1 /*- 2 * Copyright 1998 Massachusetts Institute of Technology 3 * 4 * Permission to use, copy, modify, and distribute this software and 5 * its documentation for any purpose and without fee is hereby 6 * granted, provided that both the above copyright notice and this 7 * permission notice appear in all copies, that both the above 8 * copyright notice and this permission notice appear in all 9 * supporting documentation, and that the name of M.I.T. not be used 10 * in advertising or publicity pertaining to distribution of the 11 * software without specific, written prior permission. M.I.T. makes 12 * no representations about the suitability of this software for any 13 * purpose. It is provided "as is" without express or implied 14 * warranty. 15 * 16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS 17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, 18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT 20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * The kernel resource manager. This code is responsible for keeping track 32 * of hardware resources which are apportioned out to various drivers. 33 * It does not actually assign those resources, and it is not expected 34 * that end-device drivers will call into this code directly. Rather, 35 * the code which implements the buses that those devices are attached to, 36 * and the code which manages CPU resources, will call this code, and the 37 * end-device drivers will make upcalls to that code to actually perform 38 * the allocation. 39 * 40 * There are two sorts of resources managed by this code. The first is 41 * the more familiar array (RMAN_ARRAY) type; resources in this class 42 * consist of a sequence of individually-allocatable objects which have 43 * been numbered in some well-defined order. Most of the resources 44 * are of this type, as it is the most familiar. The second type is 45 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e., 46 * resources in which each instance is indistinguishable from every 47 * other instance). The principal anticipated application of gauges 48 * is in the context of power consumption, where a bus may have a specific 49 * power budget which all attached devices share. RMAN_GAUGE is not 50 * implemented yet. 51 * 52 * For array resources, we make one simplifying assumption: two clients 53 * sharing the same resource must use the same range of indices. That 54 * is to say, sharing of overlapping-but-not-identical regions is not 55 * permitted. 56 */ 57 58 #include "opt_ddb.h" 59 60 #include <sys/cdefs.h> 61 __FBSDID("$FreeBSD$"); 62 63 #include <sys/param.h> 64 #include <sys/systm.h> 65 #include <sys/kernel.h> 66 #include <sys/limits.h> 67 #include <sys/lock.h> 68 #include <sys/malloc.h> 69 #include <sys/mutex.h> 70 #include <sys/bus.h> /* XXX debugging */ 71 #include <machine/bus.h> 72 #include <sys/rman.h> 73 #include <sys/sysctl.h> 74 75 #ifdef DDB 76 #include <ddb/ddb.h> 77 #endif 78 79 /* 80 * We use a linked list rather than a bitmap because we need to be able to 81 * represent potentially huge objects (like all of a processor's physical 82 * address space). 83 */ 84 struct resource_i { 85 struct resource r_r; 86 TAILQ_ENTRY(resource_i) r_link; 87 LIST_ENTRY(resource_i) r_sharelink; 88 LIST_HEAD(, resource_i) *r_sharehead; 89 rman_res_t r_start; /* index of the first entry in this resource */ 90 rman_res_t r_end; /* index of the last entry (inclusive) */ 91 u_int r_flags; 92 void *r_virtual; /* virtual address of this resource */ 93 void *r_irq_cookie; /* interrupt cookie for this (interrupt) resource */ 94 device_t r_dev; /* device which has allocated this resource */ 95 struct rman *r_rm; /* resource manager from whence this came */ 96 int r_rid; /* optional rid for this resource. */ 97 }; 