ncpus = 1
686  *
687  * determines:
688  *	cpu_apic_address (common to all CPUs)
689  *	io_apic_address[N]
690  *	mp_naps
691  *	mp_nbusses
692  *	mp_napics
693  *	nintrs
694  */
695 static int
696 mptable_pass1(void)
697 {
698 	int	x;
699 	mpcth_t	cth;
700 	int	totalSize;
701 	void*	position;
702 	int	count;
703 	int	type;
704 	int	mustpanic;
705 
706 	POSTCODE(MPTABLE_PASS1_POST);
707 
708 	mustpanic = 0;
709 
710 	/* clear various tables */
711 	for (x = 0; x < NAPICID; ++x) {
712 		io_apic_address[x] = ~0;	/* IO APIC address table */
713 	}
714 
715 	/* init everything to empty */
716 	mp_naps = 0;
717 	mp_nbusses = 0;
718 	mp_napics = 0;
719 	nintrs = 0;
720 
721 	/* check for use of 'default' configuration */
722 	if (MPFPS_MPFB1 != 0) {
723 		/* use default addresses */
724 		cpu_apic_address = DEFAULT_APIC_BASE;
725 		io_apic_address[0] = DEFAULT_IO_APIC_BASE;
726 
727 		/* fill in with defaults */
728 		mp_naps = 2;		/* includes BSP */
729 		mp_nbusses = default_data[MPFPS_MPFB1 - 1][0];
730 #if defined(APIC_IO)
731 		mp_napics = 1;
732 		nintrs = 16;
733 #endif	/* APIC_IO */
734 	}
735 	else {
736 		if ((cth = mpfps->pap) == 0)
737 			panic("MP Configuration Table Header MISSING!");
738 
739 		cpu_apic_address = (vm_offset_t) cth->apic_address;
740 
741 		/* walk the table, recording info of interest */
742 		totalSize = cth->base_table_length - sizeof(struct MPCTH);
743 		position = (u_char *) cth + sizeof(struct MPCTH);
744 		count = cth->entry_count;
745 
746 		while (count--) {
747 			switch (type = *(u_char *) position) {
748 			case 0: /* processor_entry */
749 				if (((proc_entry_ptr)position)->cpu_flags
750 					& PROCENTRY_FLAG_EN)
751 					++mp_naps;
752 				break;
753 			case 1: /* bus_entry */
754 				++mp_nbusses;
755 				break;
756 			case 2: /* io_apic_entry */
757 				if (((io_apic_entry_ptr)position)->apic_flags
758 					& IOAPICENTRY_FLAG_EN)
759 					io_apic_address[mp_napics++] =
760 					    (vm_offset_t)((io_apic_entry_ptr)
761 						position)->apic_address;
762 				break;
763 			case 3: /* int_entry */
764 				++nintrs;
765 				break;
766 			case 4:	/* int_entry */
767 				break;
768 			default:
769 				panic("mpfps Base Table HOSED!");
770 				/* NOTREACHED */
771 			}
772 
773 			totalSize -= basetable_entry_types[type].length;
774 			(u_char*)position += basetable_entry_types[type].length;
775 		}
776 	}
777 
778 	/* qualify the numbers */
779 	if (mp_naps > NCPU)
780 #if 0 /* XXX FIXME: kern/4255 */
781 		printf("Warning: only using %d of %d available CPUs!\n",
782 			NCPU, mp_naps);
783 #else
784 	{
785 		printf("NCPU cannot be different than actual CPU count.\n");
786 		printf(" add 'options NCPU=%d' to your kernel config file,\n",
787 			mp_naps);
788 		printf(" then rerun config & rebuild your SMP kernel\n");
789 		mustpanic = 1;
790 	}
791 #endif /* XXX FIXME: kern/4255 */
792 	if (mp_nbusses > NBUS) {
793 		printf("found %d busses, increase NBUS\n", mp_nbusses);
794 		mustpanic = 1;
795 	}
796 	if (mp_napics > NAPIC) {
797 		printf("found %d apics, increase NAPIC\n", mp_napics);
798 		mustpanic = 1;
799 	}
800 	if (nintrs > NINTR) {
801 		printf("found %d intrs, increase NINTR\n", nintrs);
802 		mustpanic = 1;
803 	}
804 
805 	/*
806 	 * Count the BSP.
807 	 * This is also used as a counter while starting the APs.
808 	 */
809 	mp_ncpus = 1;
810 
811 	--mp_naps;	/* subtract the BSP */
812 
813 	return mustpanic;
814 }
815 
816 
817 /*
818  * 2nd pass on motherboard's Intel MP specification table.
