xref: /freebsd/sys/kern/subr_sleepqueue.c (revision cec50dea12481dc578c0805c887ab2097e1c06c5)
1 /*
2  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the author nor the names of any co-contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * Implementation of sleep queues used to hold queue of threads blocked on
32  * a wait channel.  Sleep queues different from turnstiles in that wait
33  * channels are not owned by anyone, so there is no priority propagation.
34  * Sleep queues can also provide a timeout and can also be interrupted by
35  * signals.  That said, there are several similarities between the turnstile
36  * and sleep queue implementations.  (Note: turnstiles were implemented
37  * first.)  For example, both use a hash table of the same size where each
38  * bucket is referred to as a "chain" that contains both a spin lock and
39  * a linked list of queues.  An individual queue is located by using a hash
40  * to pick a chain, locking the chain, and then walking the chain searching
41  * for the queue.  This means that a wait channel object does not need to
42  * embed it's queue head just as locks do not embed their turnstile queue
43  * head.  Threads also carry around a sleep queue that they lend to the
44  * wait channel when blocking.  Just as in turnstiles, the queue includes
45  * a free list of the sleep queues of other threads blocked on the same
46  * wait channel in the case of multiple waiters.
47  *
48  * Some additional functionality provided by sleep queues include the
49  * ability to set a timeout.  The timeout is managed using a per-thread
50  * callout that resumes a thread if it is asleep.  A thread may also
51  * catch signals while it is asleep (aka an interruptible sleep).  The
52  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
53  * sleep queues also provide some extra assertions.  One is not allowed to
54  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
55  * must consistently use the same lock to synchronize with a wait channel,
56  * though this check is currently only a warning for sleep/wakeup due to
57  * pre-existing abuse of that API.  The same lock must also be held when
58  * awakening threads, though that is currently only enforced for condition
59  * variables.
60  */
61 
62 #include "opt_sleepqueue_profiling.h"
63 
64 #include <sys/cdefs.h>
65 __FBSDID("$FreeBSD$");
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/lock.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/malloc.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/sched.h>
76 #include <sys/signalvar.h>
77 #include <sys/sleepqueue.h>
78 #include <sys/sysctl.h>
79 
80 /*
81  * Constants for the hash table of sleep queue chains.  These constants are
82  * the same ones that 4BSD (and possibly earlier versions of BSD) used.
83  * Basically, we ignore the lower 8 bits of the address since most wait
84  * channel pointers are aligned and only look at the next 7 bits for the
85  * hash.  SC_TABLESIZE must be a power of two for SC_MASK to work properly.
86  */
87 #define	SC_TABLESIZE	128			/* Must be power of 2. */
88 #define	SC_MASK		(SC_TABLESIZE - 1)
89 #define	SC_SHIFT	8
90 #define	SC_HASH(wc)	(((uintptr_t)(wc) >> SC_SHIFT) & SC_MASK)
91 #define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
92 
93 /*
94  * There two different lists of sleep queues.  Both lists are connected
95  * via the sq_hash entries.  The first list is the sleep queue chain list
96  * that a sleep queue is on when it is attached to a wait channel.  The
97  * second list is the free list hung off of a sleep queue that is attached
98  * to a wait channel.
99  *
100  * Each sleep queue also contains the wait channel it is attached to, the
101  * list of threads blocked on that wait channel, flags specific to the
102  * wait channel, and the lock used to synchronize with a wait channel.
103  * The flags are used to catch mismatches between the various consumers
104  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
105  * The lock pointer is only used when invariants are enabled for various
106  * debugging checks.
107  *
108  * Locking key:
109  *  c - sleep queue chain lock
110  */
111 struct sleepqueue {
112 	TAILQ_HEAD(, thread) sq_blocked;	/* (c) Blocked threads. */
113 	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
114 	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
115 	void	*sq_wchan;			/* (c) Wait channel. */
116 	int	sq_type;			/* (c) Queue type. */
117 #ifdef INVARIANTS
118 	struct mtx *sq_lock;			/* (c) Associated lock. */
119 #endif
120 };
121 
122 struct sleepqueue_chain {
123 	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
124 	struct mtx sc_lock;			/* Spin lock for this chain. */
125 #ifdef SLEEPQUEUE_PROFILING
126 	u_int	sc_depth;			/* Length of sc_queues. */
127 	u_int	sc_max_depth;			/* Max length of sc_queues. */
128 #endif
129 };
130 
131 #ifdef SLEEPQUEUE_PROFILING
132 u_int sleepq_max_depth;
133 SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
134 SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
135     "sleepq chain stats");
136 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
137     0, "maxmimum depth achieved of a single chain");
138 #endif
139 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
140 
141 MALLOC_DEFINE(M_SLEEPQUEUE, "sleep queues", "sleep queues");
142 
143 /*
144  * Prototypes for non-exported routines.
