1 /* 2 * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the author nor the names of any co-contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * Implementation of sleep queues used to hold queue of threads blocked on 32 * a wait channel. Sleep queues different from turnstiles in that wait 33 * channels are not owned by anyone, so there is no priority propagation. 34 * Sleep queues can also provide a timeout and can also be interrupted by 35 * signals. That said, there are several similarities between the turnstile 36 * and sleep queue implementations. (Note: turnstiles were implemented 37 * first.) For example, both use a hash table of the same size where each 38 * bucket is referred to as a "chain" that contains both a spin lock and 39 * a linked list of queues. An individual queue is located by using a hash 40 * to pick a chain, locking the chain, and then walking the chain searching 41 * for the queue. This means that a wait channel object does not need to 42 * embed it's queue head just as locks do not embed their turnstile queue 43 * head. Threads also carry around a sleep queue that they lend to the 44 * wait channel when blocking. Just as in turnstiles, the queue includes 45 * a free list of the sleep queues of other threads blocked on the same 46 * wait channel in the case of multiple waiters. 47 * 48 * Some additional functionality provided by sleep queues include the 49 * ability to set a timeout. The timeout is managed using a per-thread 50 * callout that resumes a thread if it is asleep. A thread may also 51 * catch signals while it is asleep (aka an interruptible sleep). The 52 * signal code uses sleepq_abort() to interrupt a sleeping thread. Finally, 53 * sleep queues also provide some extra assertions. One is not allowed to 54 * mix the sleep/wakeup and cv APIs for a given wait channel. Also, one 55 * must consistently use the same lock to synchronize with a wait channel, 56 * though this check is currently only a warning for sleep/wakeup due to 57 * pre-existing abuse of that API. The same lock must also be held when 58 * awakening threads, though that is currently only enforced for condition 59 * variables. 60 */ 61 62 #include "opt_sleepqueue_profiling.h" 63 64 #include <sys/cdefs.h> 65 __FBSDID("$FreeBSD$"); 66 67 #include <sys/param.h> 68 #include <sys/systm.h> 69 #include <sys/lock.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/malloc.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/sched.h> 76 #include <sys/signalvar.h> 77 #include <sys/sleepqueue.h> 78 #include <sys/sysctl.h> 79 80 /* 81 * Constants for the hash table of sleep queue chains. These constants are 82 * the same ones that 4BSD (and possibly earlier versions of BSD) used. 83 * Basically, we ignore the lower 8 bits of the address since most wait 84 * channel pointers are aligned and only look at the next 7 bits for the 85 * hash. SC_TABLESIZE must be a power of two for SC_MASK to work properly. 86 */ 87 #define SC_TABLESIZE 128 /* Must be power of 2. */ 88 #define SC_MASK (SC_TABLESIZE - 1) 89 #define SC_SHIFT 8 90 #define SC_HASH(wc) (((uintptr_t)(wc) >> SC_SHIFT) & SC_MASK) 91 #define SC_LOOKUP(wc) &sleepq_chains[SC_HASH(wc)] 92 93 /* 94 * There two different lists of sleep queues. Both lists are connected 95 * via the sq_hash entries. The first list is the sleep queue chain list 96 * that a sleep queue is on when it is attached to a wait channel. The 97 * second list is the free list hung off of a sleep queue that is attached 98 * to a wait channel. 