xref: /freebsd/sys/kern/subr_devstat.c (revision 1631382cf2820245cc72965498ff174bb548dd63)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/disk.h>
33 #include <sys/kernel.h>
34 #include <sys/systm.h>
35 #include <sys/bio.h>
36 #include <sys/devicestat.h>
37 #include <sys/sdt.h>
38 #include <sys/sysctl.h>
39 #include <sys/malloc.h>
40 #include <sys/lock.h>
41 #include <sys/mutex.h>
42 #include <sys/conf.h>
43 #include <vm/vm.h>
44 #include <vm/pmap.h>
45 
46 #include <machine/atomic.h>
47 
48 SDT_PROVIDER_DEFINE(io);
49 
50 SDT_PROBE_DEFINE2(io, , , start, "struct bio *", "struct devstat *");
51 SDT_PROBE_DEFINE2(io, , , done, "struct bio *", "struct devstat *");
52 
53 #define	DTRACE_DEVSTAT_BIO_START()	SDT_PROBE2(io, , , start, bp, ds)
54 #define	DTRACE_DEVSTAT_BIO_DONE()	SDT_PROBE2(io, , , done, bp, ds)
55 
56 static int devstat_num_devs;
57 static long devstat_generation = 1;
58 static int devstat_version = DEVSTAT_VERSION;
59 static int devstat_current_devnumber;
60 static struct mtx devstat_mutex;
61 MTX_SYSINIT(devstat_mutex, &devstat_mutex, "devstat", MTX_DEF);
62 
63 static struct devstatlist device_statq = STAILQ_HEAD_INITIALIZER(device_statq);
64 static struct devstat *devstat_alloc(void);
65 static void devstat_free(struct devstat *);
66 static void devstat_add_entry(struct devstat *ds, const void *dev_name,
67 		       int unit_number, uint32_t block_size,
68 		       devstat_support_flags flags,
69 		       devstat_type_flags device_type,
70 		       devstat_priority priority);
71 
72 /*
73  * Allocate a devstat and initialize it
74  */
75 struct devstat *
76 devstat_new_entry(const void *dev_name,
77 		  int unit_number, uint32_t block_size,
78 		  devstat_support_flags flags,
79 		  devstat_type_flags device_type,
80 		  devstat_priority priority)
81 {
82 	struct devstat *ds;
83 
84 	mtx_assert(&devstat_mutex, MA_NOTOWNED);
85 
86 	ds = devstat_alloc();
87 	mtx_lock(&devstat_mutex);
88 	if (unit_number == -1) {
89 		ds->unit_number = unit_number;
90 		ds->id = dev_name;
91 		binuptime(&ds->creation_time);
92 		devstat_generation++;
93 	} else {
94 		devstat_add_entry(ds, dev_name, unit_number, block_size,
95 				  flags, device_type, priority);
96 	}
97 	mtx_unlock(&devstat_mutex);
98 	return (ds);
99 }
100 
101 /*
102  * Take a malloced and zeroed devstat structure given to us, fill it in
103  * and add it to the queue of devices.
104  */
105 static void
106 devstat_add_entry(struct devstat *ds, const void *dev_name,
107 		  int unit_number, uint32_t block_size,
108 		  devstat_support_flags flags,
109 		  devstat_type_flags device_type,
110 		  devstat_priority priority)
111 {
112 	struct devstatlist *devstat_head;
113 	struct devstat *ds_tmp;
114 
115 	mtx_assert(&devstat_mutex, MA_OWNED);
116 	devstat_num_devs++;
117 
118 	devstat_head = &device_statq;
119 
120 	/*
121 	 * Priority sort.  Each driver passes in its priority when it adds
122 	 * its devstat entry.  Drivers are sorted first by priority, and
123 	 * then by probe order.
124 	 *
125 	 * For the first device, we just insert it, since the priority
126 	 * doesn't really matter yet.  Subsequent devices are inserted into
127 	 * the list using the order outlined above.
128 	 */
129 	if (devstat_num_devs == 1)
130 		STAILQ_INSERT_TAIL(devstat_head, ds, dev_links);
131 	else {
132 		STAILQ_FOREACH(ds_tmp, devstat_head, dev_links) {
133 			struct devstat *ds_next;
134 
135 			ds_next = STAILQ_NEXT(ds_tmp, dev_links);
136 
137 			/*
138 			 * If we find a break between higher and lower
139 			 * priority items, and if this item fits in the
140 			 * break, insert it.  This also applies if the
141 			 * "lower priority item" is the end of the list.