145  */
146 static int	sleepq_check_timeout(void);
147 static void	sleepq_switch(void *wchan);
148 static void	sleepq_timeout(void *arg);
149 static void	sleepq_remove_thread(struct sleepqueue *sq, struct thread *td);
150 static void	sleepq_resume_thread(struct thread *td, int pri);
151 
152 /*
153  * Early initialization of sleep queues that is called from the sleepinit()
154  * SYSINIT.
155  */
156 void
157 init_sleepqueues(void)
158 {
159 #ifdef SLEEPQUEUE_PROFILING
160 	struct sysctl_oid *chain_oid;
161 	char chain_name[10];
162 #endif
163 	int i;
164 
165 	for (i = 0; i < SC_TABLESIZE; i++) {
166 		LIST_INIT(&sleepq_chains[i].sc_queues);
167 		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
168 		    MTX_SPIN);
169 #ifdef SLEEPQUEUE_PROFILING
170 		snprintf(chain_name, sizeof(chain_name), "%d", i);
171 		chain_oid = SYSCTL_ADD_NODE(NULL,
172 		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
173 		    chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
174 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
175 		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
176 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
177 		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
178 		    NULL);
179 #endif
180 	}
181 	thread0.td_sleepqueue = sleepq_alloc();
182 }
183 
184 /*
185  * Malloc and initialize a new sleep queue for a new thread.
186  */
187 struct sleepqueue *
188 sleepq_alloc(void)
189 {
190 	struct sleepqueue *sq;
191 
192 	sq = malloc(sizeof(struct sleepqueue), M_SLEEPQUEUE, M_WAITOK | M_ZERO);
193 	TAILQ_INIT(&sq->sq_blocked);
194 	LIST_INIT(&sq->sq_free);
195 	return (sq);
196 }
197 
198 /*
199  * Free a sleep queue when a thread is destroyed.
200  */
201 void
202 sleepq_free(struct sleepqueue *sq)
203 {
204 
205 	MPASS(sq != NULL);
206 	MPASS(TAILQ_EMPTY(&sq->sq_blocked));
207 	free(sq, M_SLEEPQUEUE);
208 }
209 
210 /*
211  * Look up the sleep queue associated with a given wait channel in the hash
212  * table locking the associated sleep queue chain.  Return holdind the sleep
213  * queue chain lock.  If no queue is found in the table, NULL is returned.
214  */
215 struct sleepqueue *
216 sleepq_lookup(void *wchan)
217 {
218 	struct sleepqueue_chain *sc;
219 	struct sleepqueue *sq;
220 
221 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
222 	sc = SC_LOOKUP(wchan);
223 	mtx_lock_spin(&sc->sc_lock);
224 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
225 		if (sq->sq_wchan == wchan)
226 			return (sq);
227 	return (NULL);
228 }
229 
230 /*
231  * Unlock the sleep queue chain associated with a given wait channel.
232  */
233 void
234 sleepq_release(void *wchan)
235 {
236 	struct sleepqueue_chain *sc;
237 
238 	sc = SC_LOOKUP(wchan);
239 	mtx_unlock_spin(&sc->sc_lock);
240 }
241 
242 /*
243  * Places the current thread on the sleepqueue for the specified wait
244  * channel.  If INVARIANTS is enabled, then it associates the passed in
245  * lock with the sleepq to make sure it is held when that sleep queue is
246  * woken up.
