xref: /freebsd/sys/kern/subr_smp.c (revision 42c0de49268d3322c3b968948afa9a8a3cd768a1)
1 /*
2  * Copyright (c) 1996, by Steve Passe
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. The name of the developer may NOT be used to endorse or promote products
11  *    derived from this software without specific prior written permission.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  *	$Id: mp_machdep.c,v 1.54 1997/09/21 15:03:57 peter Exp $
26  */
27 
28 #include "opt_smp.h"
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/proc.h>
34 #include <sys/sysctl.h>
35 
36 #include <vm/vm.h>
37 #include <vm/vm_param.h>
38 #include <vm/pmap.h>
39 #include <vm/vm_kern.h>
40 #include <vm/vm_extern.h>
41 
42 #include <machine/smp.h>
43 #include <machine/apic.h>
44 #include <machine/mpapic.h>
45 #include <machine/segments.h>
46 #include <machine/smptests.h>	/** TEST_DEFAULT_CONFIG, TEST_TEST1 */
47 #include <machine/tss.h>
48 #include <machine/specialreg.h>
49 #include <machine/cpu.h>
50 #include <machine/cputypes.h>
51 
52 #include <i386/i386/cons.h>	/* cngetc() */
53 
54 #if defined(APIC_IO)
55 #include <machine/md_var.h>		/* setidt() */
56 #include <i386/isa/icu.h>		/* IPIs */
57 #include <i386/isa/intr_machdep.h>	/* IPIs */
58 #endif	/* APIC_IO */
59 
60 #if defined(TEST_DEFAULT_CONFIG)
61 #define MPFPS_MPFB1	TEST_DEFAULT_CONFIG
62 #else
63 #define MPFPS_MPFB1	mpfps->mpfb1
64 #endif  /* TEST_DEFAULT_CONFIG */
65 
66 #define WARMBOOT_TARGET		0
67 #define WARMBOOT_OFF		(KERNBASE + 0x0467)
68 #define WARMBOOT_SEG		(KERNBASE + 0x0469)
69 
70 #define BIOS_BASE		(0xf0000)
71 #define BIOS_SIZE		(0x10000)
72 #define BIOS_COUNT		(BIOS_SIZE/4)
73 
74 #define CMOS_REG		(0x70)
75 #define CMOS_DATA		(0x71)
76 #define BIOS_RESET		(0x0f)
77 #define BIOS_WARM		(0x0a)
78 
79 #define PROCENTRY_FLAG_EN	0x01
80 #define PROCENTRY_FLAG_BP	0x02
81 #define IOAPICENTRY_FLAG_EN	0x01
82 
83 
84 /* MP Floating Pointer Structure */
85 typedef struct MPFPS {
86 	char    signature[4];
87 	void   *pap;
88 	u_char  length;
89 	u_char  spec_rev;
90 	u_char  checksum;
91 	u_char  mpfb1;
92 	u_char  mpfb2;
93 	u_char  mpfb3;
94 	u_char  mpfb4;
95 	u_char  mpfb5;
96 }      *mpfps_t;
97 
98 /* MP Configuration Table Header */
99 typedef struct MPCTH {
100 	char    signature[4];
101 	u_short base_table_length;
102 	u_char  spec_rev;
103 	u_char  checksum;
104 	u_char  oem_id[8];
105 	u_char  product_id[12];
106 	void   *oem_table_pointer;
107 	u_short oem_table_size;
108 	u_short entry_count;
109 	void   *apic_address;
110 	u_short extended_table_length;
111 	u_char  extended_table_checksum;
112 	u_char  reserved;
113 }      *mpcth_t;
114 
115 
116 typedef struct PROCENTRY {
117 	u_char  type;
118 	u_char  apic_id;
119 	u_char  apic_version;
120 	u_char  cpu_flags;
121 	u_long  cpu_signature;
122 	u_long  feature_flags;
123 	u_long  reserved1;
124 	u_long  reserved2;
125 }      *proc_entry_ptr;
126 
127 typedef struct BUSENTRY {
128 	u_char  type;
129 	u_char  bus_id;
130 	char    bus_type[6];
131 }      *bus_entry_ptr;
132 
133 typedef struct IOAPICENTRY {
134 	u_char  type;
135 	u_char  apic_id;
136 	u_char  apic_version;
137 	u_char  apic_flags;
138 	void   *apic_address;
139 }      *io_apic_entry_ptr;
140 
141 typedef struct INTENTRY {
142 	u_char  type;
143 	u_char  int_type;
144 	u_short int_flags;
145 	u_char  src_bus_id;
146 	u_char  src_bus_irq;
147 	u_char  dst_apic_id;
148 	u_char  dst_apic_int;
149 }      *int_entry_ptr;
150 
151 /* descriptions of MP basetable entries */
152 typedef struct BASETABLE_ENTRY {
153 	u_char  type;
154 	u_char  length;
155 	char    name[16];
156 }       basetable_entry;
157 
158 /*
159  * this code MUST be enabled here and in mpboot.s.
160  * it follows the very early stages of AP boot by placing values in CMOS ram.
161  * it NORMALLY will never be needed and thus the primitive method for enabling.
162  *
163 #define CHECK_POINTS
164  */
165 
166 #if defined(CHECK_POINTS)
167 #define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
168 #define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
169 
170 #define CHECK_INIT(D);				\
171 	CHECK_WRITE(0x34, (D));			\
172 	CHECK_WRITE(0x35, (D));			\
173 	CHECK_WRITE(0x36, (D));			\
174 	CHECK_WRITE(0x37, (D));			\
175 	CHECK_WRITE(0x38, (D));			\
176 	CHECK_WRITE(0x39, (D));
177 
178 #define CHECK_PRINT(S);				\
179 	printf("%s: %d, %d, %d, %d, %d, %d\n",	\
180 	   (S),					\
181 	   CHECK_READ(0x34),			\
182 	   CHECK_READ(0x35),			\
183 	   CHECK_READ(0x36),			\
184 	   CHECK_READ(0x37),			\
185 	   CHECK_READ(0x38),			\
186 	   CHECK_READ(0x39));
187 
188 #else				/* CHECK_POINTS */
189 
190 #define CHECK_INIT(D)
191 #define CHECK_PRINT(S)
192 
193 #endif				/* CHECK_POINTS */
194 
195 /*
196  * Values to send to the POST hardware.
197  */
198 #define MP_BOOTADDRESS_POST	0x10
199 #define MP_PROBE_POST		0x11
200 #define MPTABLE_PASS1_POST	0x12
201 
202 #define MP_START_POST		0x13
203 #define MP_ENABLE_POST		0x14
204 #define MPTABLE_PASS2_POST	0x15
205 
206 #define START_ALL_APS_POST	0x16
207 #define INSTALL_AP_TRAMP_POST	0x17
208 #define START_AP_POST		0x18
209 
210 #define MP_ANNOUNCE_POST	0x19
211 
212 
213 /** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
214 int	current_postcode;
215 
216 /** XXX FIXME: what system files declare these??? */
217 extern struct region_descriptor r_gdt, r_idt;
218 
219 int	bsp_apic_ready = 0;	/* flags useability of BSP apic */
220 int	mp_ncpus;		/* # of CPUs, including BSP */
221 int	mp_naps;		/* # of Applications processors */
222 int	mp_nbusses;		/* # of busses */
223 int	mp_napics;		/* # of IO APICs */
224 int	boot_cpu_id;		/* designated BSP */
225 vm_offset_t cpu_apic_address;
226 vm_offset_t io_apic_address[NAPICID];	/* NAPICID is more than enough */
227 extern	int nkpt;
228 
229 u_int32_t cpu_apic_versions[NCPU];
230 u_int32_t io_apic_versions[NAPIC];
231 
232 /*
233  * APIC ID logical/physical mapping structures.
234  * We oversize these to simplify boot-time config.
235  */
236 int     cpu_num_to_apic_id[NAPICID];
237 int     io_num_to_apic_id[NAPICID];
238 int     apic_id_to_logical[NAPICID];
239 
240 
241 #define NPPROVMTRR	8
242 #define	PPRO_VMTRRphysBase0 0x200
243 #define	PPRO_VMTRRphysMask0 0x201
244 static struct {
245 	u_int64_t base,
246 			  mask;
247 } PPro_vmtrr[NPPROVMTRR];
248 
249 /* Bitmap of all available CPUs */
250 u_int	all_cpus;
251 
252 /* AP uses this PTD during bootstrap */
253 pd_entry_t *bootPTD;
254 
255 /* Hotwire a 0->4MB V==P mapping */
256 extern pt_entry_t *KPTphys;
257 
258 /* Virtual address of per-cpu common_tss */
259 extern struct i386tss common_tss;
260 #ifdef VM86
261 extern struct segment_descriptor common_tssd;
262 extern u_int private_tss;		/* flag indicating private tss */
263 extern u_int my_tr;
264 #endif /* VM86 */
265 
266 /* IdlePTD per cpu */
267 pd_entry_t *IdlePTDS[NCPU];
268 
269 /* "my" private page table page, for BSP init */
270 extern pt_entry_t SMP_prvpt[];
271 
272 /* Private page pointer to curcpu's PTD, used during BSP init */
273 extern pd_entry_t *my_idlePTD;
274 
275 static int smp_started;		/* has the system started? */
276 
277 /*
278  * Local data and functions.
