1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997,1998,2003 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_bus.h" 33 #include "opt_ddb.h" 34 35 #include <sys/param.h> 36 #include <sys/conf.h> 37 #include <sys/domainset.h> 38 #include <sys/eventhandler.h> 39 #include <sys/filio.h> 40 #include <sys/lock.h> 41 #include <sys/kernel.h> 42 #include <sys/kobj.h> 43 #include <sys/limits.h> 44 #include <sys/malloc.h> 45 #include <sys/module.h> 46 #include <sys/mutex.h> 47 #include <sys/poll.h> 48 #include <sys/priv.h> 49 #include <sys/proc.h> 50 #include <sys/condvar.h> 51 #include <sys/queue.h> 52 #include <machine/bus.h> 53 #include <sys/random.h> 54 #include <sys/refcount.h> 55 #include <sys/rman.h> 56 #include <sys/sbuf.h> 57 #include <sys/selinfo.h> 58 #include <sys/signalvar.h> 59 #include <sys/smp.h> 60 #include <sys/sysctl.h> 61 #include <sys/systm.h> 62 #include <sys/uio.h> 63 #include <sys/bus.h> 64 #include <sys/cpuset.h> 65 66 #include <net/vnet.h> 67 68 #include <machine/cpu.h> 69 #include <machine/stdarg.h> 70 71 #include <vm/uma.h> 72 #include <vm/vm.h> 73 74 #include <ddb/ddb.h> 75 76 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 77 NULL); 78 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 79 NULL); 80 81 /* 82 * Used to attach drivers to devclasses. 83 */ 84 typedef struct driverlink *driverlink_t; 85 struct driverlink { 86 kobj_class_t driver; 87 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 88 int pass; 89 int flags; 90 #define DL_DEFERRED_PROBE 1 /* Probe deferred on this */ 91 TAILQ_ENTRY(driverlink) passlink; 92 }; 93 94 /* 95 * Forward declarations 96 */ 97 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 98 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 99 typedef TAILQ_HEAD(device_list, _device) device_list_t; 100 101 struct devclass { 102 TAILQ_ENTRY(devclass) link; 103 devclass_t parent; /* parent in devclass hierarchy */ 104 driver_list_t drivers; /* bus devclasses store drivers for bus */ 105 char *name; 106 device_t *devices; /* array of devices indexed by unit */ 107 int maxunit; /* size of devices array */ 108 int flags; 109 #define DC_HAS_CHILDREN 1 110 111 struct sysctl_ctx_list sysctl_ctx; 112 struct sysctl_oid *sysctl_tree; 113 }; 114 115 /** 116 * @brief Implementation of _device. 117 * 118 * The structure is named "_device" instead of "device" to avoid type confusion 119 * caused by other subsystems defining a (struct device). 120 */ 121 struct _device { 122 /* 123 * A device is a kernel object. The first field must be the 124 * current ops table for the object. 125 */ 126 KOBJ_FIELDS; 127 128 /* 129 * Device hierarchy. 130 */ 131 TAILQ_ENTRY(_device) link; /**< list of devices in parent */ 132 TAILQ_ENTRY(_device) devlink; /**< global device list membership */ 133 device_t parent; /**< parent of this device */ 134 device_list_t children; /**< list of child devices */ 135 136 /* 137 * Details of this device. 138 */ 139 driver_t *driver; /**< current driver */ 140 devclass_t devclass; /**< current device class */ 141 int unit; /**< current unit number */ 142 char* nameunit; /**< name+unit e.g. foodev0 */ 143 char* desc; /**< driver specific description */ 144 u_int busy; /**< count of calls to device_busy() */ 145 device_state_t state; /**< current device state */ 146 uint32_t devflags; /**< api level flags for device_get_flags() */ 147 u_int flags; /**< internal device flags */ 148 u_int order; /**< order from device_add_child_ordered() */ 149 void *ivars; /**< instance variables */ 150 void *softc; /**< current driver's variables */ 151 152 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 153 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 154 }; 155 156 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 157 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 158 159 EVENTHANDLER_LIST_DEFINE(device_attach); 160 EVENTHANDLER_LIST_DEFINE(device_detach); 161 EVENTHANDLER_LIST_DEFINE(dev_lookup); 162 163 static void devctl2_init(void); 164 static bool device_frozen; 165 166 #define DRIVERNAME(d) ((d)? d->name : "no driver") 167 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 168 169 #ifdef BUS_DEBUG 170 171 static int bus_debug = 1; 172 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 173 "Bus debug level"); 174 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 175 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 176 177 /** 178 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 179 * prevent syslog from deleting initial spaces 180 */ 181 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 182 183 static void print_device_short(device_t dev, int indent); 184 static void print_device(device_t dev, int indent); 185 void print_device_tree_short(device_t dev, int indent); 186 void print_device_tree(device_t dev, int indent); 187 static void print_driver_short(driver_t *driver, int indent); 188 static void print_driver(driver_t *driver, int indent); 189 static void print_driver_list(driver_list_t drivers, int indent); 190 static void print_devclass_short(devclass_t dc, int indent); 191 static void print_devclass(devclass_t dc, int indent); 192 void print_devclass_list_short(void); 193 void print_devclass_list(void); 194 195 #else 196 /* Make the compiler ignore the function calls */ 197 #define PDEBUG(a) /* nop */ 198 #define DEVICENAME(d) /* nop */ 199 200 #define print_device_short(d,i) /* nop */ 201 #define print_device(d,i) /* nop */ 202 #define print_device_tree_short(d,i) /* nop */ 203 #define print_device_tree(d,i) /* nop */ 204 #define print_driver_short(d,i) /* nop */ 205 #define print_driver(d,i) /* nop */ 206 #define print_driver_list(d,i) /* nop */ 207 #define print_devclass_short(d,i) /* nop */ 208 #define print_devclass(d,i) /* nop */ 209 #define print_devclass_list_short() /* nop */ 210 #define print_devclass_list() /* nop */ 211 #endif 212 213 /* 214 * dev sysctl tree 215 */ 216 217 enum { 218 DEVCLASS_SYSCTL_PARENT, 219 }; 220 221 static int 222 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 223 { 224 devclass_t dc = (devclass_t)arg1; 225 const char *value; 226 227 switch (arg2) { 228 case DEVCLASS_SYSCTL_PARENT: 229 value = dc->parent ? dc->parent->name : ""; 230 break; 231 default: 232 return (EINVAL); 233 } 234 return (SYSCTL_OUT_STR(req, value)); 235 } 236 237 static void 238 devclass_sysctl_init(devclass_t dc) 239 { 240 if (dc->sysctl_tree != NULL) 241 return; 242 sysctl_ctx_init(&dc->sysctl_ctx); 243 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 244 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 245 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 246 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 247 OID_AUTO, "%parent", 248 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 249 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 250 "parent class"); 251 } 252 253 enum { 254 DEVICE_SYSCTL_DESC, 255 DEVICE_SYSCTL_DRIVER, 256 DEVICE_SYSCTL_LOCATION, 257 DEVICE_SYSCTL_PNPINFO, 258 DEVICE_SYSCTL_PARENT, 259 }; 260 261 static int 262 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 263 { 264 struct sbuf sb; 265 device_t dev = (device_t)arg1; 266 int error; 267 268 sbuf_new_for_sysctl(&sb, NULL, 1024, req); 269 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 270 bus_topo_lock(); 271 switch (arg2) { 272 case DEVICE_SYSCTL_DESC: 273 sbuf_cat(&sb, dev->desc ? dev->desc : ""); 274 break; 275 case DEVICE_SYSCTL_DRIVER: 276 sbuf_cat(&sb, dev->driver ? dev->driver->name : ""); 277 break; 278 case DEVICE_SYSCTL_LOCATION: 279 bus_child_location(dev, &sb); 280 break; 281 case DEVICE_SYSCTL_PNPINFO: 282 bus_child_pnpinfo(dev, &sb); 283 break; 284 case DEVICE_SYSCTL_PARENT: 285 sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : ""); 286 break; 287 default: 288 error = EINVAL; 289 goto out; 290 } 291 error = sbuf_finish(&sb); 292 out: 293 bus_topo_unlock(); 294 sbuf_delete(&sb); 295 return (error); 296 } 297 298 static void 299 device_sysctl_init(device_t dev) 300 { 301 devclass_t dc = dev->devclass; 302 int domain; 303 304 if (dev->sysctl_tree != NULL) 305 return; 306 devclass_sysctl_init(dc); 307 sysctl_ctx_init(&dev->sysctl_ctx); 308 dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx, 309 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 310 dev->nameunit + strlen(dc->name), 311 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index"); 312 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 313 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 314 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 315 "device description"); 316 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 317 OID_AUTO, "%driver", 318 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 319 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 320 "device driver name"); 321 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 322 OID_AUTO, "%location", 323 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 324 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 325 "device location relative to parent"); 326 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 327 OID_AUTO, "%pnpinfo", 328 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 329 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 330 "device identification"); 331 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 332 OID_AUTO, "%parent", 333 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 334 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 335 "parent device"); 336 if (bus_get_domain(dev, &domain) == 0) 337 SYSCTL_ADD_INT(&dev->sysctl_ctx, 338 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", 339 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, domain, "NUMA domain"); 340 } 341 342 static void 343 device_sysctl_update(device_t dev) 344 { 345 devclass_t dc = dev->devclass; 346 347 if (dev->sysctl_tree == NULL) 348 return; 349 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 350 } 351 352 static void 353 device_sysctl_fini(device_t dev) 354 { 355 if (dev->sysctl_tree == NULL) 356 return; 357 sysctl_ctx_free(&dev->sysctl_ctx); 358 dev->sysctl_tree = NULL; 359 } 360 361 /* 362 * /dev/devctl implementation 363 */ 364 365 /* 366 * This design allows only one reader for /dev/devctl. This is not desirable 367 * in the long run, but will get a lot of hair out of this implementation. 368 * Maybe we should make this device a clonable device. 369 * 370 * Also note: we specifically do not attach a device to the device_t tree 371 * to avoid potential chicken and egg problems. One could argue that all 372 * of this belongs to the root node. 373 */ 374 375 #define DEVCTL_DEFAULT_QUEUE_LEN 1000 376 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS); 377 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 378 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN | 379 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length"); 380 381 static d_open_t devopen; 382 static d_close_t devclose; 383 static d_read_t devread; 384 static d_ioctl_t devioctl; 385 static d_poll_t devpoll; 386 static d_kqfilter_t devkqfilter; 387 388 static struct cdevsw dev_cdevsw = { 389 .d_version = D_VERSION, 390 .d_open = devopen, 391 .d_close = devclose, 392 .d_read = devread, 393 .d_ioctl = devioctl, 394 .d_poll = devpoll, 395 .d_kqfilter = devkqfilter, 396 .d_name = "devctl", 397 }; 398 399 #define DEVCTL_BUFFER (1024 - sizeof(void *)) 400 struct dev_event_info { 401 STAILQ_ENTRY(dev_event_info) dei_link; 402 char dei_data[DEVCTL_BUFFER]; 403 }; 404 405 STAILQ_HEAD(devq, dev_event_info); 406 407 static struct dev_softc { 408 int inuse; 409 int nonblock; 410 int queued; 411 int async; 412 struct mtx mtx; 413 struct cv cv; 414 struct selinfo sel; 415 struct devq devq; 416 struct sigio *sigio; 417 uma_zone_t zone; 418 } devsoftc; 419 420 static void filt_devctl_detach(struct knote *kn); 421 static int filt_devctl_read(struct knote *kn, long hint); 422 423 struct filterops devctl_rfiltops = { 424 .f_isfd = 1, 425 .f_detach = filt_devctl_detach, 426 .f_event = filt_devctl_read, 427 }; 428 429 static struct cdev *devctl_dev; 430 431 static void 432 devinit(void) 433 { 434 int reserve; 435 uma_zone_t z; 436 437 devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL, 438 UID_ROOT, GID_WHEEL, 0600, "devctl"); 439 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 440 cv_init(&devsoftc.cv, "dev cv"); 441 STAILQ_INIT(&devsoftc.devq); 442 knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx); 443 if (devctl_queue_length > 0) { 444 /* 445 * Allocate a zone for the messages. Preallocate 2% of these for 446 * a reserve. Allow only devctl_queue_length slabs to cap memory 447 * usage. The reserve usually allows coverage of surges of 448 * events during memory shortages. Normally we won't have to 449 * re-use events from the queue, but will in extreme shortages. 450 */ 451 z = devsoftc.zone = uma_zcreate("DEVCTL", 452 sizeof(struct dev_event_info), NULL, NULL, NULL, NULL, 453 UMA_ALIGN_PTR, 0); 454 reserve = max(devctl_queue_length / 50, 100); /* 2% reserve */ 455 uma_zone_set_max(z, devctl_queue_length); 456 uma_zone_set_maxcache(z, 0); 457 uma_zone_reserve(z, reserve); 458 uma_prealloc(z, reserve); 459 } 460 devctl2_init(); 461 } 462 463 static int 464 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td) 465 { 466 mtx_lock(&devsoftc.mtx); 467 if (devsoftc.inuse) { 468 mtx_unlock(&devsoftc.mtx); 469 return (EBUSY); 470 } 471 /* move to init */ 472 devsoftc.inuse = 1; 473 mtx_unlock(&devsoftc.mtx); 474 return (0); 475 } 476 477 static int 478 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td) 479 { 480 mtx_lock(&devsoftc.mtx); 481 devsoftc.inuse = 0; 482 devsoftc.nonblock = 0; 483 devsoftc.async = 0; 484 cv_broadcast(&devsoftc.cv); 485 funsetown(&devsoftc.sigio); 486 mtx_unlock(&devsoftc.mtx); 487 return (0); 488 } 489 490 /* 491 * The read channel for this device is used to report changes to 492 * userland in realtime. We are required to free the data as well as 493 * the n1 object because we allocate them separately. Also note that 494 * we return one record at a time. If you try to read this device a 495 * character at a time, you will lose the rest of the data. Listening 496 * programs are expected to cope. 497 */ 498 static int 499 devread(struct cdev *dev, struct uio *uio, int ioflag) 500 { 501 struct dev_event_info *n1; 502 int rv; 503 504 mtx_lock(&devsoftc.mtx); 505 while (STAILQ_EMPTY(&devsoftc.devq)) { 506 if (devsoftc.nonblock) { 507 mtx_unlock(&devsoftc.mtx); 508 return (EAGAIN); 509 } 510 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 511 if (rv) { 512 /* 513 * Need to translate ERESTART to EINTR here? -- jake 514 */ 515 mtx_unlock(&devsoftc.mtx); 516 return (rv); 517 } 518 } 519 n1 = STAILQ_FIRST(&devsoftc.devq); 520 STAILQ_REMOVE_HEAD(&devsoftc.devq, dei_link); 521 devsoftc.queued--; 522 mtx_unlock(&devsoftc.mtx); 523 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 524 uma_zfree(devsoftc.zone, n1); 525 return (rv); 526 } 527 528 static int 529 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) 530 { 531 switch (cmd) { 532 case FIONBIO: 533 if (*(int*)data) 534 devsoftc.nonblock = 1; 535 else 536 devsoftc.nonblock = 0; 537 return (0); 538 case FIOASYNC: 539 if (*(int*)data) 540 devsoftc.async = 1; 541 else 542 devsoftc.async = 0; 543 return (0); 544 case FIOSETOWN: 545 return fsetown(*(int *)data, &devsoftc.sigio); 546 case FIOGETOWN: 547 *(int *)data = fgetown(&devsoftc.sigio); 548 return (0); 549 550 /* (un)Support for other fcntl() calls. */ 551 case FIOCLEX: 552 case FIONCLEX: 553 case FIONREAD: 554 default: 555 break; 556 } 557 return (ENOTTY); 558 } 559 560 static int 561 devpoll(struct cdev *dev, int events, struct thread *td) 562 { 563 int revents = 0; 564 565 mtx_lock(&devsoftc.mtx); 566 if (events & (POLLIN | POLLRDNORM)) { 567 if (!STAILQ_EMPTY(&devsoftc.devq)) 568 revents = events & (POLLIN | POLLRDNORM); 569 else 570 selrecord(td, &devsoftc.sel); 571 } 572 mtx_unlock(&devsoftc.mtx); 573 574 return (revents); 575 } 576 577 static int 578 devkqfilter(struct cdev *dev, struct knote *kn) 579 { 580 int error; 581 582 if (kn->kn_filter == EVFILT_READ) { 