247  */
248 void
249 sleepq_add(struct sleepqueue *sq, void *wchan, struct mtx *lock,
250     const char *wmesg, int flags)
251 {
252 	struct sleepqueue_chain *sc;
253 	struct thread *td, *td1;
254 
255 	td = curthread;
256 	sc = SC_LOOKUP(wchan);
257 	mtx_assert(&sc->sc_lock, MA_OWNED);
258 	MPASS(td->td_sleepqueue != NULL);
259 	MPASS(wchan != NULL);
260 
261 	/* If the passed in sleep queue is NULL, use this thread's queue. */
262 	if (sq == NULL) {
263 #ifdef SLEEPQUEUE_PROFILING
264 		sc->sc_depth++;
265 		if (sc->sc_depth > sc->sc_max_depth) {
266 			sc->sc_max_depth = sc->sc_depth;
267 			if (sc->sc_max_depth > sleepq_max_depth)
268 				sleepq_max_depth = sc->sc_max_depth;
269 		}
270 #endif
271 		sq = td->td_sleepqueue;
272 		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
273 		KASSERT(TAILQ_EMPTY(&sq->sq_blocked),
274 		    ("thread's sleep queue has a non-empty queue"));
275 		KASSERT(LIST_EMPTY(&sq->sq_free),
276 		    ("thread's sleep queue has a non-empty free list"));
277 		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
278 		sq->sq_wchan = wchan;
279 #ifdef INVARIANTS
280 		sq->sq_lock = lock;
281 #endif
282 		sq->sq_type = flags & SLEEPQ_TYPE;
283 		TAILQ_INSERT_TAIL(&sq->sq_blocked, td, td_slpq);
284 	} else {
285 		MPASS(wchan == sq->sq_wchan);
286 		MPASS(lock == sq->sq_lock);
287 		TAILQ_FOREACH(td1, &sq->sq_blocked, td_slpq)
288 			if (td1->td_priority > td->td_priority)
289 				break;
290 		if (td1 != NULL)
291 			TAILQ_INSERT_BEFORE(td1, td, td_slpq);
292 		else
293 			TAILQ_INSERT_TAIL(&sq->sq_blocked, td, td_slpq);
294 		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
295 	}
296 	td->td_sleepqueue = NULL;
297 	mtx_lock_spin(&sched_lock);
298 	td->td_wchan = wchan;
299 	td->td_wmesg = wmesg;
300 	if (flags & SLEEPQ_INTERRUPTIBLE)
301 		td->td_flags |= TDF_SINTR;
302 	mtx_unlock_spin(&sched_lock);
303 }
304 
305 /*
306  * Sets a timeout that will remove the current thread from the specified
307  * sleep queue after timo ticks if the thread has not already been awakened.
308  */
309 void
310 sleepq_set_timeout(void *wchan, int timo)
311 {
312 	struct sleepqueue_chain *sc;
313 	struct thread *td;
314 
315 	td = curthread;
316 	sc = SC_LOOKUP(wchan);
317 	mtx_assert(&sc->sc_lock, MA_OWNED);
318 	MPASS(TD_ON_SLEEPQ(td));
319 	MPASS(td->td_sleepqueue == NULL);
320 	MPASS(wchan != NULL);
321 	callout_reset(&td->td_slpcallout, timo, sleepq_timeout, td);
322 }
323 
324 /*
325  * Marks the pending sleep of the current thread as interruptible and
326  * makes an initial check for pending signals before putting a thread
327  * to sleep.
328  */
329 int
330 sleepq_catch_signals(void *wchan)
331 {
332 	struct sleepqueue_chain *sc;
333 	struct sleepqueue *sq;
334 	struct thread *td;
335 	struct proc *p;
336 	int do_upcall;
337 	int sig;
338 
339 	do_upcall = 0;
340 	td = curthread;
341 	p = td->td_proc;
342 	sc = SC_LOOKUP(wchan);
343 	mtx_assert(&sc->sc_lock, MA_OWNED);
344 	MPASS(td->td_sleepqueue == NULL);
345 	MPASS(wchan != NULL);
346 	CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
347 	    (void *)td, (long)p->p_pid, p->p_comm);
348 
349 	/* Mark thread as being in an interruptible sleep. */
350 	MPASS(td->td_flags & TDF_SINTR);
351 	MPASS(TD_ON_SLEEPQ(td));
352 	sleepq_release(wchan);
353 
354 	/* See if there are any pending signals for this thread. */
355 	PROC_LOCK(p);
356 	mtx_lock(&p->p_sigacts->ps_mtx);
357 	sig = cursig(td);
358 	mtx_unlock(&p->p_sigacts->ps_mtx);
359 	if (sig == 0 && thread_suspend_check(1))
360 		sig = SIGSTOP;
361 	else
362 		do_upcall = thread_upcall_check(td);
363 	PROC_UNLOCK(p);
364 
365 	/*
366 	 * If there were pending signals and this thread is still on
367 	 * the sleep queue, remove it from the sleep queue.  If the
368 	 * thread was removed from the sleep queue while we were blocked
369 	 * above, then clear TDF_SINTR before returning.