98 99 static int rman_debug = 0; 100 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RWTUN, 101 &rman_debug, 0, "rman debug"); 102 103 #define DPRINTF(params) if (rman_debug) printf params 104 105 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager"); 106 107 struct rman_head rman_head; 108 static struct mtx rman_mtx; /* mutex to protect rman_head */ 109 static int int_rman_release_resource(struct rman *rm, struct resource_i *r); 110 111 static __inline struct resource_i * 112 int_alloc_resource(int malloc_flag) 113 { 114 struct resource_i *r; 115 116 r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO); 117 if (r != NULL) { 118 r->r_r.__r_i = r; 119 } 120 return (r); 121 } 122 123 int 124 rman_init(struct rman *rm) 125 { 126 static int once = 0; 127 128 if (once == 0) { 129 once = 1; 130 TAILQ_INIT(&rman_head); 131 mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF); 132 } 133 134 if (rm->rm_start == 0 && rm->rm_end == 0) 135 rm->rm_end = ~0; 136 if (rm->rm_type == RMAN_UNINIT) 137 panic("rman_init"); 138 if (rm->rm_type == RMAN_GAUGE) 139 panic("implement RMAN_GAUGE"); 140 141 TAILQ_INIT(&rm->rm_list); 142 rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO); 143 if (rm->rm_mtx == NULL) 144 return ENOMEM; 145 mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF); 146 147 mtx_lock(&rman_mtx); 148 TAILQ_INSERT_TAIL(&rman_head, rm, rm_link); 149 mtx_unlock(&rman_mtx); 150 return 0; 151 } 152 153 int 154 rman_manage_region(struct rman *rm, rman_res_t start, rman_res_t end) 155 { 156 struct resource_i *r, *s, *t; 157 int rv = 0; 158 159 DPRINTF(("rman_manage_region: <%s> request: start %#jx, end %#jx\n", 160 rm->rm_descr, start, end)); 161 if (start < rm->rm_start || end > rm->rm_end) 162 return EINVAL; 163 r = int_alloc_resource(M_NOWAIT); 164 if (r == NULL) 165 return ENOMEM; 166 r->r_start = start; 167 r->r_end = end; 168 r->r_rm = rm; 169 170 mtx_lock(rm->rm_mtx); 171 172 /* Skip entries before us. */ 173 TAILQ_FOREACH(s, &rm->rm_list, r_link) { 174 if (s->r_end == ~0) 175 break; 176 if (s->r_end + 1 >= r->r_start) 177 break; 178 } 179 180 /* If we ran off the end of the list, insert at the tail. */ 181 if (s == NULL) { 182 TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link); 183 } else { 184 /* Check for any overlap with the current region. */ 185 if (r->r_start <= s->r_end && r->r_end >= s->r_start) { 186 rv = EBUSY; 187 goto out; 188 } 189 190 /* Check for any overlap with the next region. */ 191 t = TAILQ_NEXT(s, r_link); 192 if (t && r->r_start <= t->r_end && r->r_end >= t->r_start) { 193 rv = EBUSY; 194 goto out; 195 } 196 197 /* 198 * See if this region can be merged with the next region. If 199 * not, clear the pointer. 200 */ 201 if (t && (r->r_end + 1 != t->r_start || t->r_flags != 0)) 202 t = NULL; 203 204 /* See if we can merge with the current region. */ 205 if (s->r_end + 1 == r->r_start && s->r_flags == 0) { 206 /* Can we merge all 3 regions? */ 207 if (t != NULL) { 208 s->r_end = t->r_end; 209 TAILQ_REMOVE(&rm->rm_list, t, r_link); 210 free(r, M_RMAN); 211 free(t, M_RMAN); 212 } else { 213 s->r_end = r->r_end; 214 free(r, M_RMAN); 215 } 216 } else if (t != NULL) { 217 /* Can we merge with just the next region? */ 218 t->r_start = r->r_start; 219 free(r, M_RMAN); 220 } else if (s->r_end < r->r_start) { 221 TAILQ_INSERT_AFTER(&rm->rm_list, s, r, r_link); 222 } else { 223 TAILQ_INSERT_BEFORE(s, r, r_link); 224 } 225 } 226 out: 227 mtx_unlock(rm->rm_mtx); 228 return rv; 229 } 230 231 int 232 rman_init_from_resource(struct rman *rm, struct resource *r) 233 { 234 int rv; 235 236 if ((rv = rman_init(rm)) != 0) 237 return (rv); 238 return (rman_manage_region(rm, r->__r_i->r_start, r->__r_i->r_end)); 239 } 240 241 int 242 rman_fini(struct rman *rm) 243 { 244 struct