1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2013 EMC Corp. 5 * Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org> 6 * Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 */ 31 32 /* 33 * Path-compressed radix trie implementation. 34 * 35 * The implementation takes into account the following rationale: 36 * - Size of the nodes should be as small as possible but still big enough 37 * to avoid a large maximum depth for the trie. This is a balance 38 * between the necessity to not wire too much physical memory for the nodes 39 * and the necessity to avoid too much cache pollution during the trie 40 * operations. 41 * - There is not a huge bias toward the number of lookup operations over 42 * the number of insert and remove operations. This basically implies 43 * that optimizations supposedly helping one operation but hurting the 44 * other might be carefully evaluated. 45 * - On average not many nodes are expected to be fully populated, hence 46 * level compression may just complicate things. 47 */ 48 49 #include <sys/cdefs.h> 50 #include "opt_ddb.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/kernel.h> 55 #include <sys/libkern.h> 56 #include <sys/pctrie.h> 57 #include <sys/proc.h> /* smr.h depends on struct thread. */ 58 #include <sys/smr.h> 59 #include <sys/smr_types.h> 60 61 #ifdef DDB 62 #include <ddb/ddb.h> 63 #endif 64 65 #define PCTRIE_MASK (PCTRIE_COUNT - 1) 66 #define PCTRIE_LIMIT (howmany(sizeof(uint64_t) * NBBY, PCTRIE_WIDTH) - 1) 67 68 #if PCTRIE_WIDTH == 3 69 typedef uint8_t pn_popmap_t; 70 #elif PCTRIE_WIDTH == 4 71 typedef uint16_t pn_popmap_t; 72 #elif PCTRIE_WIDTH == 5 73 typedef uint32_t pn_popmap_t; 74 #else 75 #error Unsupported width 76 #endif 77 _Static_assert(sizeof(pn_popmap_t) <= sizeof(int), 78 "pn_popmap_t too wide"); 79 80 /* Set of all flag bits stored in node pointers. */ 81 #define PCTRIE_FLAGS (PCTRIE_ISLEAF) 82 #define PCTRIE_PAD PCTRIE_FLAGS 83 84 struct pctrie_node; 85 typedef SMR_POINTER(struct pctrie_node *) smr_pctnode_t; 86 87 struct pctrie_node { 88 uint64_t pn_owner; /* Owner of record. */ 89 pn_popmap_t pn_popmap; /* Valid children. */ 90 uint8_t pn_clev; /* Level * WIDTH. */ 91 smr_pctnode_t pn_child[PCTRIE_COUNT]; /* Child nodes. */ 92 }; 93 94 enum pctrie_access { PCTRIE_SMR, PCTRIE_LOCKED, PCTRIE_UNSERIALIZED }; 95 96 static __inline void pctrie_node_store(smr_pctnode_t *p, void *val, 97 enum pctrie_access access); 98 99 /* 100 * Map index to an array position for the children of node, 101 */ 102 static __inline int 103 pctrie_slot(struct pctrie_node *node, uint64_t index) 104 { 105 return ((index >> node->pn_clev) & PCTRIE_MASK); 106 } 107 108 /* 109 * Returns true if index does not belong to the specified node. Otherwise, 110 * sets slot value, and returns false. 111 */ 112 static __inline bool 113 pctrie_keybarr(struct pctrie_node *node, uint64_t index, int *slot) 114 { 115 index = (index - node->pn_owner) >> node->pn_clev; 116 if (index >= PCTRIE_COUNT) 117 return (true); 118 *slot = index; 119 return (false); 120 } 121 122 /* 123 * Allocate a node. Pre-allocation should ensure that the request 124 * will always be satisfied. 