370 	 */
371 	sq = sleepq_lookup(wchan);
372 	mtx_lock_spin(&sched_lock);
373 	if (TD_ON_SLEEPQ(td) && (sig != 0 || do_upcall != 0)) {
374 		mtx_unlock_spin(&sched_lock);
375 		sleepq_remove_thread(sq, td);
376 	} else {
377 		if (!TD_ON_SLEEPQ(td) && sig == 0)
378 			td->td_flags &= ~TDF_SINTR;
379 		mtx_unlock_spin(&sched_lock);
380 	}
381 	return (sig);
382 }
383 
384 /*
385  * Switches to another thread if we are still asleep on a sleep queue and
386  * drop the lock on the sleepqueue chain.  Returns with sched_lock held.
387  */
388 static void
389 sleepq_switch(void *wchan)
390 {
391 	struct sleepqueue_chain *sc;
392 	struct thread *td;
393 
394 	td = curthread;
395 	sc = SC_LOOKUP(wchan);
396 	mtx_assert(&sc->sc_lock, MA_OWNED);
397 
398 	/*
399 	 * If we have a sleep queue, then we've already been woken up, so
400 	 * just return.
401 	 */
402 	if (td->td_sleepqueue != NULL) {
403 		MPASS(!TD_ON_SLEEPQ(td));
404 		mtx_unlock_spin(&sc->sc_lock);
405 		mtx_lock_spin(&sched_lock);
406 		return;
407 	}
408 
409 	/*
410 	 * Otherwise, actually go to sleep.
411 	 */
412 	mtx_lock_spin(&sched_lock);
413 	mtx_unlock_spin(&sc->sc_lock);
414 
415 	sched_sleep(td);
416 	TD_SET_SLEEPING(td);
417 	mi_switch(SW_VOL, NULL);
418 	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
419 	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
420 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_proc->p_comm);
421 }
422 
423 /*
424  * Check to see if we timed out.
425  */
426 static int
427 sleepq_check_timeout(void)
428 {
429 	struct thread *td;
430 
431 	mtx_assert(&sched_lock, MA_OWNED);
432 	td = curthread;
433 
434 	/*
435 	 * If TDF_TIMEOUT is set, we timed out.
436 	 */
437 	if (td->td_flags & TDF_TIMEOUT) {
438 		td->td_flags &= ~TDF_TIMEOUT;
439 		return (EWOULDBLOCK);
440 	}
441 
442 	/*
443 	 * If TDF_TIMOFAIL is set, the timeout ran after we had
444 	 * already been woken up.
445 	 */
446 	if (td->td_flags & TDF_TIMOFAIL)
447 		td->td_flags &= ~TDF_TIMOFAIL;
448 
449 	/*
450 	 * If callout_stop() fails, then the timeout is running on
451 	 * another CPU, so synchronize with it to avoid having it
452 	 * accidentally wake up a subsequent sleep.
453 	 */
454 	else if (callout_stop(&td->td_slpcallout) == 0) {
455 		td->td_flags |= TDF_TIMEOUT;
456 		TD_SET_SLEEPING(td);
457 		mi_switch(SW_INVOL, NULL);
458 	}
459 	return (0);
460 }
461 
462 /*
463  * Check to see if we were awoken by a signal.
464  */
465 static int
466 sleepq_check_signals(void)
467 {
468 	struct thread *td;
469 
470 	mtx_assert(&sched_lock, MA_OWNED);
471 	td = curthread;
472 
473 	/*
474 	 * If TDF_SINTR is clear, then we were awakened while executing
475 	 * sleepq_catch_signals().