583 kn->kn_fop = &devctl_rfiltops; 584 knlist_add(&devsoftc.sel.si_note, kn, 0); 585 error = 0; 586 } else 587 error = EINVAL; 588 return (error); 589 } 590 591 static void 592 filt_devctl_detach(struct knote *kn) 593 { 594 knlist_remove(&devsoftc.sel.si_note, kn, 0); 595 } 596 597 static int 598 filt_devctl_read(struct knote *kn, long hint) 599 { 600 kn->kn_data = devsoftc.queued; 601 return (kn->kn_data != 0); 602 } 603 604 /** 605 * @brief Return whether the userland process is running 606 */ 607 bool 608 devctl_process_running(void) 609 { 610 return (devsoftc.inuse == 1); 611 } 612 613 static struct dev_event_info * 614 devctl_alloc_dei(void) 615 { 616 struct dev_event_info *dei = NULL; 617 618 mtx_lock(&devsoftc.mtx); 619 if (devctl_queue_length == 0) 620 goto out; 621 dei = uma_zalloc(devsoftc.zone, M_NOWAIT); 622 if (dei == NULL) 623 dei = uma_zalloc(devsoftc.zone, M_NOWAIT | M_USE_RESERVE); 624 if (dei == NULL) { 625 /* 626 * Guard against no items in the queue. Normally, this won't 627 * happen, but if lots of events happen all at once and there's 628 * a chance we're out of allocated space but none have yet been 629 * queued when we get here, leaving nothing to steal. This can 630 * also happen with error injection. Fail safe by returning 631 * NULL in that case.. 632 */ 633 if (devsoftc.queued == 0) 634 goto out; 635 dei = STAILQ_FIRST(&devsoftc.devq); 636 STAILQ_REMOVE_HEAD(&devsoftc.devq, dei_link); 637 devsoftc.queued--; 638 } 639 MPASS(dei != NULL); 640 *dei->dei_data = '\0'; 641 out: 642 mtx_unlock(&devsoftc.mtx); 643 return (dei); 644 } 645 646 static struct dev_event_info * 647 devctl_alloc_dei_sb(struct sbuf *sb) 648 { 649 struct dev_event_info *dei; 650 651 dei = devctl_alloc_dei(); 652 if (dei != NULL) 653 sbuf_new(sb, dei->dei_data, sizeof(dei->dei_data), SBUF_FIXEDLEN); 654 return (dei); 655 } 656 657 static void 658 devctl_free_dei(struct dev_event_info *dei) 659 { 660 uma_zfree(devsoftc.zone, dei); 661 } 662 663 static void 664 devctl_queue(struct dev_event_info *dei) 665 { 666 mtx_lock(&devsoftc.mtx); 667 STAILQ_INSERT_TAIL(&devsoftc.devq, dei, dei_link); 668 devsoftc.queued++; 669 cv_broadcast(&devsoftc.cv); 670 KNOTE_LOCKED(&devsoftc.sel.si_note, 0); 671 mtx_unlock(&devsoftc.mtx); 672 selwakeup(&devsoftc.sel); 673 if (devsoftc.async && devsoftc.sigio != NULL) 674 pgsigio(&devsoftc.sigio, SIGIO, 0); 675 } 676 677 /** 678 * @brief Send a 'notification' to userland, using standard ways 679 */ 680 void 681 devctl_notify(const char *system, const char *subsystem, const char *type, 682 const char *data) 683 { 684 struct dev_event_info *dei; 685 struct sbuf sb; 686 687 if (system == NULL || subsystem == NULL || type == NULL) 688 return; 689 dei = devctl_alloc_dei_sb(&sb); 690 if (dei == NULL) 691 return; 692 sbuf_cpy(&sb, "!system="); 693 sbuf_cat(&sb, system); 694 sbuf_cat(&sb, " subsystem="); 695 sbuf_cat(&sb, subsystem); 696 sbuf_cat(&sb, " type="); 697 sbuf_cat(&sb, type); 698 if (data != NULL) { 699 sbuf_putc(&sb, ' '); 700 sbuf_cat(&sb, data); 701 } 702 sbuf_putc(&sb, '\n'); 703 if (sbuf_finish(&sb) != 0) 704 devctl_free_dei(dei); /* overflow -> drop it */ 705 else 706 devctl_queue(dei); 707 } 708 709 /* 710 * Common routine that tries to make sending messages as easy as possible. 711 * We allocate memory for the data, copy strings into that, but do not 712 * free it unless there's an error. The dequeue part of the driver should 713 * free the data. We don't send data when the device is disabled. We do 714 * send data, even when we have no listeners, because we wish to avoid 715 * races relating to startup and restart of listening applications. 716 * 717 * devaddq is designed to string together the type of event, with the 718 * object of that event, plus the plug and play info and location info 719 * for that event. This is likely most useful for devices, but less 720 * useful for other consumers of this interface. Those should use 721 * the devctl_notify() interface instead. 722 * 723 * Output: 724 * ${type}${what} at $(location dev) $(pnp-info dev) on $(parent dev) 725 */ 726 static void 727 devaddq(const char *type, const char *what, device_t dev) 728 { 729 struct dev_event_info *dei; 730 const char *parstr; 731 struct sbuf sb; 732 733 dei = devctl_alloc_dei_sb(&sb); 734 if (dei == NULL) 735 return; 736 sbuf_cpy(&sb, type); 737 sbuf_cat(&sb, what); 738 sbuf_cat(&sb, " at "); 739 740 /* Add in the location */ 741 bus_child_location(dev, &sb); 742 sbuf_putc(&sb, ' '); 743 744 /* Add in pnpinfo */ 745 bus_child_pnpinfo(dev, &sb); 746 747 /* Get the parent of this device, or / if high enough in the tree. */ 748 if (device_get_parent(dev) == NULL) 749 parstr = "."; /* Or '/' ? */ 750 else 751 parstr = device_get_nameunit(device_get_parent(dev)); 752 sbuf_cat(&sb, " on "); 753 sbuf_cat(&sb, parstr); 754 sbuf_putc(&sb, '\n'); 755 if (sbuf_finish(&sb) != 0) 756 goto bad; 757 devctl_queue(dei); 758 return; 759 bad: 760 devctl_free_dei(dei); 761 } 762 763 /* 764 * A device was added to the tree. We are called just after it successfully 765 * attaches (that is, probe and attach success for this device). No call 766 * is made if a device is merely parented into the tree. See devnomatch 767 * if probe fails. If attach fails, no notification is sent (but maybe 768 * we should have a different message for this). 769 */ 770 static void 771 devadded(device_t dev) 772 { 773 devaddq("+", device_get_nameunit(dev), dev); 774 } 775 776 /* 777 * A device was removed from the tree. We are called just before this 778 * happens. 779 */ 780 static void 781 devremoved(device_t dev) 782 { 783 devaddq("-", device_get_nameunit(dev), dev); 784 } 785 786 /* 787 * Called when there's no match for this device. This is only called 788 * the first time that no match happens, so we don't keep getting this 789 * message. Should that prove to be undesirable, we can change it. 790 * This is called when all drivers that can attach to a given bus 791 * decline to accept this device. Other errors may not be detected. 792 */ 793 static void 794 devnomatch(device_t dev) 795 { 796 devaddq("?", "", dev); 797 } 798 799 static int 800 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS) 801 { 802 int q, error; 803 804 q = devctl_queue_length; 805 error = sysctl_handle_int(oidp, &q, 0, req); 806 if (error || !req->newptr) 807 return (error); 808 if (q < 0) 809 return (EINVAL); 810 811 /* 812 * When set as a tunable, we've not yet initialized the mutex. 813 * It is safe to just assign to devctl_queue_length and return 814 * as we're racing no one. We'll use whatever value set in 815 * devinit. 816 */ 817 if (!mtx_initialized(&devsoftc.mtx)) { 818 devctl_queue_length = q; 819 return (0); 820 } 821 822 /* 823 * XXX It's hard to grow or shrink the UMA zone. Only allow 824 * disabling the queue size for the moment until underlying 825 * UMA issues can be sorted out. 826 */ 827 if (q != 0) 828 return (EINVAL); 829 if (q == devctl_queue_length) 830 return (0); 831 mtx_lock(&devsoftc.mtx); 832 devctl_queue_length = 0; 833 uma_zdestroy(devsoftc.zone); 834 devsoftc.zone = 0; 835 mtx_unlock(&devsoftc.mtx); 836 return (0); 837 } 838 839 /** 840 * @brief safely quotes strings that might have double quotes in them. 841 * 842 * The devctl protocol relies on quoted strings having matching quotes. 843 * This routine quotes any internal quotes so the resulting string 844 * is safe to pass to snprintf to construct, for example pnp info strings. 845 * 846 * @param sb sbuf to place the characters into 847 * @param src Original buffer. 848 */ 849 void 850 devctl_safe_quote_sb(struct sbuf *sb, const char *src) 851 { 852 while (*src != '\0') { 853 if (*src == '"' || *src == '\\') 854 sbuf_putc(sb, '\\'); 855 sbuf_putc(sb, *src++); 856 } 857 } 858 859 /* End of /dev/devctl code */ 860 861 static struct device_list bus_data_devices; 862 static int bus_data_generation = 1; 863 864 static kobj_method_t null_methods[] = { 865 KOBJMETHOD_END 866 }; 867 868 DEFINE_CLASS(null, null_methods, 0); 869 870 void 871 bus_topo_assert() 872 { 873 874 GIANT_REQUIRED; 875 } 876 877 struct mtx * 878 bus_topo_mtx(void) 879 { 880 881 return (&Giant); 882 } 883 884 void 885 bus_topo_lock(void) 886 { 887 888 mtx_lock(bus_topo_mtx()); 889 } 890 891 void 892 bus_topo_unlock(void) 893 { 894 895 mtx_unlock(bus_topo_mtx()); 896 } 897 898 /* 899 * Bus pass implementation 900 */ 901 902 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 903 int bus_current_pass = BUS_PASS_ROOT; 904 905 /** 906 * @internal 907 * @brief Register the pass level of a new driver attachment 908 * 909 * Register a new driver attachment's pass level. If no driver 910 * attachment with the same pass level has been added, then @p new 911 * will be added to the global passes list. 912 * 913 * @param new the new driver attachment 914 */ 915 static void 916 driver_register_pass(struct driverlink *new) 917 { 918 struct driverlink *dl; 919 920 /* We only consider pass numbers during boot. */ 921 if (bus_current_pass == BUS_PASS_DEFAULT) 922 return; 923 924 /* 925 * Walk the passes list. If we already know about this pass 926 * then there is nothing to do. If we don't, then insert this 927 * driver link into the list. 928 */ 929 TAILQ_FOREACH(dl, &passes, passlink) { 930 if (dl->pass < new->pass) 931 continue; 932 if (dl->pass == new->pass) 933 return; 934 TAILQ_INSERT_BEFORE(dl, new, passlink); 935 return; 936 } 937 TAILQ_INSERT_TAIL(&passes, new, passlink); 938 } 939 940 /** 941 * @brief Raise the current bus pass 942 * 943 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 944 * method on the root bus to kick off a new device tree scan for each 945 * new pass level that has at least one driver. 946 */ 947 void 948 bus_set_pass(int pass) 949 { 950 struct driverlink *dl; 951 952 if (bus_current_pass > pass) 953 panic("Attempt to lower bus pass level"); 954 955 TAILQ_FOREACH(dl, &passes, passlink) { 956 /* Skip pass values below the current pass level. */ 957 if (dl->pass <= bus_current_pass) 958 continue; 959 960 /* 961 * Bail once we hit a driver with a pass level that is 962 * too high. 963 */ 964 if (dl->pass > pass) 965 break; 966 967 /* 968 * Raise the pass level to the next level and rescan 969 * the tree. 970 */ 971 bus_current_pass = dl->pass; 972 BUS_NEW_PASS(root_bus); 973 } 974 975 /* 976 * If there isn't a driver registered for the requested pass, 977 * then bus_current_pass might still be less than 'pass'. Set 978 * it to 'pass' in that case. 979 */ 980 if (bus_current_pass < pass) 981 bus_current_pass = pass; 982 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 983 } 984 985 /* 986 * Devclass implementation 987 */ 988 989 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 990 991 /** 992 * @internal 993 * @brief Find or create a device class 994 * 995 * If a device class with the name @p classname exists, return it, 996 * otherwise if @p create is non-zero create and return a new device 997 * class. 998 * 999 * If @p parentname is non-NULL, the parent of the devclass is set to 1000 * the devclass of that name. 1001 * 1002 * @param classname the devclass name to find or create 1003 * @param parentname the parent devclass name or @c NULL 1004 * @param create non-zero to create a devclass 1005 */ 1006 static devclass_t 1007 devclass_find_internal(const char *classname, const char *parentname, 1008 int create) 1009 { 1010 devclass_t dc; 1011 1012 PDEBUG(("looking for %s", classname)); 1013 if (!classname) 1014 return (NULL); 1015 1016 TAILQ_FOREACH(dc, &devclasses, link) { 1017 if (!strcmp(dc->name, classname)) 1018 break; 1019 } 1020 1021 if (create && !dc) { 1022 PDEBUG(("creating %s", classname)); 1023 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 1024 M_BUS, M_NOWAIT | M_ZERO); 1025 if (!dc) 1026 return (NULL); 1027 dc->parent = NULL; 1028 dc->name = (char*) (dc + 1); 1029 strcpy(dc->name, classname); 1030 TAILQ_INIT(&dc->drivers); 1031 TAILQ_INSERT_TAIL(&devclasses, dc, link); 1032 1033 bus_data_generation_update(); 1034 } 1035 1036 /* 1037 * If a parent class is specified, then set that as our parent so 1038 * that this devclass will support drivers for the parent class as 1039 * well. If the parent class has the same name don't do this though 1040 * as it creates a cycle that can trigger an infinite loop in 1041 * device_probe_child() if a device exists for which there is no 1042 * suitable driver. 1043 */ 1044 if (parentname && dc && !dc->parent && 1045 strcmp(classname, parentname) != 0) { 1046 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 1047 dc->parent->flags |= DC_HAS_CHILDREN; 1048 } 1049 1050 return (dc); 1051 } 1052 1053 /** 1054 * @brief Create a device class 1055 * 1056 * If a device class with the name @p classname exists, return it, 1057 * otherwise create and return a new device class. 1058 * 1059 * @param classname the devclass name to find or create 1060 */ 1061 devclass_t 1062 devclass_create(const char *classname) 1063 { 1064 return (devclass_find_internal(classname, NULL, TRUE)); 1065 } 1066 1067 /** 1068 * @brief Find a device class 1069 * 1070 * If a device class with the name @p classname exists, return it, 1071 * otherwise return @c NULL. 1072 * 1073 * @param classname the devclass name to find 1074 */ 1075 devclass_t 1076 devclass_find(const char *classname) 1077 { 1078 return (devclass_find_internal(classname, NULL, FALSE)); 1079 } 1080 1081 /** 1082 * @brief Register that a device driver has been added to a devclass 1083 * 1084 * Register that a device driver has been added to a devclass. This 1085 * is called by devclass_add_driver to accomplish the recursive 1086 * notification of all the children classes of dc, as well as dc. 1087 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 1088 * the devclass. 1089 * 1090 * We do a full search here of the devclass list at each iteration 1091 * level to save storing children-lists in the devclass structure. If 1092 * we ever move beyond a few dozen devices doing this, we may need to 1093 * reevaluate... 1094 * 1095 * @param dc the devclass to edit 1096 * @param driver the driver that was just added 1097 */ 1098 static void 1099 devclass_driver_added(devclass_t dc, driver_t *driver) 1100 { 1101 devclass_t parent; 1102 int i; 1103 1104 /* 1105 * Call BUS_DRIVER_ADDED for any existing buses in this class. 1106 */ 1107 for (i = 0; i < dc->maxunit; i++) 1108 if (dc->devices[i] && device_is_attached(dc->devices[i])) 1109 BUS_DRIVER_ADDED(dc->devices[i], driver); 1110 1111 /* 1112 * Walk through the children classes. Since we only keep a 1113 * single parent pointer around, we walk the entire list of 1114 * devclasses looking for children. We set the 1115 * DC_HAS_CHILDREN flag when a child devclass is created on 1116 * the parent, so we only walk the list for those devclasses 1117 * that have children. 1118 */ 1119 if (!(dc->flags & DC_HAS_CHILDREN)) 1120 return; 1121 parent = dc; 1122 TAILQ_FOREACH(dc, &devclasses, link) { 1123 if (dc->parent == parent) 1124 devclass_driver_added(dc, driver); 1125 } 1126 } 1127 1128 /** 1129 * @brief Add a device driver to a device class 1130 * 1131 * Add a device driver to a devclass. This is normally called 1132 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 1133 * all devices in the devclass will be called to allow them to attempt 1134 * to re-probe any unmatched children. 1135 * 1136 * @param dc the devclass to edit 1137 * @param driver the driver to register 1138 */ 1139 int 1140 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 1141 { 1142 driverlink_t dl; 1143 const char *parentname; 1144 1145 PDEBUG(("%s", DRIVERNAME(driver))); 1146 1147 /* Don't allow invalid pass values. */ 1148 if (pass <= BUS_PASS_ROOT) 1149 return (EINVAL); 1150 1151 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 1152 if (!dl) 1153 return (ENOMEM); 1154 1155 /* 1156 * Compile the driver's methods. Also increase the reference count 1157 * so that the class doesn't get freed when the last instance 1158 * goes. This means we can safely use static methods and avoids a 1159 * double-free in devclass_delete_driver. 