99 * 100 * Each sleep queue also contains the wait channel it is attached to, the 101 * list of threads blocked on that wait channel, flags specific to the 102 * wait channel, and the lock used to synchronize with a wait channel. 103 * The flags are used to catch mismatches between the various consumers 104 * of the sleep queue API (e.g. sleep/wakeup and condition variables). 105 * The lock pointer is only used when invariants are enabled for various 106 * debugging checks. 107 * 108 * Locking key: 109 * c - sleep queue chain lock 110 */ 111 struct sleepqueue { 112 TAILQ_HEAD(, thread) sq_blocked; /* (c) Blocked threads. */ 113 LIST_ENTRY(sleepqueue) sq_hash; /* (c) Chain and free list. */ 114 LIST_HEAD(, sleepqueue) sq_free; /* (c) Free queues. */ 115 void *sq_wchan; /* (c) Wait channel. */ 116 int sq_type; /* (c) Queue type. */ 117 #ifdef INVARIANTS 118 struct mtx *sq_lock; /* (c) Associated lock. */ 119 #endif 120 }; 121 122 struct sleepqueue_chain { 123 LIST_HEAD(, sleepqueue) sc_queues; /* List of sleep queues. */ 124 struct mtx sc_lock; /* Spin lock for this chain. */ 125 #ifdef SLEEPQUEUE_PROFILING 126 u_int sc_depth; /* Length of sc_queues. */ 127 u_int sc_max_depth; /* Max length of sc_queues. */ 128 #endif 129 }; 130 131 #ifdef SLEEPQUEUE_PROFILING 132 u_int sleepq_max_depth; 133 SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling"); 134 SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0, 135 "sleepq chain stats"); 136 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth, 137 0, "maxmimum depth achieved of a single chain"); 138 #endif 139 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE]; 140 141 MALLOC_DEFINE(M_SLEEPQUEUE, "sleep queues", "sleep queues"); 142 143 /* 144 * Prototypes for non-exported routines. 145 */ 146 static int sleepq_check_timeout(void); 147 static void sleepq_switch(void *wchan); 148 static void sleepq_timeout(void *arg); 149 static void sleepq_remove_thread(struct sleepqueue *sq, struct thread *td); 150 static void sleepq_resume_thread(struct thread *td, int pri); 151 152 /* 153 * Early initialization of sleep queues that is called from the sleepinit() 154 * SYSINIT. 155 */ 156 void 157 init_sleepqueues(void) 158 { 159 #ifdef SLEEPQUEUE_PROFILING 160 struct sysctl_oid *chain_oid; 161 char chain_name[10]; 162 #endif 163 int i; 164 165 for (i = 0; i < SC_TABLESIZE; i++) { 166 LIST_INIT(&sleepq_chains[i].sc_queues); 167 mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL, 168 MTX_SPIN); 169 #ifdef SLEEPQUEUE_PROFILING 170 snprintf(chain_name, sizeof(chain_name), "%d", i); 171 chain_oid = SYSCTL_ADD_NODE(NULL, 172 SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO, 173 chain_name, CTLFLAG_RD, NULL, "sleepq chain stats"); 174 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 175 "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL); 176 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 177 "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0, 178 NULL); 179 #endif 180 } 181 thread0.td_sleepqueue = sleepq_alloc(); 182 } 183 184 /* 185 * Malloc and initialize a new sleep queue for a new thread. 186 */ 187 struct sleepqueue * 188 sleepq_alloc(void) 189 { 190 struct sleepqueue *sq; 191 192 sq = malloc(sizeof(struct sleepqueue), M_SLEEPQUEUE, M_WAITOK | M_ZERO); 193 TAILQ_INIT(&sq->sq_blocked); 194 LIST_INIT(&sq->sq_free); 195 return (sq); 196 } 197 198 /* 199 * Free a sleep queue when a thread is destroyed. 200 */ 201 void 202 sleepq_free(struct sleepqueue *sq) 203 { 204 205 MPASS(sq != NULL); 206 MPASS(TAILQ_EMPTY(&sq->sq_blocked)); 207 free(sq, M_SLEEPQUEUE); 208 } 209 210 /* 211 * Look up the sleep queue associated with a given wait channel in the hash 212 * table locking the associated sleep queue chain. Return holdind the sleep 213 * queue chain lock. If no queue is found in the table, NULL is returned. 