819  *
820  * sets:
821  *	boot_cpu_id
822  *	ID_TO_IO(N), phy APIC ID to log CPU/IO table
823  *	CPU_TO_ID(N), logical CPU to APIC ID table
824  *	IO_TO_ID(N), logical IO to APIC ID table
825  *	bus_data[N]
826  *	io_apic_ints[N]
827  */
828 static int
829 mptable_pass2(void)
830 {
831 	int     x;
832 	mpcth_t cth;
833 	int     totalSize;
834 	void*   position;
835 	int     count;
836 	int     type;
837 	int     apic, bus, cpu, intr;
838 
839 	POSTCODE(MPTABLE_PASS2_POST);
840 
841 	/* clear various tables */
842 	for (x = 0; x < NAPICID; ++x) {
843 		ID_TO_IO(x) = -1;	/* phy APIC ID to log CPU/IO table */
844 		CPU_TO_ID(x) = -1;	/* logical CPU to APIC ID table */
845 		IO_TO_ID(x) = -1;	/* logical IO to APIC ID table */
846 	}
847 
848 	/* clear bus data table */
849 	for (x = 0; x < NBUS; ++x)
850 		bus_data[x].bus_id = 0xff;
851 
852 	/* clear IO APIC INT table */
853 	for (x = 0; x < NINTR; ++x)
854 		io_apic_ints[x].int_type = 0xff;
855 
856 	/* setup the cpu/apic mapping arrays */
857 	boot_cpu_id = -1;
858 
859 	/* record whether PIC or virtual-wire mode */
860 	picmode = (mpfps->mpfb2 & 0x80) ? 1 : 0;
861 
862 	/* check for use of 'default' configuration */
863 	if (MPFPS_MPFB1 != 0)
864 		return MPFPS_MPFB1;	/* return default configuration type */
865 
866 	if ((cth = mpfps->pap) == 0)
867 		panic("MP Configuration Table Header MISSING!");
868 
869 	/* walk the table, recording info of interest */
870 	totalSize = cth->base_table_length - sizeof(struct MPCTH);
871 	position = (u_char *) cth + sizeof(struct MPCTH);
872 	count = cth->entry_count;
873 	apic = bus = intr = 0;
874 	cpu = 1;				/* pre-count the BSP */
875 
876 	while (count--) {
877 		switch (type = *(u_char *) position) {
878 		case 0:
879 			if (processor_entry(position, cpu))
880 				++cpu;
881 			break;
882 		case 1:
883 			if (bus_entry(position, bus))
884 				++bus;
885 			break;
886 		case 2:
887 			if (io_apic_entry(position, apic))
888 				++apic;
889 			break;
890 		case 3:
891 			if (int_entry(position, intr))
892 				++intr;
893 			break;
894 		case 4:
895 			/* int_entry(position); */
896 			break;
897 		default:
898 			panic("mpfps Base Table HOSED!");
899 			/* NOTREACHED */
900 		}
901 
902 		totalSize -= basetable_entry_types[type].length;
903 		(u_char *) position += basetable_entry_types[type].length;
904 	}
905 
906 	if (boot_cpu_id == -1)
907 		panic("NO BSP found!");
908 
909 	/* report fact that its NOT a default configuration */
910 	return 0;
911 }
912 
913 
914 /*
915  * parse an Intel MP specification table
916  */
917 static void
918 fix_mp_table(void)
919 {
920 	int	x;
921 	int	id;
922 	int	bus_0;
923 	int	bus_pci;
924 	int	num_pci_bus;
925 
926 	/*
927 	 * Fix mis-numbering of the PCI bus and its INT entries if the BIOS
928 	 * did it wrong.  The MP spec says that when more than 1 PCI bus
929 	 * exists the BIOS must begin with bus entries for the PCI bus and use
930 	 * actual PCI bus numbering.  This implies that when only 1 PCI bus
931 	 * exists the BIOS can choose to ignore this ordering, and indeed many
932 	 * MP motherboards do ignore it.  This causes a problem when the PCI
933 	 * sub-system makes requests of the MP sub-system based on PCI bus
934 	 * numbers.	So here we look for the situation and renumber the
935 	 * busses and associated INTs in an effort to "make it right".
936 	 */
937 
938 	/* find bus 0, PCI bus, count the number of PCI busses */
939 	for (num_pci_bus = 0, x = 0; x < mp_nbusses; ++x) {
940 		if (bus_data[x].bus_id == 0) {
941 			bus_0 = x;
942 		}
943 		if (bus_data[x].bus_type == PCI) {
944 			++num_pci_bus;
945 			bus_pci = x;
946 		}
947 	}
948 	/*
949 	 * bus_0 == slot of bus with ID of 0
950 	 * bus_pci == slot of last PCI bus encountered
951 	 */
952 
953 	/* check the 1 PCI bus case for sanity */
954 	if (num_pci_bus == 1) {
955 
956 		/* if it is number 0 all is well */
957 		if (bus_data[bus_pci].bus_id == 0)
958 			return;
959 
960 		/* mis-numbered, swap with whichever bus uses slot 0 */
961 
962 		/* swap the bus entry types */
963 		bus_data[bus_pci].bus_type = bus_data[bus_0].bus_type;
964 		bus_data[bus_0].bus_type = PCI;
965 
966 		/* swap each relavant INTerrupt entry */
967 		id = bus_data[bus_pci].bus_id;
968 		for (x = 0; x < nintrs; ++x) {
969 			if (io_apic_ints[x].src_bus_id == id) {
970 				io_apic_ints[x].src_bus_id = 0;
971 			}
972 			else if (io_apic_ints[x].src_bus_id == 0) {
973 				io_apic_ints[x].src_bus_id = id;
974 			}
975 		}
976 	}
977 	/* sanity check if more than 1 PCI bus */
978 	else if (num_pci_bus > 1) {
979 		for (x = 0; x < mp_nbusses; ++x) {
980 			if (bus_data[x].bus_type != PCI)
981 				continue;
982 			if (bus_data[x].bus_id >= num_pci_bus)
983 				panic("bad PCI bus numbering");
984 		}
985 	}
986 }
987 
988 
989 static int
990 processor_entry(proc_entry_ptr entry, int cpu)
991 {
992 	/* check for usability */
993 	if ((cpu >= NCPU) || !(entry->cpu_flags & PROCENTRY_FLAG_EN))
994 		return 0;
995 
996 	/* check for BSP flag */
997 	if (entry->cpu_flags & PROCENTRY_FLAG_BP) {
998 		boot_cpu_id = entry->apic_id;
999 		CPU_TO_ID(0) = entry->apic_id;
1000 		ID_TO_CPU(entry->apic_id) = 0;
1001 		return 0;	/* its already been counted */
1002 	}
1003 
1004 	/* add another AP to list, if less than max number of CPUs */
1005 	else {
1006 		CPU_TO_ID(cpu) = entry->apic_id;
1007 		ID_TO_CPU(entry->apic_id) = cpu;
1008 		return 1;
1009 	}
1010 }
1011 
1012 
1013 static int
1014 bus_entry(bus_entry_ptr entry, int bus)
1015 {
1016 	int     x;
1017 	char    c, name[8];
1018 
1019 	/* encode the name into an index */
1020 	for (x = 0; x < 6; ++x) {
1021 		if ((c = entry->bus_type[x]) == ' ')
1022 			break;
1023 		name[x] = c;
1024 	}
1025 	name[x] = '\0';
1026 
1027 	if ((x = lookup_bus_type(name)) == UNKNOWN_BUSTYPE)
1028 		panic("unknown bus type: '%s'", name);
1029 
1030 	bus_data[bus].bus_id = entry->bus_id;
1031 	bus_data[bus].bus_type = x;
1032 
1033 	return 1;
1034 }
1035 
1036 
1037 static int
1038 io_apic_entry(io_apic_entry_ptr entry, int apic)
1039 {
1040 	if (!(entry->apic_flags & IOAPICENTRY_FLAG_EN))
1041 		return 0;
1042 
1043 	IO_TO_ID(apic) = entry->apic_id;
1044 	ID_TO_IO(entry->apic_id) = apic;
1045 
1046 	return 1;
1047 }
1048 
1049 
1050 static int
1051 lookup_bus_type(char *name)
1052 {
1053 	int     x;
1054 
1055 	for (x = 0; x < MAX_BUSTYPE; ++x)
1056 		if (strcmp(bus_type_table[x].name, name) == 0)
1057 			return bus_type_table[x].type;
1058 
1059 	return UNKNOWN_BUSTYPE;
1060 }
1061 
1062 
1063 static int
1064 int_entry(int_entry_ptr entry, int intr)
1065 {
1066 	io_apic_ints[intr].int_type = entry->int_type;
1067 	io_apic_ints[intr].int_flags = entry->int_flags;
1068 	io_apic_ints[intr].src_bus_id = entry->src_bus_id;
1069 	io_apic_ints[intr].src_bus_irq = entry->src_bus_irq;
1070 	io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
1071 	io_apic_ints[intr].dst_apic_int = entry->dst_apic_int;
1072 
1073 	return 1;
1074 }
1075 
1076 
1077 static int
1078 apic_int_is_bus_type(int intr, int bus_type)
1079 {
1080 	int     bus;
1081 
1082 	for (bus = 0; bus < mp_nbusses; ++bus)
1083 		if ((bus_data[bus].bus_id == io_apic_ints[intr].src_bus_id)
1084 		    && ((int) bus_data[bus].bus_type == bus_type))
1085 			return 1;
1086 
1087 	return 0;
1088 }
1089 
1090 
1091 /*
1092  * Given a traditional ISA INT mask, return an APIC mask.