1160 */ 1161 kobj_class_compile((kobj_class_t) driver); 1162 1163 /* 1164 * If the driver has any base classes, make the 1165 * devclass inherit from the devclass of the driver's 1166 * first base class. This will allow the system to 1167 * search for drivers in both devclasses for children 1168 * of a device using this driver. 1169 */ 1170 if (driver->baseclasses) 1171 parentname = driver->baseclasses[0]->name; 1172 else 1173 parentname = NULL; 1174 *dcp = devclass_find_internal(driver->name, parentname, TRUE); 1175 1176 dl->driver = driver; 1177 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 1178 driver->refs++; /* XXX: kobj_mtx */ 1179 dl->pass = pass; 1180 driver_register_pass(dl); 1181 1182 if (device_frozen) { 1183 dl->flags |= DL_DEFERRED_PROBE; 1184 } else { 1185 devclass_driver_added(dc, driver); 1186 } 1187 bus_data_generation_update(); 1188 return (0); 1189 } 1190 1191 /** 1192 * @brief Register that a device driver has been deleted from a devclass 1193 * 1194 * Register that a device driver has been removed from a devclass. 1195 * This is called by devclass_delete_driver to accomplish the 1196 * recursive notification of all the children classes of busclass, as 1197 * well as busclass. Each layer will attempt to detach the driver 1198 * from any devices that are children of the bus's devclass. The function 1199 * will return an error if a device fails to detach. 1200 * 1201 * We do a full search here of the devclass list at each iteration 1202 * level to save storing children-lists in the devclass structure. If 1203 * we ever move beyond a few dozen devices doing this, we may need to 1204 * reevaluate... 1205 * 1206 * @param busclass the devclass of the parent bus 1207 * @param dc the devclass of the driver being deleted 1208 * @param driver the driver being deleted 1209 */ 1210 static int 1211 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 1212 { 1213 devclass_t parent; 1214 device_t dev; 1215 int error, i; 1216 1217 /* 1218 * Disassociate from any devices. We iterate through all the 1219 * devices in the devclass of the driver and detach any which are 1220 * using the driver and which have a parent in the devclass which 1221 * we are deleting from. 1222 * 1223 * Note that since a driver can be in multiple devclasses, we 1224 * should not detach devices which are not children of devices in 1225 * the affected devclass. 1226 * 1227 * If we're frozen, we don't generate NOMATCH events. Mark to 1228 * generate later. 1229 */ 1230 for (i = 0; i < dc->maxunit; i++) { 1231 if (dc->devices[i]) { 1232 dev = dc->devices[i]; 1233 if (dev->driver == driver && dev->parent && 1234 dev->parent->devclass == busclass) { 1235 if ((error = device_detach(dev)) != 0) 1236 return (error); 1237 if (device_frozen) { 1238 dev->flags &= ~DF_DONENOMATCH; 1239 dev->flags |= DF_NEEDNOMATCH; 1240 } else { 1241 BUS_PROBE_NOMATCH(dev->parent, dev); 1242 devnomatch(dev); 1243 dev->flags |= DF_DONENOMATCH; 1244 } 1245 } 1246 } 1247 } 1248 1249 /* 1250 * Walk through the children classes. Since we only keep a 1251 * single parent pointer around, we walk the entire list of 1252 * devclasses looking for children. We set the 1253 * DC_HAS_CHILDREN flag when a child devclass is created on 1254 * the parent, so we only walk the list for those devclasses 1255 * that have children. 1256 */ 1257 if (!(busclass->flags & DC_HAS_CHILDREN)) 1258 return (0); 1259 parent = busclass; 1260 TAILQ_FOREACH(busclass, &devclasses, link) { 1261 if (busclass->parent == parent) { 1262 error = devclass_driver_deleted(busclass, dc, driver); 1263 if (error) 1264 return (error); 1265 } 1266 } 1267 return (0); 1268 } 1269 1270 /** 1271 * @brief Delete a device driver from a device class 1272 * 1273 * Delete a device driver from a devclass. This is normally called 1274 * automatically by DRIVER_MODULE(). 1275 * 1276 * If the driver is currently attached to any devices, 1277 * devclass_delete_driver() will first attempt to detach from each 1278 * device. If one of the detach calls fails, the driver will not be 1279 * deleted. 1280 * 1281 * @param dc the devclass to edit 1282 * @param driver the driver to unregister 1283 */ 1284 int 1285 devclass_delete_driver(devclass_t busclass, driver_t *driver) 1286 { 1287 devclass_t dc = devclass_find(driver->name); 1288 driverlink_t dl; 1289 int error; 1290 1291 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1292 1293 if (!dc) 1294 return (0); 1295 1296 /* 1297 * Find the link structure in the bus' list of drivers. 1298 */ 1299 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1300 if (dl->driver == driver) 1301 break; 1302 } 1303 1304 if (!dl) { 1305 PDEBUG(("%s not found in %s list", driver->name, 1306 busclass->name)); 1307 return (ENOENT); 1308 } 1309 1310 error = devclass_driver_deleted(busclass, dc, driver); 1311 if (error != 0) 1312 return (error); 1313 1314 TAILQ_REMOVE(&busclass->drivers, dl, link); 1315 free(dl, M_BUS); 1316 1317 /* XXX: kobj_mtx */ 1318 driver->refs--; 1319 if (driver->refs == 0) 1320 kobj_class_free((kobj_class_t) driver); 1321 1322 bus_data_generation_update(); 1323 return (0); 1324 } 1325 1326 /** 1327 * @brief Quiesces a set of device drivers from a device class 1328 * 1329 * Quiesce a device driver from a devclass. This is normally called 1330 * automatically by DRIVER_MODULE(). 1331 * 1332 * If the driver is currently attached to any devices, 1333 * devclass_quiesece_driver() will first attempt to quiesce each 1334 * device. 1335 * 1336 * @param dc the devclass to edit 1337 * @param driver the driver to unregister 1338 */ 1339 static int 1340 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 1341 { 1342 devclass_t dc = devclass_find(driver->name); 1343 driverlink_t dl; 1344 device_t dev; 1345 int i; 1346 int error; 1347 1348 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1349 1350 if (!dc) 1351 return (0); 1352 1353 /* 1354 * Find the link structure in the bus' list of drivers. 1355 */ 1356 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1357 if (dl->driver == driver) 1358 break; 1359 } 1360 1361 if (!dl) { 1362 PDEBUG(("%s not found in %s list", driver->name, 1363 busclass->name)); 1364 return (ENOENT); 1365 } 1366 1367 /* 1368 * Quiesce all devices. We iterate through all the devices in 1369 * the devclass of the driver and quiesce any which are using 1370 * the driver and which have a parent in the devclass which we 1371 * are quiescing. 1372 * 1373 * Note that since a driver can be in multiple devclasses, we 1374 * should not quiesce devices which are not children of 1375 * devices in the affected devclass. 1376 */ 1377 for (i = 0; i < dc->maxunit; i++) { 1378 if (dc->devices[i]) { 1379 dev = dc->devices[i]; 1380 if (dev->driver == driver && dev->parent && 1381 dev->parent->devclass == busclass) { 1382 if ((error = device_quiesce(dev)) != 0) 1383 return (error); 1384 } 1385 } 1386 } 1387 1388 return (0); 1389 } 1390 1391 /** 1392 * @internal 1393 */ 1394 static driverlink_t 1395 devclass_find_driver_internal(devclass_t dc, const char *classname) 1396 { 1397 driverlink_t dl; 1398 1399 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1400 1401 TAILQ_FOREACH(dl, &dc->drivers, link) { 1402 if (!strcmp(dl->driver->name, classname)) 1403 return (dl); 1404 } 1405 1406 PDEBUG(("not found")); 1407 return (NULL); 1408 } 1409 1410 /** 1411 * @brief Return the name of the devclass 1412 */ 1413 const char * 1414 devclass_get_name(devclass_t dc) 1415 { 1416 return (dc->name); 1417 } 1418 1419 /** 1420 * @brief Find a device given a unit number 1421 * 1422 * @param dc the devclass to search 1423 * @param unit the unit number to search for 1424 * 1425 * @returns the device with the given unit number or @c 1426 * NULL if there is no such device 1427 */ 1428 device_t 1429 devclass_get_device(devclass_t dc, int unit) 1430 { 1431 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1432 return (NULL); 1433 return (dc->devices[unit]); 1434 } 1435 1436 /** 1437 * @brief Find the softc field of a device given a unit number 1438 * 1439 * @param dc the devclass to search 1440 * @param unit the unit number to search for 1441 * 1442 * @returns the softc field of the device with the given 1443 * unit number or @c NULL if there is no such 1444 * device 1445 */ 1446 void * 1447 devclass_get_softc(devclass_t dc, int unit) 1448 { 1449 device_t dev; 1450 1451 dev = devclass_get_device(dc, unit); 1452 if (!dev) 1453 return (NULL); 1454 1455 return (device_get_softc(dev)); 1456 } 1457 1458 /** 1459 * @brief Get a list of devices in the devclass 1460 * 1461 * An array containing a list of all the devices in the given devclass 1462 * is allocated and returned in @p *devlistp. The number of devices 1463 * in the array is returned in @p *devcountp. The caller should free 1464 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1465 * 1466 * @param dc the devclass to examine 1467 * @param devlistp points at location for array pointer return 1468 * value 1469 * @param devcountp points at location for array size return value 1470 * 1471 * @retval 0 success 1472 * @retval ENOMEM the array allocation failed 1473 */ 1474 int 1475 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1476 { 1477 int count, i; 1478 device_t *list; 1479 1480 count = devclass_get_count(dc); 1481 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1482 if (!list) 1483 return (ENOMEM); 1484 1485 count = 0; 1486 for (i = 0; i < dc->maxunit; i++) { 1487 if (dc->devices[i]) { 1488 list[count] = dc->devices[i]; 1489 count++; 1490 } 1491 } 1492 1493 *devlistp = list; 1494 *devcountp = count; 1495 1496 return (0); 1497 } 1498 1499 /** 1500 * @brief Get a list of drivers in the devclass 1501 * 1502 * An array containing a list of pointers to all the drivers in the 1503 * given devclass is allocated and returned in @p *listp. The number 1504 * of drivers in the array is returned in @p *countp. The caller should 1505 * free the array using @c free(p, M_TEMP). 1506 * 1507 * @param dc the devclass to examine 1508 * @param listp gives location for array pointer return value 1509 * @param countp gives location for number of array elements 1510 * return value 1511 * 1512 * @retval 0 success 1513 * @retval ENOMEM the array allocation failed 1514 */ 1515 int 1516 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1517 { 1518 driverlink_t dl; 1519 driver_t **list; 1520 int count; 1521 1522 count = 0; 1523 TAILQ_FOREACH(dl, &dc->drivers, link) 1524 count++; 1525 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1526 if (list == NULL) 1527 return (ENOMEM); 1528 1529 count = 0; 1530 TAILQ_FOREACH(dl, &dc->drivers, link) { 1531 list[count] = dl->driver; 1532 count++; 1533 } 1534 *listp = list; 1535 *countp = count; 1536 1537 return (0); 1538 } 1539 1540 /** 1541 * @brief Get the number of devices in a devclass 1542 * 1543 * @param dc the devclass to examine 1544 */ 1545 int 1546 devclass_get_count(devclass_t dc) 1547 { 1548 int count, i; 1549 1550 count = 0; 1551 for (i = 0; i < dc->maxunit; i++) 1552 if (dc->devices[i]) 1553 count++; 1554 return (count); 1555 } 1556 1557 /** 1558 * @brief Get the maximum unit number used in a devclass 1559 * 1560 * Note that this is one greater than the highest currently-allocated 1561 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1562 * that not even the devclass has been allocated yet. 1563 * 1564 * @param dc the devclass to examine 1565 */ 1566 int 1567 devclass_get_maxunit(devclass_t dc) 1568 { 1569 if (dc == NULL) 1570 return (-1); 1571 return (dc->maxunit); 1572 } 1573 1574 /** 1575 * @brief Find a free unit number in a devclass 1576 * 1577 * This function searches for the first unused unit number greater 1578 * that or equal to @p unit. 1579 * 1580 * @param dc the devclass to examine 1581 * @param unit the first unit number to check 1582 */ 1583 int 1584 devclass_find_free_unit(devclass_t dc, int unit) 1585 { 1586 if (dc == NULL) 1587 return (unit); 1588 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1589 unit++; 1590 return (unit); 1591 } 1592 1593 /** 1594 * @brief Set the parent of a devclass 1595 * 1596 * The parent class is normally initialised automatically by 1597 * DRIVER_MODULE(). 1598 * 1599 * @param dc the devclass to edit 1600 * @param pdc the new parent devclass 1601 */ 1602 void 1603 devclass_set_parent(devclass_t dc, devclass_t pdc) 1604 { 1605 dc->parent = pdc; 1606 } 1607 1608 /** 1609 * @brief Get the parent of a devclass 1610 * 1611 * @param dc the devclass to examine 1612 */ 1613 devclass_t 1614 devclass_get_parent(devclass_t dc) 1615 { 1616 return (dc->parent); 1617 } 1618 1619 struct sysctl_ctx_list * 1620 devclass_get_sysctl_ctx(devclass_t dc) 1621 { 1622 return (&dc->sysctl_ctx); 1623 } 1624 1625 struct sysctl_oid * 1626 devclass_get_sysctl_tree(devclass_t dc) 1627 { 1628 return (dc->sysctl_tree); 1629 } 1630 1631 /** 1632 * @internal 1633 * @brief Allocate a unit number 1634 * 1635 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1636 * will do). The allocated unit number is returned in @p *unitp. 1637 1638 * @param dc the devclass to allocate from 1639 * @param unitp points at the location for the allocated unit 1640 * number 1641 * 1642 * @retval 0 success 1643 * @retval EEXIST the requested unit number is already allocated 1644 * @retval ENOMEM memory allocation failure 1645 */ 1646 static int 1647 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1648 { 1649 const char *s; 1650 int unit = *unitp; 1651 1652 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1653 1654 /* Ask the parent bus if it wants to wire this device. */ 1655 if (unit == -1) 1656 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1657 &unit); 1658 1659 /* If we were given a wired unit number, check for existing device */ 1660 /* XXX imp XXX */ 1661 if (unit != -1) { 1662 if (unit >= 0 && unit < dc->maxunit && 1663 dc->devices[unit] != NULL) { 1664 if (bootverbose) 1665 printf("%s: %s%d already exists; skipping it\n", 1666 dc->name, dc->name, *unitp); 1667 return (EEXIST); 1668 } 1669 } else { 1670 /* Unwired device, find the next available slot for it */ 1671 unit = 0; 1672 for (unit = 0;; unit++) { 1673 /* If this device slot is already in use, skip it. */ 1674 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1675 continue; 1676 1677 /* If there is an "at" hint for a unit then skip it. */ 1678 if (resource_string_value(dc->name, unit, "at", &s) == 1679 0) 1680 continue; 1681 1682 break; 1683 } 1684 } 1685 1686 /* 1687 * We've selected a unit beyond the length of the table, so let's 1688 * extend the table to make room for all units up to and including 1689 * this one. 1690 */ 1691 if (unit >= dc->maxunit) { 1692 device_t *newlist, *oldlist; 1693 int newsize; 1694 1695 oldlist = dc->devices; 1696 newsize = roundup((unit + 1), 1697 MAX(1, MINALLOCSIZE / sizeof(device_t))); 1698 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1699 if (!newlist) 1700 return (ENOMEM); 1701 if (oldlist != NULL) 1702 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1703 bzero(newlist + dc->maxunit, 1704 sizeof(device_t) * (newsize - dc->maxunit)); 1705 dc->devices = newlist; 1706 dc->maxunit = newsize; 1707 if (oldlist != NULL) 1708 free(oldlist, M_BUS); 1709 } 1710 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1711 1712 *unitp = unit; 1713 return (0); 1714 } 1715 1716 /** 1717 * @internal 1718 * @brief Add a device to a devclass 1719 * 1720 * A unit number is allocated for the device (using the device's 1721 * preferred unit number if any) and the device is registered in the 1722 * devclass. This allows the device to be looked up by its unit 1723 * number, e.g. by decoding a dev_t minor number. 1724 * 1725 * @param dc the devclass to add to 1726 * @param dev the device to add 1727 * 1728 * @retval 0 success 1729 * @retval EEXIST the requested unit number is already allocated 1730 * @retval ENOMEM memory allocation failure 1731 */ 1732 static int 1733 devclass_add_device(devclass_t dc, device_t dev) 1734 { 1735 int buflen, error; 1736 1737 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1738 1739 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1740 if (buflen < 0) 1741 return (ENOMEM); 1742 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1743 if (!dev->nameunit) 1744 return (ENOMEM); 1745 1746 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1747 free(dev->nameunit, M_BUS); 1748 dev->nameunit = NULL; 1749 return (error); 1750 } 1751 dc->devices[dev->unit] = dev; 1752 dev->devclass = dc; 1753 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1754 1755 return (0); 1756 } 1757 1758 /** 1759 * @internal 1760 * @brief Delete a device from a devclass 1761 * 1762 * The device is removed from the devclass's device list and its unit 1763 * number is freed. 