xref: /freebsd/sys/kern/subr_sglist.c (revision b740c88bfb6453416926271c089262e7164dace3)
1 /*-
2  * Copyright (c) 2008 Yahoo!, Inc.
3  * All rights reserved.
4  * Written by: John Baldwin <jhb@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of the author nor the names of any co-contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include <sys/param.h>
35 #include <sys/kernel.h>
36 #include <sys/bio.h>
37 #include <sys/malloc.h>
38 #include <sys/mbuf.h>
39 #include <sys/proc.h>
40 #include <sys/sglist.h>
41 #include <sys/uio.h>
42 
43 #include <vm/vm.h>
44 #include <vm/vm_page.h>
45 #include <vm/pmap.h>
46 #include <vm/vm_map.h>
47 
48 #include <sys/ktr.h>
49 
50 static MALLOC_DEFINE(M_SGLIST, "sglist", "scatter/gather lists");
51 
52 /*
53  * Convenience macros to save the state of an sglist so it can be restored
54  * if an append attempt fails.  Since sglist's only grow we only need to
55  * save the current count of segments and the length of the ending segment.
56  * Earlier segments will not be changed by an append, and the only change
57  * that can occur to the ending segment is that it can be extended.
58  */
59 struct sgsave {
60 	u_short sg_nseg;
61 	size_t ss_len;
62 };
63 
64 #define	SGLIST_SAVE(sg, sgsave) do {					\
65 	(sgsave).sg_nseg = (sg)->sg_nseg;				\
66 	if ((sgsave).sg_nseg > 0)					\
67 		(sgsave).ss_len = (sg)->sg_segs[(sgsave).sg_nseg - 1].ss_len; \
68 	else								\
69 		(sgsave).ss_len = 0;					\
70 } while (0)
71 
72 #define	SGLIST_RESTORE(sg, sgsave) do {					\
73 	(sg)->sg_nseg = (sgsave).sg_nseg;				\
74 	if ((sgsave).sg_nseg > 0)					\
75 		(sg)->sg_segs[(sgsave).sg_nseg - 1].ss_len = (sgsave).ss_len; \
76 } while (0)
77 
78 /*
79  * Append a single (paddr, len) to a sglist.  sg is the list and ss is
80  * the current segment in the list.  If we run out of segments then
81  * EFBIG will be returned.
82  */
83 static __inline int
84 _sglist_append_range(struct sglist *sg, struct sglist_seg **ssp,
85     vm_paddr_t paddr, size_t len)
86 {
87 	struct sglist_seg *ss;
88 
89 	ss = *ssp;
90 	if (ss->ss_paddr + ss->ss_len == paddr)
91 		ss->ss_len += len;
92 	else {
93 		if (sg->sg_nseg == sg->sg_maxseg)
94 			return (EFBIG);
95 		ss++;
96 		ss->ss_paddr = paddr;
97 		ss->ss_len = len;
98 		sg->sg_nseg++;
99 		*ssp = ss;
100 	}
101 	return (0);
102 }
103 
104 /*
105  * Worker routine to append a virtual address range (either kernel or
106  * user) to a scatter/gather list.
107  */
108 static __inline int
109 _sglist_append_buf(struct sglist *sg, void *buf, size_t len, pmap_t pmap,
110     size_t *donep)
111 {
112 	struct sglist_seg *ss;
113 	vm_offset_t vaddr, offset;
114 	vm_paddr_t paddr;
115 	size_t seglen;
116 	int error;
117 
118 	if (donep)
119 		*donep = 0;
120 	if (len == 0)
121 		return (0);
122 
123 	/* Do the first page.  It may have an offset. */
124 	vaddr = (vm_offset_t)buf;
125 	offset = vaddr & PAGE_MASK;
126 	if (pmap != NULL)
127 		paddr = pmap_extract(pmap, vaddr);
128 	else
129 		paddr = pmap_kextract(vaddr);
130 	seglen = MIN(len, PAGE_SIZE - offset);
131 	if (sg->sg_nseg == 0) {
132 		ss = sg->sg_segs;
133 		ss->ss_paddr = paddr;
134 		ss->ss_len = seglen;
135 		sg->sg_nseg = 1;
136 	} else {
137 		ss = &sg->sg_segs[sg->sg_nseg - 1];
138 		error = _sglist_append_range(sg, &ss, paddr, seglen);
139 		if (error)
140 			return (error);
141 	}
142 	vaddr += seglen;
143 	len -= seglen;
144 	if (donep)
145 		*donep += seglen;
146 
147 	while (len > 0) {
148 		seglen = MIN(len, PAGE_SIZE);
149 		if (pmap != NULL)
150 			paddr = pmap_extract(pmap, vaddr);
151 		else
152 			paddr = pmap_kextract(vaddr);
153 		error = _sglist_append_range(sg, &ss, paddr, seglen);
154 		if (error)
155 			return (error);
156 		vaddr += seglen;
157 		len -= seglen;
158 		if (donep)
159 			*donep += seglen;
160 	}
161 
162 	return (0);
163 }
164 
165 /*
166  * Determine the number of scatter/gather list elements needed to
167  * describe a kernel virtual address range.