1093  */
1094 u_int
1095 isa_apic_mask(u_int isa_mask)
1096 {
1097 	int isa_irq;
1098 	int apic_pin;
1099 
1100 #if defined(SKIP_IRQ15_REDIRECT)
1101 	if (isa_mask == (1 << 15)) {
1102 		printf("skipping ISA IRQ15 redirect\n");
1103 		return isa_mask;
1104 	}
1105 #endif  /* SKIP_IRQ15_REDIRECT */
1106 
1107 	isa_irq = ffs(isa_mask);		/* find its bit position */
1108 	if (isa_irq == 0)			/* doesn't exist */
1109 		return 0;
1110 	--isa_irq;				/* make it zero based */
1111 
1112 	apic_pin = isa_apic_pin(isa_irq);	/* look for APIC connection */
1113 	if (apic_pin == -1)
1114 		return 0;
1115 
1116 	return (1 << apic_pin);			/* convert pin# to a mask */
1117 }
1118 
1119 
1120 /*
1121  * Determine which APIC pin an ISA/EISA INT is attached to.
1122  */
1123 #define INTTYPE(I)	(io_apic_ints[(I)].int_type)
1124 #define INTPIN(I)	(io_apic_ints[(I)].dst_apic_int)
1125 
1126 #define SRCBUSIRQ(I)	(io_apic_ints[(I)].src_bus_irq)
1127 int
1128 isa_apic_pin(int isa_irq)
1129 {
1130 	int     intr;
1131 
1132 	for (intr = 0; intr < nintrs; ++intr) {		/* check each record */
1133 		if (INTTYPE(intr) == 0) {		/* standard INT */
1134 			if (SRCBUSIRQ(intr) == isa_irq) {
1135 				if (apic_int_is_bus_type(intr, ISA) ||
1136 			            apic_int_is_bus_type(intr, EISA))
1137 					return INTPIN(intr);	/* found */
1138 			}
1139 		}
1140 	}
1141 	return -1;					/* NOT found */
1142 }
1143 #undef SRCBUSIRQ
1144 
1145 
1146 /*
1147  * Determine which APIC pin a PCI INT is attached to.
1148  */
1149 #define SRCBUSID(I)	(io_apic_ints[(I)].src_bus_id)
1150 #define SRCBUSDEVICE(I)	((io_apic_ints[(I)].src_bus_irq >> 2) & 0x1f)
1151 #define SRCBUSLINE(I)	(io_apic_ints[(I)].src_bus_irq & 0x03)
1152 int
1153 pci_apic_pin(int pciBus, int pciDevice, int pciInt)
1154 {
1155 	int     intr;
1156 
1157 	--pciInt;					/* zero based */
1158 
1159 	for (intr = 0; intr < nintrs; ++intr)		/* check each record */
1160 		if ((INTTYPE(intr) == 0)		/* standard INT */
1161 		    && (SRCBUSID(intr) == pciBus)
1162 		    && (SRCBUSDEVICE(intr) == pciDevice)
1163 		    && (SRCBUSLINE(intr) == pciInt))	/* a candidate IRQ */
1164 			if (apic_int_is_bus_type(intr, PCI))
1165 				return INTPIN(intr);	/* exact match */
1166 
1167 	return -1;					/* NOT found */
1168 }
1169 #undef SRCBUSLINE
1170 #undef SRCBUSDEVICE
1171 #undef SRCBUSID
1172 
1173 #undef INTPIN
1174 #undef INTTYPE
1175 
1176 
1177 /*
1178  * Reprogram the MB chipset to NOT redirect an ISA INTerrupt.
1179  *
1180  * XXX FIXME:
1181  *  Exactly what this means is unclear at this point.  It is a solution
1182  *  for motherboards that redirect the MBIRQ0 pin.  Generically a motherboard
1183  *  could route any of the ISA INTs to upper (>15) IRQ values.  But most would
1184  *  NOT be redirected via MBIRQ0, thus "undirect()ing" them would NOT be an
1185  *  option.