1764 1765 * @param dc the devclass to delete from 1766 * @param dev the device to delete 1767 * 1768 * @retval 0 success 1769 */ 1770 static int 1771 devclass_delete_device(devclass_t dc, device_t dev) 1772 { 1773 if (!dc || !dev) 1774 return (0); 1775 1776 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1777 1778 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1779 panic("devclass_delete_device: inconsistent device class"); 1780 dc->devices[dev->unit] = NULL; 1781 if (dev->flags & DF_WILDCARD) 1782 dev->unit = -1; 1783 dev->devclass = NULL; 1784 free(dev->nameunit, M_BUS); 1785 dev->nameunit = NULL; 1786 1787 return (0); 1788 } 1789 1790 /** 1791 * @internal 1792 * @brief Make a new device and add it as a child of @p parent 1793 * 1794 * @param parent the parent of the new device 1795 * @param name the devclass name of the new device or @c NULL 1796 * to leave the devclass unspecified 1797 * @parem unit the unit number of the new device of @c -1 to 1798 * leave the unit number unspecified 1799 * 1800 * @returns the new device 1801 */ 1802 static device_t 1803 make_device(device_t parent, const char *name, int unit) 1804 { 1805 device_t dev; 1806 devclass_t dc; 1807 1808 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1809 1810 if (name) { 1811 dc = devclass_find_internal(name, NULL, TRUE); 1812 if (!dc) { 1813 printf("make_device: can't find device class %s\n", 1814 name); 1815 return (NULL); 1816 } 1817 } else { 1818 dc = NULL; 1819 } 1820 1821 dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO); 1822 if (!dev) 1823 return (NULL); 1824 1825 dev->parent = parent; 1826 TAILQ_INIT(&dev->children); 1827 kobj_init((kobj_t) dev, &null_class); 1828 dev->driver = NULL; 1829 dev->devclass = NULL; 1830 dev->unit = unit; 1831 dev->nameunit = NULL; 1832 dev->desc = NULL; 1833 dev->busy = 0; 1834 dev->devflags = 0; 1835 dev->flags = DF_ENABLED; 1836 dev->order = 0; 1837 if (unit == -1) 1838 dev->flags |= DF_WILDCARD; 1839 if (name) { 1840 dev->flags |= DF_FIXEDCLASS; 1841 if (devclass_add_device(dc, dev)) { 1842 kobj_delete((kobj_t) dev, M_BUS); 1843 return (NULL); 1844 } 1845 } 1846 if (parent != NULL && device_has_quiet_children(parent)) 1847 dev->flags |= DF_QUIET | DF_QUIET_CHILDREN; 1848 dev->ivars = NULL; 1849 dev->softc = NULL; 1850 1851 dev->state = DS_NOTPRESENT; 1852 1853 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1854 bus_data_generation_update(); 1855 1856 return (dev); 1857 } 1858 1859 /** 1860 * @internal 1861 * @brief Print a description of a device. 1862 */ 1863 static int 1864 device_print_child(device_t dev, device_t child) 1865 { 1866 int retval = 0; 1867 1868 if (device_is_alive(child)) 1869 retval += BUS_PRINT_CHILD(dev, child); 1870 else 1871 retval += device_printf(child, " not found\n"); 1872 1873 return (retval); 1874 } 1875 1876 /** 1877 * @brief Create a new device 1878 * 1879 * This creates a new device and adds it as a child of an existing 1880 * parent device. The new device will be added after the last existing 1881 * child with order zero. 1882 * 1883 * @param dev the device which will be the parent of the 1884 * new child device 1885 * @param name devclass name for new device or @c NULL if not 1886 * specified 1887 * @param unit unit number for new device or @c -1 if not 1888 * specified 1889 * 1890 * @returns the new device 1891 */ 1892 device_t 1893 device_add_child(device_t dev, const char *name, int unit) 1894 { 1895 return (device_add_child_ordered(dev, 0, name, unit)); 1896 } 1897 1898 /** 1899 * @brief Create a new device 1900 * 1901 * This creates a new device and adds it as a child of an existing 1902 * parent device. The new device will be added after the last existing 1903 * child with the same order. 1904 * 1905 * @param dev the device which will be the parent of the 1906 * new child device 1907 * @param order a value which is used to partially sort the 1908 * children of @p dev - devices created using 1909 * lower values of @p order appear first in @p 1910 * dev's list of children 1911 * @param name devclass name for new device or @c NULL if not 1912 * specified 1913 * @param unit unit number for new device or @c -1 if not 1914 * specified 1915 * 1916 * @returns the new device 1917 */ 1918 device_t 1919 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1920 { 1921 device_t child; 1922 device_t place; 1923 1924 PDEBUG(("%s at %s with order %u as unit %d", 1925 name, DEVICENAME(dev), order, unit)); 1926 KASSERT(name != NULL || unit == -1, 1927 ("child device with wildcard name and specific unit number")); 1928 1929 child = make_device(dev, name, unit); 1930 if (child == NULL) 1931 return (child); 1932 child->order = order; 1933 1934 TAILQ_FOREACH(place, &dev->children, link) { 1935 if (place->order > order) 1936 break; 1937 } 1938 1939 if (place) { 1940 /* 1941 * The device 'place' is the first device whose order is 1942 * greater than the new child. 1943 */ 1944 TAILQ_INSERT_BEFORE(place, child, link); 1945 } else { 1946 /* 1947 * The new child's order is greater or equal to the order of 1948 * any existing device. Add the child to the tail of the list. 1949 */ 1950 TAILQ_INSERT_TAIL(&dev->children, child, link); 1951 } 1952 1953 bus_data_generation_update(); 1954 return (child); 1955 } 1956 1957 /** 1958 * @brief Delete a device 1959 * 1960 * This function deletes a device along with all of its children. If 1961 * the device currently has a driver attached to it, the device is 1962 * detached first using device_detach(). 1963 * 1964 * @param dev the parent device 1965 * @param child the device to delete 1966 * 1967 * @retval 0 success 1968 * @retval non-zero a unit error code describing the error 1969 */ 1970 int 1971 device_delete_child(device_t dev, device_t child) 1972 { 1973 int error; 1974 device_t grandchild; 1975 1976 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1977 1978 /* detach parent before deleting children, if any */ 1979 if ((error = device_detach(child)) != 0) 1980 return (error); 1981 1982 /* remove children second */ 1983 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1984 error = device_delete_child(child, grandchild); 1985 if (error) 1986 return (error); 1987 } 1988 1989 if (child->devclass) 1990 devclass_delete_device(child->devclass, child); 1991 if (child->parent) 1992 BUS_CHILD_DELETED(dev, child); 1993 TAILQ_REMOVE(&dev->children, child, link); 1994 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1995 kobj_delete((kobj_t) child, M_BUS); 1996 1997 bus_data_generation_update(); 1998 return (0); 1999 } 2000 2001 /** 2002 * @brief Delete all children devices of the given device, if any. 2003 * 2004 * This function deletes all children devices of the given device, if 2005 * any, using the device_delete_child() function for each device it 2006 * finds. If a child device cannot be deleted, this function will 2007 * return an error code. 2008 * 2009 * @param dev the parent device 2010 * 2011 * @retval 0 success 2012 * @retval non-zero a device would not detach 2013 */ 2014 int 2015 device_delete_children(device_t dev) 2016 { 2017 device_t child; 2018 int error; 2019 2020 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 2021 2022 error = 0; 2023 2024 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 2025 error = device_delete_child(dev, child); 2026 if (error) { 2027 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 2028 break; 2029 } 2030 } 2031 return (error); 2032 } 2033 2034 /** 2035 * @brief Find a device given a unit number 2036 * 2037 * This is similar to devclass_get_devices() but only searches for 2038 * devices which have @p dev as a parent. 2039 * 2040 * @param dev the parent device to search 2041 * @param unit the unit number to search for. If the unit is -1, 2042 * return the first child of @p dev which has name 2043 * @p classname (that is, the one with the lowest unit.) 2044 * 2045 * @returns the device with the given unit number or @c 2046 * NULL if there is no such device 2047 */ 2048 device_t 2049 device_find_child(device_t dev, const char *classname, int unit) 2050 { 2051 devclass_t dc; 2052 device_t child; 2053 2054 dc = devclass_find(classname); 2055 if (!dc) 2056 return (NULL); 2057 2058 if (unit != -1) { 2059 child = devclass_get_device(dc, unit); 2060 if (child && child->parent == dev) 2061 return (child); 2062 } else { 2063 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 2064 child = devclass_get_device(dc, unit); 2065 if (child && child->parent == dev) 2066 return (child); 2067 } 2068 } 2069 return (NULL); 2070 } 2071 2072 /** 2073 * @internal 2074 */ 2075 static driverlink_t 2076 first_matching_driver(devclass_t dc, device_t dev) 2077 { 2078 if (dev->devclass) 2079 return (devclass_find_driver_internal(dc, dev->devclass->name)); 2080 return (TAILQ_FIRST(&dc->drivers)); 2081 } 2082 2083 /** 2084 * @internal 2085 */ 2086 static driverlink_t 2087 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 2088 { 2089 if (dev->devclass) { 2090 driverlink_t dl; 2091 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 2092 if (!strcmp(dev->devclass->name, dl->driver->name)) 2093 return (dl); 2094 return (NULL); 2095 } 2096 return (TAILQ_NEXT(last, link)); 2097 } 2098 2099 /** 2100 * @internal 2101 */ 2102 int 2103 device_probe_child(device_t dev, device_t child) 2104 { 2105 devclass_t dc; 2106 driverlink_t best = NULL; 2107 driverlink_t dl; 2108 int result, pri = 0; 2109 /* We should preserve the devclass (or lack of) set by the bus. */ 2110 int hasclass = (child->devclass != NULL); 2111 2112 bus_topo_assert(); 2113 2114 dc = dev->devclass; 2115 if (!dc) 2116 panic("device_probe_child: parent device has no devclass"); 2117 2118 /* 2119 * If the state is already probed, then return. 2120 */ 2121 if (child->state == DS_ALIVE) 2122 return (0); 2123 2124 for (; dc; dc = dc->parent) { 2125 for (dl = first_matching_driver(dc, child); 2126 dl; 2127 dl = next_matching_driver(dc, child, dl)) { 2128 /* If this driver's pass is too high, then ignore it. */ 2129 if (dl->pass > bus_current_pass) 2130 continue; 2131 2132 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 2133 result = device_set_driver(child, dl->driver); 2134 if (result == ENOMEM) 2135 return (result); 2136 else if (result != 0) 2137 continue; 2138 if (!hasclass) { 2139 if (device_set_devclass(child, 2140 dl->driver->name) != 0) { 2141 char const * devname = 2142 device_get_name(child); 2143 if (devname == NULL) 2144 devname = "(unknown)"; 2145 printf("driver bug: Unable to set " 2146 "devclass (class: %s " 2147 "devname: %s)\n", 2148 dl->driver->name, 2149 devname); 2150 (void)device_set_driver(child, NULL); 2151 continue; 2152 } 2153 } 2154 2155 /* Fetch any flags for the device before probing. */ 2156 resource_int_value(dl->driver->name, child->unit, 2157 "flags", &child->devflags); 2158 2159 result = DEVICE_PROBE(child); 2160 2161 /* 2162 * If the driver returns SUCCESS, there can be 2163 * no higher match for this device. 2164 */ 2165 if (result == 0) { 2166 best = dl; 2167 pri = 0; 2168 break; 2169 } 2170 2171 /* Reset flags and devclass before the next probe. */ 2172 child->devflags = 0; 2173 if (!hasclass) 2174 (void)device_set_devclass(child, NULL); 2175 2176 /* 2177 * Reset DF_QUIET in case this driver doesn't 2178 * end up as the best driver. 2179 */ 2180 device_verbose(child); 2181 2182 /* 2183 * Probes that return BUS_PROBE_NOWILDCARD or lower 2184 * only match on devices whose driver was explicitly 2185 * specified. 2186 */ 2187 if (result <= BUS_PROBE_NOWILDCARD && 2188 !(child->flags & DF_FIXEDCLASS)) { 2189 result = ENXIO; 2190 } 2191 2192 /* 2193 * The driver returned an error so it 2194 * certainly doesn't match. 2195 */ 2196 if (result > 0) { 2197 (void)device_set_driver(child, NULL); 2198 continue; 2199 } 2200 2201 /* 2202 * A priority lower than SUCCESS, remember the 2203 * best matching driver. Initialise the value 2204 * of pri for the first match. 2205 */ 2206 if (best == NULL || result > pri) { 2207 best = dl; 2208 pri = result; 2209 continue; 2210 } 2211 } 2212 /* 2213 * If we have an unambiguous match in this devclass, 2214 * don't look in the parent. 2215 */ 2216 if (best && pri == 0) 2217 break; 2218 } 2219 2220 if (best == NULL) 2221 return (ENXIO); 2222 2223 /* 2224 * If we found a driver, change state and initialise the devclass. 2225 */ 2226 if (pri < 0) { 2227 /* Set the winning driver, devclass, and flags. */ 2228 result = device_set_driver(child, best->driver); 2229 if (result != 0) 2230 return (result); 2231 if (!child->devclass) { 2232 result = device_set_devclass(child, best->driver->name); 2233 if (result != 0) { 2234 (void)device_set_driver(child, NULL); 2235 return (result); 2236 } 2237 } 2238 resource_int_value(best->driver->name, child->unit, 2239 "flags", &child->devflags); 2240 2241 /* 2242 * A bit bogus. Call the probe method again to make sure 2243 * that we have the right description. 2244 */ 2245 result = DEVICE_PROBE(child); 2246 if (result > 0) { 2247 if (!hasclass) 2248 (void)device_set_devclass(child, NULL); 2249 (void)device_set_driver(child, NULL); 2250 return (result); 2251 } 2252 } 2253 2254 child->state = DS_ALIVE; 2255 bus_data_generation_update(); 2256 return (0); 2257 } 2258 2259 /** 2260 * @brief Return the parent of a device 2261 */ 2262 device_t 2263 device_get_parent(device_t dev) 2264 { 2265 return (dev->parent); 2266 } 2267 2268 /** 2269 * @brief Get a list of children of a device 2270 * 2271 * An array containing a list of all the children of the given device 2272 * is allocated and returned in @p *devlistp. The number of devices 2273 * in the array is returned in @p *devcountp. The caller should free 2274 * the array using @c free(p, M_TEMP). 2275 * 2276 * @param dev the device to examine 2277 * @param devlistp points at location for array pointer return 2278 * value 2279 * @param devcountp points at location for array size return value 2280 * 2281 * @retval 0 success 2282 * @retval ENOMEM the array allocation failed 2283 */ 2284 int 2285 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 2286 { 2287 int count; 2288 device_t child; 2289 device_t *list; 2290 2291 count = 0; 2292 TAILQ_FOREACH(child, &dev->children, link) { 2293 count++; 2294 } 2295 if (count == 0) { 2296 *devlistp = NULL; 2297 *devcountp = 0; 2298 return (0); 2299 } 2300 2301 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 2302 if (!list) 2303 return (ENOMEM); 2304 2305 count = 0; 2306 TAILQ_FOREACH(child, &dev->children, link) { 2307 list[count] = child; 2308 count++; 2309 } 2310 2311 *devlistp = list; 2312 *devcountp = count; 2313 2314 return (0); 2315 } 2316 2317 /** 2318 * @brief Return the current driver for the device or @c NULL if there 2319 * is no driver currently attached 2320 */ 2321 driver_t * 2322 device_get_driver(device_t dev) 2323 { 2324 return (dev->driver); 2325 } 2326 2327 /** 2328 * @brief Return the current devclass for the device or @c NULL if 2329 * there is none. 2330 */ 2331 devclass_t 2332 device_get_devclass(device_t dev) 2333 { 2334 return (dev->devclass); 2335 } 2336 2337 /** 2338 * @brief Return the name of the device's devclass or @c NULL if there 2339 * is none. 2340 */ 2341 const char * 2342 device_get_name(device_t dev) 2343 { 2344 if (dev != NULL && dev->devclass) 2345 return (devclass_get_name(dev->devclass)); 2346 return (NULL); 2347 } 2348 2349 /** 2350 * @brief Return a string containing the device's devclass name 2351 * followed by an ascii representation of the device's unit number 2352 * (e.g. @c "foo2"). 2353 */ 2354 const char * 2355 device_get_nameunit(device_t dev) 2356 { 2357 return (dev->nameunit); 2358 } 2359 2360 /** 2361 * @brief Return the device's unit number. 