1 /*- 2 * Copyright (c) 2000 Doug Rabson 3 * Copyright (c) 2014 Jeff Roberson 4 * Copyright (c) 2016 Matthew Macy 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/param.h> 30 #include <sys/systm.h> 31 #include <sys/bus.h> 32 #include <sys/cpuset.h> 33 #include <sys/kernel.h> 34 #include <sys/kthread.h> 35 #include <sys/libkern.h> 36 #include <sys/limits.h> 37 #include <sys/lock.h> 38 #include <sys/malloc.h> 39 #include <sys/mutex.h> 40 #include <sys/proc.h> 41 #include <sys/epoch.h> 42 #include <sys/sched.h> 43 #include <sys/smp.h> 44 #include <sys/gtaskqueue.h> 45 #include <sys/unistd.h> 46 #include <machine/stdarg.h> 47 48 static MALLOC_DEFINE(M_GTASKQUEUE, "gtaskqueue", "Group Task Queues"); 49 static void gtaskqueue_thread_enqueue(void *); 50 static void gtaskqueue_thread_loop(void *arg); 51 static int task_is_running(struct gtaskqueue *queue, struct gtask *gtask); 52 static void gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask); 53 54 TASKQGROUP_DEFINE(softirq, mp_ncpus, 1); 55 56 struct gtaskqueue_busy { 57 struct gtask *tb_running; 58 u_int tb_seq; 59 LIST_ENTRY(gtaskqueue_busy) tb_link; 60 }; 61 62 typedef void (*gtaskqueue_enqueue_fn)(void *context); 63 64 struct gtaskqueue { 65 STAILQ_HEAD(, gtask) tq_queue; 66 LIST_HEAD(, gtaskqueue_busy) tq_active; 67 u_int tq_seq; 68 int tq_callouts; 69 struct mtx_padalign tq_mutex; 70 gtaskqueue_enqueue_fn tq_enqueue; 71 void *tq_context; 72 char *tq_name; 73 struct thread **tq_threads; 74 int tq_tcount; 75 int tq_spin; 76 int tq_flags; 77 taskqueue_callback_fn tq_callbacks[TASKQUEUE_NUM_CALLBACKS]; 78 void *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS]; 79 }; 80 81 #define TQ_FLAGS_ACTIVE (1 << 0) 82 #define TQ_FLAGS_BLOCKED (1 << 1) 83 #define TQ_FLAGS_UNLOCKED_ENQUEUE (1 << 2) 84 85 #define DT_CALLOUT_ARMED (1 << 0) 86 87 #define TQ_LOCK(tq) \ 88 do { \ 89 if ((tq)->tq_spin) \ 90 mtx_lock_spin(&(tq)->tq_mutex); \ 91 else \ 92 mtx_lock(&(tq)->tq_mutex); \ 93 } while (0) 94 #define TQ_ASSERT_LOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_OWNED) 95 96 #define TQ_UNLOCK(tq) \ 97 do { \ 98 if ((tq)->tq_spin) \ 99 mtx_unlock_spin(&(tq)->tq_mutex); \ 100 else \ 101 mtx_unlock(&(tq)->tq_mutex); \ 102 } while (0) 103 #define TQ_ASSERT_UNLOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED) 104 105 #ifdef INVARIANTS 106 static void 107 gtask_dump(struct gtask *gtask) 108 { 109 printf("gtask: %p ta_flags=%x ta_priority=%d ta_func=%p ta_context=%p\n", 110 gtask, gtask->ta_flags, gtask->ta_priority, gtask->ta_func, gtask->ta_context); 111 } 112 #endif 113 114 static __inline int 115 TQ_SLEEP(struct gtaskqueue *tq, void *p, const char *wm) 116 { 117 if (tq->tq_spin) 118 return (msleep_spin(p, (struct mtx *)&tq->tq_mutex, wm, 0)); 119 return (msleep(p, &tq->tq_mutex, 0, wm, 0)); 120 } 121 122 static struct gtaskqueue * 123 _gtaskqueue_create(const char *name, int mflags, 124 taskqueue_enqueue_fn enqueue, void *context, 125 int mtxflags, const char *mtxname __unused) 126 { 127 struct gtaskqueue *queue; 128 char *tq_name; 129 130 tq_name = malloc(TASKQUEUE_NAMELEN, M_GTASKQUEUE, mflags | M_ZERO); 131 if (!tq_name) 132 return (NULL); 133 134 snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue"); 135 136 queue = malloc(sizeof(struct gtaskqueue), M_GTASKQUEUE, mflags | M_ZERO); 137 if (!queue) { 138 free(tq_name, M_GTASKQUEUE); 139 return (NULL); 140 } 141 142 STAILQ_INIT(&queue->tq_queue); 143 LIST_INIT(&queue->tq_active); 144 queue->tq_enqueue = enqueue; 145 queue->tq_context = context; 146 queue->tq_name = tq_name; 147 queue->tq_spin = (mtxflags & MTX_SPIN) != 0; 148 queue->tq_flags |= TQ_FLAGS_ACTIVE; 149 if (enqueue == gtaskqueue_thread_enqueue) 150 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE; 151 mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags); 152 153 return (queue); 154 } 155 156 /* 157 * Signal a taskqueue thread to terminate. 158 */ 159 static void 160 gtaskqueue_terminate(struct thread **pp, struct gtaskqueue *tq) 161 { 162 163 while (tq->tq_tcount > 0 || tq->tq_callouts > 0) { 164 wakeup(tq); 165 TQ_SLEEP(tq, pp, "gtq_destroy"); 166 } 167 } 168 169 static void __unused 170 gtaskqueue_free(struct gtaskqueue *queue) 171 { 172 173 TQ_LOCK(queue); 174 queue->tq_flags &= ~TQ_FLAGS_ACTIVE; 175 gtaskqueue_terminate(queue->tq_threads, queue); 176 KASSERT(LIST_EMPTY(&queue->tq_active), ("Tasks still running?")); 177 KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks")); 178 mtx_destroy(&queue->tq_mutex); 179 free(queue->tq_threads, M_GTASKQUEUE); 180 free(queue->tq_name, M_GTASKQUEUE); 181 free(queue, M_GTASKQUEUE); 182 } 183 184 /* 185 * Wait for all to complete, then prevent it from being enqueued 186 */ 187 void 188 grouptask_block(struct grouptask *grouptask) 189 { 190 struct gtaskqueue *queue = grouptask->gt_taskqueue; 191 struct gtask *gtask = &grouptask->gt_task; 192 193 #ifdef INVARIANTS 194 if (queue == NULL) { 195 gtask_dump(gtask); 196 panic("queue == NULL"); 197 } 198 #endif 199 TQ_LOCK(queue); 200 gtask->ta_flags |= TASK_NOENQUEUE; 201 gtaskqueue_drain_locked(queue, gtask); 202 TQ_UNLOCK(queue); 203 } 204 205 void 206 grouptask_unblock(struct grouptask *grouptask) 207 { 208 struct gtaskqueue *queue = grouptask->gt_taskqueue; 209 struct gtask *gtask = &grouptask->gt_task; 210 211 #ifdef INVARIANTS 212 if (queue == NULL) { 213 gtask_dump(gtask); 214 panic("queue == NULL"); 215 } 216 #endif 217 TQ_LOCK(queue); 218 gtask->ta_flags &= ~TASK_NOENQUEUE; 219 TQ_UNLOCK(queue); 220 } 221 222 int 223 grouptaskqueue_enqueue(struct gtaskqueue *queue, struct gtask *gtask) 224 { 225 #ifdef INVARIANTS 226 if (queue == NULL) { 227 gtask_dump(gtask); 228 panic("queue == NULL"); 229 } 230 #endif 231 TQ_LOCK(queue); 232 if (gtask->ta_flags & TASK_ENQUEUED) { 233 TQ_UNLOCK(queue); 234 return (0); 235 } 236 if (gtask->ta_flags & TASK_NOENQUEUE) { 237 TQ_UNLOCK(queue); 238 return (EAGAIN); 239 } 240 STAILQ_INSERT_TAIL(&queue->tq_queue, gtask, ta_link); 241 gtask->ta_flags |= TASK_ENQUEUED; 242 TQ_UNLOCK(queue); 243 if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0) 244 queue->tq_enqueue(queue->tq_context); 245 return (0); 246 } 247 248 static void 249 gtaskqueue_task_nop_fn(void *context) 250 { 251 } 252 253 /* 254 * Block until all currently queued tasks in this taskqueue 255 * have begun execution. Tasks queued during execution of 256 * this function are ignored. 