476 	 */
477 	if (!(td->td_flags & TDF_SINTR))
478 		return (0);
479 
480 	/* We are no longer in an interruptible sleep. */
481 	td->td_flags &= ~TDF_SINTR;
482 
483 	if (td->td_flags & TDF_INTERRUPT)
484 		return (td->td_intrval);
485 	return (0);
486 }
487 
488 /*
489  * If we were in an interruptible sleep and we weren't interrupted and
490  * didn't timeout, check to see if there are any pending signals and
491  * which return value we should use if so.  The return value from an
492  * earlier call to sleepq_catch_signals() should be passed in as the
493  * argument.
494  */
495 int
496 sleepq_calc_signal_retval(int sig)
497 {
498 	struct thread *td;
499 	struct proc *p;
500 	int rval;
501 
502 	td = curthread;
503 	p = td->td_proc;
504 	PROC_LOCK(p);
505 	mtx_lock(&p->p_sigacts->ps_mtx);
506 	/* XXX: Should we always be calling cursig()? */
507 	if (sig == 0)
508 		sig = cursig(td);
509 	if (sig != 0) {
510 		if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
511 			rval = EINTR;
512 		else
513 			rval = ERESTART;
514 	} else
515 		rval = 0;
516 	mtx_unlock(&p->p_sigacts->ps_mtx);
517 	PROC_UNLOCK(p);
518 	return (rval);
519 }
520 
521 /*
522  * Block the current thread until it is awakened from its sleep queue.
523  */
524 void
525 sleepq_wait(void *wchan)
526 {
527 
528 	MPASS(!(curthread->td_flags & TDF_SINTR));
529 	sleepq_switch(wchan);
530 	mtx_unlock_spin(&sched_lock);
531 }
532 
533 /*
534  * Block the current thread until it is awakened from its sleep queue
535  * or it is interrupted by a signal.
536  */
537 int
538 sleepq_wait_sig(void *wchan)
539 {
540 	int rval;
541 
542 	sleepq_switch(wchan);
543 	rval = sleepq_check_signals();
544 	mtx_unlock_spin(&sched_lock);
545 	return (rval);
546 }
547 
548 /*
549  * Block the current thread until it is awakened from its sleep queue
550  * or it times out while waiting.
551  */
552 int
553 sleepq_timedwait(void *wchan)
554 {
555 	int rval;
556 
557 	MPASS(!(curthread->td_flags & TDF_SINTR));
558 	sleepq_switch(wchan);
559 	rval = sleepq_check_timeout();
560 	mtx_unlock_spin(&sched_lock);
561 	return (rval);
562 }
563 
564 /*
565  * Block the current thread until it is awakened from its sleep queue,
566  * it is interrupted by a signal, or it times out waiting to be awakened.
567  */
568 int
569 sleepq_timedwait_sig(void *wchan, int signal_caught)
570 {
571 	int rvalt, rvals;
572 
573 	sleepq_switch(wchan);
574 	rvalt = sleepq_check_timeout();
575 	rvals = sleepq_check_signals();
576 	mtx_unlock_spin(&sched_lock);
577 	if (signal_caught || rvalt == 0)
578 		return (rvals);
579 	else
580 		return (rvalt);
581 }
582 
583 /*
584  * Removes a thread from a sleep queue.
585  */
586 static void
587 sleepq_remove_thread(struct sleepqueue *sq, struct thread *td)
588 {
589 	struct sleepqueue_chain *sc;
590 
591 	MPASS(td != NULL);
592 	MPASS(sq->sq_wchan != NULL);
593 	MPASS(td->td_wchan == sq->sq_wchan);
594 	sc = SC_LOOKUP(sq->sq_wchan);
595 	mtx_assert(&sc->sc_lock, MA_OWNED);
596 
597 	/* Remove the thread from the queue. */
598 	TAILQ_REMOVE(&sq->sq_blocked, td, td_slpq);
599 
600 	/*
601 	 * Get a sleep queue for this thread.  If this is the last waiter,
602 	 * use the queue itself and take it out of the chain, otherwise,
603 	 * remove a queue from the free list.
604 	 */
605 	if (LIST_EMPTY(&sq->sq_free)) {
606 		td->td_sleepqueue = sq;
607 #ifdef INVARIANTS
608 		sq->sq_wchan = NULL;
609 #endif
610 #ifdef SLEEPQUEUE_PROFILING
611 		sc->sc_depth--;
612 #endif
613 	} else
614 		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
615 	LIST_REMOVE(td->td_sleepqueue, sq_hash);
616 
617 	mtx_lock_spin(&sched_lock);
618 	td->td_wmesg = NULL;
619 	td->td_wchan = NULL;
620 	mtx_unlock_spin(&sched_lock);
621 }
622 
623 /*
624  * Resumes a thread that was asleep on a queue.