125 */ 126 static struct pctrie_node * 127 pctrie_node_get(struct pctrie *ptree, pctrie_alloc_t allocfn, uint64_t index, 128 uint64_t newind) 129 { 130 struct pctrie_node *node; 131 132 node = allocfn(ptree); 133 if (node == NULL) 134 return (NULL); 135 136 /* 137 * We want to clear the last child pointer after the final section 138 * has exited so lookup can not return false negatives. It is done 139 * here because it will be cache-cold in the dtor callback. 140 */ 141 if (node->pn_popmap != 0) { 142 pctrie_node_store(&node->pn_child[ffs(node->pn_popmap) - 1], 143 PCTRIE_NULL, PCTRIE_UNSERIALIZED); 144 node->pn_popmap = 0; 145 } 146 147 /* 148 * From the highest-order bit where the indexes differ, 149 * compute the highest level in the trie where they differ. Then, 150 * compute the least index of this subtrie. 151 */ 152 KASSERT(index != newind, ("%s: passing the same key value %jx", 153 __func__, (uintmax_t)index)); 154 _Static_assert(sizeof(long long) >= sizeof(uint64_t), 155 "uint64 too wide"); 156 _Static_assert(sizeof(uint64_t) * NBBY <= 157 (1 << (sizeof(node->pn_clev) * NBBY)), "pn_clev too narrow"); 158 node->pn_clev = rounddown(flsll(index ^ newind) - 1, PCTRIE_WIDTH); 159 node->pn_owner = PCTRIE_COUNT; 160 node->pn_owner = index & -(node->pn_owner << node->pn_clev); 161 return (node); 162 } 163 164 /* 165 * Free radix node. 166 */ 167 static __inline void 168 pctrie_node_put(struct pctrie *ptree, struct pctrie_node *node, 169 pctrie_free_t freefn) 170 { 171 #ifdef INVARIANTS 172 int slot; 173 174 KASSERT(powerof2(node->pn_popmap), 175 ("pctrie_node_put: node %p has too many children %04x", node, 176 node->pn_popmap)); 177 for (slot = 0; slot < PCTRIE_COUNT; slot++) { 178 if ((node->pn_popmap & (1 << slot)) != 0) 179 continue; 180 KASSERT(smr_unserialized_load(&node->pn_child[slot], true) == 181 PCTRIE_NULL, 182 ("pctrie_node_put: node %p has a child", node)); 183 } 184 #endif 185 freefn(ptree, node); 186 } 187 188 /* 189 * Fetch a node pointer from a slot. 190 */ 191 static __inline struct pctrie_node * 192 pctrie_node_load(smr_pctnode_t *p, smr_t smr, enum pctrie_access access) 193 { 194 switch (access) { 195 case PCTRIE_UNSERIALIZED: 196 return (smr_unserialized_load(p, true)); 197 case PCTRIE_LOCKED: 198 return (smr_serialized_load(p, true)); 199 case PCTRIE_SMR: 200 return (smr_entered_load(p, smr)); 201 } 202 __assert_unreachable(); 203 } 204 205 static __inline void 206 pctrie_node_store(smr_pctnode_t *p, void *v, enum pctrie_access access) 207 { 208 switch (access) { 209 case PCTRIE_UNSERIALIZED: 210 smr_unserialized_store(p, v, true); 211 break; 212 case PCTRIE_LOCKED: 213 smr_serialized_store(p, v, true); 214 break; 215 case PCTRIE_SMR: 216 panic("%s: Not supported in SMR section.", __func__); 217 break; 218 default: 219 __assert_unreachable(); 220 break; 221 } 222 } 223 224 /* 225 * Get the root node for a tree. 226 */ 227 static __inline struct pctrie_node * 228 pctrie_root_load(struct pctrie *ptree, smr_t smr, enum pctrie_access access) 229 { 230 return (pctrie_node_load((smr_pctnode_t *)&ptree->pt_root, smr, access)); 231 } 232 233 /* 234 * Set the root node for a tree. 235 */ 236 static __inline void 237 pctrie_root_store(struct pctrie *ptree, struct pctrie_node *node, 238 enum pctrie_access access) 239 { 240 pctrie_node_store((smr_pctnode_t *)&ptree->pt_root, node, access); 241 } 242 243 /* 244 * Returns TRUE if the specified node is a leaf and FALSE otherwise. 