resource_i *r; 245 246 mtx_lock(rm->rm_mtx); 247 TAILQ_FOREACH(r, &rm->rm_list, r_link) { 248 if (r->r_flags & RF_ALLOCATED) { 249 mtx_unlock(rm->rm_mtx); 250 return EBUSY; 251 } 252 } 253 254 /* 255 * There really should only be one of these if we are in this 256 * state and the code is working properly, but it can't hurt. 257 */ 258 while (!TAILQ_EMPTY(&rm->rm_list)) { 259 r = TAILQ_FIRST(&rm->rm_list); 260 TAILQ_REMOVE(&rm->rm_list, r, r_link); 261 free(r, M_RMAN); 262 } 263 mtx_unlock(rm->rm_mtx); 264 mtx_lock(&rman_mtx); 265 TAILQ_REMOVE(&rman_head, rm, rm_link); 266 mtx_unlock(&rman_mtx); 267 mtx_destroy(rm->rm_mtx); 268 free(rm->rm_mtx, M_RMAN); 269 270 return 0; 271 } 272 273 int 274 rman_first_free_region(struct rman *rm, rman_res_t *start, rman_res_t *end) 275 { 276 struct resource_i *r; 277 278 mtx_lock(rm->rm_mtx); 279 TAILQ_FOREACH(r, &rm->rm_list, r_link) { 280 if (!(r->r_flags & RF_ALLOCATED)) { 281 *start = r->r_start; 282 *end = r->r_end; 283 mtx_unlock(rm->rm_mtx); 284 return (0); 285 } 286 } 287 mtx_unlock(rm->rm_mtx); 288 return (ENOENT); 289 } 290 291 int 292 rman_last_free_region(struct rman *rm, rman_res_t *start, rman_res_t *end) 293 { 294 struct resource_i *r; 295 296 mtx_lock(rm->rm_mtx); 297 TAILQ_FOREACH_REVERSE(r, &rm->rm_list, resource_head, r_link) { 298 if (!(r->r_flags & RF_ALLOCATED)) { 299 *start = r->r_start; 300 *end = r->r_end; 301 mtx_unlock(rm->rm_mtx); 302 return (0); 303 } 304 } 305 mtx_unlock(rm->rm_mtx); 306 return (ENOENT); 307 } 308 309 /* Shrink or extend one or both ends of an allocated resource. */ 310 int 311 rman_adjust_resource(struct resource *rr, rman_res_t start, rman_res_t end) 312 { 313 struct resource_i *r, *s, *t, *new; 314 struct rman *rm; 315 316 /* Not supported for shared resources. */ 317 r = rr->__r_i; 318 if (r->r_flags & RF_SHAREABLE) 319 return (EINVAL); 320 321 /* 322 * This does not support wholesale moving of a resource. At 323 * least part of the desired new range must overlap with the 324 * existing resource. 325 */ 326 if (end < r->r_start || r->r_end < start) 327 return (EINVAL); 328 329 /* 330 * Find the two resource regions immediately adjacent to the 331 * allocated resource. 332 */ 333 rm = r->r_rm; 334 mtx_lock(rm->rm_mtx); 335 #ifdef INVARIANTS 336 TAILQ_FOREACH(s, &rm->rm_list, r_link) { 337 if (s == r) 338 break; 339 } 340 if (s == NULL) 341 panic("resource not in list"); 342 #endif 343 s = TAILQ_PREV(r, resource_head, r_link); 344 t = TAILQ_NEXT(r, r_link); 345 KASSERT(s == NULL || s->r_end + 1 == r->r_start, 346 ("prev resource mismatch")); 347 KASSERT(t == NULL || r->r_end + 1 == t->r_start, 348 ("next resource mismatch")); 349 350 /* 351 * See if the changes are permitted. Shrinking is always allowed, 352 * but growing requires sufficient room in the adjacent region. 353 */ 354 if (start < r->r_start && (s == NULL || (s->r_flags & RF_ALLOCATED) || 355 s->r_start > start)) { 356 mtx_unlock(rm->rm_mtx); 357 return (EBUSY); 358 } 359 if (end > r->r_end && (t == NULL || (t->r_flags & RF_ALLOCATED) || 360 t->r_end < end)) { 361 mtx_unlock(rm->rm_mtx); 362 return (EBUSY); 363 } 364 365 /* 366 * While holding the lock, grow either end of the resource as 367 * needed and shrink either end if the shrinking does not require 368 * allocating a new resource. We can safely drop the lock and then 369 * insert a new range to handle the shrinking case afterwards. 370 */ 371 if (start < r->r_start || 372 (start > r->r_start && s != NULL && !(s->r_flags & RF_ALLOCATED))) { 373 KASSERT(s->r_flags == 0, ("prev is busy")); 374 r->r_start = start; 375 if (s->r_start == start) { 376 TAILQ_REMOVE(&rm->rm_list, s, r_link); 377 free(s, M_RMAN); 378 } else 379 s->r_end = start - 1; 380 } 381 if (end > r->r_end || 382 (end < r->r_end && t != NULL && !