625  */
626 static void
627 sleepq_resume_thread(struct thread *td, int pri)
628 {
629 
630 	/*
631 	 * Note that thread td might not be sleeping if it is running
632 	 * sleepq_catch_signals() on another CPU or is blocked on
633 	 * its proc lock to check signals.  It doesn't hurt to clear
634 	 * the sleeping flag if it isn't set though, so we just always
635 	 * do it.  However, we can't assert that it is set.
636 	 */
637 	mtx_lock_spin(&sched_lock);
638 	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
639 	    (void *)td, (long)td->td_proc->p_pid, td->td_proc->p_comm);
640 	TD_CLR_SLEEPING(td);
641 
642 	/* Adjust priority if requested. */
643 	MPASS(pri == -1 || (pri >= PRI_MIN && pri <= PRI_MAX));
644 	if (pri != -1 && td->td_priority > pri)
645 		td->td_priority = pri;
646 	setrunnable(td);
647 	mtx_unlock_spin(&sched_lock);
648 }
649 
650 /*
651  * Find the highest priority thread sleeping on a wait channel and resume it.
652  */
653 void
654 sleepq_signal(void *wchan, int flags, int pri)
655 {
656 	struct sleepqueue *sq;
657 	struct thread *td;
658 
659 	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
660 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
661 	sq = sleepq_lookup(wchan);
662 	if (sq == NULL) {
663 		sleepq_release(wchan);
664 		return;
665 	}
666 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
667 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
668 	/* XXX: Do for all sleep queues eventually. */
669 	if (flags & SLEEPQ_CONDVAR)
670 		mtx_assert(sq->sq_lock, MA_OWNED);
671 
672 	/* Remove first thread from queue and awaken it. */
673 	td = TAILQ_FIRST(&sq->sq_blocked);
674 	sleepq_remove_thread(sq, td);
675 	sleepq_release(wchan);
676 	sleepq_resume_thread(td, pri);
677 }
678 
679 /*
680  * Resume all threads sleeping on a specified wait channel.
681  */
682 void
683 sleepq_broadcast(void *wchan, int flags, int pri)
684 {
685 	TAILQ_HEAD(, thread) list;
686 	struct sleepqueue *sq;
687 	struct thread *td;
688 
689 	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
690 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
691 	sq = sleepq_lookup(wchan);
692 	if (sq == NULL) {
693 		sleepq_release(wchan);
694 		return;
695 	}
696 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
697 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
698 	/* XXX: Do for all sleep queues eventually. */
699 	if (flags & SLEEPQ_CONDVAR)
700 		mtx_assert(sq->sq_lock, MA_OWNED);
701 
702 	/* Move blocked threads from the sleep queue to a temporary list. */
703 	TAILQ_INIT(&list);
704 	while (!TAILQ_EMPTY(&sq->sq_blocked)) {
705 		td = TAILQ_FIRST(&sq->sq_blocked);
706 		sleepq_remove_thread(sq, td);
707 		TAILQ_INSERT_TAIL(&list, td, td_slpq);
708 	}
709 	sleepq_release(wchan);
710 
711 	/* Resume all the threads on the temporary list. */
712 	while (!TAILQ_EMPTY(&list)) {
713 		td = TAILQ_FIRST(&list);
714 		TAILQ_REMOVE(&list, td, td_slpq);
715 		sleepq_resume_thread(td, pri);
716 	}
717 }
718 
719 /*
720  * Time sleeping threads out.  When the timeout expires, the thread is
721  * removed from the sleep queue and made runnable if it is still asleep.
722  */
723 static void
724 sleepq_timeout(void *arg)
725 {
726 	struct sleepqueue *sq;
727 	struct thread *td;
728 	void *wchan;
729 
730 	td = arg;
731 	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
732 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_proc->p_comm);
733 
734 	/*
735 	 * First, see if the thread is asleep and get the wait channel if
736 	 * it is.