1186  */
1187 int
1188 undirect_isa_irq(int rirq)
1189 {
1190 #if defined(READY)
1191 	printf("Freeing redirected ISA irq %d.\n", rirq);
1192 	/** FIXME: tickle the MB redirector chip */
1193 	return ???;
1194 #else
1195 	printf("Freeing (NOT implemented) redirected ISA irq %d.\n", rirq);
1196 	return 0;
1197 #endif  /* READY */
1198 }
1199 
1200 
1201 /*
1202  * Reprogram the MB chipset to NOT redirect a PCI INTerrupt
1203  */
1204 int
1205 undirect_pci_irq(int rirq)
1206 {
1207 #if defined(READY)
1208 	if (bootverbose)
1209 		printf("Freeing redirected PCI irq %d.\n", rirq);
1210 
1211 	/** FIXME: tickle the MB redirector chip */
1212 	return ???;
1213 #else
1214 	if (bootverbose)
1215 		printf("Freeing (NOT implemented) redirected PCI irq %d.\n",
1216 		       rirq);
1217 	return 0;
1218 #endif  /* READY */
1219 }
1220 
1221 
1222 /*
1223  * given a bus ID, return:
1224  *  the bus type if found
1225  *  -1 if NOT found
1226  */
1227 int
1228 apic_bus_type(int id)
1229 {
1230 	int     x;
1231 
1232 	for (x = 0; x < mp_nbusses; ++x)
1233 		if (bus_data[x].bus_id == id)
1234 			return bus_data[x].bus_type;
1235 
1236 	return -1;
1237 }
1238 
1239 
1240 /*
1241  * given a LOGICAL APIC# and pin#, return:
1242  *  the associated src bus ID if found
1243  *  -1 if NOT found
1244  */
1245 int
1246 apic_src_bus_id(int apic, int pin)
1247 {
1248 	int     x;
1249 
1250 	/* search each of the possible INTerrupt sources */
1251 	for (x = 0; x < nintrs; ++x)
1252 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1253 		    (pin == io_apic_ints[x].dst_apic_int))
1254 			return (io_apic_ints[x].src_bus_id);
1255 
1256 	return -1;		/* NOT found */
1257 }
1258 
1259 
1260 /*
1261  * given a LOGICAL APIC# and pin#, return:
1262  *  the associated src bus IRQ if found
1263  *  -1 if NOT found
1264  */
1265 int
1266 apic_src_bus_irq(int apic, int pin)
1267 {
1268 	int     x;
1269 
1270 	for (x = 0; x < nintrs; x++)
1271 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1272 		    (pin == io_apic_ints[x].dst_apic_int))
1273 			return (io_apic_ints[x].src_bus_irq);
1274 
1275 	return -1;		/* NOT found */
1276 }
1277 
1278 
1279 /*
1280  * given a LOGICAL APIC# and pin#, return:
1281  *  the associated INTerrupt type if found
1282  *  -1 if NOT found
1283  */
1284 int
1285 apic_int_type(int apic, int pin)
1286 {
1287 	int     x;
1288 
1289 	/* search each of the possible INTerrupt sources */
1290 	for (x = 0; x < nintrs; ++x)
1291 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1292 		    (pin == io_apic_ints[x].dst_apic_int))
1293 			return (io_apic_ints[x].int_type);
1294 
1295 	return -1;		/* NOT found */
1296 }
1297 
1298 
1299 /*
1300  * given a LOGICAL APIC# and pin#, return:
1301  *  the associated trigger mode if found
1302  *  -1 if NOT found
1303  */
1304 int
1305 apic_trigger(int apic, int pin)
1306 {
1307 	int     x;
1308 
1309 	/* search each of the possible INTerrupt sources */
1310 	for (x = 0; x < nintrs; ++x)
1311 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1312 		    (pin == io_apic_ints[x].dst_apic_int))
1313 			return ((io_apic_ints[x].int_flags >> 2) & 0x03);
1314 
1315 	return -1;		/* NOT found */
1316 }
1317 
1318 
1319 /*
1320  * given a LOGICAL APIC# and pin#, return:
1321  *  the associated 'active' level if found
1322  *  -1 if NOT found
1323  */
1324 int
1325 apic_polarity(int apic, int pin)
1326 {
1327 	int     x;
1328 
1329 	/* search each of the possible INTerrupt sources */
1330 	for (x = 0; x < nintrs; ++x)
1331 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1332 		    (pin == io_apic_ints[x].dst_apic_int))
1333 			return (io_apic_ints[x].int_flags & 0x03);
1334 
1335 	return -1;		/* NOT found */
1336 }
1337 
1338 
1339 /*
1340  * set data according to MP defaults
1341  * FIXME: probably not complete yet...
1342  */
1343 static void
1344 default_mp_table(int type)
1345 {
1346 	int     ap_cpu_id;
1347 #if defined(APIC_IO)
1348 	u_int32_t ux;
1349 	int     io_apic_id;
1350 	int     pin;
1351 #endif	/* APIC_IO */
1352 
1353 #if 0
1354 	printf("  MP default config type: %d\n", type);
1355 	switch (type) {
1356 	case 1:
1357 		printf("   bus: ISA, APIC: 82489DX\n");
1358 		break;
1359 	case 2:
1360 		printf("   bus: EISA, APIC: 82489DX\n");
1361 		break;
1362 	case 3:
1363 		printf("   bus: EISA, APIC: 82489DX\n");
1364 		break;
1365 	case 4:
1366 		printf("   bus: MCA, APIC: 82489DX\n");
1367 		break;
1368 	case 5:
1369 		printf("   bus: ISA+PCI, APIC: Integrated\n");
1370 		break;
1371 	case 6:
1372 		printf("   bus: EISA+PCI, APIC: Integrated\n");
1373 		break;
1374 	case 7:
1375 		printf("   bus: MCA+PCI, APIC: Integrated\n");
1376 		break;
1377 	default:
1378 		printf("   future type\n");
1379 		break;
1380 		/* NOTREACHED */
1381 	}
1382 #endif	/* 0 */
1383 
1384 	boot_cpu_id = (lapic.id & APIC_ID_MASK) >> 24;
1385 	ap_cpu_id = (boot_cpu_id == 0) ? 1 : 0;
1386 
1387 	/* BSP */
1388 	CPU_TO_ID(0) = boot_cpu_id;
1389 	ID_TO_CPU(boot_cpu_id) = 0;
1390 
1391 	/* one and only AP */
1392 	CPU_TO_ID(1) = ap_cpu_id;
1393 	ID_TO_CPU(ap_cpu_id) = 1;
1394 
1395 #if defined(APIC_IO)