279  */
280 
281 static int	mp_capable;
282 static u_int	boot_address;
283 static u_int	base_memory;
284 
285 static int	picmode;		/* 0: virtual wire mode, 1: PIC mode */
286 static mpfps_t	mpfps;
287 static int	search_for_sig(u_int32_t target, int count);
288 static void	mp_enable(u_int boot_addr);
289 
290 static int	mptable_pass1(void);
291 static int	mptable_pass2(void);
292 static void	default_mp_table(int type);
293 static void	fix_mp_table(void);
294 static void	init_locks(void);
295 static int	start_all_aps(u_int boot_addr);
296 static void	install_ap_tramp(u_int boot_addr);
297 static int	start_ap(int logicalCpu, u_int boot_addr);
298 static void getmtrr(void) ;
299 static void putmtrr(void) ;
300 static void putfmtrr(void) ;
301 
302 
303 /*
304  * Calculate usable address in base memory for AP trampoline code.
305  */
306 u_int
307 mp_bootaddress(u_int basemem)
308 {
309 	POSTCODE(MP_BOOTADDRESS_POST);
310 
311 	base_memory = basemem * 1024;	/* convert to bytes */
312 
313 	boot_address = base_memory & ~0xfff;	/* round down to 4k boundary */
314 	if ((base_memory - boot_address) < bootMP_size)
315 		boot_address -= 4096;	/* not enough, lower by 4k */
316 
317 	return boot_address;
318 }
319 
320 
321 /*
322  * Look for an Intel MP spec table (ie, SMP capable hardware).
323  */
324 int
325 mp_probe(void)
326 {
327 	int     x;
328 	u_long  segment;
329 	u_int32_t target;
330 
331 	POSTCODE(MP_PROBE_POST);
332 
333 	/* see if EBDA exists */
334 	if (segment = (u_long) * (u_short *) (KERNBASE + 0x40e)) {
335 		/* search first 1K of EBDA */
336 		target = (u_int32_t) (segment << 4);
337 		if ((x = search_for_sig(target, 1024 / 4)) >= 0)
338 			goto found;
339 	} else {
340 		/* last 1K of base memory, effective 'top of base' passed in */
341 		target = (u_int32_t) (base_memory - 0x400);
342 		if ((x = search_for_sig(target, 1024 / 4)) >= 0)
343 			goto found;
344 	}
345 
346 	/* search the BIOS */
347 	target = (u_int32_t) BIOS_BASE;
348 	if ((x = search_for_sig(target, BIOS_COUNT)) >= 0)
349 		goto found;
350 
351 	/* nothing found */
352 	mpfps = (mpfps_t)0;
353 	mp_capable = 0;
354 	return 0;
355 
356 found:
357 	/* calculate needed resources */
358 	mpfps = (mpfps_t)x;
359 	if (mptable_pass1())
360 		panic("you must reconfigure your kernel");
361 
362 	/* flag fact that we are running multiple processors */
363 	mp_capable = 1;
364 	return 1;
365 }
366 
367 
368 /*
369  * Startup the SMP processors.
370  */
371 void
372 mp_start(void)
373 {
374 	POSTCODE(MP_START_POST);
375 
376 	/* look for MP capable motherboard */
377 	if (mp_capable)
378 		mp_enable(boot_address);
379 	else
380 		panic("MP hardware not found!");
381 }
382 
383 
384 /*
385  * Print various information about the SMP system hardware and setup.
386  */
387 void
388 mp_announce(void)
389 {
390 	int     x;
391 
392 	POSTCODE(MP_ANNOUNCE_POST);
393 
394 	printf("FreeBSD/SMP: Multiprocessor motherboard\n");
395 	printf(" cpu0 (BSP): apic id: %2d", CPU_TO_ID(0));
396 	printf(", version: 0x%08x", cpu_apic_versions[0]);
397 	printf(", at 0x%08x\n", cpu_apic_address);
398 	for (x = 1; x <= mp_naps; ++x) {
399 		printf(" cpu%d (AP):  apic id: %2d", x, CPU_TO_ID(x));
400 		printf(", version: 0x%08x", cpu_apic_versions[x]);
401 		printf(", at 0x%08x\n", cpu_apic_address);
402 	}
403 
404 #if defined(APIC_IO)
405 	for (x = 0; x < mp_napics; ++x) {
406 		printf(" io%d (APIC): apic id: %2d", x, IO_TO_ID(x));
407 		printf(", version: 0x%08x", io_apic_versions[x]);
408 		printf(", at 0x%08x\n", io_apic_address[x]);
409 	}
410 #else
411 	printf(" Warning: APIC I/O disabled\n");
412 #endif	/* APIC_IO */
413 }
414 
415 /*
416  * AP cpu's call this to sync up protected mode.
417  */
418 void
419 init_secondary(void)
420 {
421 	int	gsel_tss;
422 #ifndef VM86
423 	u_int	my_tr;
424 #endif
425 
426 	r_gdt.rd_limit = sizeof(gdt[0]) * (NGDT + NCPU) - 1;
427 	r_gdt.rd_base = (int) gdt;
428 	lgdt(&r_gdt);			/* does magic intra-segment return */
429 	lidt(&r_idt);
430 	lldt(_default_ldt);
431 
432 	my_tr = NGDT + cpuid;
433 	gsel_tss = GSEL(my_tr, SEL_KPL);
434 	gdt[my_tr].sd.sd_type = SDT_SYS386TSS;
435 	common_tss.tss_esp0 = 0;	/* not used until after switch */
436 	common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
437 	common_tss.tss_ioopt = (sizeof common_tss) << 16;
438 #ifdef VM86
439 	common_tssd = gdt[my_tr].sd;
440 	private_tss = 0;
441 #endif /* VM86 */
442 	ltr(gsel_tss);
443 
444 	load_cr0(0x8005003b);		/* XXX! */
445 
446 	PTD[0] = 0;
447 	pmap_set_opt((unsigned *)PTD);
448 
449 	putmtrr();
450 	putfmtrr();
451 
452 	invltlb();
453 }
454 
455 
456 #if defined(APIC_IO)
457 /*
458  * Final configuration of the BSP's local APIC:
459  *  - disable 'pic mode'.
460  *  - disable 'virtual wire mode'.
461  *  - enable NMI.
462  */
463 void
464 bsp_apic_configure(void)
465 {
466 	u_char		byte;
467 	u_int32_t	temp;
468 
469 	/* leave 'pic mode' if necessary */
470 	if (picmode) {
471 		outb(0x22, 0x70);	/* select IMCR */
472 		byte = inb(0x23);	/* current contents */
473 		byte |= 0x01;		/* mask external INTR */
474 		outb(0x23, byte);	/* disconnect 8259s/NMI */
475 	}
476 
477 	/* mask lint0 (the 8259 'virtual wire' connection) */
478 	temp = lapic.lvt_lint0;
479 	temp |= APIC_LVT_M;		/* set the mask */
480 	lapic.lvt_lint0 = temp;
481 
482         /* setup lint1 to handle NMI */
483         temp = lapic.lvt_lint1;
484         temp &= ~APIC_LVT_M;		/* clear the mask */
485         lapic.lvt_lint1 = temp;
486 
487 	if (bootverbose)
488 		apic_dump("bsp_apic_configure()");
489 }
490 #endif  /* APIC_IO */
491 
492 
493 /*******************************************************************
494  * local functions and data
495  */
496 
497 /*
498  * start the SMP system
499  */
500 static void
501 mp_enable(u_int boot_addr)
502 {
503 	int     x;
504 #if defined(APIC_IO)
505 	int     apic;
506 	u_int   ux;
507 #endif	/* APIC_IO */
508 
509 	getmtrr();
510 	putfmtrr();
511 
512 	POSTCODE(MP_ENABLE_POST);
513 
514 	/* turn on 4MB of V == P addressing so we can get to MP table */
515 	*(int *)PTD = PG_V | PG_RW | ((u_long)KPTphys & PG_FRAME);
516 	invltlb();
517 
518 	/* examine the MP table for needed info, uses physical addresses */
519 	x = mptable_pass2();
520 
521 	*(int *)PTD = 0;
522 	invltlb();
523 
524 	/* can't process default configs till the CPU APIC is pmapped */
525 	if (x)
526 		default_mp_table(x);
527 
528 	/* post scan cleanup */
529 	fix_mp_table();
530 
531 #if defined(APIC_IO)
532 
533 	/* fill the LOGICAL io_apic_versions table */
534 	for (apic = 0; apic < mp_napics; ++apic) {
535 		ux = io_apic_read(apic, IOAPIC_VER);
536 		io_apic_versions[apic] = ux;
537 	}
538 
539 	/* program each IO APIC in the system */
540 	for (apic = 0; apic < mp_napics; ++apic)
541 		if (io_apic_setup(apic) < 0)
542 			panic("IO APIC setup failure");
543 
544 	/* install a 'Spurious INTerrupt' vector */
545 	setidt(XSPURIOUSINT_OFFSET, Xspuriousint,
546 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
547 
548 	/* install an inter-CPU IPI for TLB invalidation */
549 	setidt(XINVLTLB_OFFSET, Xinvltlb,
550 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
551 
552 	/* install an inter-CPU IPI for CPU stop/restart */
553 	setidt(XCPUSTOP_OFFSET, Xcpustop,
554 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
555 
556 #if defined(TEST_TEST1)
557 	/* install a "fake hardware INTerrupt" vector */
558 	setidt(XTEST1_OFFSET, Xtest1,
559 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
560 #endif  /** TEST_TEST1 */
561 
562 #endif	/* APIC_IO */
563 
564 	/* initialize all SMP locks */
565 	init_locks();
566 
567 	/* start each Application Processor */
568 	start_all_aps(boot_addr);
569 
570 	/*
571 	 * The init process might be started on a different CPU now,
572 	 * and the boot CPU might not call prepare_usermode to get
573 	 * cr0 correctly configured. Thus we initialize cr0 here.