142 			 */
143 			if ((priority <= ds_tmp->priority)
144 			 && ((ds_next == NULL)
145 			   || (priority > ds_next->priority))) {
146 				STAILQ_INSERT_AFTER(devstat_head, ds_tmp, ds,
147 						    dev_links);
148 				break;
149 			} else if (priority > ds_tmp->priority) {
150 				/*
151 				 * If this is the case, we should be able
152 				 * to insert ourselves at the head of the
153 				 * list.  If we can't, something is wrong.
154 				 */
155 				if (ds_tmp == STAILQ_FIRST(devstat_head)) {
156 					STAILQ_INSERT_HEAD(devstat_head,
157 							   ds, dev_links);
158 					break;
159 				} else {
160 					STAILQ_INSERT_TAIL(devstat_head,
161 							   ds, dev_links);
162 					printf("devstat_add_entry: HELP! "
163 					       "sorting problem detected "
164 					       "for name %p unit %d\n",
165 					       dev_name, unit_number);
166 					break;
167 				}
168 			}
169 		}
170 	}
171 
172 	ds->device_number = devstat_current_devnumber++;
173 	ds->unit_number = unit_number;
174 	strlcpy(ds->device_name, dev_name, DEVSTAT_NAME_LEN);
175 	ds->block_size = block_size;
176 	ds->flags = flags;
177 	ds->device_type = device_type;
178 	ds->priority = priority;
179 	binuptime(&ds->creation_time);
180 	devstat_generation++;
181 }
182 
183 /*
184  * Remove a devstat structure from the list of devices.
185  */
186 void
187 devstat_remove_entry(struct devstat *ds)
188 {
189 	struct devstatlist *devstat_head;
190 
191 	mtx_assert(&devstat_mutex, MA_NOTOWNED);
192 	if (ds == NULL)
193 		return;
194 
195 	mtx_lock(&devstat_mutex);
196 
197 	devstat_head = &device_statq;
198 
199 	/* Remove this entry from the devstat queue */
200 	atomic_add_acq_int(&ds->sequence1, 1);
201 	if (ds->unit_number != -1) {
202 		devstat_num_devs--;
203 		STAILQ_REMOVE(devstat_head, ds, devstat, dev_links);
204 	}
205 	devstat_free(ds);
206 	devstat_generation++;
207 	mtx_unlock(&devstat_mutex);
208 }
209 
210 /*
211  * Record a transaction start.
212  *
213  * See comments for devstat_end_transaction().  Ordering is very important
214  * here.
215  */
216 void
217 devstat_start_transaction(struct devstat *ds, const struct bintime *now)
218 {
219 
220 	/* sanity check */
221 	if (ds == NULL)
222 		return;
223 
224 	atomic_add_acq_int(&ds->sequence1, 1);
225 	/*
226 	 * We only want to set the start time when we are going from idle
227 	 * to busy.  The start time is really the start of the latest busy
228 	 * period.
229 	 */
230 	if (atomic_fetchadd_int(&ds->start_count, 1) == ds->end_count) {
231 		if (now != NULL)
232 			ds->busy_from = *now;
233 		else
234 			binuptime(&ds->busy_from);
235 	}
236 	atomic_add_rel_int(&ds->sequence0, 1);
237 }
238 
239 void
240 devstat_start_transaction_bio(struct devstat *ds, struct bio *bp)
241 {
242 
243 	/* sanity check */
244 	if (ds == NULL)
245 		return;
246 
247 	binuptime(&bp->bio_t0);
248 	devstat_start_transaction_bio_t0(ds, bp);
249 }
250 
251 void
252 devstat_start_transaction_bio_t0(struct devstat *ds, struct bio *bp)
253 {
254 
255 	/* sanity check */
256 	if (ds == NULL)
257 		return;
258 
259 	devstat_start_transaction(ds, &bp->bio_t0);
260 	DTRACE_DEVSTAT_BIO_START();
261 }
262 
263 /*
264  * Record the ending of a transaction, and incrment the various counters.