1396 	/* one and only IO APIC */
1397 	io_apic_id = (io_apic_read(0, IOAPIC_ID) & APIC_ID_MASK) >> 24;
1398 
1399 	/*
1400 	 * sanity check, refer to MP spec section 3.6.6, last paragraph
1401 	 * necessary as some hardware isn't properly setting up the IO APIC
1402 	 */
1403 #if defined(REALLY_ANAL_IOAPICID_VALUE)
1404 	if (io_apic_id != 2) {
1405 #else
1406 	if ((io_apic_id == 0) || (io_apic_id == 1) || (io_apic_id == 15)) {
1407 #endif	/* REALLY_ANAL_IOAPICID_VALUE */
1408 		ux = io_apic_read(0, IOAPIC_ID);	/* get current contents */
1409 		ux &= ~APIC_ID_MASK;	/* clear the ID field */
1410 		ux |= 0x02000000;	/* set it to '2' */
1411 		io_apic_write(0, IOAPIC_ID, ux);	/* write new value */
1412 		ux = io_apic_read(0, IOAPIC_ID);	/* re-read && test */
1413 		if ((ux & APIC_ID_MASK) != 0x02000000)
1414 			panic("can't control IO APIC ID, reg: 0x%08x", ux);
1415 		io_apic_id = 2;
1416 	}
1417 	IO_TO_ID(0) = io_apic_id;
1418 	ID_TO_IO(io_apic_id) = 0;
1419 #endif	/* APIC_IO */
1420 
1421 	/* fill out bus entries */
1422 	switch (type) {
1423 	case 1:
1424 	case 2:
1425 	case 3:
1426 	case 5:
1427 	case 6:
1428 		bus_data[0].bus_id = default_data[type - 1][1];
1429 		bus_data[0].bus_type = default_data[type - 1][2];
1430 		bus_data[1].bus_id = default_data[type - 1][3];
1431 		bus_data[1].bus_type = default_data[type - 1][4];
1432 		break;
1433 
1434 	/* case 4: case 7:		   MCA NOT supported */
1435 	default:		/* illegal/reserved */
1436 		panic("BAD default MP config: %d", type);
1437 		/* NOTREACHED */
1438 	}
1439 
1440 #if defined(APIC_IO)
1441 	/* general cases from MP v1.4, table 5-2 */
1442 	for (pin = 0; pin < 16; ++pin) {
1443 		io_apic_ints[pin].int_type = 0;
1444 		io_apic_ints[pin].int_flags = 0x05;	/* edge/active-hi */
1445 		io_apic_ints[pin].src_bus_id = 0;
1446 		io_apic_ints[pin].src_bus_irq = pin;	/* IRQ2 caught below */
1447 		io_apic_ints[pin].dst_apic_id = io_apic_id;
1448 		io_apic_ints[pin].dst_apic_int = pin;	/* 1-to-1 */
1449 	}
1450 
1451 	/* special cases from MP v1.4, table 5-2 */
1452 	if (type == 2) {
1453 		io_apic_ints[2].int_type = 0xff;	/* N/C */
1454 		io_apic_ints[13].int_type = 0xff;	/* N/C */
1455 #if !defined(APIC_MIXED_MODE)
1456 		/** FIXME: ??? */
1457 		panic("sorry, can't support type 2 default yet");
1458 #endif	/* APIC_MIXED_MODE */
1459 	}
1460 	else
1461 		io_apic_ints[2].src_bus_irq = 0;	/* ISA IRQ0 is on APIC INT 2 */
1462 
1463 	if (type == 7)
1464 		io_apic_ints[0].int_type = 0xff;	/* N/C */
1465 	else
1466 		io_apic_ints[0].int_type = 3;	/* vectored 8259 */
1467 #endif	/* APIC_IO */
1468 }
1469 
1470 
1471 /*
1472  * initialize all the SMP locks
1473  */
1474 
1475 /* critical region around IO APIC, apic_imen */
1476 struct simplelock	imen_lock;
1477 
1478 /* critical region around splxx(), cpl, cml, cil, ipending */
1479 struct simplelock	cpl_lock;
1480 
1481 /* Make FAST_INTR() routines sequential */
1482 struct simplelock	fast_intr_lock;
1483 
1484 /* critical region around INTR() routines */
1485 struct simplelock	intr_lock;
1486 
1487 /* lock regions protected in UP kernel via cli/sti */
1488 struct simplelock	mpintr_lock;
1489 
1490 #ifdef USE_COMLOCK
1491 /* locks com (tty) data/hardware accesses: a FASTINTR() */
1492 struct simplelock	com_lock;
1493 #endif /* USE_COMLOCK */
1494 
1495 #ifdef USE_CLOCKLOCK
1496 /* lock regions around the clock hardware */
1497 struct simplelock	clock_lock;
1498 #endif /* USE_CLOCKLOCK */
1499 
1500 static void
1501 init_locks(void)
1502 {
1503 	/*
1504 	 * Get the initial mp_lock with a count of 1 for the BSP.
1505 	 * This uses a LOGICAL cpu ID, ie BSP == 0.
1506 	 */
1507 	mp_lock = 0x00000001;
1508 
1509 	/* ISR uses its own "giant lock" */
1510 	isr_lock = FREE_LOCK;
1511 
1512 	s_lock_init((struct simplelock*)&mpintr_lock);
1513 
1514 	s_lock_init((struct simplelock*)&fast_intr_lock);
1515 	s_lock_init((struct simplelock*)&intr_lock);
1516 	s_lock_init((struct simplelock*)&imen_lock);
1517 	s_lock_init((struct simplelock*)&cpl_lock);
1518 
1519 #ifdef USE_COMLOCK
1520 	s_lock_init((struct simplelock*)&com_lock);
1521 #endif /* USE_COMLOCK */
1522 #ifdef USE_CLOCKLOCK
1523 	s_lock_init((struct simplelock*)&clock_lock);
1524 #endif /* USE_CLOCKLOCK */
1525 }
1526 
1527 
1528 /*
1529  * start each AP in our list
1530  */
1531 static int
1532 start_all_aps(u_int boot_addr)
1533 {
1534 	int     x, i;
1535 	u_char  mpbiosreason;
1536 	u_long  mpbioswarmvec;
1537 	pd_entry_t *newptd;
1538 	pt_entry_t *newpt;
1539 	int *newpp;
1540 	char *stack;
1541 	pd_entry_t	*myPTD;
1542 
1543 	POSTCODE(START_ALL_APS_POST);
1544 
1545 	/* initialize BSP's local APIC */
1546 	apic_initialize();
1547 	bsp_apic_ready = 1;
1548 
1549 	/* install the AP 1st level boot code */
1550 	install_ap_tramp(boot_addr);
1551 
1552 
1553 	/* save the current value of the warm-start vector */
1554 	mpbioswarmvec = *((u_long *) WARMBOOT_OFF);
1555 	outb(CMOS_REG, BIOS_RESET);
1556 	mpbiosreason = inb(CMOS_DATA);
1557 
1558 	/* record BSP in CPU map */
1559 	all_cpus = 1;
1560 
1561 	/* start each AP */
1562 	for (x = 1; x <= mp_naps; ++x) {