574 	 */
575 	load_cr0(rcr0() | CR0_WP | CR0_AM);
576 }
577 
578 
579 /*
580  * look for the MP spec signature
581  */
582 
583 /* string defined by the Intel MP Spec as identifying the MP table */
584 #define MP_SIG		0x5f504d5f	/* _MP_ */
585 #define NEXT(X)		((X) += 4)
586 static int
587 search_for_sig(u_int32_t target, int count)
588 {
589 	int     x;
590 	u_int32_t *addr = (u_int32_t *) (KERNBASE + target);
591 
592 	for (x = 0; x < count; NEXT(x))
593 		if (addr[x] == MP_SIG)
594 			/* make array index a byte index */
595 			return (target + (x * sizeof(u_int32_t)));
596 
597 	return -1;
598 }
599 
600 
601 static basetable_entry basetable_entry_types[] =
602 {
603 	{0, 20, "Processor"},
604 	{1, 8, "Bus"},
605 	{2, 8, "I/O APIC"},
606 	{3, 8, "I/O INT"},
607 	{4, 8, "Local INT"}
608 };
609 
610 typedef struct BUSDATA {
611 	u_char  bus_id;
612 	enum busTypes bus_type;
613 }       bus_datum;
614 
615 typedef struct INTDATA {
616 	u_char  int_type;
617 	u_short int_flags;
618 	u_char  src_bus_id;
619 	u_char  src_bus_irq;
620 	u_char  dst_apic_id;
621 	u_char  dst_apic_int;
622 }       io_int, local_int;
623 
624 typedef struct BUSTYPENAME {
625 	u_char  type;
626 	char    name[7];
627 }       bus_type_name;
628 
629 static bus_type_name bus_type_table[] =
630 {
631 	{CBUS, "CBUS"},
632 	{CBUSII, "CBUSII"},
633 	{EISA, "EISA"},
634 	{UNKNOWN_BUSTYPE, "---"},
635 	{UNKNOWN_BUSTYPE, "---"},
636 	{ISA, "ISA"},
637 	{UNKNOWN_BUSTYPE, "---"},
638 	{UNKNOWN_BUSTYPE, "---"},
639 	{UNKNOWN_BUSTYPE, "---"},
640 	{UNKNOWN_BUSTYPE, "---"},
641 	{UNKNOWN_BUSTYPE, "---"},
642 	{UNKNOWN_BUSTYPE, "---"},
643 	{PCI, "PCI"},
644 	{UNKNOWN_BUSTYPE, "---"},
645 	{UNKNOWN_BUSTYPE, "---"},
646 	{UNKNOWN_BUSTYPE, "---"},
647 	{UNKNOWN_BUSTYPE, "---"},
648 	{XPRESS, "XPRESS"},
649 	{UNKNOWN_BUSTYPE, "---"}
650 };
651 /* from MP spec v1.4, table 5-1 */
652 static int default_data[7][5] =
653 {
654 /*   nbus, id0, type0, id1, type1 */
655 	{1, 0, ISA, 255, 255},
656 	{1, 0, EISA, 255, 255},
657 	{1, 0, EISA, 255, 255},
658 	{0, 255, 255, 255, 255},/* MCA not supported */
659 	{2, 0, ISA, 1, PCI},
660 	{2, 0, EISA, 1, PCI},
661 	{0, 255, 255, 255, 255}	/* MCA not supported */
662 };
663 
664 
665 /* the bus data */
666 bus_datum bus_data[NBUS];
667 
668 /* the IO INT data, one entry per possible APIC INTerrupt */
669 io_int  io_apic_ints[NINTR];
670 
671 static int nintrs;
672 
673 static int processor_entry	__P((proc_entry_ptr entry, int cpu));
674 static int bus_entry		__P((bus_entry_ptr entry, int bus));
675 static int io_apic_entry	__P((io_apic_entry_ptr entry, int apic));
676 static int int_entry		__P((int_entry_ptr entry, int intr));
677 static int lookup_bus_type	__P((char *name));
678 
679 
680 /*
681  * 1st pass on motherboard's Intel MP specification table.
682  *
683  * initializes:
684  *	mp_ncpus = 1
685  *
686  * determines:
687  *	cpu_apic_address (common to all CPUs)
688  *	io_apic_address[N]
689  *	mp_naps
690  *	mp_nbusses
691  *	mp_napics
692  *	nintrs
693  */
694 static int
695 mptable_pass1(void)
696 {
697 	int	x;
698 	mpcth_t	cth;
699 	int	totalSize;
700 	void*	position;
701 	int	count;
702 	int	type;
703 	int	mustpanic;
704 
705 	POSTCODE(MPTABLE_PASS1_POST);
706 
707 	mustpanic = 0;
708 
709 	/* clear various tables */
710 	for (x = 0; x < NAPICID; ++x) {
711 		io_apic_address[x] = ~0;	/* IO APIC address table */
712 	}
713 
714 	/* init everything to empty */
715 	mp_naps = 0;
716 	mp_nbusses = 0;
717 	mp_napics = 0;
718 	nintrs = 0;
719 
720 	/* check for use of 'default' configuration */
721 	if (MPFPS_MPFB1 != 0) {
722 		/* use default addresses */
723 		cpu_apic_address = DEFAULT_APIC_BASE;
724 		io_apic_address[0] = DEFAULT_IO_APIC_BASE;
725 
726 		/* fill in with defaults */
727 		mp_naps = 2;		/* includes BSP */
728 		mp_nbusses = default_data[MPFPS_MPFB1 - 1][0];
729 #if defined(APIC_IO)
730 		mp_napics = 1;
731 		nintrs = 16;
732 #endif	/* APIC_IO */
733 	}
734 	else {
735 		if ((cth = mpfps->pap) == 0)
736 			panic("MP Configuration Table Header MISSING!");
737 
738 		cpu_apic_address = (vm_offset_t) cth->apic_address;
739 
740 		/* walk the table, recording info of interest */
741 		totalSize = cth->base_table_length - sizeof(struct MPCTH);
742 		position = (u_char *) cth + sizeof(struct MPCTH);
743 		count = cth->entry_count;
744 
745 		while (count--) {
746 			switch (type = *(u_char *) position) {
747 			case 0: /* processor_entry */
748 				if (((proc_entry_ptr)position)->cpu_flags
749 					& PROCENTRY_FLAG_EN)
750 					++mp_naps;
751 				break;
752 			case 1: /* bus_entry */
753 				++mp_nbusses;
754 				break;
755 			case 2: /* io_apic_entry */
756 				if (((io_apic_entry_ptr)position)->apic_flags
757 					& IOAPICENTRY_FLAG_EN)
758 					io_apic_address[mp_napics++] =
759 					    (vm_offset_t)((io_apic_entry_ptr)
760 						position)->apic_address;
761 				break;
762 			case 3: /* int_entry */
763 				++nintrs;
764 				break;
765 			case 4:	/* int_entry */
766 				break;
767 			default:
768 				panic("mpfps Base Table HOSED!");
769 				/* NOTREACHED */
770 			}
771 
772 			totalSize -= basetable_entry_types[type].length;
773 			(u_char*)position += basetable_entry_types[type].length;
774 		}
775 	}
776 
777 	/* qualify the numbers */
778 	if (mp_naps > NCPU)
779 #if 0 /* XXX FIXME: kern/4255 */
780 		printf("Warning: only using %d of %d available CPUs!\n",
781 			NCPU, mp_naps);
782 #else
783 	{
784 		printf("NCPU cannot be different than actual CPU count.\n");
785 		printf(" add 'options NCPU=%d' to your kernel config file,\n",
786 			mp_naps);
787 		printf(" then rerun config & rebuild your SMP kernel\n");
788 		mustpanic = 1;
789 	}
790 #endif /* XXX FIXME: kern/4255 */
791 	if (mp_nbusses > NBUS) {
792 		printf("found %d busses, increase NBUS\n", mp_nbusses);
793 		mustpanic = 1;
794 	}
795 	if (mp_napics > NAPIC) {
796 		printf("found %d apics, increase NAPIC\n", mp_napics);
797 		mustpanic = 1;
798 	}
799 	if (nintrs > NINTR) {
800 		printf("found %d intrs, increase NINTR\n", nintrs);
801 		mustpanic = 1;
802 	}
803 
804 	/*
805 	 * Count the BSP.
806 	 * This is also used as a counter while starting the APs.
807 	 */
808 	mp_ncpus = 1;
809 
810 	--mp_naps;	/* subtract the BSP */
811 
812 	return mustpanic;
813 }
814 
815 
816 /*
817  * 2nd pass on motherboard's Intel MP specification table.