265  *
266  * Ordering in this function, and in devstat_start_transaction() is VERY
267  * important.  The idea here is to run without locks, so we are very
268  * careful to only modify some fields on the way "down" (i.e. at
269  * transaction start) and some fields on the way "up" (i.e. at transaction
270  * completion).  One exception is busy_from, which we only modify in
271  * devstat_start_transaction() when there are no outstanding transactions,
272  * and thus it can't be modified in devstat_end_transaction()
273  * simultaneously.
274  *
275  * The sequence0 and sequence1 fields are provided to enable an application
276  * spying on the structures with mmap(2) to tell when a structure is in a
277  * consistent state or not.
278  *
279  * For this to work 100% reliably, it is important that the two fields
280  * are at opposite ends of the structure and that they are incremented
281  * in the opposite order of how a memcpy(3) in userland would copy them.
282  * We assume that the copying happens front to back, but there is actually
283  * no way short of writing your own memcpy(3) replacement to guarantee
284  * this will be the case.
285  *
286  * In addition to this, being a kind of locks, they must be updated with
287  * atomic instructions using appropriate memory barriers.
288  */
289 void
290 devstat_end_transaction(struct devstat *ds, uint32_t bytes,
291 			devstat_tag_type tag_type, devstat_trans_flags flags,
292 			const struct bintime *now, const struct bintime *then)
293 {
294 	struct bintime dt, lnow;
295 
296 	/* sanity check */
297 	if (ds == NULL)
298 		return;
299 
300 	if (now == NULL) {
301 		binuptime(&lnow);
302 		now = &lnow;
303 	}
304 
305 	atomic_add_acq_int(&ds->sequence1, 1);
306 	/* Update byte and operations counts */
307 	ds->bytes[flags] += bytes;
308 	ds->operations[flags]++;
309 
310 	/*
311 	 * Keep a count of the various tag types sent.
312 	 */
313 	if ((ds->flags & DEVSTAT_NO_ORDERED_TAGS) == 0 &&
314 	    tag_type != DEVSTAT_TAG_NONE)
315 		ds->tag_types[tag_type]++;
316 
317 	if (then != NULL) {
318 		/* Update duration of operations */
319 		dt = *now;
320 		bintime_sub(&dt, then);
321 		bintime_add(&ds->duration[flags], &dt);
322 	}
323 
324 	/* Accumulate busy time */
325 	dt = *now;
326 	bintime_sub(&dt, &ds->busy_from);
327 	bintime_add(&ds->busy_time, &dt);
328 	ds->busy_from = *now;
329 
330 	ds->end_count++;
331 	atomic_add_rel_int(&ds->sequence0, 1);
332 }
333 
334 void
335 devstat_end_transaction_bio(struct devstat *ds, const struct bio *bp)
336 {
337 
338 	devstat_end_transaction_bio_bt(ds, bp, NULL);
339 }
340 
341 void
342 devstat_end_transaction_bio_bt(struct devstat *ds, const struct bio *bp,
343     const struct bintime *now)
344 {
345 	devstat_trans_flags flg;
346 	devstat_tag_type tag;
347 
348 	/* sanity check */
349 	if (ds == NULL)
350 		return;
351 
352 	if (bp->bio_flags & BIO_ORDERED)
353 		tag = DEVSTAT_TAG_ORDERED;
354 	else
355 		tag = DEVSTAT_TAG_SIMPLE;
356 	if (bp->bio_cmd == BIO_DELETE)
357 		flg = DEVSTAT_FREE;
358 	else if ((bp->bio_cmd == BIO_READ)
359 	      || ((bp->bio_cmd == BIO_ZONE)
360 	       && (bp->bio_zone.zone_cmd == DISK_ZONE_REPORT_ZONES)))
361 		flg = DEVSTAT_READ;
362 	else if (bp->bio_cmd == BIO_WRITE)
363 		flg = DEVSTAT_WRITE;
364 	else
365 		flg = DEVSTAT_NO_DATA;
366 
367 	devstat_end_transaction(ds, bp->bio_bcount - bp->bio_resid,
368 				tag, flg, now, &bp->bio_t0);
369 	DTRACE_DEVSTAT_BIO_DONE();
370 }
371 
372 /*
373  * This is the sysctl handler for the devstat package.  The data pushed out
374  * on the kern.devstat.all sysctl variable consists of the current devstat
375  * generation number, and then an array of devstat structures, one for each
376  * device in the system.