245 */ 246 static __inline bool 247 pctrie_isleaf(struct pctrie_node *node) 248 { 249 250 return (((uintptr_t)node & PCTRIE_ISLEAF) != 0); 251 } 252 253 /* 254 * Returns val with leaf bit set. 255 */ 256 static __inline void * 257 pctrie_toleaf(uint64_t *val) 258 { 259 return ((void *)((uintptr_t)val | PCTRIE_ISLEAF)); 260 } 261 262 /* 263 * Returns the associated val extracted from node. 264 */ 265 static __inline uint64_t * 266 pctrie_toval(struct pctrie_node *node) 267 { 268 269 return ((uint64_t *)((uintptr_t)node & ~PCTRIE_FLAGS)); 270 } 271 272 /* 273 * Make 'child' a child of 'node'. 274 */ 275 static __inline void 276 pctrie_addnode(struct pctrie_node *node, uint64_t index, 277 struct pctrie_node *child, enum pctrie_access access) 278 { 279 int slot; 280 281 slot = pctrie_slot(node, index); 282 pctrie_node_store(&node->pn_child[slot], child, access); 283 node->pn_popmap ^= 1 << slot; 284 KASSERT((node->pn_popmap & (1 << slot)) != 0, 285 ("%s: bad popmap slot %d in node %p", __func__, slot, node)); 286 } 287 288 /* 289 * Internal helper for pctrie_reclaim_allnodes(). 290 * This function is recursive. 291 */ 292 static void 293 pctrie_reclaim_allnodes_int(struct pctrie *ptree, struct pctrie_node *node, 294 pctrie_free_t freefn) 295 { 296 struct pctrie_node *child; 297 int slot; 298 299 while (node->pn_popmap != 0) { 300 slot = ffs(node->pn_popmap) - 1; 301 child = pctrie_node_load(&node->pn_child[slot], NULL, 302 PCTRIE_UNSERIALIZED); 303 KASSERT(child != PCTRIE_NULL, 304 ("%s: bad popmap slot %d in node %p", 305 __func__, slot, node)); 306 if (!pctrie_isleaf(child)) 307 pctrie_reclaim_allnodes_int(ptree, child, freefn); 308 node->pn_popmap ^= 1 << slot; 309 pctrie_node_store(&node->pn_child[slot], PCTRIE_NULL, 310 PCTRIE_UNSERIALIZED); 311 } 312 pctrie_node_put(ptree, node, freefn); 313 } 314 315 /* 316 * pctrie node zone initializer. 317 */ 318 int 319 pctrie_zone_init(void *mem, int size __unused, int flags __unused) 320 { 321 struct pctrie_node *node; 322 323 node = mem; 324 node->pn_popmap = 0; 325 for (int i = 0; i < nitems(node->pn_child); i++) 326 pctrie_node_store(&node->pn_child[i], PCTRIE_NULL, 327 PCTRIE_UNSERIALIZED); 328 return (0); 329 } 330 331 size_t 332 pctrie_node_size(void) 333 { 334 335 return (sizeof(struct pctrie_node)); 336 } 337 338 /* 339 * Inserts the key-value pair into the trie. 340 * Panics if the key already exists. 341 */ 342 int 343 pctrie_insert(struct pctrie *ptree, uint64_t *val, pctrie_alloc_t allocfn) 344 { 345 uint64_t index, newind; 346 struct pctrie_node *leaf, *node, *parent; 347 smr_pctnode_t *parentp; 348 int slot; 349 350 index = *val; 351 leaf = pctrie_toleaf(val); 352 353 /* 354 * The owner of record for root is not really important because it 355 * will never be used. 356 */ 357 node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED); 358 parent = NULL; 359 for (;;) { 360 if (pctrie_isleaf(node)) { 361 if (node == PCTRIE_NULL) { 362 if (parent == NULL) 363 ptree->pt_root = leaf; 364 else 365 pctrie_addnode(parent, index, leaf, 366 PCTRIE_LOCKED); 367 return (0); 368 } 369 newind = *pctrie_toval(node); 370 if (newind == index) 371 panic("%s: key %jx is already present", 372 __func__, (uintmax_t)index); 373 break; 374 } 375 if (pctrie_keybarr(node, index, &slot)) { 376 newind = node->pn_owner; 377 break; 378 } 379 parent = node; 380 node = pctrie_node_load(&node->pn_child[slot], NULL, 381 PCTRIE_LOCKED); 382 } 383 384 /* 385 * A new node is needed because the right insertion level is reached. 