818  *
819  * sets:
820  *	boot_cpu_id
821  *	ID_TO_IO(N), phy APIC ID to log CPU/IO table
822  *	CPU_TO_ID(N), logical CPU to APIC ID table
823  *	IO_TO_ID(N), logical IO to APIC ID table
824  *	bus_data[N]
825  *	io_apic_ints[N]
826  */
827 static int
828 mptable_pass2(void)
829 {
830 	int     x;
831 	mpcth_t cth;
832 	int     totalSize;
833 	void*   position;
834 	int     count;
835 	int     type;
836 	int     apic, bus, cpu, intr;
837 
838 	POSTCODE(MPTABLE_PASS2_POST);
839 
840 	/* clear various tables */
841 	for (x = 0; x < NAPICID; ++x) {
842 		ID_TO_IO(x) = -1;	/* phy APIC ID to log CPU/IO table */
843 		CPU_TO_ID(x) = -1;	/* logical CPU to APIC ID table */
844 		IO_TO_ID(x) = -1;	/* logical IO to APIC ID table */
845 	}
846 
847 	/* clear bus data table */
848 	for (x = 0; x < NBUS; ++x)
849 		bus_data[x].bus_id = 0xff;
850 
851 	/* clear IO APIC INT table */
852 	for (x = 0; x < NINTR; ++x)
853 		io_apic_ints[x].int_type = 0xff;
854 
855 	/* setup the cpu/apic mapping arrays */
856 	boot_cpu_id = -1;
857 
858 	/* record whether PIC or virtual-wire mode */
859 	picmode = (mpfps->mpfb2 & 0x80) ? 1 : 0;
860 
861 	/* check for use of 'default' configuration */
862 	if (MPFPS_MPFB1 != 0)
863 		return MPFPS_MPFB1;	/* return default configuration type */
864 
865 	if ((cth = mpfps->pap) == 0)
866 		panic("MP Configuration Table Header MISSING!");
867 
868 	/* walk the table, recording info of interest */
869 	totalSize = cth->base_table_length - sizeof(struct MPCTH);
870 	position = (u_char *) cth + sizeof(struct MPCTH);
871 	count = cth->entry_count;
872 	apic = bus = intr = 0;
873 	cpu = 1;				/* pre-count the BSP */
874 
875 	while (count--) {
876 		switch (type = *(u_char *) position) {
877 		case 0:
878 			if (processor_entry(position, cpu))
879 				++cpu;
880 			break;
881 		case 1:
882 			if (bus_entry(position, bus))
883 				++bus;
884 			break;
885 		case 2:
886 			if (io_apic_entry(position, apic))
887 				++apic;
888 			break;
889 		case 3:
890 			if (int_entry(position, intr))
891 				++intr;
892 			break;
893 		case 4:
894 			/* int_entry(position); */
895 			break;
896 		default:
897 			panic("mpfps Base Table HOSED!");
898 			/* NOTREACHED */
899 		}
900 
901 		totalSize -= basetable_entry_types[type].length;
902 		(u_char *) position += basetable_entry_types[type].length;
903 	}
904 
905 	if (boot_cpu_id == -1)
906 		panic("NO BSP found!");
907 
908 	/* report fact that its NOT a default configuration */
909 	return 0;
910 }
911 
912 
913 /*
914  * parse an Intel MP specification table
915  */
916 static void
917 fix_mp_table(void)
918 {
919 	int	x;
920 	int	id;
921 	int	bus_0;
922 	int	bus_pci;
923 	int	num_pci_bus;
924 
925 	/*
926 	 * Fix mis-numbering of the PCI bus and its INT entries if the BIOS
927 	 * did it wrong.  The MP spec says that when more than 1 PCI bus
928 	 * exists the BIOS must begin with bus entries for the PCI bus and use
929 	 * actual PCI bus numbering.  This implies that when only 1 PCI bus
930 	 * exists the BIOS can choose to ignore this ordering, and indeed many
931 	 * MP motherboards do ignore it.  This causes a problem when the PCI
932 	 * sub-system makes requests of the MP sub-system based on PCI bus
933 	 * numbers.	So here we look for the situation and renumber the
934 	 * busses and associated INTs in an effort to "make it right".
935 	 */
936 
937 	/* find bus 0, PCI bus, count the number of PCI busses */
938 	for (num_pci_bus = 0, x = 0; x < mp_nbusses; ++x) {
939 		if (bus_data[x].bus_id == 0) {
940 			bus_0 = x;
941 		}
942 		if (bus_data[x].bus_type == PCI) {
943 			++num_pci_bus;
944 			bus_pci = x;
945 		}
946 	}
947 	/*
948 	 * bus_0 == slot of bus with ID of 0
949 	 * bus_pci == slot of last PCI bus encountered
950 	 */
951 
952 	/* check the 1 PCI bus case for sanity */
953 	if (num_pci_bus == 1) {
954 
955 		/* if it is number 0 all is well */
956 		if (bus_data[bus_pci].bus_id == 0)
957 			return;
958 
959 		/* mis-numbered, swap with whichever bus uses slot 0 */
960 
961 		/* swap the bus entry types */
962 		bus_data[bus_pci].bus_type = bus_data[bus_0].bus_type;
963 		bus_data[bus_0].bus_type = PCI;
964 
965 		/* swap each relavant INTerrupt entry */
966 		id = bus_data[bus_pci].bus_id;
967 		for (x = 0; x < nintrs; ++x) {
968 			if (io_apic_ints[x].src_bus_id == id) {
969 				io_apic_ints[x].src_bus_id = 0;
970 			}
971 			else if (io_apic_ints[x].src_bus_id == 0) {
972 				io_apic_ints[x].src_bus_id = id;
973 			}
974 		}
975 	}
976 	/* sanity check if more than 1 PCI bus */
977 	else if (num_pci_bus > 1) {
978 		for (x = 0; x < mp_nbusses; ++x) {
979 			if (bus_data[x].bus_type != PCI)
980 				continue;
981 			if (bus_data[x].bus_id >= num_pci_bus)
982 				panic("bad PCI bus numbering");
983 		}
984 	}
985 }
986 
987 
988 static int
989 processor_entry(proc_entry_ptr entry, int cpu)
990 {
991 	/* check for usability */
992 	if ((cpu >= NCPU) || !(entry->cpu_flags & PROCENTRY_FLAG_EN))
993 		return 0;
994 
995 	/* check for BSP flag */
996 	if (entry->cpu_flags & PROCENTRY_FLAG_BP) {
997 		boot_cpu_id = entry->apic_id;
998 		CPU_TO_ID(0) = entry->apic_id;
999 		ID_TO_CPU(entry->apic_id) = 0;
1000 		return 0;	/* its already been counted */
1001 	}
1002 
1003 	/* add another AP to list, if less than max number of CPUs */
1004 	else {
1005 		CPU_TO_ID(cpu) = entry->apic_id;
1006 		ID_TO_CPU(entry->apic_id) = cpu;
1007 		return 1;
1008 	}
1009 }
1010 
1011 
1012 static int
1013 bus_entry(bus_entry_ptr entry, int bus)
1014 {
1015 	int     x;
1016 	char    c, name[8];
1017 
1018 	/* encode the name into an index */
1019 	for (x = 0; x < 6; ++x) {
1020 		if ((c = entry->bus_type[x]) == ' ')
1021 			break;
1022 		name[x] = c;
1023 	}
1024 	name[x] = '\0';
1025 
1026 	if ((x = lookup_bus_type(name)) == UNKNOWN_BUSTYPE)
1027 		panic("unknown bus type: '%s'", name);
1028 
1029 	bus_data[bus].bus_id = entry->bus_id;
1030 	bus_data[bus].bus_type = x;
1031 
1032 	return 1;
1033 }
1034 
1035 
1036 static int
1037 io_apic_entry(io_apic_entry_ptr entry, int apic)
1038 {
1039 	if (!(entry->apic_flags & IOAPICENTRY_FLAG_EN))
1040 		return 0;
1041 
1042 	IO_TO_ID(apic) = entry->apic_id;
1043 	ID_TO_IO(entry->apic_id) = apic;
1044 
1045 	return 1;
1046 }
1047 
1048 
1049 static int
1050 lookup_bus_type(char *name)
1051 {
1052 	int     x;
1053 
1054 	for (x = 0; x < MAX_BUSTYPE; ++x)
1055 		if (strcmp(bus_type_table[x].name, name) == 0)
1056 			return bus_type_table[x].type;
1057 
1058 	return UNKNOWN_BUSTYPE;
1059 }
1060 
1061 
1062 static int
1063 int_entry(int_entry_ptr entry, int intr)
1064 {
1065 	io_apic_ints[intr].int_type = entry->int_type;
1066 	io_apic_ints[intr].int_flags = entry->int_flags;
1067 	io_apic_ints[intr].src_bus_id = entry->src_bus_id;
1068 	io_apic_ints[intr].src_bus_irq = entry->src_bus_irq;
1069 	io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
1070 	io_apic_ints[intr].dst_apic_int = entry->dst_apic_int;
1071 
1072 	return 1;
1073 }
1074 
1075 
1076 static int
1077 apic_int_is_bus_type(int intr, int bus_type)
1078 {
1079 	int     bus;
1080 
1081 	for (bus = 0; bus < mp_nbusses; ++bus)
1082 		if ((bus_data[bus].bus_id == io_apic_ints[intr].src_bus_id)
1083 		    && ((int) bus_data[bus].bus_type == bus_type))
1084 			return 1;
1085 
1086 	return 0;
1087 }
1088 
1089 
1090 /*
1091  * Given a traditional ISA INT mask, return an APIC mask.