168  */
169 int
170 sglist_count(void *buf, size_t len)
171 {
172 	vm_offset_t vaddr, vendaddr;
173 	vm_paddr_t lastaddr, paddr;
174 	int nsegs;
175 
176 	if (len == 0)
177 		return (0);
178 
179 	vaddr = trunc_page((vm_offset_t)buf);
180 	vendaddr = (vm_offset_t)buf + len;
181 	nsegs = 1;
182 	lastaddr = pmap_kextract(vaddr);
183 	vaddr += PAGE_SIZE;
184 	while (vaddr < vendaddr) {
185 		paddr = pmap_kextract(vaddr);
186 		if (lastaddr + PAGE_SIZE != paddr)
187 			nsegs++;
188 		lastaddr = paddr;
189 		vaddr += PAGE_SIZE;
190 	}
191 	return (nsegs);
192 }
193 
194 /*
195  * Allocate a scatter/gather list along with 'nsegs' segments.  The
196  * 'mflags' parameters are the same as passed to malloc(9).  The caller
197  * should use sglist_free() to free this list.
198  */
199 struct sglist *
200 sglist_alloc(int nsegs, int mflags)
201 {
202 	struct sglist *sg;
203 
204 	sg = malloc(sizeof(struct sglist) + nsegs * sizeof(struct sglist_seg),
205 	    M_SGLIST, mflags);
206 	if (sg == NULL)
207 		return (NULL);
208 	sglist_init(sg, nsegs, (struct sglist_seg *)(sg + 1));
209 	return (sg);
210 }
211 
212 /*
213  * Free a scatter/gather list allocated via sglist_allc().
214  */
215 void
216 sglist_free(struct sglist *sg)
217 {
218 
219 	if (sg == NULL)
220 		return;
221 
222 	if (refcount_release(&sg->sg_refs))
223 		free(sg, M_SGLIST);
224 }
225 
226 /*
227  * Append the segments to describe a single kernel virtual address
228  * range to a scatter/gather list.  If there are insufficient
229  * segments, then this fails with EFBIG.
230  */
231 int
232 sglist_append(struct sglist *sg, void *buf, size_t len)
233 {
234 	struct sgsave save;
235 	int error;
236 
237 	if (sg->sg_maxseg == 0)
238 		return (EINVAL);
239 	SGLIST_SAVE(sg, save);
240 	error = _sglist_append_buf(sg, buf, len, NULL, NULL);
241 	if (error)
242 		SGLIST_RESTORE(sg, save);
243 	return (error);
244 }
245 
246 /*
247  * Append the segments to describe a bio's data to a scatter/gather list.
248  * If there are insufficient segments, then this fails with EFBIG.
249  *
250  * NOTE: This function expects bio_bcount to be initialized.