257 */ 258 static void 259 gtaskqueue_drain_tq_queue(struct gtaskqueue *queue) 260 { 261 struct gtask t_barrier; 262 263 if (STAILQ_EMPTY(&queue->tq_queue)) 264 return; 265 266 /* 267 * Enqueue our barrier after all current tasks, but with 268 * the highest priority so that newly queued tasks cannot 269 * pass it. Because of the high priority, we can not use 270 * taskqueue_enqueue_locked directly (which drops the lock 271 * anyway) so just insert it at tail while we have the 272 * queue lock. 273 */ 274 GTASK_INIT(&t_barrier, 0, USHRT_MAX, gtaskqueue_task_nop_fn, &t_barrier); 275 STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link); 276 t_barrier.ta_flags |= TASK_ENQUEUED; 277 278 /* 279 * Once the barrier has executed, all previously queued tasks 280 * have completed or are currently executing. 281 */ 282 while (t_barrier.ta_flags & TASK_ENQUEUED) 283 TQ_SLEEP(queue, &t_barrier, "gtq_qdrain"); 284 } 285 286 /* 287 * Block until all currently executing tasks for this taskqueue 288 * complete. Tasks that begin execution during the execution 289 * of this function are ignored. 290 */ 291 static void 292 gtaskqueue_drain_tq_active(struct gtaskqueue *queue) 293 { 294 struct gtaskqueue_busy *tb; 295 u_int seq; 296 297 if (LIST_EMPTY(&queue->tq_active)) 298 return; 299 300 /* Block taskq_terminate().*/ 301 queue->tq_callouts++; 302 303 /* Wait for any active task with sequence from the past. */ 304 seq = queue->tq_seq; 305 restart: 306 LIST_FOREACH(tb, &queue->tq_active, tb_link) { 307 if ((int)(tb->tb_seq - seq) <= 0) { 308 TQ_SLEEP(queue, tb->tb_running, "gtq_adrain"); 309 goto restart; 310 } 311 } 312 313 /* Release taskqueue_terminate(). */ 314 queue->tq_callouts--; 315 if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0) 316 wakeup_one(queue->tq_threads); 317 } 318 319 void 320 gtaskqueue_block(struct gtaskqueue *queue) 321 { 322 323 TQ_LOCK(queue); 324 queue->tq_flags |= TQ_FLAGS_BLOCKED; 325 TQ_UNLOCK(queue); 326 } 327 328 void 329 gtaskqueue_unblock(struct gtaskqueue *queue) 330 { 331 332 TQ_LOCK(queue); 333 queue->tq_flags &= ~TQ_FLAGS_BLOCKED; 334 if (!STAILQ_EMPTY(&queue->tq_queue)) 335 queue->tq_enqueue(queue->tq_context); 336 TQ_UNLOCK(queue); 337 } 338 339 static void 340 gtaskqueue_run_locked(struct gtaskqueue *queue) 341 { 342 struct epoch_tracker et; 343 struct gtaskqueue_busy tb; 344 struct gtask *gtask; 345 bool in_net_epoch; 346 347 KASSERT(queue != NULL, ("tq is NULL")); 348 TQ_ASSERT_LOCKED(queue); 349 tb.tb_running = NULL; 350 LIST_INSERT_HEAD(&queue->tq_active, &tb, tb_link); 351 in_net_epoch = false; 352 353 while ((gtask = STAILQ_FIRST(&queue->tq_queue)) != NULL) { 354 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link); 355 gtask->ta_flags &= ~TASK_ENQUEUED; 356 tb.tb_running = gtask; 357 tb.tb_seq = ++queue->tq_seq; 358 TQ_UNLOCK(queue); 359 360 KASSERT(gtask->ta_func != NULL, ("task->ta_func is