(t->r_flags & RF_ALLOCATED))) { 383 KASSERT(t->r_flags == 0, ("next is busy")); 384 r->r_end = end; 385 if (t->r_end == end) { 386 TAILQ_REMOVE(&rm->rm_list, t, r_link); 387 free(t, M_RMAN); 388 } else 389 t->r_start = end + 1; 390 } 391 mtx_unlock(rm->rm_mtx); 392 393 /* 394 * Handle the shrinking cases that require allocating a new 395 * resource to hold the newly-free region. We have to recheck 396 * if we still need this new region after acquiring the lock. 397 */ 398 if (start > r->r_start) { 399 new = int_alloc_resource(M_WAITOK); 400 new->r_start = r->r_start; 401 new->r_end = start - 1; 402 new->r_rm = rm; 403 mtx_lock(rm->rm_mtx); 404 r->r_start = start; 405 s = TAILQ_PREV(r, resource_head, r_link); 406 if (s != NULL && !(s->r_flags & RF_ALLOCATED)) { 407 s->r_end = start - 1; 408 free(new, M_RMAN); 409 } else 410 TAILQ_INSERT_BEFORE(r, new, r_link); 411 mtx_unlock(rm->rm_mtx); 412 } 413 if (end < r->r_end) { 414 new = int_alloc_resource(M_WAITOK); 415 new->r_start = end + 1; 416 new->r_end = r->r_end; 417 new->r_rm = rm; 418 mtx_lock(rm->rm_mtx); 419 r->r_end = end; 420 t = TAILQ_NEXT(r, r_link); 421 if (t != NULL && !(t->r_flags & RF_ALLOCATED)) { 422 t->r_start = end + 1; 423 free(new, M_RMAN); 424 } else 425 TAILQ_INSERT_AFTER(&rm->rm_list, r, new, r_link); 426 mtx_unlock(rm->rm_mtx); 427 } 428 return (0); 429 } 430 431 #define SHARE_TYPE(f) (f & (RF_SHAREABLE | RF_PREFETCHABLE)) 432 433 struct resource * 434 rman_reserve_resource_bound(struct rman *rm, rman_res_t start, rman_res_t end, 435 rman_res_t count, rman_res_t bound, u_int flags, 436 device_t dev) 437 { 438 u_int new_rflags; 439 struct resource_i *r, *s, *rv; 440 rman_res_t rstart, rend, amask, bmask; 441 442 rv = NULL; 443 444 DPRINTF(("rman_reserve_resource_bound: <%s> request: [%#jx, %#jx], " 445 "length %#jx, flags %x, device %s\n", rm->rm_descr, start, end, 446 count, flags, 447 dev == NULL ? "<null>" : device_get_nameunit(dev))); 448 KASSERT(count != 0, ("%s: attempted to allocate an empty range", 449 __func__)); 450 KASSERT((flags & RF_FIRSTSHARE) == 0, 451 ("invalid flags %#x", flags)); 452 new_rflags = (flags & ~RF_FIRSTSHARE) | RF_ALLOCATED; 453 454 mtx_lock(rm->rm_mtx); 455 456 r = TAILQ_FIRST(&rm->rm_list); 457 if (r == NULL) { 458 DPRINTF(("NULL list head\n")); 459 } else { 460 DPRINTF(("rman_reserve_resource_bound: trying %#jx <%#jx,%#jx>\n", 461 r->r_end, start, count-1)); 462 } 463 for (r = TAILQ_FIRST(&rm->rm_list); 464 r && r->r_end < start + count - 1; 465 r = TAILQ_NEXT(r, r_link)) { 466 ; 467 DPRINTF(("rman_reserve_resource_bound: tried %#jx <%#jx,%#jx>\n", 468 r->r_end, start, count-1)); 469 } 470 471 if (r == NULL) { 472 DPRINTF(("could not find a region\n")); 473 goto out; 474 } 475 476 amask = (1ull << RF_ALIGNMENT(flags)) - 1; 477 KASSERT(start <= RM_MAX_END - amask, 478 ("start (%#jx) + amask (%#jx) would wrap around", start, amask)); 479 480 /* If bound is 0, bmask will also be 0 */ 481 bmask = ~(bound - 1); 482 /* 483 * First try to find an acceptable totally-unshared region. 484 */ 485 for (s = r; s; s = TAILQ_NEXT(s, r_link)) { 486 DPRINTF(("considering [%#jx, %#jx]\n", s->r_start, s->r_end)); 487 /* 488 * The resource list is sorted, so there is no point in 489 * searching further once r_start is too large. 490 */ 491 if (s->r_start > end - (count - 1)) { 492 DPRINTF(("s->r_start (%#jx) + count - 1> end (%#jx)\n", 493 s->r_start, end)); 494 break; 495 } 496 if (s->r_start > RM_MAX_END - amask) { 497 DPRINTF(("s->r_start (%#jx) + amask (%#jx) too large\n", 498 s->r_start, amask)); 499 break; 500 } 501 if (s->r_flags & RF_ALLOCATED) { 502 DPRINTF(("region is allocated\n")); 503 continue; 504 } 505 rstart = ummax(s->r_start, start); 506 /* 507 * Try to find a region by adjusting to boundary and alignment 508 * until both conditions are satisfied. This is not an optimal 509 * algorithm, but in most cases it isn't really bad, either. 