214 */ 215 struct sleepqueue * 216 sleepq_lookup(void *wchan) 217 { 218 struct sleepqueue_chain *sc; 219 struct sleepqueue *sq; 220 221 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 222 sc = SC_LOOKUP(wchan); 223 mtx_lock_spin(&sc->sc_lock); 224 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 225 if (sq->sq_wchan == wchan) 226 return (sq); 227 return (NULL); 228 } 229 230 /* 231 * Unlock the sleep queue chain associated with a given wait channel. 232 */ 233 void 234 sleepq_release(void *wchan) 235 { 236 struct sleepqueue_chain *sc; 237 238 sc = SC_LOOKUP(wchan); 239 mtx_unlock_spin(&sc->sc_lock); 240 } 241 242 /* 243 * Places the current thread on the sleepqueue for the specified wait 244 * channel. If INVARIANTS is enabled, then it associates the passed in 245 * lock with the sleepq to make sure it is held when that sleep queue is 246 * woken up. 247 */ 248 void 249 sleepq_add(struct sleepqueue *sq, void *wchan, struct mtx *lock, 250 const char *wmesg, int flags) 251 { 252 struct sleepqueue_chain *sc; 253 struct thread *td, *td1; 254 255 td = curthread; 256 sc = SC_LOOKUP(wchan); 257 mtx_assert(&sc->sc_lock, MA_OWNED); 258 MPASS(td->td_sleepqueue != NULL); 259 MPASS(wchan != NULL); 260 261 /* If the passed in sleep queue is NULL, use this thread's queue. */ 262 if (sq == NULL) { 263 #ifdef SLEEPQUEUE_PROFILING 264 sc->sc_depth++; 265 if (sc->sc_depth > sc->sc_max_depth) { 266 sc->sc_max_depth = sc->sc_depth; 267 if (sc->sc_max_depth > sleepq_max_depth) 268 sleepq_max_depth = sc->sc_max_depth; 269 } 270 #endif 271 sq = td->td_sleepqueue; 272 LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash); 273 KASSERT(TAILQ_EMPTY(&sq->sq_blocked), 274 ("thread's sleep queue has a non-empty queue")); 275 KASSERT(LIST_EMPTY(&sq->sq_free), 276 ("thread's sleep queue has a non-empty free list")); 277 KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer")); 278 sq->sq_wchan = wchan; 279 #ifdef INVARIANTS 280 sq->sq_lock = lock; 281 #endif 282 sq->sq_type = flags & SLEEPQ_TYPE; 283 TAILQ_INSERT_TAIL(&sq->sq_blocked, td, td_slpq); 284 } else { 285 MPASS(wchan == sq->sq_wchan); 286 MPASS(lock == sq->sq_lock); 287 TAILQ_FOREACH(td1, &sq->sq_blocked, td_slpq) 288 if (td1->td_priority > td->td_priority) 289 break; 290 if (td1 != NULL) 291 TAILQ_INSERT_BEFORE(td1, td, td_slpq); 292 else 293 TAILQ_INSERT_TAIL(&sq->sq_blocked, td, td_slpq); 294 LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash); 295 } 296 td->td_sleepqueue = NULL; 297 mtx_lock_spin(&sched_lock); 298 td->td_wchan = wchan; 299 td->td_wmesg = wmesg; 300 if (flags & SLEEPQ_INTERRUPTIBLE) 301 td->td_flags |= TDF_SINTR; 302 mtx_unlock_spin(&sched_lock); 303 } 304 305 /* 306 * Sets a timeout that will remove the current thread from the specified 307 * sleep queue after timo ticks if the thread has not already been awakened. 308 */ 309 void 310 sleepq_set_timeout(void *wchan, int timo) 311 { 312 struct sleepqueue_chain *sc; 313 struct thread *td; 314 315 td = curthread; 316 sc = SC_LOOKUP(wchan); 317 mtx_assert(&sc->sc_lock, MA_OWNED); 318 MPASS(TD_ON_SLEEPQ(td)); 319 MPASS(td->td_sleepqueue == NULL); 320 MPASS(wchan != NULL); 321 callout_reset(&td->td_slpcallout, timo, sleepq_timeout, td); 322 } 323 324 /* 325 * Marks the pending sleep of the current thread as interruptible and 326 * makes an initial check for pending signals before putting a thread 327 * to sleep. 