1092  */
1093 u_int
1094 isa_apic_mask(u_int isa_mask)
1095 {
1096 	int isa_irq;
1097 	int apic_pin;
1098 
1099 #if defined(SKIP_IRQ15_REDIRECT)
1100 	if (isa_mask == (1 << 15)) {
1101 		printf("skipping ISA IRQ15 redirect\n");
1102 		return isa_mask;
1103 	}
1104 #endif  /* SKIP_IRQ15_REDIRECT */
1105 
1106 	isa_irq = ffs(isa_mask);		/* find its bit position */
1107 	if (isa_irq == 0)			/* doesn't exist */
1108 		return 0;
1109 	--isa_irq;				/* make it zero based */
1110 
1111 	apic_pin = isa_apic_pin(isa_irq);	/* look for APIC connection */
1112 	if (apic_pin == -1)
1113 		return 0;
1114 
1115 	return (1 << apic_pin);			/* convert pin# to a mask */
1116 }
1117 
1118 
1119 /*
1120  * Determine which APIC pin an ISA/EISA INT is attached to.
1121  */
1122 #define INTTYPE(I)	(io_apic_ints[(I)].int_type)
1123 #define INTPIN(I)	(io_apic_ints[(I)].dst_apic_int)
1124 
1125 #define SRCBUSIRQ(I)	(io_apic_ints[(I)].src_bus_irq)
1126 int
1127 isa_apic_pin(int isa_irq)
1128 {
1129 	int     intr;
1130 
1131 	for (intr = 0; intr < nintrs; ++intr) {		/* check each record */
1132 		if (INTTYPE(intr) == 0) {		/* standard INT */
1133 			if (SRCBUSIRQ(intr) == isa_irq) {
1134 				if (apic_int_is_bus_type(intr, ISA) ||
1135 			            apic_int_is_bus_type(intr, EISA))
1136 					return INTPIN(intr);	/* found */
1137 			}
1138 		}
1139 	}
1140 	return -1;					/* NOT found */
1141 }
1142 #undef SRCBUSIRQ
1143 
1144 
1145 /*
1146  * Determine which APIC pin a PCI INT is attached to.
1147  */
1148 #define SRCBUSID(I)	(io_apic_ints[(I)].src_bus_id)
1149 #define SRCBUSDEVICE(I)	((io_apic_ints[(I)].src_bus_irq >> 2) & 0x1f)
1150 #define SRCBUSLINE(I)	(io_apic_ints[(I)].src_bus_irq & 0x03)
1151 int
1152 pci_apic_pin(int pciBus, int pciDevice, int pciInt)
1153 {
1154 	int     intr;
1155 
1156 	--pciInt;					/* zero based */
1157 
1158 	for (intr = 0; intr < nintrs; ++intr)		/* check each record */
1159 		if ((INTTYPE(intr) == 0)		/* standard INT */
1160 		    && (SRCBUSID(intr) == pciBus)
1161 		    && (SRCBUSDEVICE(intr) == pciDevice)
1162 		    && (SRCBUSLINE(intr) == pciInt))	/* a candidate IRQ */
1163 			if (apic_int_is_bus_type(intr, PCI))
1164 				return INTPIN(intr);	/* exact match */
1165 
1166 	return -1;					/* NOT found */
1167 }
1168 #undef SRCBUSLINE
1169 #undef SRCBUSDEVICE
1170 #undef SRCBUSID
1171 
1172 #undef INTPIN
1173 #undef INTTYPE
1174 
1175 
1176 /*
1177  * Reprogram the MB chipset to NOT redirect an ISA INTerrupt.
1178  *
1179  * XXX FIXME:
1180  *  Exactly what this means is unclear at this point.  It is a solution
1181  *  for motherboards that redirect the MBIRQ0 pin.  Generically a motherboard
1182  *  could route any of the ISA INTs to upper (>15) IRQ values.  But most would
1183  *  NOT be redirected via MBIRQ0, thus "undirect()ing" them would NOT be an
1184  *  option.
1185  */
1186 int
1187 undirect_isa_irq(int rirq)
1188 {
1189 #if defined(READY)
1190 	printf("Freeing redirected ISA irq %d.\n", rirq);
1191 	/** FIXME: tickle the MB redirector chip */
1192 	return ???;
1193 #else
1194 	printf("Freeing (NOT implemented) redirected ISA irq %d.\n", rirq);
1195 	return 0;
1196 #endif  /* READY */
1197 }
1198 
1199 
1200 /*
1201  * Reprogram the MB chipset to NOT redirect a PCI INTerrupt
1202  */
1203 int
1204 undirect_pci_irq(int rirq)
1205 {
1206 #if defined(READY)
1207 	if (bootverbose)
1208 		printf("Freeing redirected PCI irq %d.\n", rirq);
1209 
1210 	/** FIXME: tickle the MB redirector chip */
1211 	return ???;
1212 #else
1213 	if (bootverbose)
1214 		printf("Freeing (NOT implemented) redirected PCI irq %d.\n",
1215 		       rirq);
1216 	return 0;
1217 #endif  /* READY */
1218 }
1219 
1220 
1221 /*
1222  * given a bus ID, return:
1223  *  the bus type if found
1224  *  -1 if NOT found
1225  */
1226 int
1227 apic_bus_type(int id)
1228 {
1229 	int     x;
1230 
1231 	for (x = 0; x < mp_nbusses; ++x)
1232 		if (bus_data[x].bus_id == id)
1233 			return bus_data[x].bus_type;
1234 
1235 	return -1;
1236 }
1237 
1238 
1239 /*
1240  * given a LOGICAL APIC# and pin#, return:
1241  *  the associated src bus ID if found
1242  *  -1 if NOT found
1243  */
1244 int
1245 apic_src_bus_id(int apic, int pin)
1246 {
1247 	int     x;
1248 
1249 	/* search each of the possible INTerrupt sources */
1250 	for (x = 0; x < nintrs; ++x)
1251 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1252 		    (pin == io_apic_ints[x].dst_apic_int))
1253 			return (io_apic_ints[x].src_bus_id);
1254 
1255 	return -1;		/* NOT found */
1256 }
1257 
1258 
1259 /*
1260  * given a LOGICAL APIC# and pin#, return:
1261  *  the associated src bus IRQ if found
1262  *  -1 if NOT found
1263  */
1264 int
1265 apic_src_bus_irq(int apic, int pin)
1266 {
1267 	int     x;
1268 
1269 	for (x = 0; x < nintrs; x++)
1270 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1271 		    (pin == io_apic_ints[x].dst_apic_int))
1272 			return (io_apic_ints[x].src_bus_irq);
1273 
1274 	return -1;		/* NOT found */
1275 }
1276 
1277 
1278 /*
1279  * given a LOGICAL APIC# and pin#, return:
1280  *  the associated INTerrupt type if found
1281  *  -1 if NOT found
1282  */
1283 int
1284 apic_int_type(int apic, int pin)
1285 {
1286 	int     x;
1287 
1288 	/* search each of the possible INTerrupt sources */
1289 	for (x = 0; x < nintrs; ++x)
1290 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1291 		    (pin == io_apic_ints[x].dst_apic_int))
1292 			return (io_apic_ints[x].int_type);
1293 
1294 	return -1;		/* NOT found */
1295 }
1296 
1297 
1298 /*
1299  * given a LOGICAL APIC# and pin#, return:
1300  *  the associated trigger mode if found
1301  *  -1 if NOT found
1302  */
1303 int
1304 apic_trigger(int apic, int pin)
1305 {
1306 	int     x;
1307 
1308 	/* search each of the possible INTerrupt sources */
1309 	for (x = 0; x < nintrs; ++x)
1310 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1311 		    (pin == io_apic_ints[x].dst_apic_int))
1312 			return ((io_apic_ints[x].int_flags >> 2) & 0x03);
1313 
1314 	return -1;		/* NOT found */
1315 }
1316 
1317 
1318 /*
1319  * given a LOGICAL APIC# and pin#, return:
1320  *  the associated 'active' level if found
1321  *  -1 if NOT found
1322  */
1323 int
1324 apic_polarity(int apic, int pin)
1325 {
1326 	int     x;
1327 
1328 	/* search each of the possible INTerrupt sources */
1329 	for (x = 0; x < nintrs; ++x)
1330 		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1331 		    (pin == io_apic_ints[x].dst_apic_int))
1332 			return (io_apic_ints[x].int_flags & 0x03);
1333 
1334 	return -1;		/* NOT found */
1335 }
1336 
1337 
1338 /*
1339  * set data according to MP defaults
1340  * FIXME: probably not complete yet...