NULL")); 361 if (!in_net_epoch && TASK_IS_NET(gtask)) { 362 in_net_epoch = true; 363 NET_EPOCH_ENTER(et); 364 } else if (in_net_epoch && !TASK_IS_NET(gtask)) { 365 NET_EPOCH_EXIT(et); 366 in_net_epoch = false; 367 } 368 gtask->ta_func(gtask->ta_context); 369 370 TQ_LOCK(queue); 371 wakeup(gtask); 372 } 373 if (in_net_epoch) 374 NET_EPOCH_EXIT(et); 375 LIST_REMOVE(&tb, tb_link); 376 } 377 378 static int 379 task_is_running(struct gtaskqueue *queue, struct gtask *gtask) 380 { 381 struct gtaskqueue_busy *tb; 382 383 TQ_ASSERT_LOCKED(queue); 384 LIST_FOREACH(tb, &queue->tq_active, tb_link) { 385 if (tb->tb_running == gtask) 386 return (1); 387 } 388 return (0); 389 } 390 391 static int 392 gtaskqueue_cancel_locked(struct gtaskqueue *queue, struct gtask *gtask) 393 { 394 395 if (gtask->ta_flags & TASK_ENQUEUED) 396 STAILQ_REMOVE(&queue->tq_queue, gtask, gtask, ta_link); 397 gtask->ta_flags &= ~TASK_ENQUEUED; 398 return (task_is_running(queue, gtask) ? EBUSY : 0); 399 } 400 401 int 402 gtaskqueue_cancel(struct gtaskqueue *queue, struct gtask *gtask) 403 { 404 int error; 405 406 TQ_LOCK(queue); 407 error = gtaskqueue_cancel_locked(queue, gtask); 408 TQ_UNLOCK(queue); 409 410 return (error); 411 } 412 413 static void 414 gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask) 415 { 416 while ((gtask->ta_flags & TASK_ENQUEUED) || task_is_running(queue, gtask)) 417 TQ_SLEEP(queue, gtask, "gtq_drain"); 418 } 419 420 void 421 gtaskqueue_drain(struct gtaskqueue *queue, struct gtask *gtask) 422 { 423 424 if (!queue->tq_spin) 425 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); 426 427 TQ_LOCK(queue); 428 gtaskqueue_drain_locked(queue, gtask); 429 TQ_UNLOCK(queue); 430 } 431 432 void 433 gtaskqueue_drain_all(struct gtaskqueue *queue) 434 { 435 436 if (!queue->tq_spin) 437 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); 438 439 TQ_LOCK(queue); 440 gtaskqueue_drain_tq_queue(queue); 441 gtaskqueue_drain_tq_active(queue); 442 TQ_UNLOCK(queue); 443 } 444 445 static int 446 _gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri, 447 cpuset_t *mask, const char *name, va_list ap) 448 { 449 char ktname[MAXCOMLEN + 1]; 450 struct thread *td; 451 struct gtaskqueue *tq; 452 int i, error; 453 454 if (count <= 0) 455 return (EINVAL); 456 457 vsnprintf(ktname, sizeof(ktname), name, ap); 458 tq = *tqp; 459 460 tq->tq_threads = malloc(sizeof(struct thread *) * count, M_GTASKQUEUE, 461 M_NOWAIT | M_ZERO); 462 if (tq->tq_threads == NULL) { 463 printf("%s: no memory for %s threads\n", __func__, ktname); 464 return (ENOMEM); 465 } 466 467 for (i = 0; i < count; i++) { 468 if (count == 1) 469 error = kthread_add(gtaskqueue_thread_loop, tqp, NULL, 470 &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname); 471 else 472 error = kthread_add(gtaskqueue_thread_loop, tqp, NULL, 473 &tq->tq_threads[i], RFSTOPPED, 0, 474 "%s_%d", ktname, i); 475 if (error) { 476 /* should be ok to continue, taskqueue_free will dtrt */ 477 printf("%s: kthread_add(%s): error %d", __func__, 478 ktname, error); 479 tq->tq_threads[i] = NULL; /* paranoid */ 480 } else 481 tq->tq_tcount++; 482 } 483 for (i = 0; i < count; i++) { 484 if (tq->tq_threads[i] == NULL) 485 continue; 486 td = tq->tq_threads[i]; 487 if (mask) { 488 error = cpuset_setthread(td->td_tid, mask); 489 /* 490 * Failing to pin is rarely an actual fatal error; 491 * it'll just affect performance. 