377  *
378  * This is more cryptic that obvious, but basically we neither can nor
379  * want to hold the devstat_mutex for any amount of time, so we grab it
380  * only when we need to and keep an eye on devstat_generation all the time.
381  */
382 static int
383 sysctl_devstat(SYSCTL_HANDLER_ARGS)
384 {
385 	int error;
386 	long mygen;
387 	struct devstat *nds;
388 
389 	mtx_assert(&devstat_mutex, MA_NOTOWNED);
390 
391 	/*
392 	 * XXX devstat_generation should really be "volatile" but that
393 	 * XXX freaks out the sysctl macro below.  The places where we
394 	 * XXX change it and inspect it are bracketed in the mutex which
395 	 * XXX guarantees us proper write barriers.  I don't believe the
396 	 * XXX compiler is allowed to optimize mygen away across calls
397 	 * XXX to other functions, so the following is belived to be safe.
398 	 */
399 	mygen = devstat_generation;
400 
401 	error = SYSCTL_OUT(req, &mygen, sizeof(mygen));
402 
403 	if (devstat_num_devs == 0)
404 		return(0);
405 
406 	if (error != 0)
407 		return (error);
408 
409 	mtx_lock(&devstat_mutex);
410 	nds = STAILQ_FIRST(&device_statq);
411 	if (mygen != devstat_generation)
412 		error = EBUSY;
413 	mtx_unlock(&devstat_mutex);
414 
415 	if (error != 0)
416 		return (error);
417 
418 	for (;nds != NULL;) {
419 		error = SYSCTL_OUT(req, nds, sizeof(struct devstat));
420 		if (error != 0)
421 			return (error);
422 		mtx_lock(&devstat_mutex);
423 		if (mygen != devstat_generation)
424 			error = EBUSY;
425 		else
426 			nds = STAILQ_NEXT(nds, dev_links);
427 		mtx_unlock(&devstat_mutex);
428 		if (error != 0)
429 			return (error);
430 	}
431 	return(error);
432 }
433 
434 /*
435  * Sysctl entries for devstat.  The first one is a node that all the rest
436  * hang off of.
437  */
438 static SYSCTL_NODE(_kern, OID_AUTO, devstat, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
439     "Device Statistics");
440 
441 SYSCTL_PROC(_kern_devstat, OID_AUTO, all,
442     CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, NULL, 0,
443     sysctl_devstat, "S,devstat",
444     "All devices in the devstat list");
445 /*
446  * Export the number of devices in the system so that userland utilities
447  * can determine how much memory to allocate to hold all the devices.
448  */
449 SYSCTL_INT(_kern_devstat, OID_AUTO, numdevs, CTLFLAG_RD,
450     &devstat_num_devs, 0, "Number of devices in the devstat list");
451 SYSCTL_LONG(_kern_devstat, OID_AUTO, generation, CTLFLAG_RD,
452     &devstat_generation, 0, "Devstat list generation");
453 SYSCTL_INT(_kern_devstat, OID_AUTO, version, CTLFLAG_RD,
454     &devstat_version, 0, "Devstat list version number");
455 
456 /*
457  * Allocator for struct devstat structures.  We sub-allocate these from pages
458  * which we get from malloc.  These pages are exported for mmap(2)'ing through
459  * a miniature device driver
460  */
461 
462 #define statsperpage (PAGE_SIZE / sizeof(struct devstat))
463 
464 static d_ioctl_t devstat_ioctl;
465 static d_mmap_t devstat_mmap;
466 
467 static struct cdevsw devstat_cdevsw = {
468 	.d_version =	D_VERSION,
469 	.d_ioctl =	devstat_ioctl,
470 	.d_mmap =	devstat_mmap,
471 	.d_name =	"devstat",
472 };
473 
474 struct statspage {
475 	TAILQ_ENTRY(statspage)	list;
476 	struct devstat		*stat;