2362 */ 2363 int 2364 device_get_unit(device_t dev) 2365 { 2366 return (dev->unit); 2367 } 2368 2369 /** 2370 * @brief Return the device's description string 2371 */ 2372 const char * 2373 device_get_desc(device_t dev) 2374 { 2375 return (dev->desc); 2376 } 2377 2378 /** 2379 * @brief Return the device's flags 2380 */ 2381 uint32_t 2382 device_get_flags(device_t dev) 2383 { 2384 return (dev->devflags); 2385 } 2386 2387 struct sysctl_ctx_list * 2388 device_get_sysctl_ctx(device_t dev) 2389 { 2390 return (&dev->sysctl_ctx); 2391 } 2392 2393 struct sysctl_oid * 2394 device_get_sysctl_tree(device_t dev) 2395 { 2396 return (dev->sysctl_tree); 2397 } 2398 2399 /** 2400 * @brief Print the name of the device followed by a colon and a space 2401 * 2402 * @returns the number of characters printed 2403 */ 2404 int 2405 device_print_prettyname(device_t dev) 2406 { 2407 const char *name = device_get_name(dev); 2408 2409 if (name == NULL) 2410 return (printf("unknown: ")); 2411 return (printf("%s%d: ", name, device_get_unit(dev))); 2412 } 2413 2414 /** 2415 * @brief Print the name of the device followed by a colon, a space 2416 * and the result of calling vprintf() with the value of @p fmt and 2417 * the following arguments. 2418 * 2419 * @returns the number of characters printed 2420 */ 2421 int 2422 device_printf(device_t dev, const char * fmt, ...) 2423 { 2424 char buf[128]; 2425 struct sbuf sb; 2426 const char *name; 2427 va_list ap; 2428 size_t retval; 2429 2430 retval = 0; 2431 2432 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 2433 sbuf_set_drain(&sb, sbuf_printf_drain, &retval); 2434 2435 name = device_get_name(dev); 2436 2437 if (name == NULL) 2438 sbuf_cat(&sb, "unknown: "); 2439 else 2440 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 2441 2442 va_start(ap, fmt); 2443 sbuf_vprintf(&sb, fmt, ap); 2444 va_end(ap); 2445 2446 sbuf_finish(&sb); 2447 sbuf_delete(&sb); 2448 2449 return (retval); 2450 } 2451 2452 /** 2453 * @brief Print the name of the device followed by a colon, a space 2454 * and the result of calling log() with the value of @p fmt and 2455 * the following arguments. 2456 * 2457 * @returns the number of characters printed 2458 */ 2459 int 2460 device_log(device_t dev, int pri, const char * fmt, ...) 2461 { 2462 char buf[128]; 2463 struct sbuf sb; 2464 const char *name; 2465 va_list ap; 2466 size_t retval; 2467 2468 retval = 0; 2469 2470 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 2471 2472 name = device_get_name(dev); 2473 2474 if (name == NULL) 2475 sbuf_cat(&sb, "unknown: "); 2476 else 2477 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 2478 2479 va_start(ap, fmt); 2480 sbuf_vprintf(&sb, fmt, ap); 2481 va_end(ap); 2482 2483 sbuf_finish(&sb); 2484 2485 log(pri, "%.*s", (int) sbuf_len(&sb), sbuf_data(&sb)); 2486 retval = sbuf_len(&sb); 2487 2488 sbuf_delete(&sb); 2489 2490 return (retval); 2491 } 2492 2493 /** 2494 * @internal 2495 */ 2496 static void 2497 device_set_desc_internal(device_t dev, const char* desc, int copy) 2498 { 2499 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2500 free(dev->desc, M_BUS); 2501 dev->flags &= ~DF_DESCMALLOCED; 2502 dev->desc = NULL; 2503 } 2504 2505 if (copy && desc) { 2506 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2507 if (dev->desc) { 2508 strcpy(dev->desc, desc); 2509 dev->flags |= DF_DESCMALLOCED; 2510 } 2511 } else { 2512 /* Avoid a -Wcast-qual warning */ 2513 dev->desc = (char *)(uintptr_t) desc; 2514 } 2515 2516 bus_data_generation_update(); 2517 } 2518 2519 /** 2520 * @brief Set the device's description 2521 * 2522 * The value of @c desc should be a string constant that will not 2523 * change (at least until the description is changed in a subsequent 2524 * call to device_set_desc() or device_set_desc_copy()). 2525 */ 2526 void 2527 device_set_desc(device_t dev, const char* desc) 2528 { 2529 device_set_desc_internal(dev, desc, FALSE); 2530 } 2531 2532 /** 2533 * @brief Set the device's description 2534 * 2535 * The string pointed to by @c desc is copied. Use this function if 2536 * the device description is generated, (e.g. with sprintf()). 2537 */ 2538 void 2539 device_set_desc_copy(device_t dev, const char* desc) 2540 { 2541 device_set_desc_internal(dev, desc, TRUE); 2542 } 2543 2544 /** 2545 * @brief Set the device's flags 2546 */ 2547 void 2548 device_set_flags(device_t dev, uint32_t flags) 2549 { 2550 dev->devflags = flags; 2551 } 2552 2553 /** 2554 * @brief Return the device's softc field 2555 * 2556 * The softc is allocated and zeroed when a driver is attached, based 2557 * on the size field of the driver. 2558 */ 2559 void * 2560 device_get_softc(device_t dev) 2561 { 2562 return (dev->softc); 2563 } 2564 2565 /** 2566 * @brief Set the device's softc field 2567 * 2568 * Most drivers do not need to use this since the softc is allocated 2569 * automatically when the driver is attached. 2570 */ 2571 void 2572 device_set_softc(device_t dev, void *softc) 2573 { 2574 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2575 free(dev->softc, M_BUS_SC); 2576 dev->softc = softc; 2577 if (dev->softc) 2578 dev->flags |= DF_EXTERNALSOFTC; 2579 else 2580 dev->flags &= ~DF_EXTERNALSOFTC; 2581 } 2582 2583 /** 2584 * @brief Free claimed softc 2585 * 2586 * Most drivers do not need to use this since the softc is freed 2587 * automatically when the driver is detached. 2588 */ 2589 void 2590 device_free_softc(void *softc) 2591 { 2592 free(softc, M_BUS_SC); 2593 } 2594 2595 /** 2596 * @brief Claim softc 2597 * 2598 * This function can be used to let the driver free the automatically 2599 * allocated softc using "device_free_softc()". This function is 2600 * useful when the driver is refcounting the softc and the softc 2601 * cannot be freed when the "device_detach" method is called. 2602 */ 2603 void 2604 device_claim_softc(device_t dev) 2605 { 2606 if (dev->softc) 2607 dev->flags |= DF_EXTERNALSOFTC; 2608 else 2609 dev->flags &= ~DF_EXTERNALSOFTC; 2610 } 2611 2612 /** 2613 * @brief Get the device's ivars field 2614 * 2615 * The ivars field is used by the parent device to store per-device 2616 * state (e.g. the physical location of the device or a list of 2617 * resources). 2618 */ 2619 void * 2620 device_get_ivars(device_t dev) 2621 { 2622 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2623 return (dev->ivars); 2624 } 2625 2626 /** 2627 * @brief Set the device's ivars field 2628 */ 2629 void 2630 device_set_ivars(device_t dev, void * ivars) 2631 { 2632 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2633 dev->ivars = ivars; 2634 } 2635 2636 /** 2637 * @brief Return the device's state 2638 */ 2639 device_state_t 2640 device_get_state(device_t dev) 2641 { 2642 return (dev->state); 2643 } 2644 2645 /** 2646 * @brief Set the DF_ENABLED flag for the device 2647 */ 2648 void 2649 device_enable(device_t dev) 2650 { 2651 dev->flags |= DF_ENABLED; 2652 } 2653 2654 /** 2655 * @brief Clear the DF_ENABLED flag for the device 2656 */ 2657 void 2658 device_disable(device_t dev) 2659 { 2660 dev->flags &= ~DF_ENABLED; 2661 } 2662 2663 /** 2664 * @brief Increment the busy counter for the device 2665 */ 2666 void 2667 device_busy(device_t dev) 2668 { 2669 2670 /* 2671 * Mark the device as busy, recursively up the tree if this busy count 2672 * goes 0->1. 2673 */ 2674 if (refcount_acquire(&dev->busy) == 0 && dev->parent != NULL) 2675 device_busy(dev->parent); 2676 } 2677 2678 /** 2679 * @brief Decrement the busy counter for the device 2680 */ 2681 void 2682 device_unbusy(device_t dev) 2683 { 2684 2685 /* 2686 * Mark the device as unbsy, recursively if this is the last busy count. 2687 */ 2688 if (refcount_release(&dev->busy) && dev->parent != NULL) 2689 device_unbusy(dev->parent); 2690 } 2691 2692 /** 2693 * @brief Set the DF_QUIET flag for the device 2694 */ 2695 void 2696 device_quiet(device_t dev) 2697 { 2698 dev->flags |= DF_QUIET; 2699 } 2700 2701 /** 2702 * @brief Set the DF_QUIET_CHILDREN flag for the device 2703 */ 2704 void 2705 device_quiet_children(device_t dev) 2706 { 2707 dev->flags |= DF_QUIET_CHILDREN; 2708 } 2709 2710 /** 2711 * @brief Clear the DF_QUIET flag for the device 2712 */ 2713 void 2714 device_verbose(device_t dev) 2715 { 2716 dev->flags &= ~DF_QUIET; 2717 } 2718 2719 ssize_t 2720 device_get_property(device_t dev, const char *prop, void *val, size_t sz) 2721 { 2722 device_t bus = device_get_parent(dev); 2723 2724 return (BUS_GET_PROPERTY(bus, dev, prop, val, sz)); 2725 } 2726 2727 bool 2728 device_has_property(device_t dev, const char *prop) 2729 { 2730 return (device_get_property(dev, prop, NULL, 0) >= 0); 2731 } 2732 2733 /** 2734 * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device 2735 */ 2736 int 2737 device_has_quiet_children(device_t dev) 2738 { 2739 return ((dev->flags & DF_QUIET_CHILDREN) != 0); 2740 } 2741 2742 /** 2743 * @brief Return non-zero if the DF_QUIET flag is set on the device 2744 */ 2745 int 2746 device_is_quiet(device_t dev) 2747 { 2748 return ((dev->flags & DF_QUIET) != 0); 2749 } 2750 2751 /** 2752 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2753 */ 2754 int 2755 device_is_enabled(device_t dev) 2756 { 2757 return ((dev->flags & DF_ENABLED) != 0); 2758 } 2759 2760 /** 2761 * @brief Return non-zero if the device was successfully probed 2762 */ 2763 int 2764 device_is_alive(device_t dev) 2765 { 2766 return (dev->state >= DS_ALIVE); 2767 } 2768 2769 /** 2770 * @brief Return non-zero if the device currently has a driver 2771 * attached to it 2772 */ 2773 int 2774 device_is_attached(device_t dev) 2775 { 2776 return (dev->state >= DS_ATTACHED); 2777 } 2778 2779 /** 2780 * @brief Return non-zero if the device is currently suspended. 2781 */ 2782 int 2783 device_is_suspended(device_t dev) 2784 { 2785 return ((dev->flags & DF_SUSPENDED) != 0); 2786 } 2787 2788 /** 2789 * @brief Set the devclass of a device 2790 * @see devclass_add_device(). 2791 */ 2792 int 2793 device_set_devclass(device_t dev, const char *classname) 2794 { 2795 devclass_t dc; 2796 int error; 2797 2798 if (!classname) { 2799 if (dev->devclass) 2800 devclass_delete_device(dev->devclass, dev); 2801 return (0); 2802 } 2803 2804 if (dev->devclass) { 2805 printf("device_set_devclass: device class already set\n"); 2806 return (EINVAL); 2807 } 2808 2809 dc = devclass_find_internal(classname, NULL, TRUE); 2810 if (!dc) 2811 return (ENOMEM); 2812 2813 error = devclass_add_device(dc, dev); 2814 2815 bus_data_generation_update(); 2816 return (error); 2817 } 2818 2819 /** 2820 * @brief Set the devclass of a device and mark the devclass fixed. 2821 * @see device_set_devclass() 2822 */ 2823 int 2824 device_set_devclass_fixed(device_t dev, const char *classname) 2825 { 2826 int error; 2827 2828 if (classname == NULL) 2829 return (EINVAL); 2830 2831 error = device_set_devclass(dev, classname); 2832 if (error) 2833 return (error); 2834 dev->flags |= DF_FIXEDCLASS; 2835 return (0); 2836 } 2837 2838 /** 2839 * @brief Query the device to determine if it's of a fixed devclass 2840 * @see device_set_devclass_fixed() 2841 */ 2842 bool 2843 device_is_devclass_fixed(device_t dev) 2844 { 2845 return ((dev->flags & DF_FIXEDCLASS) != 0); 2846 } 2847 2848 /** 2849 * @brief Set the driver of a device 2850 * 2851 * @retval 0 success 2852 * @retval EBUSY the device already has a driver attached 2853 * @retval ENOMEM a memory allocation failure occurred 2854 */ 2855 int 2856 device_set_driver(device_t dev, driver_t *driver) 2857 { 2858 int domain; 2859 struct domainset *policy; 2860 2861 if (dev->state >= DS_ATTACHED) 2862 return (EBUSY); 2863 2864 if (dev->driver == driver) 2865 return (0); 2866 2867 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2868 free(dev->softc, M_BUS_SC); 2869 dev->softc = NULL; 2870 } 2871 device_set_desc(dev, NULL); 2872 kobj_delete((kobj_t) dev, NULL); 2873 dev->driver = driver; 2874 if (driver) { 2875 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2876 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2877 if (bus_get_domain(dev, &domain) == 0) 2878 policy = DOMAINSET_PREF(domain); 2879 else 2880 policy = DOMAINSET_RR(); 2881 dev->softc = malloc_domainset(driver->size, M_BUS_SC, 2882 policy, M_NOWAIT | M_ZERO); 2883 if (!dev->softc) { 2884 kobj_delete((kobj_t) dev, NULL); 2885 kobj_init((kobj_t) dev, &null_class); 2886 dev->driver = NULL; 2887 return (ENOMEM); 2888 } 2889 } 2890 } else { 2891 kobj_init((kobj_t) dev, &null_class); 2892 } 2893 2894 bus_data_generation_update(); 2895 return (0); 2896 } 2897 2898 /** 2899 * @brief Probe a device, and return this status. 2900 * 2901 * This function is the core of the device autoconfiguration 2902 * system. Its purpose is to select a suitable driver for a device and 2903 * then call that driver to initialise the hardware appropriately. The 2904 * driver is selected by calling the DEVICE_PROBE() method of a set of 2905 * candidate drivers and then choosing the driver which returned the 2906 * best value. This driver is then attached to the device using 2907 * device_attach(). 2908 * 2909 * The set of suitable drivers is taken from the list of drivers in 2910 * the parent device's devclass. If the device was originally created 2911 * with a specific class name (see device_add_child()), only drivers 2912 * with that name are probed, otherwise all drivers in the devclass 2913 * are probed. If no drivers return successful probe values in the 2914 * parent devclass, the search continues in the parent of that 2915 * devclass (see devclass_get_parent()) if any. 2916 * 2917 * @param dev the device to initialise 2918 * 2919 * @retval 0 success 2920 * @retval ENXIO no driver was found 2921 * @retval ENOMEM memory allocation failure 2922 * @retval non-zero some other unix error code 2923 * @retval -1 Device already attached 2924 */ 2925 int 2926 device_probe(device_t dev) 2927 { 2928 int error; 2929 2930 bus_topo_assert(); 2931 2932 if (dev->state >= DS_ALIVE) 2933 return (-1); 2934 2935 if (!(dev->flags & DF_ENABLED)) { 2936 if (bootverbose && device_get_name(dev) != NULL) { 2937 device_print_prettyname(dev); 2938 printf("not probed (disabled)\n"); 2939 } 2940 return (-1); 2941 } 2942 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2943 if (bus_current_pass == BUS_PASS_DEFAULT && 2944 !(dev->flags & DF_DONENOMATCH)) { 2945 BUS_PROBE_NOMATCH(dev->parent, dev); 2946 devnomatch(dev); 2947 dev->flags |= DF_DONENOMATCH; 2948 } 2949 return (error); 2950 } 2951 return (0); 2952 } 2953 2954 /** 2955 * @brief Probe a device and attach a driver if possible 2956 * 2957 * calls device_probe() and attaches if that was successful. 2958 */ 2959 int 2960 device_probe_and_attach(device_t dev) 2961 { 2962 int error; 2963 2964 bus_topo_assert(); 2965 2966 error = device_probe(dev); 2967 if (error == -1) 2968 return (0); 2969 else if (error != 0) 2970 return (error); 2971 2972 CURVNET_SET_QUIET(vnet0); 2973 error = device_attach(dev); 2974 CURVNET_RESTORE(); 2975 return error; 2976 } 2977 2978 /** 2979 * @brief Attach a device driver to a device 2980 * 2981 * This function is a wrapper around the DEVICE_ATTACH() driver 2982 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2983 * device's sysctl tree, optionally prints a description of the device 2984 * and queues a notification event for user-based device management 2985 * services. 2986 * 2987 * Normally this function is only called internally from 2988 * device_probe_and_attach(). 2989 * 2990 * @param dev the device to initialise 2991 * 2992 * @retval 0 success 2993 * @retval ENXIO no driver was found 2994 * @retval ENOMEM memory allocation failure 2995 * @retval non-zero some other unix error code 2996 */ 2997 int 2998 device_attach(device_t dev) 2999 { 3000 uint64_t attachtime; 3001 uint16_t attachentropy; 3002 int error; 3003 3004 if (resource_disabled(dev->driver->name, dev->unit)) { 3005 device_disable(dev); 3006 if (bootverbose) 3007 device_printf(dev, "disabled via hints entry\n"); 3008 return (ENXIO); 3009 } 3010 3011 device_sysctl_init(dev); 3012 if (!device_is_quiet(dev)) 3013 device_print_child(dev->parent, dev); 3014 attachtime = get_cyclecount(); 3015 dev->state = DS_ATTACHING; 3016 if ((error = DEVICE_ATTACH(dev)) != 0) { 3017 printf("device_attach: %s%d attach returned %d\n", 3018 dev->driver->name, dev->unit, error); 3019 if (!