328 */ 329 int 330 sleepq_catch_signals(void *wchan) 331 { 332 struct sleepqueue_chain *sc; 333 struct sleepqueue *sq; 334 struct thread *td; 335 struct proc *p; 336 int do_upcall; 337 int sig; 338 339 do_upcall = 0; 340 td = curthread; 341 p = td->td_proc; 342 sc = SC_LOOKUP(wchan); 343 mtx_assert(&sc->sc_lock, MA_OWNED); 344 MPASS(td->td_sleepqueue == NULL); 345 MPASS(wchan != NULL); 346 CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)", 347 (void *)td, (long)p->p_pid, p->p_comm); 348 349 /* Mark thread as being in an interruptible sleep. */ 350 MPASS(td->td_flags & TDF_SINTR); 351 MPASS(TD_ON_SLEEPQ(td)); 352 sleepq_release(wchan); 353 354 /* See if there are any pending signals for this thread. */ 355 PROC_LOCK(p); 356 mtx_lock(&p->p_sigacts->ps_mtx); 357 sig = cursig(td); 358 mtx_unlock(&p->p_sigacts->ps_mtx); 359 if (sig == 0 && thread_suspend_check(1)) 360 sig = SIGSTOP; 361 else 362 do_upcall = thread_upcall_check(td); 363 PROC_UNLOCK(p); 364 365 /* 366 * If there were pending signals and this thread is still on 367 * the sleep queue, remove it from the sleep queue. If the 368 * thread was removed from the sleep queue while we were blocked 369 * above, then clear TDF_SINTR before returning. 370 */ 371 sq = sleepq_lookup(wchan); 372 mtx_lock_spin(&sched_lock); 373 if (TD_ON_SLEEPQ(td) && (sig != 0 || do_upcall != 0)) { 374 mtx_unlock_spin(&sched_lock); 375 sleepq_remove_thread(sq, td); 376 } else { 377 if (!TD_ON_SLEEPQ(td) && sig == 0) 378 td->td_flags &= ~TDF_SINTR; 379 mtx_unlock_spin(&sched_lock); 380 } 381 return (sig); 382 } 383 384 /* 385 * Switches to another thread if we are still asleep on a sleep queue and 386 * drop the lock on the sleepqueue chain. Returns with sched_lock held. 387 */ 388 static void 389 sleepq_switch(void *wchan) 390 { 391 struct sleepqueue_chain *sc; 392 struct thread *td; 393 394 td = curthread; 395 sc = SC_LOOKUP(wchan); 396 mtx_assert(&sc->sc_lock, MA_OWNED); 397 398 /* 399 * If we have a sleep queue, then we've already been woken up, so 400 * just return. 401 */ 402 if (td->td_sleepqueue != NULL) { 403 MPASS(!TD_ON_SLEEPQ(td)); 404 mtx_unlock_spin(&sc->sc_lock); 405 mtx_lock_spin(&sched_lock); 406 return; 407 } 408 409 /* 410 * Otherwise, actually go to sleep. 411 */ 412 mtx_lock_spin(&sched_lock); 413 mtx_unlock_spin(&sc->sc_lock); 414 415 sched_sleep(td); 416 TD_SET_SLEEPING(td); 417 mi_switch(SW_VOL, NULL); 418 KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING")); 419 CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)", 420 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_proc->p_comm); 421 } 422 423 /* 424 * Check to see if we timed out. 425 */ 426 static int 427 sleepq_check_timeout(void) 428 { 429 struct thread *td; 430 431 mtx_assert(&sched_lock, MA_OWNED); 432 td = curthread; 433 434 /* 435 * If TDF_TIMEOUT is set, we timed out. 436 */ 437 if (td->td_flags & TDF_TIMEOUT) { 438 td->td_flags &= ~TDF_TIMEOUT; 439 return (EWOULDBLOCK); 440 } 441 442 /* 443 * If TDF_TIMOFAIL is set, the timeout ran after we had 444 * already been woken up. 445 */ 446 if (td->td_flags & TDF_TIMOFAIL) 447 td->td_flags &= ~TDF_TIMOFAIL; 448 449 /* 450 * If callout_stop() fails, then the timeout is running on 451 * another CPU, so synchronize with it to avoid having it 452 * accidentally wake up a subsequent sleep. 453 */ 454 else if (callout_stop(&td->td_slpcallout) == 0) { 455 td->td_flags |= TDF_TIMEOUT; 456 TD_SET_SLEEPING(td); 457 mi_switch(SW_INVOL, NULL); 458 } 459 return (0); 460 } 461 462 /* 463 * Check to see if we were awoken by a signal. 