251  */
252 int
253 sglist_append_bio(struct sglist *sg, struct bio *bp)
254 {
255 	struct sgsave save;
256 	vm_paddr_t paddr;
257 	size_t len, tlen;
258 	int error, i, ma_offs;
259 
260 	if ((bp->bio_flags & BIO_UNMAPPED) == 0) {
261 		error = sglist_append(sg, bp->bio_data, bp->bio_bcount);
262 		return (error);
263 	}
264 
265 	if (sg->sg_maxseg == 0)
266 		return (EINVAL);
267 
268 	SGLIST_SAVE(sg, save);
269 	tlen = bp->bio_bcount;
270 	ma_offs = bp->bio_ma_offset;
271 	for (i = 0; tlen > 0; i++, tlen -= len) {
272 		len = min(PAGE_SIZE - ma_offs, tlen);
273 		paddr = VM_PAGE_TO_PHYS(bp->bio_ma[i]) + ma_offs;
274 		error = sglist_append_phys(sg, paddr, len);
275 		if (error) {
276 			SGLIST_RESTORE(sg, save);
277 			return (error);
278 		}
279 		ma_offs = 0;
280 	}
281 	return (0);
282 }
283 
284 /*
285  * Append a single physical address range to a scatter/gather list.
286  * If there are insufficient segments, then this fails with EFBIG.
287  */
288 int
289 sglist_append_phys(struct sglist *sg, vm_paddr_t paddr, size_t len)
290 {
291 	struct sglist_seg *ss;
292 	struct sgsave save;
293 	int error;
294 
295 	if (sg->sg_maxseg == 0)
296 		return (EINVAL);
297 	if (len == 0)
298 		return (0);
299 
300 	if (sg->sg_nseg == 0) {
301 		sg->sg_segs[0].ss_paddr = paddr;
302 		sg->sg_segs[0].ss_len = len;
303 		sg->sg_nseg = 1;
304 		return (0);
305 	}
306 	ss = &sg->sg_segs[sg->sg_nseg - 1];
307 	SGLIST_SAVE(sg, save);
308 	error = _sglist_append_range(sg, &ss, paddr, len);
309 	if (error)
310 		SGLIST_RESTORE(sg, save);
311 	return (error);
312 }
313 
314 /*
315  * Append the segments that describe a single mbuf chain to a
316  * scatter/gather list.  If there are insufficient segments, then this
317  * fails with EFBIG.
318  */
319 int
320 sglist_append_mbuf(struct sglist *sg, struct mbuf *m0)
321 {
322 	struct sgsave save;
323 	struct mbuf *m;
324 	int error;
325 
326 	if (sg->sg_maxseg == 0)
327 		return (EINVAL);
328 
329 	error = 0;
330 	SGLIST_SAVE(sg, save);
331 	for (m = m0; m != NULL; m = m->m_next) {
332 		if (m->m_len > 0) {
333 			error = sglist_append(sg, m->m_data, m->m_len);
334 			if (error) {
335 				SGLIST_RESTORE(sg, save);
336 				return (error);
337 			}
338 		}
339 	}
340 	return (0);
341 }
342 
343 /*
344  * Append the segments that describe a single user address range to a
345  * scatter/gather list.  If there are insufficient segments, then this
346  * fails with EFBIG.
347  */
348 int
349 sglist_append_user(struct sglist *sg, void *buf, size_t len, struct thread *td)
350 {
351 	struct sgsave save;
352 	int error;
353 
354 	if (sg->sg_maxseg == 0)
355 		return (EINVAL);
356 	SGLIST_SAVE(sg, save);
357 	error = _sglist_append_buf(sg, buf, len,
358 	    vmspace_pmap(td->td_proc->p_vmspace), NULL);
359 	if (error)
360 		SGLIST_RESTORE(sg, save);
361 	return (error);
362 }
363 
364 /*
365  * Append the segments that describe a single uio to a scatter/gather
366  * list.  If there are insufficient segments, then this fails with
367  * EFBIG.
368  */
369 int
370 sglist_append_uio(struct sglist *sg, struct uio *uio)
371 {
372 	struct iovec *iov;
373 	struct sgsave save;
374 	size_t resid, minlen;
375 	pmap_t pmap;
376 	int error, i;
377 
378 	if (sg->sg_maxseg == 0)
379 		return (EINVAL);
380 
381 	resid = uio->uio_resid;
382 	iov = uio->uio_iov;
383 
384 	if (uio->uio_segflg == UIO_USERSPACE) {
385 		KASSERT(uio->uio_td != NULL,
386 		    ("sglist_append_uio: USERSPACE but no thread"));
387 		pmap = vmspace_pmap(uio->uio_td->td_proc->p_vmspace);
388 	} else
389 		pmap = NULL;
390 
391 	error = 0;
392 	SGLIST_SAVE(sg, save);
393 	for (i = 0; i < uio->uio_iovcnt && resid != 0; i++) {
394 		/*
395 		 * Now at the first iovec to load.  Load each iovec
396 		 * until we have exhausted the residual count.