386 * Setup the new intermediate node and add the 2 children: the 387 * new object and the older edge or object. 388 */ 389 parentp = (parent != NULL) ? &parent->pn_child[slot]: 390 (smr_pctnode_t *)&ptree->pt_root; 391 parent = pctrie_node_get(ptree, allocfn, index, newind); 392 if (parent == NULL) 393 return (ENOMEM); 394 /* These writes are not yet visible due to ordering. */ 395 pctrie_addnode(parent, index, leaf, PCTRIE_UNSERIALIZED); 396 pctrie_addnode(parent, newind, node, PCTRIE_UNSERIALIZED); 397 /* Synchronize to make the above visible. */ 398 pctrie_node_store(parentp, parent, PCTRIE_LOCKED); 399 return (0); 400 } 401 402 /* 403 * Returns the value stored at the index. If the index is not present, 404 * NULL is returned. 405 */ 406 static __always_inline uint64_t * 407 _pctrie_lookup(struct pctrie *ptree, uint64_t index, smr_t smr, 408 enum pctrie_access access) 409 { 410 struct pctrie_node *node; 411 uint64_t *m; 412 int slot; 413 414 node = pctrie_root_load(ptree, smr, access); 415 for (;;) { 416 if (pctrie_isleaf(node)) { 417 if ((m = pctrie_toval(node)) != NULL && *m == index) 418 return (m); 419 break; 420 } 421 if (pctrie_keybarr(node, index, &slot)) 422 break; 423 node = pctrie_node_load(&node->pn_child[slot], smr, access); 424 } 425 return (NULL); 426 } 427 428 /* 429 * Returns the value stored at the index, assuming access is externally 430 * synchronized by a lock. 431 * 432 * If the index is not present, NULL is returned. 433 */ 434 uint64_t * 435 pctrie_lookup(struct pctrie *ptree, uint64_t index) 436 { 437 return (_pctrie_lookup(ptree, index, NULL, PCTRIE_LOCKED)); 438 } 439 440 /* 441 * Returns the value stored at the index without requiring an external lock. 442 * 443 * If the index is not present, NULL is returned. 444 */ 445 uint64_t * 446 pctrie_lookup_unlocked(struct pctrie *ptree, uint64_t index, smr_t smr) 447 { 448 uint64_t *res; 449 450 smr_enter(smr); 451 res = _pctrie_lookup(ptree, index, smr, PCTRIE_SMR); 452 smr_exit(smr); 453 return (res); 454 } 455 456 /* 457 * Returns the value with the least index that is greater than or equal to the 458 * specified index, or NULL if there are no such values. 459 * 460 * Requires that access be externally synchronized by a lock. 461 */ 462 uint64_t * 463 pctrie_lookup_ge(struct pctrie *ptree, uint64_t index) 464 { 465 struct pctrie_node *node, *succ; 466 uint64_t *m; 467 int slot; 468 469 /* 470 * Descend the trie as if performing an ordinary lookup for the 471 * specified value. However, unlike an ordinary lookup, as we descend 472 * the trie, we use "succ" to remember the last branching-off point, 473 * that is, the interior node under which the least value that is both 474 * outside our current path down the trie and greater than the specified 475 * index resides. (The node's popmap makes it fast and easy to 476 * recognize a branching-off point.) If our ordinary lookup fails to 477 * yield a value that is greater than or equal to the specified index, 478 * then we will exit this loop and perform a lookup starting from 479 * "succ". If "succ" is not NULL, then that lookup is guaranteed to 480 * succeed. 