464 */ 465 static int 466 sleepq_check_signals(void) 467 { 468 struct thread *td; 469 470 mtx_assert(&sched_lock, MA_OWNED); 471 td = curthread; 472 473 /* 474 * If TDF_SINTR is clear, then we were awakened while executing 475 * sleepq_catch_signals(). 476 */ 477 if (!(td->td_flags & TDF_SINTR)) 478 return (0); 479 480 /* We are no longer in an interruptible sleep. */ 481 td->td_flags &= ~TDF_SINTR; 482 483 if (td->td_flags & TDF_INTERRUPT) 484 return (td->td_intrval); 485 return (0); 486 } 487 488 /* 489 * If we were in an interruptible sleep and we weren't interrupted and 490 * didn't timeout, check to see if there are any pending signals and 491 * which return value we should use if so. The return value from an 492 * earlier call to sleepq_catch_signals() should be passed in as the 493 * argument. 494 */ 495 int 496 sleepq_calc_signal_retval(int sig) 497 { 498 struct thread *td; 499 struct proc *p; 500 int rval; 501 502 td = curthread; 503 p = td->td_proc; 504 PROC_LOCK(p); 505 mtx_lock(&p->p_sigacts->ps_mtx); 506 /* XXX: Should we always be calling cursig()? */ 507 if (sig == 0) 508 sig = cursig(td); 509 if (sig != 0) { 510 if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig)) 511 rval = EINTR; 512 else 513 rval = ERESTART; 514 } else 515 rval = 0; 516 mtx_unlock(&p->p_sigacts->ps_mtx); 517 PROC_UNLOCK(p); 518 return (rval); 519 } 520 521 /* 522 * Block the current thread until it is awakened from its sleep queue. 523 */ 524 void 525 sleepq_wait(void *wchan) 526 { 527 528 MPASS(!(curthread->td_flags & TDF_SINTR)); 529 sleepq_switch(wchan); 530 mtx_unlock_spin(&sched_lock); 531 } 532 533 /* 534 * Block the current thread until it is awakened from its sleep queue 535 * or it is interrupted by a signal. 536 */ 537 int 538 sleepq_wait_sig(void *wchan) 539 { 540 int rval; 541 542 sleepq_switch(wchan); 543 rval = sleepq_check_signals(); 544 mtx_unlock_spin(&sched_lock); 545 return (rval); 546 } 547 548 /* 549 * Block the current thread until it is awakened from its sleep queue 550 * or it times out while waiting. 551 */ 552 int 553 sleepq_timedwait(void *wchan) 554 { 555 int rval; 556 557 MPASS(!(curthread->td_flags & TDF_SINTR)); 558 sleepq_switch(wchan); 559 rval = sleepq_check_timeout(); 560 mtx_unlock_spin(&sched_lock); 561 return (rval); 562 } 563 564 /* 565 * Block the current thread until it is awakened from its sleep queue, 566 * it is interrupted by a signal, or it times out waiting to be awakened. 567 */ 568 int 569 sleepq_timedwait_sig(void *wchan, int signal_caught) 570 { 571 int rvalt, rvals; 572 573 sleepq_switch(wchan); 574 rvalt = sleepq_check_timeout(); 575 rvals = sleepq_check_signals(); 576 mtx_unlock_spin(&sched_lock); 577 if (signal_caught || rvalt == 0) 578 return (rvals); 579 else 580 return (rvalt); 581 } 582 583 /* 584 * Removes a thread from a sleep queue. 585 */ 586 static void 587 sleepq_remove_thread(struct sleepqueue *sq, struct thread *td) 588 { 589 struct sleepqueue_chain *sc; 590 591 MPASS(td != NULL); 592 MPASS(sq->sq_wchan != NULL); 593 MPASS(td->td_wchan == sq->sq_wchan); 594 sc = SC_LOOKUP(sq->sq_wchan); 595 mtx_assert(&sc->sc_lock, MA_OWNED); 596 597 /* Remove the thread from the queue. */ 598 TAILQ_REMOVE(&sq->sq_blocked, td, td_slpq); 599 600 /* 601 * Get a sleep queue for this thread. If this is the last waiter, 602 * use the queue itself and take it out of the chain, otherwise, 603 * remove a queue from the free list. 604 */ 605 if (LIST_EMPTY(&sq->sq_free)) { 606 td->td_sleepqueue = sq; 607 #ifdef INVARIANTS 608 sq->sq_wchan = NULL; 609 #endif 610 #ifdef SLEEPQUEUE_PROFILING 611 sc->sc_depth--; 612 #endif 613 } else 614 td->td_sleepqueue = LIST_FIRST(&sq->sq_free); 615 LIST_REMOVE(td->td_sleepqueue, sq_hash); 616 617 mtx_lock_spin(&sched_lock); 618 td->td_wmesg = NULL; 619 td->td_wchan = NULL; 620 mtx_unlock_spin(&sched_lock); 621 } 622 623 /* 624 * Resumes a thread that was asleep on a queue. 