1563 
1564 		/* This is a bit verbose, it will go away soon.  */
1565 
1566 		/* alloc new page table directory */
1567 		newptd = (pd_entry_t *)(kmem_alloc(kernel_map, PAGE_SIZE));
1568 
1569 		/* Store the virtual PTD address for this CPU */
1570 		IdlePTDS[x] = newptd;
1571 
1572 		/* clone currently active one (ie: IdlePTD) */
1573 		bcopy(PTD, newptd, PAGE_SIZE);	/* inc prv page pde */
1574 
1575 		/* set up 0 -> 4MB P==V mapping for AP boot */
1576 		newptd[0] = (pd_entry_t) (PG_V | PG_RW |
1577 						((u_long)KPTphys & PG_FRAME));
1578 
1579 		/* store PTD for this AP's boot sequence */
1580 		myPTD = (pd_entry_t *)vtophys(newptd);
1581 
1582 		/* alloc new page table page */
1583 		newpt = (pt_entry_t *)(kmem_alloc(kernel_map, PAGE_SIZE));
1584 
1585 		/* set the new PTD's private page to point there */
1586 		newptd[MPPTDI] = (pt_entry_t)(PG_V | PG_RW | vtophys(newpt));
1587 
1588 		/* install self referential entry */
1589 		newptd[PTDPTDI] = (pd_entry_t)(PG_V | PG_RW | vtophys(newptd));
1590 
1591 		/* allocate a new private data page */
1592 		newpp = (int *)kmem_alloc(kernel_map, PAGE_SIZE);
1593 
1594 		/* wire it into the private page table page */
1595 		newpt[0] = (pt_entry_t)(PG_V | PG_RW | vtophys(newpp));
1596 
1597 		/* wire the ptp into itself for access */
1598 		newpt[1] = (pt_entry_t)(PG_V | PG_RW | vtophys(newpt));
1599 
1600 		/* copy in the pointer to the local apic */
1601 		newpt[2] = SMP_prvpt[2];
1602 
1603 		/* and the IO apic mapping[s] */
1604 		for (i = 16; i < 32; i++)
1605 			newpt[i] = SMP_prvpt[i];
1606 
1607 		/* allocate and set up an idle stack data page */
1608 		stack = (char *)kmem_alloc(kernel_map, UPAGES*PAGE_SIZE);
1609 		for (i = 0; i < UPAGES; i++)
1610 			newpt[i + 3] = (pt_entry_t)(PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
1611 
1612 		newpt[5] = 0;			/* *prv_CMAP1 */
1613 		newpt[6] = 0;			/* *prv_CMAP2 */
1614 		newpt[7] = 0;			/* *prv_CMAP3 */
1615 
1616 		/* prime data page for it to use */
1617 		newpp[0] = x;			/* cpuid */
1618 		newpp[1] = 0;			/* curproc */
1619 		newpp[2] = 0;			/* curpcb */
1620 		newpp[3] = 0;			/* npxproc */
1621 		newpp[4] = 0;			/* runtime.tv_sec */
1622 		newpp[5] = 0;			/* runtime.tv_usec */
1623 		newpp[6] = x << 24;		/* cpu_lockid */
1624 		newpp[7] = 0;			/* other_cpus */
1625 		newpp[8] = (int)myPTD;		/* my_idlePTD */
1626 		newpp[9] = 0;			/* ss_tpr */
1627 		newpp[10] = (int)&newpt[5];	/* prv_CMAP1 */
1628 		newpp[11] = (int)&newpt[6];	/* prv_CMAP2 */
1629 		newpp[12] = (int)&newpt[7];	/* prv_CMAP3 */
1630 
1631 		/* setup a vector to our boot code */
1632 		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
1633 		*((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4);
1634 		outb(CMOS_REG, BIOS_RESET);
1635 		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
1636 
1637 		bootPTD = myPTD;
1638 		/* attempt to start the Application Processor */
1639 		CHECK_INIT(99);	/* setup checkpoints */
1640 		if (!start_ap(x, boot_addr)) {
1641 			printf("AP #%d (PHY# %d) failed!\n", x, CPU_TO_ID(x));
1642 			CHECK_PRINT("trace");	/* show checkpoints */
1643 			/* better panic as the AP may be running loose */
1644 			printf("panic y/n? [y] ");
1645 			if (cngetc() != 'n')
1646 				panic("bye-bye");
1647 		}
1648 		CHECK_PRINT("trace");		/* show checkpoints */
1649 
1650 		/* record its version info */
1651 		cpu_apic_versions[x] = cpu_apic_versions[0];
1652 
1653 		all_cpus |= (1 << x);		/* record AP in CPU map */
1654 	}
1655 
1656 	/* build our map of 'other' CPUs */
1657 	other_cpus = all_cpus & ~(1 << cpuid);
1658 
1659 	/* fill in our (BSP) APIC version */
1660 	cpu_apic_versions[0] = lapic.version;
1661 
1662 	/* restore the warmstart vector */
1663 	*(u_long *) WARMBOOT_OFF = mpbioswarmvec;
1664 	outb(CMOS_REG, BIOS_RESET);
1665 	outb(CMOS_DATA, mpbiosreason);
1666 
1667 	/*
1668 	 * Set up the idle context for the BSP.  Similar to above except
1669 	 * that some was done by locore, some by pmap.c and some is implicit
1670 	 * because the BSP is cpu#0 and the page is initially zero, and also
1671 	 * because we can refer to variables by name on the BSP..
1672 	 */
1673 	newptd = (pd_entry_t *)(kmem_alloc(kernel_map, PAGE_SIZE));
1674 
1675 	bcopy(PTD, newptd, PAGE_SIZE);	/* inc prv page pde */
1676 	IdlePTDS[0] = newptd;
1677 
1678 	/* Point PTD[] to this page instead of IdlePTD's physical page */
1679 	newptd[PTDPTDI] = (pd_entry_t)(PG_V | PG_RW | vtophys(newptd));
1680 
1681 	my_idlePTD = (pd_entry_t *)vtophys(newptd);
1682 
1683 	/* Allocate and setup BSP idle stack */
1684 	stack = (char *)kmem_alloc(kernel_map, UPAGES * PAGE_SIZE);
1685 	for (i = 0; i < UPAGES; i++)
1686 		SMP_prvpt[i + 3] = (pt_entry_t)(PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
1687 
1688 	pmap_set_opt_bsp();
1689 
1690 	for (i = 0; i < mp_ncpus; i++) {
1691 		bcopy( (int *) PTD + KPTDI, (int *) IdlePTDS[i] + KPTDI, NKPDE * sizeof (int));
1692 	}
1693 
1694 	/* number of APs actually started */
1695 	return mp_ncpus - 1;
1696 }
1697 
1698 
1699 /*
1700  * load the 1st level AP boot code into base memory.