1341  */
1342 static void
1343 default_mp_table(int type)
1344 {
1345 	int     ap_cpu_id;
1346 #if defined(APIC_IO)
1347 	u_int32_t ux;
1348 	int     io_apic_id;
1349 	int     pin;
1350 #endif	/* APIC_IO */
1351 
1352 #if 0
1353 	printf("  MP default config type: %d\n", type);
1354 	switch (type) {
1355 	case 1:
1356 		printf("   bus: ISA, APIC: 82489DX\n");
1357 		break;
1358 	case 2:
1359 		printf("   bus: EISA, APIC: 82489DX\n");
1360 		break;
1361 	case 3:
1362 		printf("   bus: EISA, APIC: 82489DX\n");
1363 		break;
1364 	case 4:
1365 		printf("   bus: MCA, APIC: 82489DX\n");
1366 		break;
1367 	case 5:
1368 		printf("   bus: ISA+PCI, APIC: Integrated\n");
1369 		break;
1370 	case 6:
1371 		printf("   bus: EISA+PCI, APIC: Integrated\n");
1372 		break;
1373 	case 7:
1374 		printf("   bus: MCA+PCI, APIC: Integrated\n");
1375 		break;
1376 	default:
1377 		printf("   future type\n");
1378 		break;
1379 		/* NOTREACHED */
1380 	}
1381 #endif	/* 0 */
1382 
1383 	boot_cpu_id = (lapic.id & APIC_ID_MASK) >> 24;
1384 	ap_cpu_id = (boot_cpu_id == 0) ? 1 : 0;
1385 
1386 	/* BSP */
1387 	CPU_TO_ID(0) = boot_cpu_id;
1388 	ID_TO_CPU(boot_cpu_id) = 0;
1389 
1390 	/* one and only AP */
1391 	CPU_TO_ID(1) = ap_cpu_id;
1392 	ID_TO_CPU(ap_cpu_id) = 1;
1393 
1394 #if defined(APIC_IO)
1395 	/* one and only IO APIC */
1396 	io_apic_id = (io_apic_read(0, IOAPIC_ID) & APIC_ID_MASK) >> 24;
1397 
1398 	/*
1399 	 * sanity check, refer to MP spec section 3.6.6, last paragraph
1400 	 * necessary as some hardware isn't properly setting up the IO APIC
1401 	 */
1402 #if defined(REALLY_ANAL_IOAPICID_VALUE)
1403 	if (io_apic_id != 2) {
1404 #else
1405 	if ((io_apic_id == 0) || (io_apic_id == 1) || (io_apic_id == 15)) {
1406 #endif	/* REALLY_ANAL_IOAPICID_VALUE */
1407 		ux = io_apic_read(0, IOAPIC_ID);	/* get current contents */
1408 		ux &= ~APIC_ID_MASK;	/* clear the ID field */
1409 		ux |= 0x02000000;	/* set it to '2' */
1410 		io_apic_write(0, IOAPIC_ID, ux);	/* write new value */
1411 		ux = io_apic_read(0, IOAPIC_ID);	/* re-read && test */
1412 		if ((ux & APIC_ID_MASK) != 0x02000000)
1413 			panic("can't control IO APIC ID, reg: 0x%08x", ux);
1414 		io_apic_id = 2;
1415 	}
1416 	IO_TO_ID(0) = io_apic_id;
1417 	ID_TO_IO(io_apic_id) = 0;
1418 #endif	/* APIC_IO */
1419 
1420 	/* fill out bus entries */
1421 	switch (type) {
1422 	case 1:
1423 	case 2:
1424 	case 3:
1425 	case 5:
1426 	case 6:
1427 		bus_data[0].bus_id = default_data[type - 1][1];
1428 		bus_data[0].bus_type = default_data[type - 1][2];
1429 		bus_data[1].bus_id = default_data[type - 1][3];
1430 		bus_data[1].bus_type = default_data[type - 1][4];
1431 		break;
1432 
1433 	/* case 4: case 7:		   MCA NOT supported */
1434 	default:		/* illegal/reserved */
1435 		panic("BAD default MP config: %d", type);
1436 		/* NOTREACHED */
1437 	}
1438 
1439 #if defined(APIC_IO)
1440 	/* general cases from MP v1.4, table 5-2 */
1441 	for (pin = 0; pin < 16; ++pin) {
1442 		io_apic_ints[pin].int_type = 0;
1443 		io_apic_ints[pin].int_flags = 0x05;	/* edge/active-hi */
1444 		io_apic_ints[pin].src_bus_id = 0;
1445 		io_apic_ints[pin].src_bus_irq = pin;	/* IRQ2 caught below */
1446 		io_apic_ints[pin].dst_apic_id = io_apic_id;
1447 		io_apic_ints[pin].dst_apic_int = pin;	/* 1-to-1 */
1448 	}
1449 
1450 	/* special cases from MP v1.4, table 5-2 */
1451 	if (type == 2) {
1452 		io_apic_ints[2].int_type = 0xff;	/* N/C */
1453 		io_apic_ints[13].int_type = 0xff;	/* N/C */
1454 #if !defined(APIC_MIXED_MODE)
1455 		/** FIXME: ??? */
1456 		panic("sorry, can't support type 2 default yet");
1457 #endif	/* APIC_MIXED_MODE */
1458 	}
1459 	else
1460 		io_apic_ints[2].src_bus_irq = 0;	/* ISA IRQ0 is on APIC INT 2 */
1461 
1462 	if (type == 7)
1463 		io_apic_ints[0].int_type = 0xff;	/* N/C */
1464 	else
1465 		io_apic_ints[0].int_type = 3;	/* vectored 8259 */
1466 #endif	/* APIC_IO */
1467 }
1468 
1469 
1470 /*
1471  * initialize all the SMP locks
1472  */
1473 
1474 /* critical region around IO APIC, apic_imen */
1475 struct simplelock	imen_lock;
1476 
1477 /* critical region around splxx(), cpl, cml, cil, ipending */
1478 struct simplelock	cpl_lock;
1479 
1480 /* Make FAST_INTR() routines sequential */
1481 struct simplelock	fast_intr_lock;
1482 
1483 /* critical region around INTR() routines */
1484 struct simplelock	intr_lock;
1485 
1486 /* lock regions protected in UP kernel via cli/sti */
1487 struct simplelock	mpintr_lock;
1488 
1489 #ifdef USE_COMLOCK
1490 /* locks com (tty) data/hardware accesses: a FASTINTR() */
1491 struct simplelock	com_lock;
1492 #endif /* USE_COMLOCK */
1493 
1494 #ifdef USE_CLOCKLOCK
1495 /* lock regions around the clock hardware */
1496 struct simplelock	clock_lock;
1497 #endif /* USE_CLOCKLOCK */
1498 
1499 static void
1500 init_locks(void)
1501 {
1502 	/*
1503 	 * Get the initial mp_lock with a count of 1 for the BSP.
1504 	 * This uses a LOGICAL cpu ID, ie BSP == 0.
1505 	 */
1506 	mp_lock = 0x00000001;
1507 
1508 	/* ISR uses its own "giant lock" */
1509 	isr_lock = FREE_LOCK;
1510 
1511 	s_lock_init((struct simplelock*)&mpintr_lock);
1512 
1513 	s_lock_init((struct simplelock*)&fast_intr_lock);
1514 	s_lock_init((struct simplelock*)&intr_lock);
1515 	s_lock_init((struct simplelock*)&imen_lock);
1516 	s_lock_init((struct simplelock*)&cpl_lock);
1517 
1518 #ifdef USE_COMLOCK
1519 	s_lock_init((struct simplelock*)&com_lock);
1520 #endif /* USE_COMLOCK */
1521 #ifdef USE_CLOCKLOCK
1522 	s_lock_init((struct simplelock*)&clock_lock);
1523 #endif /* USE_CLOCKLOCK */
1524 }
1525 
1526 
1527 /*
1528  * start each AP in our list
1529  */
1530 static int
1531 start_all_aps(u_int boot_addr)
1532 {
1533 	int     x, i;
1534 	u_char  mpbiosreason;
1535 	u_long  mpbioswarmvec;
1536 	pd_entry_t *newptd;
1537 	pt_entry_t *newpt;
1538 	int *newpp;
1539 	char *stack;
1540 	pd_entry_t	*myPTD;
1541 
1542 	POSTCODE(START_ALL_APS_POST);
1543 
1544 	/* initialize BSP's local APIC */
1545 	apic_initialize();
1546 	bsp_apic_ready = 1;
1547 
1548 	/* install the AP 1st level boot code */
1549 	install_ap_tramp(boot_addr);
1550 
1551 
1552 	/* save the current value of the warm-start vector */
1553 	mpbioswarmvec = *((u_long *) WARMBOOT_OFF);
1554 	outb(CMOS_REG, BIOS_RESET);
1555 	mpbiosreason = inb(CMOS_DATA);
1556 
1557 	/* record BSP in CPU map */
1558 	all_cpus = 1;
1559 
1560 	/* start each AP */
1561 	for (x = 1; x <= mp_naps; ++x) {
1562 
1563 		/* This is a bit verbose, it will go away soon.  */
1564 
1565 		/* alloc new page table directory */
1566 		newptd = (pd_entry_t *)(kmem_alloc(kernel_map, PAGE_SIZE));
1567 
1568 		/* Store the virtual PTD address for this CPU */
1569 		IdlePTDS[x] = newptd;
1570 
1571 		/* clone currently active one (ie: IdlePTD) */
1572 		bcopy(PTD, newptd, PAGE_SIZE);	/* inc prv page pde */
1573 
1574 		/* set up 0 -> 4MB P==V mapping for AP boot */
1575 		newptd[0] = (pd_entry_t) (PG_V | PG_RW |
1576 						((u_long)KPTphys & PG_FRAME));
1577 
1578 		/* store PTD for this AP's boot sequence */
1579 		myPTD = (pd_entry_t *)vtophys(newptd);
1580 
1581 		/* alloc new page table page */
1582 		newpt = (pt_entry_t *)(kmem_alloc(kernel_map, PAGE_SIZE));
1583 
1584 		/* set the new PTD's private page to point there */