492 */ 493 if (error) 494 printf("%s: curthread=%llu: can't pin; " 495 "error=%d\n", 496 __func__, 497 (unsigned long long) td->td_tid, 498 error); 499 } 500 thread_lock(td); 501 sched_prio(td, pri); 502 sched_add(td, SRQ_BORING); 503 } 504 505 return (0); 506 } 507 508 static int 509 gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri, 510 const char *name, ...) 511 { 512 va_list ap; 513 int error; 514 515 va_start(ap, name); 516 error = _gtaskqueue_start_threads(tqp, count, pri, NULL, name, ap); 517 va_end(ap); 518 return (error); 519 } 520 521 static inline void 522 gtaskqueue_run_callback(struct gtaskqueue *tq, 523 enum taskqueue_callback_type cb_type) 524 { 525 taskqueue_callback_fn tq_callback; 526 527 TQ_ASSERT_UNLOCKED(tq); 528 tq_callback = tq->tq_callbacks[cb_type]; 529 if (tq_callback != NULL) 530 tq_callback(tq->tq_cb_contexts[cb_type]); 531 } 532 533 static void 534 gtaskqueue_thread_loop(void *arg) 535 { 536 struct gtaskqueue **tqp, *tq; 537 538 tqp = arg; 539 tq = *tqp; 540 gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT); 541 TQ_LOCK(tq); 542 while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) { 543 /* XXX ? */ 544 gtaskqueue_run_locked(tq); 545 /* 546 * Because taskqueue_run() can drop tq_mutex, we need to 547 * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the 548 * meantime, which means we missed a wakeup. 549 */ 550 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0) 551 break; 552 TQ_SLEEP(tq, tq, "-"); 553 } 554 gtaskqueue_run_locked(tq); 555 /* 556 * This thread is on its way out, so just drop the lock temporarily 557 * in order to call the shutdown callback. This allows the callback 558 * to look at the taskqueue, even just before it dies. 559 */ 560 TQ_UNLOCK(tq); 561 gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN); 562 TQ_LOCK(tq); 563 564 /* rendezvous with thread that asked us to terminate */ 565 tq->tq_tcount--; 566 wakeup_one(tq->tq_threads); 567 TQ_UNLOCK(tq); 568 kthread_exit(); 569 } 570 571 static void 572 gtaskqueue_thread_enqueue(void *context) 573 { 574 struct gtaskqueue **tqp, *tq; 575 576 tqp = context; 577 tq = *tqp; 578 wakeup_any(tq); 579 } 580 581 static struct gtaskqueue * 582 gtaskqueue_create_fast(const char *name, int mflags, 583 taskqueue_enqueue_fn enqueue, void *context) 584 { 585 return _gtaskqueue_create(name, mflags, enqueue, context, 586 MTX_SPIN, "fast_taskqueue"); 587 } 588 589 struct taskqgroup_cpu { 590 LIST_HEAD(, grouptask) tgc_tasks; 591 struct gtaskqueue *tgc_taskq; 592 int tgc_cnt; 593 int tgc_cpu; 594 }; 595 596 struct taskqgroup { 597 struct taskqgroup_cpu tqg_queue[MAXCPU]; 598 struct mtx tqg_lock; 599 const char * tqg_name; 600 int tqg_cnt; 601 }; 602 603 struct taskq_bind_task { 604 struct gtask bt_task; 605 int bt_cpuid; 606 }; 607 608 static void 