397 		 */
398 		minlen = MIN(resid, iov[i].iov_len);
399 		if (minlen > 0) {
400 			error = _sglist_append_buf(sg, iov[i].iov_base, minlen,
401 			    pmap, NULL);
402 			if (error) {
403 				SGLIST_RESTORE(sg, save);
404 				return (error);
405 			}
406 			resid -= minlen;
407 		}
408 	}
409 	return (0);
410 }
411 
412 /*
413  * Append the segments that describe at most 'resid' bytes from a
414  * single uio to a scatter/gather list.  If there are insufficient
415  * segments, then only the amount that fits is appended.
416  */
417 int
418 sglist_consume_uio(struct sglist *sg, struct uio *uio, size_t resid)
419 {
420 	struct iovec *iov;
421 	size_t done;
422 	pmap_t pmap;
423 	int error, len;
424 
425 	if (sg->sg_maxseg == 0)
426 		return (EINVAL);
427 
428 	if (uio->uio_segflg == UIO_USERSPACE) {
429 		KASSERT(uio->uio_td != NULL,
430 		    ("sglist_consume_uio: USERSPACE but no thread"));
431 		pmap = vmspace_pmap(uio->uio_td->td_proc->p_vmspace);
432 	} else
433 		pmap = NULL;
434 
435 	error = 0;
436 	while (resid > 0 && uio->uio_resid) {
437 		iov = uio->uio_iov;
438 		len = iov->iov_len;
439 		if (len == 0) {
440 			uio->uio_iov++;
441 			uio->uio_iovcnt--;
442 			continue;
443 		}
444 		if (len > resid)
445 			len = resid;
446 
447 		/*
448 		 * Try to append this iovec.  If we run out of room,
449 		 * then break out of the loop.
450 		 */
451 		error = _sglist_append_buf(sg, iov->iov_base, len, pmap, &done);
452 		iov->iov_base = (char *)iov->iov_base + done;
453 		iov->iov_len -= done;
454 		uio->uio_resid -= done;
455 		uio->uio_offset += done;
456 		resid -= done;
457 		if (error)
458 			break;
459 	}
460 	return (0);
461 }
462 
463 /*
464  * Allocate and populate a scatter/gather list to describe a single
465  * kernel virtual address range.
466  */
467 struct sglist *
468 sglist_build(void *buf, size_t len, int mflags)
469 {
470 	struct sglist *sg;
471 	int nsegs;
472 
473 	if (len == 0)
474 		return (NULL);
475 
476 	nsegs = sglist_count(buf, len);
477 	sg = sglist_alloc(nsegs, mflags);
478 	if (sg == NULL)
479 		return (NULL);
480 	if (sglist_append(sg, buf, len) != 0) {
481 		sglist_free(sg);
482 		return (NULL);
483 	}
484 	return (sg);
485 }
486 
487 /*
488  * Clone a new copy of a scatter/gather list.
489  */
490 struct sglist *
491 sglist_clone(struct sglist *sg, int mflags)
492 {
493 	struct sglist *new;
494 
495 	if (sg == NULL)
496 		return (NULL);
497 	new = sglist_alloc(sg->sg_maxseg, mflags);
498 	if (new == NULL)
499 		return (NULL);
500 	new->sg_nseg = sg->sg_nseg;
501 	bcopy(sg->sg_segs, new->sg_segs, sizeof(struct sglist_seg) *
502 	    sg->sg_nseg);
503 	return (new);
504 }
505 
506 /*
507  * Calculate the total length of the segments described in a
508  * scatter/gather list.
509  */
510 size_t
511 sglist_length(struct sglist *sg)
512 {
513 	size_t space;
514 	int i;
515 
516 	space = 0;
517 	for (i = 0; i < sg->sg_nseg; i++)
518 		space += sg->sg_segs[i].ss_len;
519 	return (space);
520 }
521 
522 /*
523  * Split a scatter/gather list into two lists.  The scatter/gather
524  * entries for the first 'length' bytes of the 'original' list are
525  * stored in the '*head' list and are removed from 'original'.