(dev->flags & DF_FIXEDCLASS)) 3020 devclass_delete_device(dev->devclass, dev); 3021 (void)device_set_driver(dev, NULL); 3022 device_sysctl_fini(dev); 3023 KASSERT(dev->busy == 0, ("attach failed but busy")); 3024 dev->state = DS_NOTPRESENT; 3025 return (error); 3026 } 3027 dev->flags |= DF_ATTACHED_ONCE; 3028 /* We only need the low bits of this time, but ranges from tens to thousands 3029 * have been seen, so keep 2 bytes' worth. 3030 */ 3031 attachentropy = (uint16_t)(get_cyclecount() - attachtime); 3032 random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH); 3033 device_sysctl_update(dev); 3034 dev->state = DS_ATTACHED; 3035 dev->flags &= ~DF_DONENOMATCH; 3036 EVENTHANDLER_DIRECT_INVOKE(device_attach, dev); 3037 devadded(dev); 3038 return (0); 3039 } 3040 3041 /** 3042 * @brief Detach a driver from a device 3043 * 3044 * This function is a wrapper around the DEVICE_DETACH() driver 3045 * method. If the call to DEVICE_DETACH() succeeds, it calls 3046 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 3047 * notification event for user-based device management services and 3048 * cleans up the device's sysctl tree. 3049 * 3050 * @param dev the device to un-initialise 3051 * 3052 * @retval 0 success 3053 * @retval ENXIO no driver was found 3054 * @retval ENOMEM memory allocation failure 3055 * @retval non-zero some other unix error code 3056 */ 3057 int 3058 device_detach(device_t dev) 3059 { 3060 int error; 3061 3062 bus_topo_assert(); 3063 3064 PDEBUG(("%s", DEVICENAME(dev))); 3065 if (dev->busy > 0) 3066 return (EBUSY); 3067 if (dev->state == DS_ATTACHING) { 3068 device_printf(dev, "device in attaching state! Deferring detach.\n"); 3069 return (EBUSY); 3070 } 3071 if (dev->state != DS_ATTACHED) 3072 return (0); 3073 3074 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN); 3075 if ((error = DEVICE_DETACH(dev)) != 0) { 3076 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 3077 EVHDEV_DETACH_FAILED); 3078 return (error); 3079 } else { 3080 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 3081 EVHDEV_DETACH_COMPLETE); 3082 } 3083 devremoved(dev); 3084 if (!device_is_quiet(dev)) 3085 device_printf(dev, "detached\n"); 3086 if (dev->parent) 3087 BUS_CHILD_DETACHED(dev->parent, dev); 3088 3089 if (!(dev->flags & DF_FIXEDCLASS)) 3090 devclass_delete_device(dev->devclass, dev); 3091 3092 device_verbose(dev); 3093 dev->state = DS_NOTPRESENT; 3094 (void)device_set_driver(dev, NULL); 3095 device_sysctl_fini(dev); 3096 3097 return (0); 3098 } 3099 3100 /** 3101 * @brief Tells a driver to quiesce itself. 3102 * 3103 * This function is a wrapper around the DEVICE_QUIESCE() driver 3104 * method. If the call to DEVICE_QUIESCE() succeeds. 3105 * 3106 * @param dev the device to quiesce 3107 * 3108 * @retval 0 success 3109 * @retval ENXIO no driver was found 3110 * @retval ENOMEM memory allocation failure 3111 * @retval non-zero some other unix error code 3112 */ 3113 int 3114 device_quiesce(device_t dev) 3115 { 3116 PDEBUG(("%s", DEVICENAME(dev))); 3117 if (dev->busy > 0) 3118 return (EBUSY); 3119 if (dev->state != DS_ATTACHED) 3120 return (0); 3121 3122 return (DEVICE_QUIESCE(dev)); 3123 } 3124 3125 /** 3126 * @brief Notify a device of system shutdown 3127 * 3128 * This function calls the DEVICE_SHUTDOWN() driver method if the 3129 * device currently has an attached driver. 3130 * 3131 * @returns the value returned by DEVICE_SHUTDOWN() 3132 */ 3133 int 3134 device_shutdown(device_t dev) 3135 { 3136 if (dev->state < DS_ATTACHED) 3137 return (0); 3138 return (DEVICE_SHUTDOWN(dev)); 3139 } 3140 3141 /** 3142 * @brief Set the unit number of a device 3143 * 3144 * This function can be used to override the unit number used for a 3145 * device (e.g. to wire a device to a pre-configured unit number). 3146 */ 3147 int 3148 device_set_unit(device_t dev, int unit) 3149 { 3150 devclass_t dc; 3151 int err; 3152 3153 if (unit == dev->unit) 3154 return (0); 3155 dc = device_get_devclass(dev); 3156 if (unit < dc->maxunit && dc->devices[unit]) 3157 return (EBUSY); 3158 err = devclass_delete_device(dc, dev); 3159 if (err) 3160 return (err); 3161 dev->unit = unit; 3162 err = devclass_add_device(dc, dev); 3163 if (err) 3164 return (err); 3165 3166 bus_data_generation_update(); 3167 return (0); 3168 } 3169 3170 /*======================================*/ 3171 /* 3172 * Some useful method implementations to make life easier for bus drivers. 3173 */ 3174 3175 void 3176 resource_init_map_request_impl(struct resource_map_request *args, size_t sz) 3177 { 3178 bzero(args, sz); 3179 args->size = sz; 3180 args->memattr = VM_MEMATTR_DEVICE; 3181 } 3182 3183 /** 3184 * @brief Initialise a resource list. 3185 * 3186 * @param rl the resource list to initialise 3187 */ 3188 void 3189 resource_list_init(struct resource_list *rl) 3190 { 3191 STAILQ_INIT(rl); 3192 } 3193 3194 /** 3195 * @brief Reclaim memory used by a resource list. 3196 * 3197 * This function frees the memory for all resource entries on the list 3198 * (if any). 3199 * 3200 * @param rl the resource list to free 3201 */ 3202 void 3203 resource_list_free(struct resource_list *rl) 3204 { 3205 struct resource_list_entry *rle; 3206 3207 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3208 if (rle->res) 3209 panic("resource_list_free: resource entry is busy"); 3210 STAILQ_REMOVE_HEAD(rl, link); 3211 free(rle, M_BUS); 3212 } 3213 } 3214 3215 /** 3216 * @brief Add a resource entry. 3217 * 3218 * This function adds a resource entry using the given @p type, @p 3219 * start, @p end and @p count values. A rid value is chosen by 3220 * searching sequentially for the first unused rid starting at zero. 3221 * 3222 * @param rl the resource list to edit 3223 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3224 * @param start the start address of the resource 3225 * @param end the end address of the resource 3226 * @param count XXX end-start+1 3227 */ 3228 int 3229 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start, 3230 rman_res_t end, rman_res_t count) 3231 { 3232 int rid; 3233 3234 rid = 0; 3235 while (resource_list_find(rl, type, rid) != NULL) 3236 rid++; 3237 resource_list_add(rl, type, rid, start, end, count); 3238 return (rid); 3239 } 3240 3241 /** 3242 * @brief Add or modify a resource entry. 3243 * 3244 * If an existing entry exists with the same type and rid, it will be 3245 * modified using the given values of @p start, @p end and @p 3246 * count. If no entry exists, a new one will be created using the 3247 * given values. The resource list entry that matches is then returned. 3248 * 3249 * @param rl the resource list to edit 3250 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3251 * @param rid the resource identifier 3252 * @param start the start address of the resource 3253 * @param end the end address of the resource 3254 * @param count XXX end-start+1 3255 */ 3256 struct resource_list_entry * 3257 resource_list_add(struct resource_list *rl, int type, int rid, 3258 rman_res_t start, rman_res_t end, rman_res_t count) 3259 { 3260 struct resource_list_entry *rle; 3261 3262 rle = resource_list_find(rl, type, rid); 3263 if (!rle) { 3264 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 3265 M_NOWAIT); 3266 if (!rle) 3267 panic("resource_list_add: can't record entry"); 3268 STAILQ_INSERT_TAIL(rl, rle, link); 3269 rle->type = type; 3270 rle->rid = rid; 3271 rle->res = NULL; 3272 rle->flags = 0; 3273 } 3274 3275 if (rle->res) 3276 panic("resource_list_add: resource entry is busy"); 3277 3278 rle->start = start; 3279 rle->end = end; 3280 rle->count = count; 3281 return (rle); 3282 } 3283 3284 /** 3285 * @brief Determine if a resource entry is busy. 3286 * 3287 * Returns true if a resource entry is busy meaning that it has an 3288 * associated resource that is not an unallocated "reserved" resource. 3289 * 3290 * @param rl the resource list to search 3291 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3292 * @param rid the resource identifier 3293 * 3294 * @returns Non-zero if the entry is busy, zero otherwise. 3295 */ 3296 int 3297 resource_list_busy(struct resource_list *rl, int type, int rid) 3298 { 3299 struct resource_list_entry *rle; 3300 3301 rle = resource_list_find(rl, type, rid); 3302 if (rle == NULL || rle->res == NULL) 3303 return (0); 3304 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 3305 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 3306 ("reserved resource is active")); 3307 return (0); 3308 } 3309 return (1); 3310 } 3311 3312 /** 3313 * @brief Determine if a resource entry is reserved. 3314 * 3315 * Returns true if a resource entry is reserved meaning that it has an 3316 * associated "reserved" resource. The resource can either be 3317 * allocated or unallocated. 3318 * 3319 * @param rl the resource list to search 3320 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3321 * @param rid the resource identifier 3322 * 3323 * @returns Non-zero if the entry is reserved, zero otherwise. 3324 */ 3325 int 3326 resource_list_reserved(struct resource_list *rl, int type, int rid) 3327 { 3328 struct resource_list_entry *rle; 3329 3330 rle = resource_list_find(rl, type, rid); 3331 if (rle != NULL && rle->flags & RLE_RESERVED) 3332 return (1); 3333 return (0); 3334 } 3335 3336 /** 3337 * @brief Find a resource entry by type and rid. 3338 * 3339 * @param rl the resource list to search 3340 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3341 * @param rid the resource identifier 3342 * 3343 * @returns the resource entry pointer or NULL if there is no such 3344 * entry. 3345 */ 3346 struct resource_list_entry * 3347 resource_list_find(struct resource_list *rl, int type, int rid) 3348 { 3349 struct resource_list_entry *rle; 3350 3351 STAILQ_FOREACH(rle, rl, link) { 3352 if (rle->type == type && rle->rid == rid) 3353 return (rle); 3354 } 3355 return (NULL); 3356 } 3357 3358 /** 3359 * @brief Delete a resource entry. 3360 * 3361 * @param rl the resource list to edit 3362 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3363 * @param rid the resource identifier 3364 */ 3365 void 3366 resource_list_delete(struct resource_list *rl, int type, int rid) 3367 { 3368 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3369 3370 if (rle) { 3371 if (rle->res != NULL) 3372 panic("resource_list_delete: resource has not been released"); 3373 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3374 free(rle, M_BUS); 3375 } 3376 } 3377 3378 /** 3379 * @brief Allocate a reserved resource 3380 * 3381 * This can be used by buses to force the allocation of resources 3382 * that are always active in the system even if they are not allocated 3383 * by a driver (e.g. PCI BARs). This function is usually called when 3384 * adding a new child to the bus. The resource is allocated from the 3385 * parent bus when it is reserved. The resource list entry is marked 3386 * with RLE_RESERVED to note that it is a reserved resource. 3387 * 3388 * Subsequent attempts to allocate the resource with 3389 * resource_list_alloc() will succeed the first time and will set 3390 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3391 * resource that has been allocated is released with 3392 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3393 * the actual resource remains allocated. The resource can be released to 3394 * the parent bus by calling resource_list_unreserve(). 3395 * 3396 * @param rl the resource list to allocate from 3397 * @param bus the parent device of @p child 3398 * @param child the device for which the resource is being reserved 3399 * @param type the type of resource to allocate 3400 * @param rid a pointer to the resource identifier 3401 * @param start hint at the start of the resource range - pass 3402 * @c 0 for any start address 3403 * @param end hint at the end of the resource range - pass 3404 * @c ~0 for any end address 3405 * @param count hint at the size of range required - pass @c 1 3406 * for any size 3407 * @param flags any extra flags to control the resource 3408 * allocation - see @c RF_XXX flags in 3409 * <sys/rman.h> for details 3410 * 3411 * @returns the resource which was allocated or @c NULL if no 3412 * resource could be allocated 3413 */ 3414 struct resource * 3415 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3416 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3417 { 3418 struct resource_list_entry *rle = NULL; 3419 int passthrough = (device_get_parent(child) != bus); 3420 struct resource *r; 3421 3422 if (passthrough) 3423 panic( 3424 "resource_list_reserve() should only be called for direct children"); 3425 if (flags & RF_ACTIVE) 3426 panic( 3427 "resource_list_reserve() should only reserve inactive resources"); 3428 3429 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3430 flags); 3431 if (r != NULL) { 3432 rle = resource_list_find(rl, type, *rid); 3433 rle->flags |= RLE_RESERVED; 3434 } 3435 return (r); 3436 } 3437 3438 /** 3439 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3440 * 3441 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3442 * and passing the allocation up to the parent of @p bus. This assumes 3443 * that the first entry of @c device_get_ivars(child) is a struct 3444 * resource_list. This also handles 'passthrough' allocations where a 3445 * child is a remote descendant of bus by passing the allocation up to 3446 * the parent of bus. 3447 * 3448 * Typically, a bus driver would store a list of child resources 3449 * somewhere in the child device's ivars (see device_get_ivars()) and 3450 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3451 * then call resource_list_alloc() to perform the allocation. 3452 * 3453 * @param rl the resource list to allocate from 3454 * @param bus the parent device of @p child 3455 * @param child the device which is requesting an allocation 3456 * @param type the type of resource to allocate 3457 * @param rid a pointer to the resource identifier 3458 * @param start hint at the start of the resource range - pass 3459 * @c 0 for any start address 3460 * @param end hint at the end of the resource range - pass 3461 * @c ~0 for any end address 3462 * @param count hint at the size of range required - pass @c 1 3463 * for any size 3464 * @param flags any extra flags to control the resource 3465 * allocation - see @c RF_XXX flags in 3466 * <sys/rman.h> for details 3467 * 3468 * @returns the resource which was allocated or @c NULL if no 3469 * resource could be allocated 3470 */ 3471 struct resource * 3472 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3473 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3474 { 3475 struct resource_list_entry *rle = NULL; 3476 int passthrough = (device_get_parent(child) != bus); 3477 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 3478 3479 if (passthrough) { 3480 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3481 type, rid, start, end, count, flags)); 3482 } 3483 3484 rle = resource_list_find(rl, type, *rid); 3485 3486 if (!rle) 3487 return (NULL); /* no resource of that type/rid */ 3488 3489 if (rle->res) { 3490 if (rle->flags & RLE_RESERVED) { 3491 if (rle->flags & RLE_ALLOCATED) 3492 return (NULL); 3493 if ((flags & RF_ACTIVE) && 3494 bus_activate_resource(child, type, *rid, 3495 rle->res) != 0) 3496 return (NULL); 3497 rle->flags |= RLE_ALLOCATED; 3498 return (rle->res); 3499 } 3500 device_printf(bus, 3501 "resource entry %#x type %d for child %s is busy\n", *rid, 3502 type, device_get_nameunit(child)); 3503 return (NULL); 3504 } 3505 3506 if (isdefault) { 3507 start = rle->start; 3508 count = ulmax(count, rle->count); 3509 end = ulmax(rle->end, start + count - 1); 3510 } 3511 3512 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3513 type, rid, start, end, count, flags); 3514 3515 /* 3516 * Record the new range. 3517 */ 3518 if (rle->res) { 3519 rle->start = rman_get_start(rle->res); 3520 rle->end = rman_get_end(rle->res); 3521 rle->count = count; 3522 } 3523 3524 return (rle->res); 3525 } 3526 3527 /** 3528 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3529 * 3530 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3531 * used with resource_list_alloc(). 