609 taskqgroup_cpu_create(struct taskqgroup *qgroup, int idx, int cpu) 610 { 611 struct taskqgroup_cpu *qcpu; 612 613 qcpu = &qgroup->tqg_queue[idx]; 614 LIST_INIT(&qcpu->tgc_tasks); 615 qcpu->tgc_taskq = gtaskqueue_create_fast(NULL, M_WAITOK, 616 gtaskqueue_thread_enqueue, &qcpu->tgc_taskq); 617 gtaskqueue_start_threads(&qcpu->tgc_taskq, 1, PI_SOFT, 618 "%s_%d", qgroup->tqg_name, idx); 619 qcpu->tgc_cpu = cpu; 620 } 621 622 /* 623 * Find the taskq with least # of tasks that doesn't currently have any 624 * other queues from the uniq identifier. 625 */ 626 static int 627 taskqgroup_find(struct taskqgroup *qgroup, void *uniq) 628 { 629 struct grouptask *n; 630 int i, idx, mincnt; 631 int strict; 632 633 mtx_assert(&qgroup->tqg_lock, MA_OWNED); 634 KASSERT(qgroup->tqg_cnt != 0, 635 ("qgroup %s has no queues", qgroup->tqg_name)); 636 637 /* 638 * Two passes: first scan for a queue with the least tasks that 639 * does not already service this uniq id. If that fails simply find 640 * the queue with the least total tasks. 641 */ 642 for (idx = -1, mincnt = INT_MAX, strict = 1; mincnt == INT_MAX; 643 strict = 0) { 644 for (i = 0; i < qgroup->tqg_cnt; i++) { 645 if (qgroup->tqg_queue[i].tgc_cnt > mincnt) 646 continue; 647 if (strict) { 648 LIST_FOREACH(n, &qgroup->tqg_queue[i].tgc_tasks, 649 gt_list) 650 if (n->gt_uniq == uniq) 651 break; 652 if (n != NULL) 653 continue; 654 } 655 mincnt = qgroup->tqg_queue[i].tgc_cnt; 656 idx = i; 657 } 658 } 659 if (idx == -1) 660 panic("%s: failed to pick a qid.", __func__); 661 662 return (idx); 663 } 664 665 void 666 taskqgroup_attach(struct taskqgroup *qgroup, struct grouptask *gtask, 667 void *uniq, device_t dev, struct resource *irq, const char *name) 668 { 669 int cpu, qid, error; 670 671 KASSERT(qgroup->tqg_cnt > 0, 672 ("qgroup %s has no queues", qgroup->tqg_name)); 673 674 gtask->gt_uniq = uniq; 675 snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask"); 676 gtask->gt_dev = dev; 677 gtask->gt_irq = irq; 678 gtask->gt_cpu = -1; 679 mtx_lock(&qgroup->tqg_lock); 680 qid = taskqgroup_find(qgroup, uniq); 681 qgroup->tqg_queue[qid].tgc_cnt++; 682 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list); 683 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; 684 if (dev != NULL && irq != NULL) { 685 cpu = qgroup->tqg_queue[qid].tgc_cpu; 686 gtask->gt_cpu = cpu; 687 mtx_unlock(&qgroup->tqg_lock); 688 error = bus_bind_intr(dev, irq, cpu); 689 if (error) 690 printf("%s: binding interrupt failed for %s: %d\n", 691 __func__, gtask->gt_name, error); 692 } else 693 mtx_unlock(&qgroup->tqg_lock); 694 } 695 696 int 697 taskqgroup_attach_cpu(struct taskqgroup *qgroup, struct grouptask *gtask, 698 void *uniq, int cpu, device_t dev, struct resource *irq, const char *name) 699 { 700 int i, qid, error; 701 702 gtask->gt_uniq = uniq; 703 snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask"); 704 gtask->gt_dev = dev; 705 gtask->gt_irq = irq; 706 gtask->gt_cpu = cpu; 707 mtx_lock(&qgroup->tqg_lock); 708 for (i = 0, qid = -1; i < qgroup->tqg_cnt; i++) 709 if (qgroup->tqg_queue[i].tgc_cpu == cpu) { 710 qid = i; 711 break; 712 } 713 if (qid == -1) { 714 mtx_unlock(&qgroup->tqg_lock); 715 printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu); 716 return (EINVAL); 717 } 718 qgroup->tqg_queue[qid].tgc_cnt++; 719 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list); 720 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; 721 cpu = qgroup->tqg_queue[qid].tgc_cpu; 722 mtx_unlock(&qgroup->tqg_lock); 723 724 if (dev != NULL && irq != NULL) { 725 error = bus_bind_intr(dev, irq, cpu); 726 if (error) 727 printf("%s: binding interrupt failed for %s: %d\n", 728 __func__, gtask->gt_name, error); 729 } 730 return (0); 731 } 732 733 void 734 taskqgroup_detach(struct taskqgroup *qgroup, struct grouptask *gtask) 735 { 736 int i; 737 738 grouptask_block(gtask); 739 mtx_lock(&qgroup->tqg_lock); 740 for (i = 0; i < qgroup->tqg_cnt; i++) 741 if (qgroup->tqg_queue[i].tgc_taskq == gtask->gt_taskqueue) 742 break; 743 if (i == qgroup->tqg_cnt) 744 panic("%s: task %s not in group", __func__, gtask->gt_name); 745 qgroup->tqg_queue[i].tgc_cnt--; 746 LIST_REMOVE(gtask, gt_list); 747 mtx_unlock(&qgroup->tqg_lock); 748 gtask->gt_taskqueue = NULL; 749 gtask->gt_task.ta_flags &= ~TASK_NOENQUEUE; 750 } 751 752 static void 753 taskqgroup_binder(void *ctx) 754 { 755 struct taskq_bind_task *gtask; 756 cpuset_t mask; 757 int error; 758 759 gtask = ctx; 760 CPU_ZERO(&mask); 761 CPU_SET(gtask->bt_cpuid, &mask); 762 error = cpuset_setthread(curthread->td_tid, &mask); 763 thread_lock(curthread); 764 sched_bind(curthread, gtask->bt_cpuid); 765 thread_unlock(curthread); 766 767 if (error) 768 printf("%s: binding curthread failed: %d\n", __func__, error); 769 free(gtask, M_DEVBUF); 770 } 771 772 void 773 taskqgroup_bind(struct taskqgroup *qgroup) 774 { 775 struct taskq_bind_task *gtask; 776 int i; 777 778 /* 779 * Bind taskqueue threads to specific CPUs, if they have been assigned 780 * one. 781 */ 782 if (qgroup->tqg_cnt == 1) 783 return; 784 785 for (i = 0; i < qgroup->tqg_cnt; i++) { 786 gtask = malloc(sizeof(*gtask), M_DEVBUF, M_WAITOK); 787 GTASK_INIT(>ask->bt_task, 0, 0, taskqgroup_binder, gtask); 788 gtask->bt_cpuid = qgroup->tqg_queue[i].tgc_cpu; 789 grouptaskqueue_enqueue(qgroup->tqg_queue[i].tgc_taskq, 790 >ask->bt_task); 791 } 792 } 793 794 struct taskqgroup * 795 taskqgroup_create(const char *name, int cnt, int stride) 796 { 797 struct taskqgroup *qgroup; 798 int cpu, i, j; 799 800 qgroup = malloc(sizeof(*qgroup), M_GTASKQUEUE, M_WAITOK | M_ZERO); 801 mtx_init(&qgroup->tqg_lock, "taskqgroup", NULL, MTX_DEF); 802 qgroup->tqg_name = name; 803 qgroup->tqg_cnt = cnt; 804 805 for (cpu = i = 0; i < cnt; i++) { 806 taskqgroup_cpu_create(qgroup, i, cpu); 807 for (j = 0; j < stride; j++) 808 cpu = CPU_NEXT(cpu); 809 } 810 return (qgroup); 811 } 812 813 void 814 taskqgroup_destroy(struct taskqgroup *qgroup) 815 { 816 } 817 818 void 819 taskqgroup_drain_all(struct taskqgroup *tqg) 820 { 821 struct gtaskqueue *q; 822 823 for (int i = 0; i < mp_ncpus; i++) { 824 q = tqg->tqg_queue[i].tgc_taskq; 825 if (q == NULL) 826 continue; 827 gtaskqueue_drain_all(q); 828 } 829 } 830