526  *
527  * If '*head' is NULL, then a new list will be allocated using
528  * 'mflags'.  If M_NOWAIT is specified and the allocation fails,
529  * ENOMEM will be returned.
530  *
531  * If '*head' is not NULL, it should point to an empty sglist.  If it
532  * does not have enough room for the remaining space, then EFBIG will
533  * be returned.  If '*head' is not empty, then EINVAL will be
534  * returned.
535  *
536  * If 'original' is shared (refcount > 1), then EDOOFUS will be
537  * returned.
538  */
539 int
540 sglist_split(struct sglist *original, struct sglist **head, size_t length,
541     int mflags)
542 {
543 	struct sglist *sg;
544 	size_t space, split;
545 	int count, i;
546 
547 	if (original->sg_refs > 1)
548 		return (EDOOFUS);
549 
550 	/* Figure out how big of a sglist '*head' has to hold. */
551 	count = 0;
552 	space = 0;
553 	split = 0;
554 	for (i = 0; i < original->sg_nseg; i++) {
555 		space += original->sg_segs[i].ss_len;
556 		count++;
557 		if (space >= length) {
558 			/*
559 			 * If 'length' falls in the middle of a
560 			 * scatter/gather list entry, then 'split'
561 			 * holds how much of that entry will remain in
562 			 * 'original'.
563 			 */
564 			split = space - length;
565 			break;
566 		}
567 	}
568 
569 	/* Nothing to do, so leave head empty. */
570 	if (count == 0)
571 		return (0);
572 
573 	if (*head == NULL) {
574 		sg = sglist_alloc(count, mflags);
575 		if (sg == NULL)
576 			return (ENOMEM);
577 		*head = sg;
578 	} else {
579 		sg = *head;
580 		if (sg->sg_maxseg < count)
581 			return (EFBIG);
582 		if (sg->sg_nseg != 0)
583 			return (EINVAL);
584 	}
585 
586 	/* Copy 'count' entries to 'sg' from 'original'. */
587 	bcopy(original->sg_segs, sg->sg_segs, count *
588 	    sizeof(struct sglist_seg));
589 	sg->sg_nseg = count;
590 
591 	/*
592 	 * If we had to split a list entry, fixup the last entry in
593 	 * 'sg' and the new first entry in 'original'.  We also
594 	 * decrement 'count' by 1 since we will only be removing
595 	 * 'count - 1' segments from 'original' now.
596 	 */
597 	if (split != 0) {
598 		count--;
599 		sg->sg_segs[count].ss_len -= split;
600 		original->sg_segs[count].ss_paddr =
601 		    sg->sg_segs[count].ss_paddr + split;
602 		original->sg_segs[count].ss_len = split;
603 	}
604 
605 	/* Trim 'count' entries from the front of 'original'. */
606 	original->sg_nseg -= count;
607 	bcopy(original->sg_segs + count, original->sg_segs, count *
608 	    sizeof(struct sglist_seg));
609 	return (0);
610 }
611 
612 /*
613  * Append the scatter/gather list elements in 'second' to the
614  * scatter/gather list 'first'.  If there is not enough space in
615  * 'first', EFBIG is returned.
616  */
617 int
618 sglist_join(struct sglist *first, struct sglist *second)
619 {
620 	struct sglist_seg *flast, *sfirst;
621 	int append;
622 
623 	/* If 'second' is empty, there is nothing to do. */
624 	if (second->sg_nseg == 0)
625 		return (0);
626 
627 	/*
628 	 * If the first entry in 'second' can be appended to the last entry
629 	 * in 'first' then set append to '1'.
630 	 */
631 	append = 0;
632 	flast = &first->sg_segs[first->sg_nseg - 1];
633 	sfirst = &second->sg_segs[0];
634 	if (first->sg_nseg != 0 &&
635 	    flast->ss_paddr + flast->ss_len == sfirst->ss_paddr)
636 		append = 1;
637 
638 	/* Make sure 'first' has enough room. */
639 	if (first->sg_nseg + second->sg_nseg - append > first->sg_maxseg)
640 		return (EFBIG);
641 
642 	/* Merge last in 'first' and first in 'second' if needed. */
643 	if (append)
644 		flast->ss_len += sfirst->ss_len;
645 
646 	/* Append new segments from 'second' to 'first'. */
647 	bcopy(first->sg_segs + first->sg_nseg, second->sg_segs + append,
648 	    (second->sg_nseg - append) * sizeof(struct sglist_seg));
649 	first->sg_nseg += second->sg_nseg - append;
650 	sglist_reset(second);
651 	return (0);
652 }
653 
654 /*
655  * Generate a new scatter/gather list from a range of an existing
656  * scatter/gather list.  The 'offset' and 'length' parameters specify
657  * the logical range of the 'original' list to extract.  If that range
658  * is not a subset of the length of 'original', then EINVAL is
659  * returned.  The new scatter/gather list is stored in '*slice'.