510 */ 511 do { 512 rstart = (rstart + amask) & ~amask; 513 if (((rstart ^ (rstart + count - 1)) & bmask) != 0) 514 rstart += bound - (rstart & ~bmask); 515 } while ((rstart & amask) != 0 && rstart < end && 516 rstart < s->r_end); 517 rend = ummin(s->r_end, ummax(rstart + count - 1, end)); 518 if (rstart > rend) { 519 DPRINTF(("adjusted start exceeds end\n")); 520 continue; 521 } 522 DPRINTF(("truncated region: [%#jx, %#jx]; size %#jx (requested %#jx)\n", 523 rstart, rend, (rend - rstart + 1), count)); 524 525 if ((rend - rstart) >= (count - 1)) { 526 DPRINTF(("candidate region: [%#jx, %#jx], size %#jx\n", 527 rstart, rend, (rend - rstart + 1))); 528 if ((s->r_end - s->r_start + 1) == count) { 529 DPRINTF(("candidate region is entire chunk\n")); 530 rv = s; 531 rv->r_flags = new_rflags; 532 rv->r_dev = dev; 533 goto out; 534 } 535 536 /* 537 * If s->r_start < rstart and 538 * s->r_end > rstart + count - 1, then 539 * we need to split the region into three pieces 540 * (the middle one will get returned to the user). 541 * Otherwise, we are allocating at either the 542 * beginning or the end of s, so we only need to 543 * split it in two. The first case requires 544 * two new allocations; the second requires but one. 545 */ 546 rv = int_alloc_resource(M_NOWAIT); 547 if (rv == NULL) 548 goto out; 549 rv->r_start = rstart; 550 rv->r_end = rstart + count - 1; 551 rv->r_flags = new_rflags; 552 rv->r_dev = dev; 553 rv->r_rm = rm; 554 555 if (s->r_start < rv->r_start && s->r_end > rv->r_end) { 556 DPRINTF(("splitting region in three parts: " 557 "[%#jx, %#jx]; [%#jx, %#jx]; [%#jx, %#jx]\n", 558 s->r_start, rv->r_start - 1, 559 rv->r_start, rv->r_end, 560 rv->r_end + 1, s->r_end)); 561 /* 562 * We are allocating in the middle. 563 */ 564 r = int_alloc_resource(M_NOWAIT); 565 if (r == NULL) { 566 free(rv, M_RMAN); 567 rv = NULL; 568 goto out; 569 } 570 r->r_start = rv->r_end + 1; 571 r->r_end = s->r_end; 572 r->r_flags = s->r_flags; 573 r->r_rm = rm; 574 s->r_end = rv->r_start - 1; 575 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv, 576 r_link); 577 TAILQ_INSERT_AFTER(&rm->rm_list, rv, r, 578 r_link); 579 } else if (s->r_start == rv->r_start) { 580 DPRINTF(("allocating from the beginning\n")); 581 /* 582 * We are allocating at the beginning. 583 */ 584 s->r_start = rv->r_end + 1; 585 TAILQ_INSERT_BEFORE(s, rv, r_link); 586 } else { 587 DPRINTF(("allocating at the end\n")); 588 /* 589 * We are allocating at the end. 590 */ 591 s->r_end = rv->r_start - 1; 592 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv, 593 r_link); 594 } 595 goto out; 596 } 597 } 598 599 /* 600 * Now find an acceptable shared region, if the client's requirements 601 * allow sharing. By our implementation restriction, a candidate 602 * region must match exactly by both size and sharing type in order 603 * to be considered compatible with the client's request. (The 604 * former restriction could probably be lifted without too much 605 * additional work, but this does not seem warranted.) 606 */ 607 DPRINTF(("no unshared regions found\n")); 608 if ((flags & RF_SHAREABLE) == 0) 609 goto out; 610 611 for (s = r; s && s->r_end <= end; s = TAILQ_NEXT(s, r_link)) { 612 if (SHARE_TYPE(s->r_flags) == SHARE_TYPE(flags) && 613 s->r_start >= start && 614 (s->r_end - s->r_start + 1) == count && 615 (s->r_start & amask) == 0 && 616 ((s->r_start ^ s->r_end) & bmask) == 0) { 617 rv = int_alloc_resource(M_NOWAIT); 618 if (rv == NULL) 619 goto out; 620 rv->r_start = s->r_start; 621 rv->r_end = s->r_end; 622 rv->r_flags = new_rflags; 623 rv->r_dev = dev; 624 rv->r_rm = rm; 625 if (s->r_sharehead == NULL) { 626 s->r_sharehead = malloc(sizeof *s->r_sharehead, 627 M_RMAN, M_NOWAIT | M_ZERO); 628 if (s->r_sharehead == NULL) { 629 free(rv, M_RMAN); 630 rv = NULL; 631 goto out; 632 } 633 LIST_INIT(s->r_sharehead); 634 LIST_INSERT_HEAD(s->r_sharehead, s, 635 r_sharelink); 636 s->r_flags |= RF_FIRSTSHARE; 637 } 638 rv->r_sharehead = s->r_sharehead; 639 LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink); 640 goto out; 641 } 642 } 643 /* 644 * We couldn't find anything. 