481 */ 482 node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED); 483 succ = NULL; 484 for (;;) { 485 if (pctrie_isleaf(node)) { 486 if ((m = pctrie_toval(node)) != NULL && *m >= index) 487 return (m); 488 break; 489 } 490 if (pctrie_keybarr(node, index, &slot)) { 491 /* 492 * If all values in this subtree are > index, then the 493 * least value in this subtree is the answer. 494 */ 495 if (node->pn_owner > index) 496 succ = node; 497 break; 498 } 499 500 /* 501 * Just in case the next search step leads to a subtree of all 502 * values < index, check popmap to see if a next bigger step, to 503 * a subtree of all pages with values > index, is available. If 504 * so, remember to restart the search here. 505 */ 506 if ((node->pn_popmap >> slot) > 1) 507 succ = node; 508 node = pctrie_node_load(&node->pn_child[slot], NULL, 509 PCTRIE_LOCKED); 510 } 511 512 /* 513 * Restart the search from the last place visited in the subtree that 514 * included some values > index, if there was such a place. 515 */ 516 if (succ == NULL) 517 return (NULL); 518 if (succ != node) { 519 /* 520 * Take a step to the next bigger sibling of the node chosen 521 * last time. In that subtree, all values > index. 522 */ 523 slot = pctrie_slot(succ, index) + 1; 524 KASSERT((succ->pn_popmap >> slot) != 0, 525 ("%s: no popmap siblings past slot %d in node %p", 526 __func__, slot, succ)); 527 slot += ffs(succ->pn_popmap >> slot) - 1; 528 succ = pctrie_node_load(&succ->pn_child[slot], NULL, 529 PCTRIE_LOCKED); 530 } 531 532 /* 533 * Find the value in the subtree rooted at "succ" with the least index. 534 */ 535 while (!pctrie_isleaf(succ)) { 536 KASSERT(succ->pn_popmap != 0, 537 ("%s: no popmap children in node %p", __func__, succ)); 538 slot = ffs(succ->pn_popmap) - 1; 539 succ = pctrie_node_load(&succ->pn_child[slot], NULL, 540 PCTRIE_LOCKED); 541 } 542 return (pctrie_toval(succ)); 543 } 544 545 /* 546 * Returns the value with the greatest index that is less than or equal to the 547 * specified index, or NULL if there are no such values. 548 * 549 * Requires that access be externally synchronized by a lock. 550 */ 551 uint64_t * 552 pctrie_lookup_le(struct pctrie *ptree, uint64_t index) 553 { 554 struct pctrie_node *node, *pred; 555 uint64_t *m; 556 int slot; 557 558 /* 559 * Mirror the implementation of pctrie_lookup_ge, described above. 560 */ 561 node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED); 562 pred = NULL; 563 for (;;) { 564 if (pctrie_isleaf(node)) { 565 if ((m = pctrie_toval(node)) != NULL && *m <= index) 566 return (m); 567 break; 568 } 569 if (pctrie_keybarr(node, index, &slot)) { 570 if (node->pn_owner < index) 571 pred = node; 572 break; 573 } 574 if ((node->pn_popmap & ((1 << slot) - 1)) != 0) 575 pred = node; 576 node = pctrie_node_load(&node->pn_child[slot], NULL, 577 PCTRIE_LOCKED); 578 } 579 if (pred == NULL) 580 return (NULL); 581 if (pred != node) { 582 slot = pctrie_slot(pred, index); 583 KASSERT((pred->pn_popmap & ((1 << slot) - 1)) != 0, 584 ("%s: no popmap siblings before slot %d in node %p", 585 __func__, slot, pred)); 586 slot = fls(pred->pn_popmap & ((1 << slot) - 1)) - 1; 587 pred = pctrie_node_load(&pred->pn_child[slot], NULL, 588 PCTRIE_LOCKED); 589 } 590 while (!pctrie_isleaf(pred)) { 591 KASSERT(pred->pn_popmap != 0, 592 ("%s: no popmap children in node %p", __func__, pred)); 593 slot = fls(pred->pn_popmap) - 1; 594 pred = pctrie_node_load(&pred->pn_child[slot], NULL, 595 PCTRIE_LOCKED); 596 } 597 return (pctrie_toval(pred)); 598 } 599 600 /* 601 * Remove the specified index from the tree. 602 * Panics if the key is not present. 