625 */ 626 static void 627 sleepq_resume_thread(struct thread *td, int pri) 628 { 629 630 /* 631 * Note that thread td might not be sleeping if it is running 632 * sleepq_catch_signals() on another CPU or is blocked on 633 * its proc lock to check signals. It doesn't hurt to clear 634 * the sleeping flag if it isn't set though, so we just always 635 * do it. However, we can't assert that it is set. 636 */ 637 mtx_lock_spin(&sched_lock); 638 CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)", 639 (void *)td, (long)td->td_proc->p_pid, td->td_proc->p_comm); 640 TD_CLR_SLEEPING(td); 641 642 /* Adjust priority if requested. */ 643 MPASS(pri == -1 || (pri >= PRI_MIN && pri <= PRI_MAX)); 644 if (pri != -1 && td->td_priority > pri) 645 td->td_priority = pri; 646 setrunnable(td); 647 mtx_unlock_spin(&sched_lock); 648 } 649 650 /* 651 * Find the highest priority thread sleeping on a wait channel and resume it. 652 */ 653 void 654 sleepq_signal(void *wchan, int flags, int pri) 655 { 656 struct sleepqueue *sq; 657 struct thread *td; 658 659 CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags); 660 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 661 sq = sleepq_lookup(wchan); 662 if (sq == NULL) { 663 sleepq_release(wchan); 664 return; 665 } 666 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 667 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 668 /* XXX: Do for all sleep queues eventually. */ 669 if (flags & SLEEPQ_CONDVAR) 670 mtx_assert(sq->sq_lock, MA_OWNED); 671 672 /* Remove first thread from queue and awaken it. */ 673 td = TAILQ_FIRST(&sq->sq_blocked); 674 sleepq_remove_thread(sq, td); 675 sleepq_release(wchan); 676 sleepq_resume_thread(td, pri); 677 } 678 679 /* 680 * Resume all threads sleeping on a specified wait channel. 681 */ 682 void 683 sleepq_broadcast(void *wchan, int flags, int pri) 684 { 685 TAILQ_HEAD(, thread) list; 686 struct sleepqueue *sq; 687 struct thread *td; 688 689 CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags); 690 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 691 sq = sleepq_lookup(wchan); 692 if (sq == NULL) { 693 sleepq_release(wchan); 694 return; 695 } 696 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 697 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 698 /* XXX: Do for all sleep queues eventually. */ 699 if (flags & SLEEPQ_CONDVAR) 700 mtx_assert(sq->sq_lock, MA_OWNED); 701 702 /* Move blocked threads from the sleep queue to a temporary list. */ 703 TAILQ_INIT(&list); 704 while (!TAILQ_EMPTY(&sq->sq_blocked)) { 705 td = TAILQ_FIRST(&sq->sq_blocked); 706 sleepq_remove_thread(sq, td); 707 TAILQ_INSERT_TAIL(&list, td, td_slpq); 708 } 709 sleepq_release(wchan); 710 711 /* Resume all the threads on the temporary list. */ 712 while (!TAILQ_EMPTY(&list)) { 713 td = TAILQ_FIRST(&list); 714 TAILQ_REMOVE(&list, td, td_slpq); 715 sleepq_resume_thread(td, pri); 716 } 717 } 718 719 /* 720 * Time sleeping threads out. When the timeout expires, the thread is 721 * removed from the sleep queue and made runnable if it is still asleep. 