1701  */
1702 
1703 /* targets for relocation */
1704 extern void bigJump(void);
1705 extern void bootCodeSeg(void);
1706 extern void bootDataSeg(void);
1707 extern void MPentry(void);
1708 extern u_int MP_GDT;
1709 extern u_int mp_gdtbase;
1710 
1711 static void
1712 install_ap_tramp(u_int boot_addr)
1713 {
1714 	int     x;
1715 	int     size = *(int *) ((u_long) & bootMP_size);
1716 	u_char *src = (u_char *) ((u_long) bootMP);
1717 	u_char *dst = (u_char *) boot_addr + KERNBASE;
1718 	u_int   boot_base = (u_int) bootMP;
1719 	u_int8_t *dst8;
1720 	u_int16_t *dst16;
1721 	u_int32_t *dst32;
1722 
1723 	POSTCODE(INSTALL_AP_TRAMP_POST);
1724 
1725 	for (x = 0; x < size; ++x)
1726 		*dst++ = *src++;
1727 
1728 	/*
1729 	 * modify addresses in code we just moved to basemem. unfortunately we
1730 	 * need fairly detailed info about mpboot.s for this to work.  changes
1731 	 * to mpboot.s might require changes here.
1732 	 */
1733 
1734 	/* boot code is located in KERNEL space */
1735 	dst = (u_char *) boot_addr + KERNBASE;
1736 
1737 	/* modify the lgdt arg */
1738 	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
1739 	*dst32 = boot_addr + ((u_int) & MP_GDT - boot_base);
1740 
1741 	/* modify the ljmp target for MPentry() */
1742 	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
1743 	*dst32 = ((u_int) MPentry - KERNBASE);
1744 
1745 	/* modify the target for boot code segment */
1746 	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
1747 	dst8 = (u_int8_t *) (dst16 + 1);
1748 	*dst16 = (u_int) boot_addr & 0xffff;
1749 	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
1750 
1751 	/* modify the target for boot data segment */
1752 	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
1753 	dst8 = (u_int8_t *) (dst16 + 1);
1754 	*dst16 = (u_int) boot_addr & 0xffff;
1755 	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
1756 }
1757 
1758 
1759 /*
1760  * this function starts the AP (application processor) identified
1761  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
1762  * to accomplish this.  This is necessary because of the nuances
1763  * of the different hardware we might encounter.  It ain't pretty,
1764  * but it seems to work.
1765  */
1766 static int
1767 start_ap(int logical_cpu, u_int boot_addr)
1768 {
1769 	int     physical_cpu;
1770 	int     vector;
1771 	int     cpus;
1772 	u_long  icr_lo, icr_hi;
1773 
1774 	POSTCODE(START_AP_POST);
1775 
1776 	/* get the PHYSICAL APIC ID# */
1777 	physical_cpu = CPU_TO_ID(logical_cpu);
1778 
1779 	/* calculate the vector */
1780 	vector = (boot_addr >> 12) & 0xff;
1781 
1782 	/* used as a watchpoint to signal AP startup */
1783 	cpus = mp_ncpus;
1784 
1785 	/*
1786 	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
1787 	 * and running the target CPU. OR this INIT IPI might be latched (P5
1788 	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
1789 	 * ignored.
1790 	 */
1791 
1792 	/* setup the address for the target AP */
1793 	icr_hi = lapic.icr_hi & ~APIC_ID_MASK;
1794 	icr_hi |= (physical_cpu << 24);
1795 	lapic.icr_hi = icr_hi;
1796 
1797 	/* do an INIT IPI: assert RESET */
1798 	icr_lo = lapic.icr_lo & 0xfff00000;
1799 	lapic.icr_lo = icr_lo | 0x0000c500;
1800 
1801 	/* wait for pending status end */
1802 	while (lapic.icr_lo & APIC_DELSTAT_MASK)
1803 		 /* spin */ ;
1804 
1805 	/* do an INIT IPI: deassert RESET */
1806 	lapic.icr_lo = icr_lo | 0x00008500;
1807 
1808 	/* wait for pending status end */
1809 	u_sleep(10000);		/* wait ~10mS */
1810 	while (lapic.icr_lo & APIC_DELSTAT_MASK)
1811 		 /* spin */ ;
1812 
1813 	/*
1814 	 * next we do a STARTUP IPI: the previous INIT IPI might still be
1815 	 * latched, (P5 bug) this 1st STARTUP would then terminate
1816 	 * immediately, and the previously started INIT IPI would continue. OR
1817 	 * the previous INIT IPI has already run. and this STARTUP IPI will
1818 	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
1819 	 * will run.
1820 	 */
1821 
1822 	/* do a STARTUP IPI */
1823 	lapic.icr_lo = icr_lo | 0x00000600 | vector;
1824 	while (lapic.icr_lo & APIC_DELSTAT_MASK)
1825 		 /* spin */ ;
1826 	u_sleep(200);		/* wait ~200uS */
1827 
1828 	/*
1829 	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
1830 	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
1831 	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
1832 	 * recognized after hardware RESET or INIT IPI.
1833 	 */
1834 
1835 	lapic.icr_lo = icr_lo | 0x00000600 | vector;
1836 	while (lapic.icr_lo & APIC_DELSTAT_MASK)
1837 		 /* spin */ ;
1838 	u_sleep(200);		/* wait ~200uS */
1839 
1840 	/* wait for it to start */
1841 	set_apic_timer(5000000);/* == 5 seconds */
1842 	while (read_apic_timer())
1843 		if (mp_ncpus > cpus)
1844 			return 1;	/* return SUCCESS */
1845 
1846 	return 0;		/* return FAILURE */
1847 }
1848 
1849 
1850 /*
1851  * Flush the TLB on all other CPU's
1852  *
1853  * XXX: Needs to handshake and wait for completion before proceding.
1854  */
1855 void
1856 smp_invltlb(void)
1857 {
1858 #if defined(APIC_IO)
1859 	if (smp_started && invltlb_ok)
1860 		all_but_self_ipi(XINVLTLB_OFFSET);
1861 #endif  /* APIC_IO */
1862 }
1863 
1864 void
1865 invlpg(u_int addr)
1866 {
1867 	__asm   __volatile("invlpg (%0)"::"r"(addr):"memory");
1868 
1869 	/* send a message to the other CPUs */
1870 	smp_invltlb();
1871 }
1872 
1873 void
1874 invltlb(void)
1875 {
1876 	u_long  temp;
1877 
1878 	/*
1879 	 * This should be implemented as load_cr3(rcr3()) when load_cr3() is
1880 	 * inlined.