645 */ 646 647 out: 648 mtx_unlock(rm->rm_mtx); 649 return (rv == NULL ? NULL : &rv->r_r); 650 } 651 652 struct resource * 653 rman_reserve_resource(struct rman *rm, rman_res_t start, rman_res_t end, 654 rman_res_t count, u_int flags, device_t dev) 655 { 656 657 return (rman_reserve_resource_bound(rm, start, end, count, 0, flags, 658 dev)); 659 } 660 661 int 662 rman_activate_resource(struct resource *re) 663 { 664 struct resource_i *r; 665 struct rman *rm; 666 667 r = re->__r_i; 668 rm = r->r_rm; 669 mtx_lock(rm->rm_mtx); 670 r->r_flags |= RF_ACTIVE; 671 mtx_unlock(rm->rm_mtx); 672 return 0; 673 } 674 675 int 676 rman_deactivate_resource(struct resource *r) 677 { 678 struct rman *rm; 679 680 rm = r->__r_i->r_rm; 681 mtx_lock(rm->rm_mtx); 682 r->__r_i->r_flags &= ~RF_ACTIVE; 683 mtx_unlock(rm->rm_mtx); 684 return 0; 685 } 686 687 static int 688 int_rman_release_resource(struct rman *rm, struct resource_i *r) 689 { 690 struct resource_i *s, *t; 691 692 if (r->r_flags & RF_ACTIVE) 693 r->r_flags &= ~RF_ACTIVE; 694 695 /* 696 * Check for a sharing list first. If there is one, then we don't 697 * have to think as hard. 698 */ 699 if (r->r_sharehead) { 700 /* 701 * If a sharing list exists, then we know there are at 702 * least two sharers. 703 * 704 * If we are in the main circleq, appoint someone else. 705 */ 706 LIST_REMOVE(r, r_sharelink); 707 s = LIST_FIRST(r->r_sharehead); 708 if (r->r_flags & RF_FIRSTSHARE) { 709 s->r_flags |= RF_FIRSTSHARE; 710 TAILQ_INSERT_BEFORE(r, s, r_link); 711 TAILQ_REMOVE(&rm->rm_list, r, r_link); 712 } 713 714 /* 715 * Make sure that the sharing list goes away completely 716 * if the resource is no longer being shared at all. 717 */ 718 if (LIST_NEXT(s, r_sharelink) == NULL) { 719 free(s->r_sharehead, M_RMAN); 720 s->r_sharehead = NULL; 721 s->r_flags &= ~RF_FIRSTSHARE; 722 } 723 goto out; 724 } 725 726 /* 727 * Look at the adjacent resources in the list and see if our 728 * segment can be merged with any of them. If either of the 729 * resources is allocated or is not exactly adjacent then they 730 * cannot be merged with our segment. 731 */ 732 s = TAILQ_PREV(r, resource_head, r_link); 733 if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 || 734 s->r_end + 1 != r->r_start)) 735 s = NULL; 736 t = TAILQ_NEXT(r, r_link); 737 if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 || 738 r->r_end + 1 != t->r_start)) 739 t = NULL; 740 741 if (s != NULL && t != NULL) { 742 /* 743 * Merge all three segments. 744 */ 745 s->r_end = t->r_end; 746 TAILQ_REMOVE(&rm->rm_list, r, r_link); 747 TAILQ_REMOVE(&rm->rm_list, t, r_link); 748 free(t, M_RMAN); 749 } else if (s != NULL) { 750 /* 751 * Merge previous segment with ours. 752 */ 753 s->r_end = r->r_end; 754 TAILQ_REMOVE(&rm->rm_list, r, r_link); 755 } else if (t != NULL) { 756 /* 757 * Merge next segment with ours. 758 */ 759 t->r_start = r->r_start; 760 TAILQ_REMOVE(&rm->rm_list, r, r_link); 761 } else { 762 /* 763 * At this point, we know there is nothing we 764 * can potentially merge with, because on each 765 * side, there is either nothing there or what is 766 * there is still allocated. In that case, we don't 767 * want to remove r from the list; we simply want to 768 * change it to an unallocated region and return 769 * without freeing anything. 