1585 		newptd[MPPTDI] = (pt_entry_t)(PG_V | PG_RW | vtophys(newpt));
1586 
1587 		/* install self referential entry */
1588 		newptd[PTDPTDI] = (pd_entry_t)(PG_V | PG_RW | vtophys(newptd));
1589 
1590 		/* allocate a new private data page */
1591 		newpp = (int *)kmem_alloc(kernel_map, PAGE_SIZE);
1592 
1593 		/* wire it into the private page table page */
1594 		newpt[0] = (pt_entry_t)(PG_V | PG_RW | vtophys(newpp));
1595 
1596 		/* wire the ptp into itself for access */
1597 		newpt[1] = (pt_entry_t)(PG_V | PG_RW | vtophys(newpt));
1598 
1599 		/* copy in the pointer to the local apic */
1600 		newpt[2] = SMP_prvpt[2];
1601 
1602 		/* and the IO apic mapping[s] */
1603 		for (i = 16; i < 32; i++)
1604 			newpt[i] = SMP_prvpt[i];
1605 
1606 		/* allocate and set up an idle stack data page */
1607 		stack = (char *)kmem_alloc(kernel_map, UPAGES*PAGE_SIZE);
1608 		for (i = 0; i < UPAGES; i++)
1609 			newpt[i + 3] = (pt_entry_t)(PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
1610 
1611 		newpt[5] = 0;			/* *prv_CMAP1 */
1612 		newpt[6] = 0;			/* *prv_CMAP2 */
1613 		newpt[7] = 0;			/* *prv_CMAP3 */
1614 
1615 		/* prime data page for it to use */
1616 		newpp[0] = x;			/* cpuid */
1617 		newpp[1] = 0;			/* curproc */
1618 		newpp[2] = 0;			/* curpcb */
1619 		newpp[3] = 0;			/* npxproc */
1620 		newpp[4] = 0;			/* runtime.tv_sec */
1621 		newpp[5] = 0;			/* runtime.tv_usec */
1622 		newpp[6] = x << 24;		/* cpu_lockid */
1623 		newpp[7] = 0;			/* other_cpus */
1624 		newpp[8] = (int)myPTD;		/* my_idlePTD */
1625 		newpp[9] = 0;			/* ss_tpr */
1626 		newpp[10] = (int)&newpt[5];	/* prv_CMAP1 */
1627 		newpp[11] = (int)&newpt[6];	/* prv_CMAP2 */
1628 		newpp[12] = (int)&newpt[7];	/* prv_CMAP3 */
1629 
1630 		/* setup a vector to our boot code */
1631 		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
1632 		*((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4);
1633 		outb(CMOS_REG, BIOS_RESET);
1634 		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
1635 
1636 		bootPTD = myPTD;
1637 		/* attempt to start the Application Processor */
1638 		CHECK_INIT(99);	/* setup checkpoints */
1639 		if (!start_ap(x, boot_addr)) {
1640 			printf("AP #%d (PHY# %d) failed!\n", x, CPU_TO_ID(x));
1641 			CHECK_PRINT("trace");	/* show checkpoints */
1642 			/* better panic as the AP may be running loose */
1643 			printf("panic y/n? [y] ");
1644 			if (cngetc() != 'n')
1645 				panic("bye-bye");
1646 		}
1647 		CHECK_PRINT("trace");		/* show checkpoints */
1648 
1649 		/* record its version info */
1650 		cpu_apic_versions[x] = cpu_apic_versions[0];
1651 
1652 		all_cpus |= (1 << x);		/* record AP in CPU map */
1653 	}
1654 
1655 	/* build our map of 'other' CPUs */
1656 	other_cpus = all_cpus & ~(1 << cpuid);
1657 
1658 	/* fill in our (BSP) APIC version */
1659 	cpu_apic_versions[0] = lapic.version;
1660 
1661 	/* restore the warmstart vector */
1662 	*(u_long *) WARMBOOT_OFF = mpbioswarmvec;
1663 	outb(CMOS_REG, BIOS_RESET);
1664 	outb(CMOS_DATA, mpbiosreason);
1665 
1666 	/*
1667 	 * Set up the idle context for the BSP.  Similar to above except
1668 	 * that some was done by locore, some by pmap.c and some is implicit
1669 	 * because the BSP is cpu#0 and the page is initially zero, and also
1670 	 * because we can refer to variables by name on the BSP..
1671 	 */
1672 	newptd = (pd_entry_t *)(kmem_alloc(kernel_map, PAGE_SIZE));
1673 
1674 	bcopy(PTD, newptd, PAGE_SIZE);	/* inc prv page pde */
1675 	IdlePTDS[0] = newptd;
1676 
1677 	/* Point PTD[] to this page instead of IdlePTD's physical page */
1678 	newptd[PTDPTDI] = (pd_entry_t)(PG_V | PG_RW | vtophys(newptd));
1679 
1680 	my_idlePTD = (pd_entry_t *)vtophys(newptd);
1681 
1682 	/* Allocate and setup BSP idle stack */
1683 	stack = (char *)kmem_alloc(kernel_map, UPAGES * PAGE_SIZE);
1684 	for (i = 0; i < UPAGES; i++)
1685 		SMP_prvpt[i + 3] = (pt_entry_t)(PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
1686 
1687 	pmap_set_opt_bsp();
1688 
1689 	for (i = 0; i < mp_ncpus; i++) {
1690 		bcopy( (int *) PTD + KPTDI, (int *) IdlePTDS[i] + KPTDI, NKPDE * sizeof (int));
1691 	}
1692 
1693 	/* number of APs actually started */
1694 	return mp_ncpus - 1;
1695 }
1696 
1697 
1698 /*
1699  * load the 1st level AP boot code into base memory.
1700  */
1701 
1702 /* targets for relocation */
1703 extern void bigJump(void);
1704 extern void bootCodeSeg(void);
1705 extern void bootDataSeg(void);
1706 extern void MPentry(void);
1707 extern u_int MP_GDT;
1708 extern u_int mp_gdtbase;
1709 
1710 static void
1711 install_ap_tramp(u_int boot_addr)
1712 {
1713 	int     x;
1714 	int     size = *(int *) ((u_long) & bootMP_size);
1715 	u_char *src = (u_char *) ((u_long) bootMP);
1716 	u_char *dst = (u_char *) boot_addr + KERNBASE;
1717 	u_int   boot_base = (u_int) bootMP;
1718 	u_int8_t *dst8;
1719 	u_int16_t *dst16;
1720 	u_int32_t *dst32;
1721 
1722 	POSTCODE(INSTALL_AP_TRAMP_POST);
1723 
1724 	for (x = 0; x < size; ++x)
1725 		*dst++ = *src++;
1726 
1727 	/*
1728 	 * modify addresses in code we just moved to basemem. unfortunately we
1729 	 * need fairly detailed info about mpboot.s for this to work.  changes
1730 	 * to mpboot.s might require changes here.
1731 	 */
1732 
1733 	/* boot code is located in KERNEL space */
1734 	dst = (u_char *) boot_addr + KERNBASE;
1735 
1736 	/* modify the lgdt arg */
1737 	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
1738 	*dst32 = boot_addr + ((u_int) & MP_GDT - boot_base);
1739 
1740 	/* modify the ljmp target for MPentry() */
1741 	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
1742 	*dst32 = ((u_int) MPentry - KERNBASE);
1743 
1744 	/* modify the target for boot code segment */
1745 	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
1746 	dst8 = (u_int8_t *) (dst16 + 1);
1747 	*dst16 = (u_int) boot_addr & 0xffff;
1748 	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
1749 
1750 	/* modify the target for boot data segment */
1751 	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
1752 	dst8 = (u_int8_t *) (dst16 + 1);
1753 	*dst16 = (u_int) boot_addr & 0xffff;
1754 	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
1755 }
1756 
1757 
1758 /*
1759  * this function starts the AP (application processor) identified
1760  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
1761  * to accomplish this.  This is necessary because of the nuances
1762  * of the different hardware we might encounter.  It ain't pretty,
1763  * but it seems to work.
1764  */
1765 static int
1766 start_ap(int logical_cpu, u_int boot_addr)
1767 {
1768 	int     physical_cpu;
1769 	int     vector;
1770 	int     cpus;
1771 	u_long  icr_lo, icr_hi;
1772 
1773 	POSTCODE(START_AP_POST);
1774 
1775 	/* get the PHYSICAL APIC ID# */
1776 	physical_cpu = CPU_TO_ID(logical_cpu);
1777 
1778 	/* calculate the vector */
1779 	vector = (boot_addr >> 12) & 0xff;
1780 
1781 	/* used as a watchpoint to signal AP startup */
1782 	cpus = mp_ncpus;
1783 
1784 	/*
1785 	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
1786 	 * and running the target CPU. OR this INIT IPI might be latched (P5
1787 	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
1788 	 * ignored.