737 	 */
738 	mtx_lock_spin(&sched_lock);
739 	if (TD_ON_SLEEPQ(td)) {
740 		wchan = td->td_wchan;
741 		mtx_unlock_spin(&sched_lock);
742 		sq = sleepq_lookup(wchan);
743 		mtx_lock_spin(&sched_lock);
744 	} else {
745 		wchan = NULL;
746 		sq = NULL;
747 	}
748 
749 	/*
750 	 * At this point, if the thread is still on the sleep queue,
751 	 * we have that sleep queue locked as it cannot migrate sleep
752 	 * queues while we dropped sched_lock.  If it had resumed and
753 	 * was on another CPU while the lock was dropped, it would have
754 	 * seen that TDF_TIMEOUT and TDF_TIMOFAIL are clear and the
755 	 * call to callout_stop() to stop this routine would have failed
756 	 * meaning that it would have already set TDF_TIMEOUT to
757 	 * synchronize with this function.
758 	 */
759 	if (TD_ON_SLEEPQ(td)) {
760 		MPASS(td->td_wchan == wchan);
761 		MPASS(sq != NULL);
762 		td->td_flags |= TDF_TIMEOUT;
763 		mtx_unlock_spin(&sched_lock);
764 		sleepq_remove_thread(sq, td);
765 		sleepq_release(wchan);
766 		sleepq_resume_thread(td, -1);
767 		return;
768 	} else if (wchan != NULL)
769 		sleepq_release(wchan);
770 
771 	/*
772 	 * Now check for the edge cases.  First, if TDF_TIMEOUT is set,
773 	 * then the other thread has already yielded to us, so clear
774 	 * the flag and resume it.  If TDF_TIMEOUT is not set, then the
775 	 * we know that the other thread is not on a sleep queue, but it
776 	 * hasn't resumed execution yet.  In that case, set TDF_TIMOFAIL
777 	 * to let it know that the timeout has already run and doesn't
778 	 * need to be canceled.
779 	 */
780 	if (td->td_flags & TDF_TIMEOUT) {
781 		MPASS(TD_IS_SLEEPING(td));
782 		td->td_flags &= ~TDF_TIMEOUT;
783 		TD_CLR_SLEEPING(td);
784 		setrunnable(td);
785 	} else
786 		td->td_flags |= TDF_TIMOFAIL;
787 	mtx_unlock_spin(&sched_lock);
788 }
789 
790 /*
791  * Resumes a specific thread from the sleep queue associated with a specific
792  * wait channel if it is on that queue.
793  */
794 void
795 sleepq_remove(struct thread *td, void *wchan)
796 {
797 	struct sleepqueue *sq;
798 
799 	/*
800 	 * Look up the sleep queue for this wait channel, then re-check
801 	 * that the thread is asleep on that channel, if it is not, then
802 	 * bail.
803 	 */
804 	MPASS(wchan != NULL);
805 	sq = sleepq_lookup(wchan);
806 	mtx_lock_spin(&sched_lock);
807 	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
808 		mtx_unlock_spin(&sched_lock);
809 		sleepq_release(wchan);
810 		return;
811 	}
812 	mtx_unlock_spin(&sched_lock);
813 	MPASS(sq != NULL);
814 
815 	/* Thread is asleep on sleep queue sq, so wake it up. */
816 	sleepq_remove_thread(sq, td);
817 	sleepq_release(wchan);
818 	sleepq_resume_thread(td, -1);
819 }
820 
821 /*
822  * Abort a thread as if an interrupt had occurred.  Only abort
823  * interruptible waits (unfortunately it isn't safe to abort others).
824  *
825  * XXX: What in the world does the comment below mean?
826  * Also, whatever the signal code does...
827  */
828 void
829 sleepq_abort(struct thread *td)
830 {
831 	void *wchan;
832 
833 	mtx_assert(&sched_lock, MA_OWNED);
834 	MPASS(TD_ON_SLEEPQ(td));
835 	MPASS(td->td_flags & TDF_SINTR);
836 
837 	/*
838 	 * If the TDF_TIMEOUT flag is set, just leave. A
839 	 * timeout is scheduled anyhow.
840 	 */
841 	if (td->td_flags & TDF_TIMEOUT)
842 		return;
843 
844 	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
845 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_proc->p_comm);
846 	wchan = td->td_wchan;
847 	mtx_unlock_spin(&sched_lock);
848 	sleepq_remove(td, wchan);
849 	mtx_lock_spin(&sched_lock);
850 }
851