1881 	 */
1882 	__asm __volatile("movl %%cr3, %0; movl %0, %%cr3":"=r"(temp) :: "memory");
1883 
1884 	/* send a message to the other CPUs */
1885 	smp_invltlb();
1886 }
1887 
1888 
1889 /*
1890  * When called the executing CPU will send an IPI to all other CPUs
1891  *  requesting that they halt execution.
1892  *
1893  * Usually (but not necessarily) called with 'other_cpus' as its arg.
1894  *
1895  *  - Signals all CPUs in map to stop.
1896  *  - Waits for each to stop.
1897  *
1898  * Returns:
1899  *  -1: error
1900  *   0: NA
1901  *   1: ok
1902  *
1903  * XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
1904  *            from executing at same time.
1905  */
1906 int
1907 stop_cpus(u_int map)
1908 {
1909 	if (!smp_started)
1910 		return 0;
1911 
1912 	/* send IPI to all CPUs in map */
1913 	stopped_cpus = 0;
1914 
1915 	/* send the Xcpustop IPI to all CPUs in map */
1916 	selected_apic_ipi(map, XCPUSTOP_OFFSET, APIC_DELMODE_FIXED);
1917 
1918 	while (stopped_cpus != map)
1919 		/* spin */ ;
1920 
1921 	return 1;
1922 }
1923 
1924 
1925 /*
1926  * Called by a CPU to restart stopped CPUs.
1927  *
1928  * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
1929  *
1930  *  - Signals all CPUs in map to restart.
1931  *  - Waits for each to restart.
1932  *
1933  * Returns:
1934  *  -1: error
1935  *   0: NA
1936  *   1: ok
1937  */
1938 int
1939 restart_cpus(u_int map)
1940 {
1941 	if (!smp_started)
1942 		return 0;
1943 
1944 	started_cpus = map;		/* signal other cpus to restart */
1945 
1946 	while (started_cpus)		/* wait for each to clear its bit */
1947 		/* spin */ ;
1948 
1949 	return 1;
1950 }
1951 
1952 int smp_active = 0;	/* are the APs allowed to run? */
1953 SYSCTL_INT(_machdep, OID_AUTO, smp_active, CTLFLAG_RW, &smp_active, 0, "");
1954 
1955 /* XXX maybe should be hw.ncpu */
1956 int smp_cpus = 1;	/* how many cpu's running */
1957 SYSCTL_INT(_machdep, OID_AUTO, smp_cpus, CTLFLAG_RD, &smp_cpus, 0, "");
1958 
1959 int invltlb_ok = 0;	/* throttle smp_invltlb() till safe */
1960 SYSCTL_INT(_machdep, OID_AUTO, invltlb_ok, CTLFLAG_RW, &invltlb_ok, 0, "");
1961 
1962 int do_page_zero_idle = 0; /* bzero pages for fun and profit in idleloop */
1963 SYSCTL_INT(_machdep, OID_AUTO, do_page_zero_idle, CTLFLAG_RW,
1964 	   &do_page_zero_idle, 0, "");
1965 
1966 
1967 /*
1968  * This is called once the rest of the system is up and running and we're
1969  * ready to let the AP's out of the pen.
1970  */
1971 void ap_init(void);
1972 
1973 void
1974 ap_init()
1975 {
1976 	u_int   temp;
1977 	u_int	apic_id;
1978 
1979 	smp_cpus++;
1980 
1981 	/* Build our map of 'other' CPUs. */
1982 	other_cpus = all_cpus & ~(1 << cpuid);
1983 
1984 	printf("SMP: AP CPU #%d Launched!\n", cpuid);
1985 
1986 	/* XXX FIXME: i386 specific, and redundant: Setup the FPU. */
1987 	load_cr0((rcr0() & ~CR0_EM) | CR0_MP | CR0_NE | CR0_TS);
1988 
1989 	/* A quick check from sanity claus */
1990 	apic_id = (apic_id_to_logical[(lapic.id & 0x0f000000) >> 24]);
1991 	if (cpuid != apic_id) {
1992 		printf("SMP: cpuid = %d\n", cpuid);
1993 		printf("SMP: apic_id = %d\n", apic_id);
1994 		printf("PTD[MPPTDI] = %08x\n", PTD[MPPTDI]);
1995 		panic("cpuid mismatch! boom!!");
1996 	}
1997 
1998 	/* Init local apic for irq's */
1999 	apic_initialize();
2000 
2001 	/*
2002 	 * Activate smp_invltlb, although strictly speaking, this isn't
2003 	 * quite correct yet.  We should have a bitfield for cpus willing
2004 	 * to accept TLB flush IPI's or something and sync them.
2005 	 */
2006 	invltlb_ok = 1;
2007 	smp_started = 1;	/* enable IPI's, tlb shootdown, freezes etc */
2008 	smp_active = 1;		/* historic */
2009 
2010 	curproc = NULL;		/* make sure */
2011 }
2012 
2013 void
2014 getmtrr() {
2015 	int i;
2016 	if (cpu_class == CPUCLASS_686) {
2017 		for(i=0;i<NPPROVMTRR;i++) {
2018 			PPro_vmtrr[i].base = rdmsr(PPRO_VMTRRphysBase0 + i * 2);
2019 			PPro_vmtrr[i].mask = rdmsr(PPRO_VMTRRphysMask0 + i * 2);
2020 		}
2021 	}
2022 }
2023 
2024 void
2025 putmtrr() {
2026 	int i;
2027 	if (cpu_class == CPUCLASS_686) {
2028 		wbinvd();
2029 		for(i=0;i<NPPROVMTRR;i++) {
2030 			wrmsr(PPRO_VMTRRphysBase0 + i * 2, PPro_vmtrr[i].base);
2031 			wrmsr(PPRO_VMTRRphysMask0 + i * 2, PPro_vmtrr[i].mask);
2032 		}
2033 	}
2034 }
2035 
2036 void
2037 putfmtrr() {
2038 	if (cpu_class == CPUCLASS_686) {
2039 		wbinvd();
2040 		/*
2041 		 * Set memory between 0-640K to be WB
2042 		 */
2043 		wrmsr(0x250, 0x0606060606060606LL);
2044 		wrmsr(0x258, 0x0606060606060606LL);
2045 		/*
2046 		 * Set normal, PC video memory to be WC
2047 		 */
2048 		wrmsr(0x259, 0x0101010101010101LL);
2049 	}
2050 }
2051 
2052