1789 	 */
1790 
1791 	/* setup the address for the target AP */
1792 	icr_hi = lapic.icr_hi & ~APIC_ID_MASK;
1793 	icr_hi |= (physical_cpu << 24);
1794 	lapic.icr_hi = icr_hi;
1795 
1796 	/* do an INIT IPI: assert RESET */
1797 	icr_lo = lapic.icr_lo & 0xfff00000;
1798 	lapic.icr_lo = icr_lo | 0x0000c500;
1799 
1800 	/* wait for pending status end */
1801 	while (lapic.icr_lo & APIC_DELSTAT_MASK)
1802 		 /* spin */ ;
1803 
1804 	/* do an INIT IPI: deassert RESET */
1805 	lapic.icr_lo = icr_lo | 0x00008500;
1806 
1807 	/* wait for pending status end */
1808 	u_sleep(10000);		/* wait ~10mS */
1809 	while (lapic.icr_lo & APIC_DELSTAT_MASK)
1810 		 /* spin */ ;
1811 
1812 	/*
1813 	 * next we do a STARTUP IPI: the previous INIT IPI might still be
1814 	 * latched, (P5 bug) this 1st STARTUP would then terminate
1815 	 * immediately, and the previously started INIT IPI would continue. OR
1816 	 * the previous INIT IPI has already run. and this STARTUP IPI will
1817 	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
1818 	 * will run.
1819 	 */
1820 
1821 	/* do a STARTUP IPI */
1822 	lapic.icr_lo = icr_lo | 0x00000600 | vector;
1823 	while (lapic.icr_lo & APIC_DELSTAT_MASK)
1824 		 /* spin */ ;
1825 	u_sleep(200);		/* wait ~200uS */
1826 
1827 	/*
1828 	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
1829 	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
1830 	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
1831 	 * recognized after hardware RESET or INIT IPI.
1832 	 */
1833 
1834 	lapic.icr_lo = icr_lo | 0x00000600 | vector;
1835 	while (lapic.icr_lo & APIC_DELSTAT_MASK)
1836 		 /* spin */ ;
1837 	u_sleep(200);		/* wait ~200uS */
1838 
1839 	/* wait for it to start */
1840 	set_apic_timer(5000000);/* == 5 seconds */
1841 	while (read_apic_timer())
1842 		if (mp_ncpus > cpus)
1843 			return 1;	/* return SUCCESS */
1844 
1845 	return 0;		/* return FAILURE */
1846 }
1847 
1848 
1849 /*
1850  * Flush the TLB on all other CPU's
1851  *
1852  * XXX: Needs to handshake and wait for completion before proceding.
1853  */
1854 void
1855 smp_invltlb(void)
1856 {
1857 #if defined(APIC_IO)
1858 	if (smp_started && invltlb_ok)
1859 		all_but_self_ipi(XINVLTLB_OFFSET);
1860 #endif  /* APIC_IO */
1861 }
1862 
1863 void
1864 invlpg(u_int addr)
1865 {
1866 	__asm   __volatile("invlpg (%0)"::"r"(addr):"memory");
1867 
1868 	/* send a message to the other CPUs */
1869 	smp_invltlb();
1870 }
1871 
1872 void
1873 invltlb(void)
1874 {
1875 	u_long  temp;
1876 
1877 	/*
1878 	 * This should be implemented as load_cr3(rcr3()) when load_cr3() is
1879 	 * inlined.
1880 	 */
1881 	__asm __volatile("movl %%cr3, %0; movl %0, %%cr3":"=r"(temp) :: "memory");
1882 
1883 	/* send a message to the other CPUs */
1884 	smp_invltlb();
1885 }
1886 
1887 
1888 /*
1889  * When called the executing CPU will send an IPI to all other CPUs
1890  *  requesting that they halt execution.
1891  *
1892  * Usually (but not necessarily) called with 'other_cpus' as its arg.
1893  *
1894  *  - Signals all CPUs in map to stop.
1895  *  - Waits for each to stop.
1896  *
1897  * Returns:
1898  *  -1: error
1899  *   0: NA
1900  *   1: ok
1901  *
1902  * XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
1903  *            from executing at same time.
1904  */
1905 int
1906 stop_cpus(u_int map)
1907 {
1908 	if (!smp_started)
1909 		return 0;
1910 
1911 	/* send IPI to all CPUs in map */
1912 	stopped_cpus = 0;
1913 
1914 	/* send the Xcpustop IPI to all CPUs in map */
1915 	selected_apic_ipi(map, XCPUSTOP_OFFSET, APIC_DELMODE_FIXED);
1916 
1917 	while (stopped_cpus != map)
1918 		/* spin */ ;
1919 
1920 	return 1;
1921 }
1922 
1923 
1924 /*
1925  * Called by a CPU to restart stopped CPUs.
1926  *
1927  * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
1928  *
1929  *  - Signals all CPUs in map to restart.
1930  *  - Waits for each to restart.
1931  *
1932  * Returns:
1933  *  -1: error
1934  *   0: NA
1935  *   1: ok
1936  */
1937 int
1938 restart_cpus(u_int map)
1939 {
1940 	if (!smp_started)
1941 		return 0;
1942 
1943 	started_cpus = map;		/* signal other cpus to restart */
1944 
1945 	while (started_cpus)		/* wait for each to clear its bit */
1946 		/* spin */ ;
1947 
1948 	return 1;
1949 }
1950 
1951 int smp_active = 0;	/* are the APs allowed to run? */
1952 SYSCTL_INT(_machdep, OID_AUTO, smp_active, CTLFLAG_RW, &smp_active, 0, "");
1953 
1954 /* XXX maybe should be hw.ncpu */
1955 int smp_cpus = 1;	/* how many cpu's running */
1956 SYSCTL_INT(_machdep, OID_AUTO, smp_cpus, CTLFLAG_RD, &smp_cpus, 0, "");
1957 
1958 int invltlb_ok = 0;	/* throttle smp_invltlb() till safe */
1959 SYSCTL_INT(_machdep, OID_AUTO, invltlb_ok, CTLFLAG_RW, &invltlb_ok, 0, "");
1960 
1961 int do_page_zero_idle = 0; /* bzero pages for fun and profit in idleloop */
1962 SYSCTL_INT(_machdep, OID_AUTO, do_page_zero_idle, CTLFLAG_RW,
1963 	   &do_page_zero_idle, 0, "");
1964 
1965 
1966 /*
1967  * This is called once the rest of the system is up and running and we're
1968  * ready to let the AP's out of the pen.
1969  */
1970 void ap_init(void);
1971 
1972 void
1973 ap_init()
1974 {
1975 	u_int   temp;
1976 	u_int	apic_id;
1977 
1978 	smp_cpus++;
1979 
1980 	/* Build our map of 'other' CPUs. */
1981 	other_cpus = all_cpus & ~(1 << cpuid);
1982 
1983 	printf("SMP: AP CPU #%d Launched!\n", cpuid);
1984 
1985 	/* XXX FIXME: i386 specific, and redundant: Setup the FPU. */
1986 	load_cr0((rcr0() & ~CR0_EM) | CR0_MP | CR0_NE | CR0_TS);
1987 
1988 	/* A quick check from sanity claus */
1989 	apic_id = (apic_id_to_logical[(lapic.id & 0x0f000000) >> 24]);
1990 	if (cpuid != apic_id) {
1991 		printf("SMP: cpuid = %d\n", cpuid);
1992 		printf("SMP: apic_id = %d\n", apic_id);
1993 		printf("PTD[MPPTDI] = %08x\n", PTD[MPPTDI]);
1994 		panic("cpuid mismatch! boom!!");
1995 	}
1996 
1997 	/* Init local apic for irq's */
1998 	apic_initialize();
1999 
2000 	/*
2001 	 * Activate smp_invltlb, although strictly speaking, this isn't
2002 	 * quite correct yet.  We should have a bitfield for cpus willing
2003 	 * to accept TLB flush IPI's or something and sync them.
2004 	 */
2005 	invltlb_ok = 1;
2006 	smp_started = 1;	/* enable IPI's, tlb shootdown, freezes etc */
2007 	smp_active = 1;		/* historic */
2008 
2009 	curproc = NULL;		/* make sure */
2010 }
2011 
2012 void
2013 getmtrr() {
2014 	int i;
2015 	if (cpu_class == CPUCLASS_686) {
2016 		for(i=0;i<NPPROVMTRR;i++) {
2017 			PPro_vmtrr[i].base = rdmsr(PPRO_VMTRRphysBase0 + i * 2);
2018 			PPro_vmtrr[i].mask = rdmsr(PPRO_VMTRRphysMask0 + i * 2);
2019 		}
2020 	}
2021 }
2022 
2023 void
2024 putmtrr() {
2025 	int i;
2026 	if (cpu_class == CPUCLASS_686) {
2027 		wbinvd();
2028 		for(i=0;i<NPPROVMTRR;i++) {
2029 			wrmsr(PPRO_VMTRRphysBase0 + i * 2, PPro_vmtrr[i].base);
2030 			wrmsr(PPRO_VMTRRphysMask0 + i * 2, PPro_vmtrr[i].mask);
2031 		}
2032 	}
2033 }
2034 
2035 void
2036 putfmtrr() {
2037 	if (cpu_class == CPUCLASS_686) {
2038 		wbinvd();
2039 		/*
2040 		 * Set memory between 0-640K to be WB
2041 		 */
2042 		wrmsr(0x250, 0x0606060606060606LL);
2043 		wrmsr(0x258, 0x0606060606060606LL);
2044 		/*
2045 		 * Set normal, PC video memory to be WC
2046 		 */
2047 		wrmsr(0x259, 0x0101010101010101LL);
2048 	}
2049 }
2050 
2051