1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2001 Wind River Systems, Inc. 5 * All rights reserved. 6 * Written by: John Baldwin <jhb@FreeBSD.org> 7 * 8 * Copyright (c) 2009 Jeffrey Roberson <jeff@freebsd.org> 9 * All rights reserved. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the author nor the names of any co-contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 */ 35 36 /* 37 * This module provides MI support for per-cpu data. 38 * 39 * Each architecture determines the mapping of logical CPU IDs to physical 40 * CPUs. The requirements of this mapping are as follows: 41 * - Logical CPU IDs must reside in the range 0 ... MAXCPU - 1. 42 * - The mapping is not required to be dense. That is, there may be 43 * gaps in the mappings. 44 * - The platform sets the value of MAXCPU in <machine/param.h>. 45 * - It is suggested, but not required, that in the non-SMP case, the 46 * platform define MAXCPU to be 1 and define the logical ID of the 47 * sole CPU as 0. 48 */ 49 50 #include <sys/cdefs.h> 51 __FBSDID("$FreeBSD$"); 52 53 #include "opt_ddb.h" 54 55 #include <sys/param.h> 56 #include <sys/systm.h> 57 #include <sys/sysctl.h> 58 #include <sys/lock.h> 59 #include <sys/malloc.h> 60 #include <sys/pcpu.h> 61 #include <sys/proc.h> 62 #include <sys/smp.h> 63 #include <sys/sx.h> 64 #include <vm/uma.h> 65 #include <ddb/ddb.h> 66 67 static MALLOC_DEFINE(M_PCPU, "Per-cpu", "Per-cpu resource accouting."); 68 69 struct dpcpu_free { 70 uintptr_t df_start; 71 int df_len; 72 TAILQ_ENTRY(dpcpu_free) df_link; 73 }; 74 75 DPCPU_DEFINE_STATIC(char, modspace[DPCPU_MODMIN] __aligned(__alignof(void *))); 76 static TAILQ_HEAD(, dpcpu_free) dpcpu_head = TAILQ_HEAD_INITIALIZER(dpcpu_head); 77 static struct sx dpcpu_lock; 78 uintptr_t dpcpu_off[MAXCPU]; 79 struct pcpu *cpuid_to_pcpu[MAXCPU]; 80 struct cpuhead cpuhead = STAILQ_HEAD_INITIALIZER(cpuhead); 81 82 /* 83 * Initialize the MI portions of a struct pcpu. 84 */ 85 void 86 pcpu_init(struct pcpu *pcpu, int cpuid, size_t size) 87 { 88 89 bzero(pcpu, size); 90 KASSERT(cpuid >= 0 && cpuid < MAXCPU, 91 ("pcpu_init: invalid cpuid %d", cpuid)); 92 pcpu->pc_cpuid = cpuid; 93 cpuid_to_pcpu[cpuid] = pcpu; 94 STAILQ_INSERT_TAIL(&cpuhead, pcpu, pc_allcpu); 95 cpu_pcpu_init(pcpu, cpuid, size); 96 pcpu->pc_rm_queue.rmq_next = &pcpu->pc_rm_queue; 97 pcpu->pc_rm_queue.rmq_prev = &pcpu->pc_rm_queue; 98 pcpu->pc_zpcpu_offset = zpcpu_offset_cpu(cpuid); 99 } 100 101 void 102 dpcpu_init(void *dpcpu, int cpuid) 103 { 104 struct pcpu *pcpu; 105 106 pcpu = pcpu_find(cpuid); 107 pcpu->pc_dynamic = (uintptr_t)dpcpu - DPCPU_START; 108 109 /* 110 * Initialize defaults from our linker section. 111 */ 112 memcpy(dpcpu, (void *)DPCPU_START, DPCPU_BYTES); 113 114 /* 115 * Place it in the global pcpu offset array. 116 */ 117 dpcpu_off[cpuid] = pcpu->pc_dynamic; 118 } 119 120 static void 121 dpcpu_startup(void *dummy __unused) 122 { 123 struct dpcpu_free *df; 124 125 df = malloc(sizeof(*df), M_PCPU, M_WAITOK | M_ZERO); 126 df->df_start = (uintptr_t)&DPCPU_NAME(modspace); 127 df->df_len = DPCPU_MODMIN; 128 TAILQ_INSERT_HEAD(&dpcpu_head, df, df_link); 129 sx_init(&dpcpu_lock, "dpcpu alloc lock"); 130 } 131 SYSINIT(dpcpu, SI_SUB_KLD, SI_ORDER_FIRST, dpcpu_startup, NULL); 132 133 /* 134 * UMA_ZONE_PCPU zones for general kernel use. 135 */ 136 uma_zone_t pcpu_zone_4; 137 uma_zone_t pcpu_zone_8; 138 uma_zone_t