3532 * 3533 * @param rl the resource list which was allocated from 3534 * @param bus the parent device of @p child 3535 * @param child the device which is requesting a release 3536 * @param type the type of resource to release 3537 * @param rid the resource identifier 3538 * @param res the resource to release 3539 * 3540 * @retval 0 success 3541 * @retval non-zero a standard unix error code indicating what 3542 * error condition prevented the operation 3543 */ 3544 int 3545 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3546 int type, int rid, struct resource *res) 3547 { 3548 struct resource_list_entry *rle = NULL; 3549 int passthrough = (device_get_parent(child) != bus); 3550 int error; 3551 3552 if (passthrough) { 3553 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3554 type, rid, res)); 3555 } 3556 3557 rle = resource_list_find(rl, type, rid); 3558 3559 if (!rle) 3560 panic("resource_list_release: can't find resource"); 3561 if (!rle->res) 3562 panic("resource_list_release: resource entry is not busy"); 3563 if (rle->flags & RLE_RESERVED) { 3564 if (rle->flags & RLE_ALLOCATED) { 3565 if (rman_get_flags(res) & RF_ACTIVE) { 3566 error = bus_deactivate_resource(child, type, 3567 rid, res); 3568 if (error) 3569 return (error); 3570 } 3571 rle->flags &= ~RLE_ALLOCATED; 3572 return (0); 3573 } 3574 return (EINVAL); 3575 } 3576 3577 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3578 type, rid, res); 3579 if (error) 3580 return (error); 3581 3582 rle->res = NULL; 3583 return (0); 3584 } 3585 3586 /** 3587 * @brief Release all active resources of a given type 3588 * 3589 * Release all active resources of a specified type. This is intended 3590 * to be used to cleanup resources leaked by a driver after detach or 3591 * a failed attach. 3592 * 3593 * @param rl the resource list which was allocated from 3594 * @param bus the parent device of @p child 3595 * @param child the device whose active resources are being released 3596 * @param type the type of resources to release 3597 * 3598 * @retval 0 success 3599 * @retval EBUSY at least one resource was active 3600 */ 3601 int 3602 resource_list_release_active(struct resource_list *rl, device_t bus, 3603 device_t child, int type) 3604 { 3605 struct resource_list_entry *rle; 3606 int error, retval; 3607 3608 retval = 0; 3609 STAILQ_FOREACH(rle, rl, link) { 3610 if (rle->type != type) 3611 continue; 3612 if (rle->res == NULL) 3613 continue; 3614 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3615 RLE_RESERVED) 3616 continue; 3617 retval = EBUSY; 3618 error = resource_list_release(rl, bus, child, type, 3619 rman_get_rid(rle->res), rle->res); 3620 if (error != 0) 3621 device_printf(bus, 3622 "Failed to release active resource: %d\n", error); 3623 } 3624 return (retval); 3625 } 3626 3627 /** 3628 * @brief Fully release a reserved resource 3629 * 3630 * Fully releases a resource reserved via resource_list_reserve(). 3631 * 3632 * @param rl the resource list which was allocated from 3633 * @param bus the parent device of @p child 3634 * @param child the device whose reserved resource is being released 3635 * @param type the type of resource to release 3636 * @param rid the resource identifier 3637 * @param res the resource to release 3638 * 3639 * @retval 0 success 3640 * @retval non-zero a standard unix error code indicating what 3641 * error condition prevented the operation 3642 */ 3643 int 3644 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3645 int type, int rid) 3646 { 3647 struct resource_list_entry *rle = NULL; 3648 int passthrough = (device_get_parent(child) != bus); 3649 3650 if (passthrough) 3651 panic( 3652 "resource_list_unreserve() should only be called for direct children"); 3653 3654 rle = resource_list_find(rl, type, rid); 3655 3656 if (!rle) 3657 panic("resource_list_unreserve: can't find resource"); 3658 if (!(rle->flags & RLE_RESERVED)) 3659 return (EINVAL); 3660 if (rle->flags & RLE_ALLOCATED) 3661 return (EBUSY); 3662 rle->flags &= ~RLE_RESERVED; 3663 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3664 } 3665 3666 /** 3667 * @brief Print a description of resources in a resource list 3668 * 3669 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3670 * The name is printed if at least one resource of the given type is available. 3671 * The format is used to print resource start and end. 3672 * 3673 * @param rl the resource list to print 3674 * @param name the name of @p type, e.g. @c "memory" 3675 * @param type type type of resource entry to print 3676 * @param format printf(9) format string to print resource 3677 * start and end values 3678 * 3679 * @returns the number of characters printed 3680 */ 3681 int 3682 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3683 const char *format) 3684 { 3685 struct resource_list_entry *rle; 3686 int printed, retval; 3687 3688 printed = 0; 3689 retval = 0; 3690 /* Yes, this is kinda cheating */ 3691 STAILQ_FOREACH(rle, rl, link) { 3692 if (rle->type == type) { 3693 if (printed == 0) 3694 retval += printf(" %s ", name); 3695 else 3696 retval += printf(","); 3697 printed++; 3698 retval += printf(format, rle->start); 3699 if (rle->count > 1) { 3700 retval += printf("-"); 3701 retval += printf(format, rle->start + 3702 rle->count - 1); 3703 } 3704 } 3705 } 3706 return (retval); 3707 } 3708 3709 /** 3710 * @brief Releases all the resources in a list. 3711 * 3712 * @param rl The resource list to purge. 3713 * 3714 * @returns nothing 3715 */ 3716 void 3717 resource_list_purge(struct resource_list *rl) 3718 { 3719 struct resource_list_entry *rle; 3720 3721 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3722 if (rle->res) 3723 bus_release_resource(rman_get_device(rle->res), 3724 rle->type, rle->rid, rle->res); 3725 STAILQ_REMOVE_HEAD(rl, link); 3726 free(rle, M_BUS); 3727 } 3728 } 3729 3730 device_t 3731 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3732 { 3733 return (device_add_child_ordered(dev, order, name, unit)); 3734 } 3735 3736 /** 3737 * @brief Helper function for implementing DEVICE_PROBE() 3738 * 3739 * This function can be used to help implement the DEVICE_PROBE() for 3740 * a bus (i.e. a device which has other devices attached to it). It 3741 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3742 * devclass. 3743 */ 3744 int 3745 bus_generic_probe(device_t dev) 3746 { 3747 devclass_t dc = dev->devclass; 3748 driverlink_t dl; 3749 3750 TAILQ_FOREACH(dl, &dc->drivers, link) { 3751 /* 3752 * If this driver's pass is too high, then ignore it. 3753 * For most drivers in the default pass, this will 3754 * never be true. For early-pass drivers they will 3755 * only call the identify routines of eligible drivers 3756 * when this routine is called. Drivers for later 3757 * passes should have their identify routines called 3758 * on early-pass buses during BUS_NEW_PASS(). 3759 */ 3760 if (dl->pass > bus_current_pass) 3761 continue; 3762 DEVICE_IDENTIFY(dl->driver, dev); 3763 } 3764 3765 return (0); 3766 } 3767 3768 /** 3769 * @brief Helper function for implementing DEVICE_ATTACH() 3770 * 3771 * This function can be used to help implement the DEVICE_ATTACH() for 3772 * a bus. It calls device_probe_and_attach() for each of the device's 3773 * children. 3774 */ 3775 int 3776 bus_generic_attach(device_t dev) 3777 { 3778 device_t child; 3779 3780 TAILQ_FOREACH(child, &dev->children, link) { 3781 device_probe_and_attach(child); 3782 } 3783 3784 return (0); 3785 } 3786 3787 /** 3788 * @brief Helper function for delaying attaching children 3789 * 3790 * Many buses can't run transactions on the bus which children need to probe and 3791 * attach until after interrupts and/or timers are running. This function 3792 * delays their attach until interrupts and timers are enabled. 3793 */ 3794 int 3795 bus_delayed_attach_children(device_t dev) 3796 { 3797 /* Probe and attach the bus children when interrupts are available */ 3798 config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev); 3799 3800 return (0); 3801 } 3802 3803 /** 3804 * @brief Helper function for implementing DEVICE_DETACH() 3805 * 3806 * This function can be used to help implement the DEVICE_DETACH() for 3807 * a bus. It calls device_detach() for each of the device's 3808 * children. 3809 */ 3810 int 3811 bus_generic_detach(device_t dev) 3812 { 3813 device_t child; 3814 int error; 3815 3816 if (dev->state != DS_ATTACHED) 3817 return (EBUSY); 3818 3819 /* 3820 * Detach children in the reverse order. 3821 * See bus_generic_suspend for details. 3822 */ 3823 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3824 if ((error = device_detach(child)) != 0) 3825 return (error); 3826 } 3827 3828 return (0); 3829 } 3830 3831 /** 3832 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3833 * 3834 * This function can be used to help implement the DEVICE_SHUTDOWN() 3835 * for a bus. It calls device_shutdown() for each of the device's 3836 * children. 3837 */ 3838 int 3839 bus_generic_shutdown(device_t dev) 3840 { 3841 device_t child; 3842 3843 /* 3844 * Shut down children in the reverse order. 3845 * See bus_generic_suspend for details. 3846 */ 3847 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3848 device_shutdown(child); 3849 } 3850 3851 return (0); 3852 } 3853 3854 /** 3855 * @brief Default function for suspending a child device. 3856 * 3857 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). 3858 */ 3859 int 3860 bus_generic_suspend_child(device_t dev, device_t child) 3861 { 3862 int error; 3863 3864 error = DEVICE_SUSPEND(child); 3865 3866 if (error == 0) 3867 child->flags |= DF_SUSPENDED; 3868 3869 return (error); 3870 } 3871 3872 /** 3873 * @brief Default function for resuming a child device. 3874 * 3875 * This function is to be used by a bus's DEVICE_RESUME_CHILD(). 3876 */ 3877 int 3878 bus_generic_resume_child(device_t dev, device_t child) 3879 { 3880 DEVICE_RESUME(child); 3881 child->flags &= ~DF_SUSPENDED; 3882 3883 return (0); 3884 } 3885 3886 /** 3887 * @brief Helper function for implementing DEVICE_SUSPEND() 3888 * 3889 * This function can be used to help implement the DEVICE_SUSPEND() 3890 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3891 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3892 * operation is aborted and any devices which were suspended are 3893 * resumed immediately by calling their DEVICE_RESUME() methods. 3894 */ 3895 int 3896 bus_generic_suspend(device_t dev) 3897 { 3898 int error; 3899 device_t child; 3900 3901 /* 3902 * Suspend children in the reverse order. 3903 * For most buses all children are equal, so the order does not matter. 3904 * Other buses, such as acpi, carefully order their child devices to 3905 * express implicit dependencies between them. For such buses it is 3906 * safer to bring down devices in the reverse order. 3907 */ 3908 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3909 error = BUS_SUSPEND_CHILD(dev, child); 3910 if (error != 0) { 3911 child = TAILQ_NEXT(child, link); 3912 if (child != NULL) { 3913 TAILQ_FOREACH_FROM(child, &dev->children, link) 3914 BUS_RESUME_CHILD(dev, child); 3915 } 3916 return (error); 3917 } 3918 } 3919 return (0); 3920 } 3921 3922 /** 3923 * @brief Helper function for implementing DEVICE_RESUME() 3924 * 3925 * This function can be used to help implement the DEVICE_RESUME() for 3926 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3927 */ 3928 int 3929 bus_generic_resume(device_t dev) 3930 { 3931 device_t child; 3932 3933 TAILQ_FOREACH(child, &dev->children, link) { 3934 BUS_RESUME_CHILD(dev, child); 3935 /* if resume fails, there's nothing we can usefully do... */ 3936 } 3937 return (0); 3938 } 3939 3940 /** 3941 * @brief Helper function for implementing BUS_RESET_POST 3942 * 3943 * Bus can use this function to implement common operations of 3944 * re-attaching or resuming the children after the bus itself was 3945 * reset, and after restoring bus-unique state of children. 3946 * 3947 * @param dev The bus 3948 * #param flags DEVF_RESET_* 3949 */ 3950 int 3951 bus_helper_reset_post(device_t dev, int flags) 3952 { 3953 device_t child; 3954 int error, error1; 3955 3956 error = 0; 3957 TAILQ_FOREACH(child, &dev->children,link) { 3958 BUS_RESET_POST(dev, child); 3959 error1 = (flags & DEVF_RESET_DETACH) != 0 ? 3960 device_probe_and_attach(child) : 3961 BUS_RESUME_CHILD(dev, child); 3962 if (error == 0 && error1 != 0) 3963 error = error1; 3964 } 3965 return (error); 3966 } 3967 3968 static void 3969 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags) 3970 { 3971 child = TAILQ_NEXT(child, link); 3972 if (child == NULL) 3973 return; 3974 TAILQ_FOREACH_FROM(child, &dev->children,link) { 3975 BUS_RESET_POST(dev, child); 3976 if ((flags & DEVF_RESET_DETACH) != 0) 3977 device_probe_and_attach(child); 3978 else 3979 BUS_RESUME_CHILD(dev, child); 3980 } 3981 } 3982 3983 /** 3984 * @brief Helper function for implementing BUS_RESET_PREPARE 3985 * 3986 * Bus can use this function to implement common operations of 3987 * detaching or suspending the children before the bus itself is 3988 * reset, and then save bus-unique state of children that must 3989 * persists around reset. 3990 * 3991 * @param dev The bus 3992 * #param flags DEVF_RESET_* 3993 */ 3994 int 3995 bus_helper_reset_prepare(device_t dev, int flags) 3996 { 3997 device_t child; 3998 int error; 3999 4000 if (dev->state != DS_ATTACHED) 4001 return (EBUSY); 4002 4003 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 4004 if ((flags & DEVF_RESET_DETACH) != 0) { 4005 error = device_get_state(child) == DS_ATTACHED ? 4006 device_detach(child) : 0; 4007 } else { 4008 error = BUS_SUSPEND_CHILD(dev, child); 4009 } 4010 if (error == 0) { 4011 error = BUS_RESET_PREPARE(dev, child); 4012 if (error != 0) { 4013 if ((flags & DEVF_RESET_DETACH) != 0) 4014 device_probe_and_attach(child); 4015 else 4016 BUS_RESUME_CHILD(dev, child); 4017 } 4018 } 4019 if (error != 0) { 4020 bus_helper_reset_prepare_rollback(dev, child, flags); 4021 return (error); 4022 } 4023 } 4024 return (0); 4025 } 4026 4027 /** 4028 * @brief Helper function for implementing BUS_PRINT_CHILD(). 4029 * 4030 * This function prints the first part of the ascii representation of 4031 * @p child, including its name, unit and description (if any - see 4032 * device_set_desc()). 4033 * 4034 * @returns the number of characters printed 4035 */ 4036 int 4037 bus_print_child_header(device_t dev, device_t child) 4038 { 4039 int retval = 0; 4040 4041 if (device_get_desc(child)) { 4042 retval += device_printf(child, "<%s>", device_get_desc(child)); 4043 } else { 4044 retval += printf("%s", device_get_nameunit(child)); 4045 } 4046 4047 return (retval); 4048 } 4049 4050 /** 4051 * @brief Helper function for implementing BUS_PRINT_CHILD(). 4052 * 4053 * This function prints the last part of the ascii representation of 4054 * @p child, which consists of the string @c " on " followed by the 4055 * name and unit of the @p dev. 4056 * 4057 * @returns the number of characters printed 4058 */ 4059 int 4060 bus_print_child_footer(device_t dev, device_t child) 4061 { 4062 return (printf(" on %s\n", device_get_nameunit(dev))); 4063 } 4064 4065 /** 4066 * @brief Helper function for implementing BUS_PRINT_CHILD(). 4067 * 4068 * This function prints out the VM domain for the given device. 4069 * 4070 * @returns the number of characters printed 4071 */ 4072 int 4073 bus_print_child_domain(device_t dev, device_t child) 4074 { 4075 int domain; 4076 4077 /* No domain? Don't print anything */ 4078 if (BUS_GET_DOMAIN(dev, child, &domain) != 0) 4079 return (0); 4080 4081 return (printf(" numa-domain %d", domain)); 4082 } 4083 4084 /** 4085 * @brief Helper function for implementing BUS_PRINT_CHILD(). 4086 * 4087 * This function simply calls bus_print_child_header() followed by 4088 * bus_print_child_footer(). 4089 * 4090 * @returns the number of characters printed 4091 */ 4092 int 4093 bus_generic_print_child(device_t dev, device_t child) 4094 { 4095 int retval = 0; 4096 4097 retval += bus_print_child_header(dev, child); 4098 retval += bus_print_child_domain(dev, child); 4099 retval += bus_print_child_footer(dev, child); 4100 4101 return (retval); 4102 } 4103 4104 /** 4105 * @brief Stub function for implementing BUS_READ_IVAR(). 