603 */ 604 void 605 pctrie_remove(struct pctrie *ptree, uint64_t index, pctrie_free_t freefn) 606 { 607 struct pctrie_node *child, *node, *parent; 608 uint64_t *m; 609 int slot; 610 611 node = NULL; 612 child = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED); 613 for (;;) { 614 if (pctrie_isleaf(child)) 615 break; 616 parent = node; 617 node = child; 618 slot = pctrie_slot(node, index); 619 child = pctrie_node_load(&node->pn_child[slot], NULL, 620 PCTRIE_LOCKED); 621 } 622 if ((m = pctrie_toval(child)) == NULL || *m != index) 623 panic("%s: key not found", __func__); 624 if (node == NULL) { 625 pctrie_root_store(ptree, PCTRIE_NULL, PCTRIE_LOCKED); 626 return; 627 } 628 KASSERT((node->pn_popmap & (1 << slot)) != 0, 629 ("%s: bad popmap slot %d in node %p", 630 __func__, slot, node)); 631 node->pn_popmap ^= 1 << slot; 632 pctrie_node_store(&node->pn_child[slot], PCTRIE_NULL, PCTRIE_LOCKED); 633 if (!powerof2(node->pn_popmap)) 634 return; 635 KASSERT(node->pn_popmap != 0, ("%s: bad popmap all zeroes", __func__)); 636 slot = ffs(node->pn_popmap) - 1; 637 child = pctrie_node_load(&node->pn_child[slot], NULL, PCTRIE_LOCKED); 638 KASSERT(child != PCTRIE_NULL, 639 ("%s: bad popmap slot %d in node %p", __func__, slot, node)); 640 if (parent == NULL) 641 pctrie_root_store(ptree, child, PCTRIE_LOCKED); 642 else { 643 slot = pctrie_slot(parent, index); 644 KASSERT(node == 645 pctrie_node_load(&parent->pn_child[slot], NULL, 646 PCTRIE_LOCKED), ("%s: invalid child value", __func__)); 647 pctrie_node_store(&parent->pn_child[slot], child, 648 PCTRIE_LOCKED); 649 } 650 /* 651 * The child is still valid and we can not zero the 652 * pointer until all SMR references are gone. 653 */ 654 pctrie_node_put(ptree, node, freefn); 655 } 656 657 /* 658 * Remove and free all the nodes from the tree. 659 * This function is recursive but there is a tight control on it as the 660 * maximum depth of the tree is fixed. 661 */ 662 void 663 pctrie_reclaim_allnodes(struct pctrie *ptree, pctrie_free_t freefn) 664 { 665 struct pctrie_node *root; 666 667 root = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED); 668 if (root == PCTRIE_NULL) 669 return; 670 pctrie_root_store(ptree, PCTRIE_NULL, PCTRIE_UNSERIALIZED); 671 if (!pctrie_isleaf(root)) 672 pctrie_reclaim_allnodes_int(ptree, root, freefn); 673 } 674 675 #ifdef DDB 676 /* 677 * Show details about the given node. 678 */ 679 DB_SHOW_COMMAND(pctrienode, db_show_pctrienode) 680 { 681 struct pctrie_node *node, *tmp; 682 int slot; 683 pn_popmap_t popmap; 684 685 if (!have_addr) 686 return; 687 node = (struct pctrie_node *)addr; 688 db_printf("node %p, owner %jx, children popmap %04x, level %u:\n", 689 (void *)node, (uintmax_t)node->pn_owner, node->pn_popmap, 690 node->pn_clev / PCTRIE_WIDTH); 691 for (popmap = node->pn_popmap; popmap != 0; popmap ^= 1 << slot) { 692 slot = ffs(popmap) - 1; 693 tmp = pctrie_node_load(&node->pn_child[slot], NULL, 694 PCTRIE_UNSERIALIZED); 695 db_printf("slot: %d, val: %p, value: %p, clev: %d\n", 696 slot, (void *)tmp, 697 pctrie_isleaf(tmp) ? pctrie_toval(tmp) : NULL, 698 node->pn_clev / PCTRIE_WIDTH); 699 } 700 } 701 #endif /* DDB */ 702