pcpu_zone_16; 139 uma_zone_t pcpu_zone_32; 140 uma_zone_t pcpu_zone_64; 141 142 static void 143 pcpu_zones_startup(void) 144 { 145 146 pcpu_zone_4 = uma_zcreate("pcpu-4", 4, 147 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_PCPU); 148 pcpu_zone_8 = uma_zcreate("pcpu-8", 8, 149 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_PCPU); 150 pcpu_zone_16 = uma_zcreate("pcpu-16", 16, 151 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_PCPU); 152 pcpu_zone_32 = uma_zcreate("pcpu-32", 32, 153 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_PCPU); 154 pcpu_zone_64 = uma_zcreate("pcpu-64", 64, 155 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_PCPU); 156 } 157 SYSINIT(pcpu_zones, SI_SUB_COUNTER, SI_ORDER_FIRST, pcpu_zones_startup, NULL); 158 159 /* 160 * First-fit extent based allocator for allocating space in the per-cpu 161 * region reserved for modules. This is only intended for use by the 162 * kernel linkers to place module linker sets. 163 */ 164 void * 165 dpcpu_alloc(int size) 166 { 167 struct dpcpu_free *df; 168 void *s; 169 170 s = NULL; 171 size = roundup2(size, sizeof(void *)); 172 sx_xlock(&dpcpu_lock); 173 TAILQ_FOREACH(df, &dpcpu_head, df_link) { 174 if (df->df_len < size) 175 continue; 176 if (df->df_len == size) { 177 s = (void *)df->df_start; 178 TAILQ_REMOVE(&dpcpu_head, df, df_link); 179 free(df, M_PCPU); 180 break; 181 } 182 s = (void *)df->df_start; 183 df->df_len -= size; 184 df->df_start = df->df_start + size; 185 break; 186 } 187 sx_xunlock(&dpcpu_lock); 188 189 return (s); 190 } 191 192 /* 193 * Free dynamic per-cpu space at module unload time. 194 */ 195 void 196 dpcpu_free(void *s, int size) 197 { 198 struct dpcpu_free *df; 199 struct dpcpu_free *dn; 200 uintptr_t start; 201 uintptr_t end; 202 203 size = roundup2(size, sizeof(void *)); 204 start = (uintptr_t)s; 205 end = start + size; 206 /* 207 * Free a region of space and merge it with as many neighbors as 208 * possible. Keeping the list sorted simplifies this operation. 209 */ 210 sx_xlock(&dpcpu_lock); 211 TAILQ_FOREACH(df, &dpcpu_head, df_link) { 212 if (df->df_start > end) 213 break; 214 /* 215 * If we expand at the end of an entry we may have to 216 * merge it with the one following it as well. 217 */ 218 if (df->df_start + df->df_len == start) { 219 df->df_len += size; 220 dn = TAILQ_NEXT(df, df_link); 221 if (df->df_start + df->df_len == dn->df_start) { 222 df->df_len += dn->df_len; 223 TAILQ_REMOVE(&dpcpu_head, dn, df_link); 224 free(dn, M_PCPU); 225 } 226 sx_xunlock(&dpcpu_lock); 227 return; 228 } 229 if (df->df_start == end) { 230 df->df_start = start; 231 df->df_len += size; 232 sx_xunlock(&dpcpu_lock); 233 return; 234 } 235 } 236 dn = malloc(sizeof(*df), M_PCPU, M_WAITOK | M_ZERO); 237 dn->df_start = start; 238 dn->df_len = size; 239 if (df) 240 TAILQ_INSERT_BEFORE(df, dn, df_link); 241 else 242 TAILQ_INSERT_TAIL(&dpcpu_head, dn, df_link); 243 sx_xunlock(&dpcpu_lock); 244 } 245 246 /* 247 * Initialize the per-cpu storage from an updated linker-set region. 