477 	u_int			nfree;
478 };
479 
480 static size_t pagelist_pages = 0;
481 static TAILQ_HEAD(, statspage)	pagelist = TAILQ_HEAD_INITIALIZER(pagelist);
482 static MALLOC_DEFINE(M_DEVSTAT, "devstat", "Device statistics");
483 
484 static int
485 devstat_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
486     struct thread *td)
487 {
488 	int error = ENOTTY;
489 
490 	switch (cmd) {
491 	case DIOCGMEDIASIZE:
492 		error = 0;
493 		*(off_t *)data = pagelist_pages * PAGE_SIZE;
494 		break;
495 	}
496 
497 	return (error);
498 }
499 
500 static int
501 devstat_mmap(struct cdev *dev, vm_ooffset_t offset, vm_paddr_t *paddr,
502     int nprot, vm_memattr_t *memattr)
503 {
504 	struct statspage *spp;
505 
506 	if (nprot != VM_PROT_READ)
507 		return (-1);
508 	mtx_lock(&devstat_mutex);
509 	TAILQ_FOREACH(spp, &pagelist, list) {
510 		if (offset == 0) {
511 			*paddr = vtophys(spp->stat);
512 			mtx_unlock(&devstat_mutex);
513 			return (0);
514 		}
515 		offset -= PAGE_SIZE;
516 	}
517 	mtx_unlock(&devstat_mutex);
518 	return (-1);
519 }
520 
521 static struct devstat *
522 devstat_alloc(void)
523 {
524 	struct devstat *dsp;
525 	struct statspage *spp, *spp2;
526 	u_int u;
527 	static int once;
528 
529 	mtx_assert(&devstat_mutex, MA_NOTOWNED);
530 	if (!once) {
531 		make_dev_credf(MAKEDEV_ETERNAL | MAKEDEV_CHECKNAME,
532 		    &devstat_cdevsw, 0, NULL, UID_ROOT, GID_WHEEL, 0444,
533 		    DEVSTAT_DEVICE_NAME);
534 		once = 1;
535 	}
536 	spp2 = NULL;
537 	mtx_lock(&devstat_mutex);
538 	for (;;) {
539 		TAILQ_FOREACH(spp, &pagelist, list) {
540 			if (spp->nfree > 0)
541 				break;
542 		}
543 		if (spp != NULL)
544 			break;
545 		mtx_unlock(&devstat_mutex);
546 		spp2 = malloc(sizeof *spp, M_DEVSTAT, M_ZERO | M_WAITOK);
547 		spp2->stat = malloc(PAGE_SIZE, M_DEVSTAT, M_ZERO | M_WAITOK);
548 		spp2->nfree = statsperpage;
549 
550 		/*
551 		 * If free statspages were added while the lock was released
552 		 * just reuse them.
553 		 */
554 		mtx_lock(&devstat_mutex);
555 		TAILQ_FOREACH(spp, &pagelist, list)
556 			if (spp->nfree > 0)
557 				break;
558 		if (spp == NULL) {
559 			spp = spp2;
560 
561 			/*
562 			 * It would make more sense to add the new page at the
563 			 * head but the order on the list determine the
564 			 * sequence of the mapping so we can't do that.
565 			 */
566 			pagelist_pages++;
567 			TAILQ_INSERT_TAIL(&pagelist, spp, list);
568 		} else
569 			break;
570 	}
571 	dsp = spp->stat;
572 	for (u = 0; u < statsperpage; u++) {
573 		if (dsp->allocated == 0)
574 			break;
575 		dsp++;
576 	}
577 	spp->nfree--;
578 	dsp->allocated = 1;
579 	mtx_unlock(&devstat_mutex);
580 	if (spp2 != NULL && spp2 != spp) {
581 		free(spp2->stat, M_DEVSTAT);
582 		free(spp2, M_DEVSTAT);
583 	}
584 	return (dsp);
585 }
586 
587 static void
588 devstat_free(struct devstat *dsp)
589 {
590 	struct statspage *spp;
591 
592 	mtx_assert(&devstat_mutex, MA_OWNED);
593 	bzero(dsp, sizeof *dsp);
594 	TAILQ_FOREACH(spp, &pagelist, list) {
595 		if (dsp >= spp->stat && dsp < (spp->stat + statsperpage)) {
596 			spp->nfree++;
597 			return;
598 		}
599 	}
600 }
601 
602 SYSCTL_INT(_debug_sizeof, OID_AUTO, devstat, CTLFLAG_RD,
603     SYSCTL_NULL_INT_PTR, sizeof(struct devstat), "sizeof(struct devstat)");
604