770 */ 771 r->r_flags &= ~RF_ALLOCATED; 772 r->r_dev = NULL; 773 return 0; 774 } 775 776 out: 777 free(r, M_RMAN); 778 return 0; 779 } 780 781 int 782 rman_release_resource(struct resource *re) 783 { 784 int rv; 785 struct resource_i *r; 786 struct rman *rm; 787 788 r = re->__r_i; 789 rm = r->r_rm; 790 mtx_lock(rm->rm_mtx); 791 rv = int_rman_release_resource(rm, r); 792 mtx_unlock(rm->rm_mtx); 793 return (rv); 794 } 795 796 uint32_t 797 rman_make_alignment_flags(uint32_t size) 798 { 799 int i; 800 801 /* 802 * Find the hightest bit set, and add one if more than one bit 803 * set. We're effectively computing the ceil(log2(size)) here. 804 */ 805 for (i = 31; i > 0; i--) 806 if ((1 << i) & size) 807 break; 808 if (~(1 << i) & size) 809 i++; 810 811 return(RF_ALIGNMENT_LOG2(i)); 812 } 813 814 void 815 rman_set_start(struct resource *r, rman_res_t start) 816 { 817 818 r->__r_i->r_start = start; 819 } 820 821 rman_res_t 822 rman_get_start(struct resource *r) 823 { 824 825 return (r->__r_i->r_start); 826 } 827 828 void 829 rman_set_end(struct resource *r, rman_res_t end) 830 { 831 832 r->__r_i->r_end = end; 833 } 834 835 rman_res_t 836 rman_get_end(struct resource *r) 837 { 838 839 return (r->__r_i->r_end); 840 } 841 842 rman_res_t 843 rman_get_size(struct resource *r) 844 { 845 846 return (r->__r_i->r_end - r->__r_i->r_start + 1); 847 } 848 849 u_int 850 rman_get_flags(struct resource *r) 851 { 852 853 return (r->__r_i->r_flags); 854 } 855 856 void 857 rman_set_virtual(struct resource *r, void *v) 858 { 859 860 r->__r_i->r_virtual = v; 861 } 862 863 void * 864 rman_get_virtual(struct resource *r) 865 { 866 867 return (r->__r_i->r_virtual); 868 } 869 870 void 871 rman_set_irq_cookie(struct resource *r, void *c) 872 { 873 874 r->__r_i->r_irq_cookie = c; 875 } 876 877 void * 878 rman_get_irq_cookie(struct resource *r) 879 { 880 881 return (r->__r_i->r_irq_cookie); 882 } 883 884 void 885 rman_set_bustag(struct resource *r, bus_space_tag_t t) 886 { 887 888 r->r_bustag = t; 889 } 890 891 bus_space_tag_t 892 rman_get_bustag(struct resource *r) 893 { 894 895 return (r->r_bustag); 896 } 897 898 void 899 rman_set_bushandle(struct resource *r, bus_space_handle_t h) 900 { 901 902 r->r_bushandle = h; 903 } 904 905 bus_space_handle_t 906 rman_get_bushandle(struct resource *r) 907 { 908 909 return (r->r_bushandle); 910 } 911 912 void 913 rman_set_mapping(struct resource *r, struct resource_map *map) 914 { 915 916 KASSERT(rman_get_size(r) == map->r_size, 917 ("rman_set_mapping: size mismatch")); 918 rman_set_bustag(r, map->r_bustag); 919 rman_set_bushandle(r, map->r_bushandle); 920 rman_set_virtual(r, map->r_vaddr); 921 } 922 923 void 924 rman_get_mapping(struct resource *r, struct resource_map *map) 925 { 926 927 map->r_bustag = rman_get_bustag(r); 928 map->r_bushandle = rman_get_bushandle(r); 929 map->r_size = rman_get_size(r); 930 map->r_vaddr = rman_get_virtual(r); 931 } 932 933 void 934 rman_set_rid(struct resource *r, int rid) 935 { 936 937 r->__r_i->r_rid = rid; 938 } 939 940 int 941 rman_get_rid(struct resource *r) 942 { 943 944 return (r->__r_i->r_rid); 945 } 946 947 void 948 rman_set_device(struct resource *r, device_t dev) 949 { 950 951 r->__r_i->r_dev = dev; 952 } 953 954 device_t 955 rman_get_device(struct resource *r) 956 { 957 958 return (r->__r_i->r_dev); 959 } 960 961 int 962 rman_is_region_manager(struct resource *r, struct rman *rm) 963 { 964 965 return (r->__r_i->r_rm == rm); 966 } 967 968 /* 969 * Sysctl interface for scanning the resource lists. 