248 */ 249 void 250 dpcpu_copy(void *s, int size) 251 { 252 #ifdef SMP 253 uintptr_t dpcpu; 254 int i; 255 256 CPU_FOREACH(i) { 257 dpcpu = dpcpu_off[i]; 258 if (dpcpu == 0) 259 continue; 260 memcpy((void *)(dpcpu + (uintptr_t)s), s, size); 261 } 262 #else 263 memcpy((void *)(dpcpu_off[0] + (uintptr_t)s), s, size); 264 #endif 265 } 266 267 /* 268 * Destroy a struct pcpu. 269 */ 270 void 271 pcpu_destroy(struct pcpu *pcpu) 272 { 273 274 STAILQ_REMOVE(&cpuhead, pcpu, pcpu, pc_allcpu); 275 cpuid_to_pcpu[pcpu->pc_cpuid] = NULL; 276 dpcpu_off[pcpu->pc_cpuid] = 0; 277 } 278 279 /* 280 * Locate a struct pcpu by cpu id. 281 */ 282 struct pcpu * 283 pcpu_find(u_int cpuid) 284 { 285 286 return (cpuid_to_pcpu[cpuid]); 287 } 288 289 int 290 sysctl_dpcpu_quad(SYSCTL_HANDLER_ARGS) 291 { 292 uintptr_t dpcpu; 293 int64_t count; 294 int i; 295 296 count = 0; 297 CPU_FOREACH(i) { 298 dpcpu = dpcpu_off[i]; 299 if (dpcpu == 0) 300 continue; 301 count += *(int64_t *)(dpcpu + (uintptr_t)arg1); 302 } 303 return (SYSCTL_OUT(req, &count, sizeof(count))); 304 } 305 306 int 307 sysctl_dpcpu_long(SYSCTL_HANDLER_ARGS) 308 { 309 uintptr_t dpcpu; 310 long count; 311 int i; 312 313 count = 0; 314 CPU_FOREACH(i) { 315 dpcpu = dpcpu_off[i]; 316 if (dpcpu == 0) 317 continue; 318 count += *(long *)(dpcpu + (uintptr_t)arg1); 319 } 320 return (SYSCTL_OUT(req, &count, sizeof(count))); 321 } 322 323 int 324 sysctl_dpcpu_int(SYSCTL_HANDLER_ARGS) 325 { 326 uintptr_t dpcpu; 327 int count; 328 int i; 329 330 count = 0; 331 CPU_FOREACH(i) { 332 dpcpu = dpcpu_off[i]; 333 if (dpcpu == 0) 334 continue; 335 count += *(int *)(dpcpu + (uintptr_t)arg1); 336 } 337 return (SYSCTL_OUT(req, &count, sizeof(count))); 338 } 339 340 #ifdef DDB 341 DB_SHOW_COMMAND(dpcpu_off, db_show_dpcpu_off) 342 { 343 int id; 344 345 CPU_FOREACH(id) { 346 db_printf("dpcpu_off[%2d] = 0x%jx (+ DPCPU_START = %p)\n", 347 id, (uintmax_t)dpcpu_off[id], 348 (void *)(uintptr_t)(dpcpu_off[id] + DPCPU_START)); 349 } 350 } 351 352 static void 353 show_pcpu(struct pcpu *pc) 354 { 355 struct thread *td; 356 357 db_printf("cpuid = %d\n", pc->pc_cpuid); 358 db_printf("dynamic pcpu = %p\n", (void *)pc->pc_dynamic); 359 db_printf("curthread = "); 360 td = pc->pc_curthread; 361 if (td != NULL) 362 db_printf("%p: pid %d tid %d critnest %d \"%s\"\n", td, 363 td->td_proc->p_pid, td->td_tid, td->td_critnest, 364 td->td_name); 365 else 366 db_printf("none\n"); 367 db_printf("curpcb = %p\n", pc->pc_curpcb); 368 db_printf("fpcurthread = "); 369 td = pc->pc_fpcurthread; 370 if (td != NULL) 371 db_printf("%p: pid %d \"%s\"\n", td, td->td_proc->p_pid, 372 td->td_name); 373 else 374 db_printf("none\n"); 375 db_printf("idlethread = "); 376 td = pc->pc_idlethread; 377 if (td != NULL) 378 db_printf("%p: tid %d \"%s\"\n", td, td->td_tid, td->td_name); 379 else 380 db_printf("none\n"); 381 db_show_mdpcpu(pc); 382 383 #ifdef VIMAGE 384 db_printf("curvnet = %p\n", pc->pc_curthread->td_vnet); 385 #endif 386 387 #ifdef WITNESS 388 db_printf("spin locks held:\n"); 389 witness_list_locks(&pc->pc_spinlocks, db_printf); 390 #endif 391 } 392 393 DB_SHOW_COMMAND(pcpu, db_show_pcpu) 394 { 395 struct pcpu *pc; 396 int id; 397 398 if (have_addr) 399 id = ((addr >> 4) % 16) * 10 + (addr % 16); 400 else 401 id = PCPU_GET(cpuid); 402 pc = pcpu_find(id); 403 if (pc == NULL) { 404 db_printf("CPU %d not found\n", id); 405 return; 406 } 407 show_pcpu(pc); 408 } 409 410 DB_SHOW_ALL_COMMAND(pcpu, db_show_cpu_all) 411 { 412 struct pcpu *pc; 413 int id; 414 415 db_printf("Current CPU: %d\n\n", PCPU_GET(cpuid)); 416 CPU_FOREACH(id) { 417 pc = pcpu_find(id); 418 if (pc != NULL) { 419 show_pcpu(pc); 420 db_printf("\n"); 421 } 422 } 423 } 424 DB_SHOW_ALIAS(allpcpu, db_show_cpu_all); 425 #endif 426