660  *
661  * If '*slice' is NULL, then a new list will be allocated using
662  * 'mflags'.  If M_NOWAIT is specified and the allocation fails,
663  * ENOMEM will be returned.
664  *
665  * If '*slice' is not NULL, it should point to an empty sglist.  If it
666  * does not have enough room for the remaining space, then EFBIG will
667  * be returned.  If '*slice' is not empty, then EINVAL will be
668  * returned.
669  */
670 int
671 sglist_slice(struct sglist *original, struct sglist **slice, size_t offset,
672     size_t length, int mflags)
673 {
674 	struct sglist *sg;
675 	size_t space, end, foffs, loffs;
676 	int count, i, fseg;
677 
678 	/* Nothing to do. */
679 	if (length == 0)
680 		return (0);
681 
682 	/* Figure out how many segments '*slice' needs to have. */
683 	end = offset + length;
684 	space = 0;
685 	count = 0;
686 	fseg = 0;
687 	foffs = loffs = 0;
688 	for (i = 0; i < original->sg_nseg; i++) {
689 		space += original->sg_segs[i].ss_len;
690 		if (space > offset) {
691 			/*
692 			 * When we hit the first segment, store its index
693 			 * in 'fseg' and the offset into the first segment
694 			 * of 'offset' in 'foffs'.
695 			 */
696 			if (count == 0) {
697 				fseg = i;
698 				foffs = offset - (space -
699 				    original->sg_segs[i].ss_len);
700 				CTR1(KTR_DEV, "sglist_slice: foffs = %08lx",
701 				    foffs);
702 			}
703 			count++;
704 
705 			/*
706 			 * When we hit the last segment, break out of
707 			 * the loop.  Store the amount of extra space
708 			 * at the end of this segment in 'loffs'.
709 			 */
710 			if (space >= end) {
711 				loffs = space - end;
712 				CTR1(KTR_DEV, "sglist_slice: loffs = %08lx",
713 				    loffs);
714 				break;
715 			}
716 		}
717 	}
718 
719 	/* If we never hit 'end', then 'length' ran off the end, so fail. */
720 	if (space < end)
721 		return (EINVAL);
722 
723 	if (*slice == NULL) {
724 		sg = sglist_alloc(count, mflags);
725 		if (sg == NULL)
726 			return (ENOMEM);
727 		*slice = sg;
728 	} else {
729 		sg = *slice;
730 		if (sg->sg_maxseg < count)
731 			return (EFBIG);
732 		if (sg->sg_nseg != 0)
733 			return (EINVAL);
734 	}
735 
736 	/*
737 	 * Copy over 'count' segments from 'original' starting at
738 	 * 'fseg' to 'sg'.
739 	 */
740 	bcopy(original->sg_segs + fseg, sg->sg_segs,
741 	    count * sizeof(struct sglist_seg));
742 	sg->sg_nseg = count;
743 
744 	/* Fixup first and last segments if needed. */
745 	if (foffs != 0) {
746 		sg->sg_segs[0].ss_paddr += foffs;
747 		sg->sg_segs[0].ss_len -= foffs;
748 		CTR2(KTR_DEV, "sglist_slice seg[0]: %08lx:%08lx",
749 		    (long)sg->sg_segs[0].ss_paddr, sg->sg_segs[0].ss_len);
750 	}
751 	if (loffs != 0) {
752 		sg->sg_segs[count - 1].ss_len -= loffs;
753 		CTR2(KTR_DEV, "sglist_slice seg[%d]: len %08x", count - 1,
754 		    sg->sg_segs[count - 1].ss_len);
755 	}
756 	return (0);
757 }
758