970 * 971 * We take two input parameters; the index into the list of resource 972 * managers, and the resource offset into the list. 973 */ 974 static int 975 sysctl_rman(SYSCTL_HANDLER_ARGS) 976 { 977 int *name = (int *)arg1; 978 u_int namelen = arg2; 979 int rman_idx, res_idx; 980 struct rman *rm; 981 struct resource_i *res; 982 struct resource_i *sres; 983 struct u_rman urm; 984 struct u_resource ures; 985 int error; 986 987 if (namelen != 3) 988 return (EINVAL); 989 990 if (bus_data_generation_check(name[0])) 991 return (EINVAL); 992 rman_idx = name[1]; 993 res_idx = name[2]; 994 995 /* 996 * Find the indexed resource manager 997 */ 998 mtx_lock(&rman_mtx); 999 TAILQ_FOREACH(rm, &rman_head, rm_link) { 1000 if (rman_idx-- == 0) 1001 break; 1002 } 1003 mtx_unlock(&rman_mtx); 1004 if (rm == NULL) 1005 return (ENOENT); 1006 1007 /* 1008 * If the resource index is -1, we want details on the 1009 * resource manager. 1010 */ 1011 if (res_idx == -1) { 1012 bzero(&urm, sizeof(urm)); 1013 urm.rm_handle = (uintptr_t)rm; 1014 if (rm->rm_descr != NULL) 1015 strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN); 1016 urm.rm_start = rm->rm_start; 1017 urm.rm_size = rm->rm_end - rm->rm_start + 1; 1018 urm.rm_type = rm->rm_type; 1019 1020 error = SYSCTL_OUT(req, &urm, sizeof(urm)); 1021 return (error); 1022 } 1023 1024 /* 1025 * Find the indexed resource and return it. 1026 */ 1027 mtx_lock(rm->rm_mtx); 1028 TAILQ_FOREACH(res, &rm->rm_list, r_link) { 1029 if (res->r_sharehead != NULL) { 1030 LIST_FOREACH(sres, res->r_sharehead, r_sharelink) 1031 if (res_idx-- == 0) { 1032 res = sres; 1033 goto found; 1034 } 1035 } 1036 else if (res_idx-- == 0) 1037 goto found; 1038 } 1039 mtx_unlock(rm->rm_mtx); 1040 return (ENOENT); 1041 1042 found: 1043 bzero(&ures, sizeof(ures)); 1044 ures.r_handle = (uintptr_t)res; 1045 ures.r_parent = (uintptr_t)res->r_rm; 1046 ures.r_device = (uintptr_t)res->r_dev; 1047 if (res->r_dev != NULL) { 1048 if (device_get_name(res->r_dev) != NULL) { 1049 snprintf(ures.r_devname, RM_TEXTLEN, 1050 "%s%d", 1051 device_get_name(res->r_dev), 1052 device_get_unit(res->r_dev)); 1053 } else { 1054 strlcpy(ures.r_devname, "nomatch", 1055 RM_TEXTLEN); 1056 } 1057 } else { 1058 ures.r_devname[0] = '\0'; 1059 } 1060 ures.r_start = res->r_start; 1061 ures.r_size = res->r_end - res->r_start + 1; 1062 ures.r_flags = res->r_flags; 1063 1064 mtx_unlock(rm->rm_mtx); 1065 error = SYSCTL_OUT(req, &ures, sizeof(ures)); 1066 return (error); 1067 } 1068 1069 static SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD | CTLFLAG_MPSAFE, 1070 sysctl_rman, 1071 "kernel resource manager"); 1072 1073 #ifdef DDB 1074 static void 1075 dump_rman_header(struct rman *rm) 1076 { 1077 1078 if (db_pager_quit) 1079 return; 1080 db_printf("rman %p: %s (0x%jx-0x%jx full range)\n", 1081 rm, rm->rm_descr, (rman_res_t)rm->rm_start, (rman_res_t)rm->rm_end); 1082 } 1083 1084 static void 1085 dump_rman(struct rman *rm) 1086 { 1087 struct resource_i *r; 1088 const char *devname; 1089 1090 if (db_pager_quit) 1091 return; 1092 TAILQ_FOREACH(r, &rm->rm_list, r_link) { 1093 if (r->r_dev != NULL) { 1094 devname = device_get_nameunit(r->r_dev); 1095 if (devname == NULL) 1096 devname = "nomatch"; 1097 } else 1098 devname = NULL; 1099 db_printf(" 0x%jx-0x%jx (RID=%d) ", 1100 r->r_start, r->r_end, r->r_rid); 1101 if (devname != NULL) 1102 db_printf("(%s)\n", devname); 1103 else 1104 db_printf("----\n"); 1105 if (db_pager_quit) 1106 return; 1107 } 1108 } 1109 1110 DB_SHOW_COMMAND(rman, db_show_rman) 1111 { 1112 1113 if (have_addr) { 1114 dump_rman_header((struct rman *)addr); 1115 dump_rman((struct rman *)addr); 1116 } 1117 } 1118 1119 DB_SHOW_COMMAND(rmans, db_show_rmans) 1120 { 1121 struct rman *rm; 1122 1123 TAILQ_FOREACH(rm, &rman_head, rm_link) { 1124 dump_rman_header(rm); 1125 } 1126 } 1127 1128 DB_SHOW_ALL_COMMAND(rman, db_show_all_rman) 1129 { 1130 struct rman *rm; 1131 1132 TAILQ_FOREACH(rm, &rman_head, rm_link) { 1133 dump_rman_header(rm); 1134 dump_rman(rm); 1135 } 1136 } 1137 DB_SHOW_ALIAS(allrman, db_show_all_rman); 1138 #endif 1139