722 */ 723 static void 724 sleepq_timeout(void *arg) 725 { 726 struct sleepqueue *sq; 727 struct thread *td; 728 void *wchan; 729 730 td = arg; 731 CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)", 732 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_proc->p_comm); 733 734 /* 735 * First, see if the thread is asleep and get the wait channel if 736 * it is. 737 */ 738 mtx_lock_spin(&sched_lock); 739 if (TD_ON_SLEEPQ(td)) { 740 wchan = td->td_wchan; 741 mtx_unlock_spin(&sched_lock); 742 sq = sleepq_lookup(wchan); 743 mtx_lock_spin(&sched_lock); 744 } else { 745 wchan = NULL; 746 sq = NULL; 747 } 748 749 /* 750 * At this point, if the thread is still on the sleep queue, 751 * we have that sleep queue locked as it cannot migrate sleep 752 * queues while we dropped sched_lock. If it had resumed and 753 * was on another CPU while the lock was dropped, it would have 754 * seen that TDF_TIMEOUT and TDF_TIMOFAIL are clear and the 755 * call to callout_stop() to stop this routine would have failed 756 * meaning that it would have already set TDF_TIMEOUT to 757 * synchronize with this function. 758 */ 759 if (TD_ON_SLEEPQ(td)) { 760 MPASS(td->td_wchan == wchan); 761 MPASS(sq != NULL); 762 td->td_flags |= TDF_TIMEOUT; 763 mtx_unlock_spin(&sched_lock); 764 sleepq_remove_thread(sq, td); 765 sleepq_release(wchan); 766 sleepq_resume_thread(td, -1); 767 return; 768 } else if (wchan != NULL) 769 sleepq_release(wchan); 770 771 /* 772 * Now check for the edge cases. First, if TDF_TIMEOUT is set, 773 * then the other thread has already yielded to us, so clear 774 * the flag and resume it. If TDF_TIMEOUT is not set, then the 775 * we know that the other thread is not on a sleep queue, but it 776 * hasn't resumed execution yet. In that case, set TDF_TIMOFAIL 777 * to let it know that the timeout has already run and doesn't 778 * need to be canceled. 779 */ 780 if (td->td_flags & TDF_TIMEOUT) { 781 MPASS(TD_IS_SLEEPING(td)); 782 td->td_flags &= ~TDF_TIMEOUT; 783 TD_CLR_SLEEPING(td); 784 setrunnable(td); 785 } else 786 td->td_flags |= TDF_TIMOFAIL; 787 mtx_unlock_spin(&sched_lock); 788 } 789 790 /* 791 * Resumes a specific thread from the sleep queue associated with a specific 792 * wait channel if it is on that queue. 793 */ 794 void 795 sleepq_remove(struct thread *td, void *wchan) 796 { 797 struct sleepqueue *sq; 798 799 /* 800 * Look up the sleep queue for this wait channel, then re-check 801 * that the thread is asleep on that channel, if it is not, then 802 * bail. 803 */ 804 MPASS(wchan != NULL); 805 sq = sleepq_lookup(wchan); 806 mtx_lock_spin(&sched_lock); 807 if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) { 808 mtx_unlock_spin(&sched_lock); 809 sleepq_release(wchan); 810 return; 811 } 812 mtx_unlock_spin(&sched_lock); 813 MPASS(sq != NULL); 814 815 /* Thread is asleep on sleep queue sq, so wake it up. */ 816 sleepq_remove_thread(sq, td); 817 sleepq_release(wchan); 818 sleepq_resume_thread(td, -1); 819 } 820 821 /* 822 * Abort a thread as if an interrupt had occurred. Only abort 823 * interruptible waits (unfortunately it isn't safe to abort others). 824 * 825 * XXX: What in the world does the comment below mean? 826 * Also, whatever the signal code does... 827 */ 828 void 829 sleepq_abort(struct thread *td) 830 { 831 void *wchan; 832 833 mtx_assert(&sched_lock, MA_OWNED); 834 MPASS(TD_ON_SLEEPQ(td)); 835 MPASS(td->td_flags & TDF_SINTR); 836 837 /* 838 * If the TDF_TIMEOUT flag is set, just leave. A 839 * timeout is scheduled anyhow. 840 */ 841 if (td->td_flags & TDF_TIMEOUT) 842 return; 843 844 CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)", 845 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_proc->p_comm); 846 wchan = td->td_wchan; 847 mtx_unlock_spin(&sched_lock); 848 sleepq_remove(td, wchan); 849 mtx_lock_spin(&sched_lock); 850 } 851