4106 * 4107 * @returns ENOENT 4108 */ 4109 int 4110 bus_generic_read_ivar(device_t dev, device_t child, int index, 4111 uintptr_t * result) 4112 { 4113 return (ENOENT); 4114 } 4115 4116 /** 4117 * @brief Stub function for implementing BUS_WRITE_IVAR(). 4118 * 4119 * @returns ENOENT 4120 */ 4121 int 4122 bus_generic_write_ivar(device_t dev, device_t child, int index, 4123 uintptr_t value) 4124 { 4125 return (ENOENT); 4126 } 4127 4128 /** 4129 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 4130 * 4131 * @returns NULL 4132 */ 4133 struct resource_list * 4134 bus_generic_get_resource_list(device_t dev, device_t child) 4135 { 4136 return (NULL); 4137 } 4138 4139 /** 4140 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 4141 * 4142 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 4143 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 4144 * and then calls device_probe_and_attach() for each unattached child. 4145 */ 4146 void 4147 bus_generic_driver_added(device_t dev, driver_t *driver) 4148 { 4149 device_t child; 4150 4151 DEVICE_IDENTIFY(driver, dev); 4152 TAILQ_FOREACH(child, &dev->children, link) { 4153 if (child->state == DS_NOTPRESENT) 4154 device_probe_and_attach(child); 4155 } 4156 } 4157 4158 /** 4159 * @brief Helper function for implementing BUS_NEW_PASS(). 4160 * 4161 * This implementing of BUS_NEW_PASS() first calls the identify 4162 * routines for any drivers that probe at the current pass. Then it 4163 * walks the list of devices for this bus. If a device is already 4164 * attached, then it calls BUS_NEW_PASS() on that device. If the 4165 * device is not already attached, it attempts to attach a driver to 4166 * it. 4167 */ 4168 void 4169 bus_generic_new_pass(device_t dev) 4170 { 4171 driverlink_t dl; 4172 devclass_t dc; 4173 device_t child; 4174 4175 dc = dev->devclass; 4176 TAILQ_FOREACH(dl, &dc->drivers, link) { 4177 if (dl->pass == bus_current_pass) 4178 DEVICE_IDENTIFY(dl->driver, dev); 4179 } 4180 TAILQ_FOREACH(child, &dev->children, link) { 4181 if (child->state >= DS_ATTACHED) 4182 BUS_NEW_PASS(child); 4183 else if (child->state == DS_NOTPRESENT) 4184 device_probe_and_attach(child); 4185 } 4186 } 4187 4188 /** 4189 * @brief Helper function for implementing BUS_SETUP_INTR(). 4190 * 4191 * This simple implementation of BUS_SETUP_INTR() simply calls the 4192 * BUS_SETUP_INTR() method of the parent of @p dev. 4193 */ 4194 int 4195 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 4196 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 4197 void **cookiep) 4198 { 4199 /* Propagate up the bus hierarchy until someone handles it. */ 4200 if (dev->parent) 4201 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 4202 filter, intr, arg, cookiep)); 4203 return (EINVAL); 4204 } 4205 4206 /** 4207 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 4208 * 4209 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 4210 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 4211 */ 4212 int 4213 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 4214 void *cookie) 4215 { 4216 /* Propagate up the bus hierarchy until someone handles it. */ 4217 if (dev->parent) 4218 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 4219 return (EINVAL); 4220 } 4221 4222 /** 4223 * @brief Helper function for implementing BUS_SUSPEND_INTR(). 4224 * 4225 * This simple implementation of BUS_SUSPEND_INTR() simply calls the 4226 * BUS_SUSPEND_INTR() method of the parent of @p dev. 4227 */ 4228 int 4229 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq) 4230 { 4231 /* Propagate up the bus hierarchy until someone handles it. */ 4232 if (dev->parent) 4233 return (BUS_SUSPEND_INTR(dev->parent, child, irq)); 4234 return (EINVAL); 4235 } 4236 4237 /** 4238 * @brief Helper function for implementing BUS_RESUME_INTR(). 4239 * 4240 * This simple implementation of BUS_RESUME_INTR() simply calls the 4241 * BUS_RESUME_INTR() method of the parent of @p dev. 4242 */ 4243 int 4244 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq) 4245 { 4246 /* Propagate up the bus hierarchy until someone handles it. */ 4247 if (dev->parent) 4248 return (BUS_RESUME_INTR(dev->parent, child, irq)); 4249 return (EINVAL); 4250 } 4251 4252 /** 4253 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 4254 * 4255 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 4256 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 4257 */ 4258 int 4259 bus_generic_adjust_resource(device_t dev, device_t child, int type, 4260 struct resource *r, rman_res_t start, rman_res_t end) 4261 { 4262 /* Propagate up the bus hierarchy until someone handles it. */ 4263 if (dev->parent) 4264 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, 4265 end)); 4266 return (EINVAL); 4267 } 4268 4269 /* 4270 * @brief Helper function for implementing BUS_TRANSLATE_RESOURCE(). 4271 * 4272 * This simple implementation of BUS_TRANSLATE_RESOURCE() simply calls the 4273 * BUS_TRANSLATE_RESOURCE() method of the parent of @p dev. If there is no 4274 * parent, no translation happens. 4275 */ 4276 int 4277 bus_generic_translate_resource(device_t dev, int type, rman_res_t start, 4278 rman_res_t *newstart) 4279 { 4280 if (dev->parent) 4281 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, 4282 newstart)); 4283 *newstart = start; 4284 return (0); 4285 } 4286 4287 /** 4288 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4289 * 4290 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 4291 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 4292 */ 4293 struct resource * 4294 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 4295 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4296 { 4297 /* Propagate up the bus hierarchy until someone handles it. */ 4298 if (dev->parent) 4299 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 4300 start, end, count, flags)); 4301 return (NULL); 4302 } 4303 4304 /** 4305 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4306 * 4307 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 4308 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 4309 */ 4310 int 4311 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 4312 struct resource *r) 4313 { 4314 /* Propagate up the bus hierarchy until someone handles it. */ 4315 if (dev->parent) 4316 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 4317 r)); 4318 return (EINVAL); 4319 } 4320 4321 /** 4322 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 4323 * 4324 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 4325 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 4326 */ 4327 int 4328 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 4329 struct resource *r) 4330 { 4331 /* Propagate up the bus hierarchy until someone handles it. */ 4332 if (dev->parent) 4333 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 4334 r)); 4335 return (EINVAL); 4336 } 4337 4338 /** 4339 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 4340 * 4341 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 4342 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 4343 */ 4344 int 4345 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 4346 int rid, struct resource *r) 4347 { 4348 /* Propagate up the bus hierarchy until someone handles it. */ 4349 if (dev->parent) 4350 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 4351 r)); 4352 return (EINVAL); 4353 } 4354 4355 /** 4356 * @brief Helper function for implementing BUS_MAP_RESOURCE(). 4357 * 4358 * This simple implementation of BUS_MAP_RESOURCE() simply calls the 4359 * BUS_MAP_RESOURCE() method of the parent of @p dev. 4360 */ 4361 int 4362 bus_generic_map_resource(device_t dev, device_t child, int type, 4363 struct resource *r, struct resource_map_request *args, 4364 struct resource_map *map) 4365 { 4366 /* Propagate up the bus hierarchy until someone handles it. */ 4367 if (dev->parent) 4368 return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args, 4369 map)); 4370 return (EINVAL); 4371 } 4372 4373 /** 4374 * @brief Helper function for implementing BUS_UNMAP_RESOURCE(). 4375 * 4376 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the 4377 * BUS_UNMAP_RESOURCE() method of the parent of @p dev. 4378 */ 4379 int 4380 bus_generic_unmap_resource(device_t dev, device_t child, int type, 4381 struct resource *r, struct resource_map *map) 4382 { 4383 /* Propagate up the bus hierarchy until someone handles it. */ 4384 if (dev->parent) 4385 return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map)); 4386 return (EINVAL); 4387 } 4388 4389 /** 4390 * @brief Helper function for implementing BUS_BIND_INTR(). 4391 * 4392 * This simple implementation of BUS_BIND_INTR() simply calls the 4393 * BUS_BIND_INTR() method of the parent of @p dev. 4394 */ 4395 int 4396 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 4397 int cpu) 4398 { 4399 /* Propagate up the bus hierarchy until someone handles it. */ 4400 if (dev->parent) 4401 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 4402 return (EINVAL); 4403 } 4404 4405 /** 4406 * @brief Helper function for implementing BUS_CONFIG_INTR(). 4407 * 4408 * This simple implementation of BUS_CONFIG_INTR() simply calls the 4409 * BUS_CONFIG_INTR() method of the parent of @p dev. 4410 */ 4411 int 4412 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 4413 enum intr_polarity pol) 4414 { 4415 /* Propagate up the bus hierarchy until someone handles it. */ 4416 if (dev->parent) 4417 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 4418 return (EINVAL); 4419 } 4420 4421 /** 4422 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 4423 * 4424 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 4425 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 4426 */ 4427 int 4428 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 4429 void *cookie, const char *descr) 4430 { 4431 /* Propagate up the bus hierarchy until someone handles it. */ 4432 if (dev->parent) 4433 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 4434 descr)); 4435 return (EINVAL); 4436 } 4437 4438 /** 4439 * @brief Helper function for implementing BUS_GET_CPUS(). 4440 * 4441 * This simple implementation of BUS_GET_CPUS() simply calls the 4442 * BUS_GET_CPUS() method of the parent of @p dev. 4443 */ 4444 int 4445 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op, 4446 size_t setsize, cpuset_t *cpuset) 4447 { 4448 /* Propagate up the bus hierarchy until someone handles it. */ 4449 if (dev->parent != NULL) 4450 return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset)); 4451 return (EINVAL); 4452 } 4453 4454 /** 4455 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 4456 * 4457 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 4458 * BUS_GET_DMA_TAG() method of the parent of @p dev. 4459 */ 4460 bus_dma_tag_t 4461 bus_generic_get_dma_tag(device_t dev, device_t child) 4462 { 4463 /* Propagate up the bus hierarchy until someone handles it. */ 4464 if (dev->parent != NULL) 4465 return (BUS_GET_DMA_TAG(dev->parent, child)); 4466 return (NULL); 4467 } 4468 4469 /** 4470 * @brief Helper function for implementing BUS_GET_BUS_TAG(). 4471 * 4472 * This simple implementation of BUS_GET_BUS_TAG() simply calls the 4473 * BUS_GET_BUS_TAG() method of the parent of @p dev. 4474 */ 4475 bus_space_tag_t 4476 bus_generic_get_bus_tag(device_t dev, device_t child) 4477 { 4478 /* Propagate up the bus hierarchy until someone handles it. */ 4479 if (dev->parent != NULL) 4480 return (BUS_GET_BUS_TAG(dev->parent, child)); 4481 return ((bus_space_tag_t)0); 4482 } 4483 4484 /** 4485 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4486 * 4487 * This implementation of BUS_GET_RESOURCE() uses the 4488 * resource_list_find() function to do most of the work. It calls 4489 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4490 * search. 4491 */ 4492 int 4493 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4494 rman_res_t *startp, rman_res_t *countp) 4495 { 4496 struct resource_list * rl = NULL; 4497 struct resource_list_entry * rle = NULL; 4498 4499 rl = BUS_GET_RESOURCE_LIST(dev, child); 4500 if (!rl) 4501 return (EINVAL); 4502 4503 rle = resource_list_find(rl, type, rid); 4504 if (!rle) 4505 return (ENOENT); 4506 4507 if (startp) 4508 *startp = rle->start; 4509 if (countp) 4510 *countp = rle->count; 4511 4512 return (0); 4513 } 4514 4515 /** 4516 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4517 * 4518 * This implementation of BUS_SET_RESOURCE() uses the 4519 * resource_list_add() function to do most of the work. It calls 4520 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4521 * edit. 4522 */ 4523 int 4524 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4525 rman_res_t start, rman_res_t count) 4526 { 4527 struct resource_list * rl = NULL; 4528 4529 rl = BUS_GET_RESOURCE_LIST(dev, child); 4530 if (!rl) 4531 return (EINVAL); 4532 4533 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4534 4535 return (0); 4536 } 4537 4538 /** 4539 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4540 * 4541 * This implementation of BUS_DELETE_RESOURCE() uses the 4542 * resource_list_delete() function to do most of the work. It calls 4543 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4544 * edit. 4545 */ 4546 void 4547 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4548 { 4549 struct resource_list * rl = NULL; 4550 4551 rl = BUS_GET_RESOURCE_LIST(dev, child); 4552 if (!rl) 4553 return; 4554 4555 resource_list_delete(rl, type, rid); 4556 4557 return; 4558 } 4559 4560 /** 4561 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4562 * 4563 * This implementation of BUS_RELEASE_RESOURCE() uses the 4564 * resource_list_release() function to do most of the work. It calls 4565 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4566 */ 4567 int 4568 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 4569 int rid, struct resource *r) 4570 { 4571 struct resource_list * rl = NULL; 4572 4573 if (device_get_parent(child) != dev) 4574 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 4575 type, rid, r)); 4576 4577 rl = BUS_GET_RESOURCE_LIST(dev, child); 4578 if (!rl) 4579 return (EINVAL); 4580 4581 return (resource_list_release(rl, dev, child, type, rid, r)); 4582 } 4583 4584 /** 4585 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4586 * 4587 * This implementation of BUS_ALLOC_RESOURCE() uses the 4588 * resource_list_alloc() function to do most of the work. It calls 4589 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4590 */ 4591 struct resource * 4592 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4593 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4594 { 4595 struct resource_list * rl = NULL; 4596 4597 if (device_get_parent(child) != dev) 4598 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4599 type, rid, start, end, count, flags)); 4600 4601 rl = BUS_GET_RESOURCE_LIST(dev, child); 4602 if (!rl) 4603 return (NULL); 4604 4605 return (resource_list_alloc(rl, dev, child, type, rid, 4606 start, end, count, flags)); 4607 } 4608 4609 /** 4610 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4611 * 4612 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4613 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4614 */ 4615 int 4616 bus_generic_child_present(device_t dev, device_t child) 4617 { 4618 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4619 } 4620 4621 int 4622 bus_generic_get_domain(device_t dev, device_t child, int *domain) 4623 { 4624 if (dev->parent) 4625 return (BUS_GET_DOMAIN(dev->parent, dev, domain)); 4626 4627 return (ENOENT); 4628 } 4629 4630 /** 4631 * @brief Helper function to implement normal BUS_GET_DEVICE_PATH() 4632 * 4633 * This function knows how to (a) pass the request up the tree if there's 4634 * a parent and (b) Knows how to supply a FreeBSD locator. 4635 * 4636 * @param bus bus in the walk up the tree 4637 * @param child leaf node to print information about 4638 * @param locator BUS_LOCATOR_xxx string for locator 4639 * @param sb Buffer to print information into 4640 */ 4641 int 4642 bus_generic_get_device_path(device_t bus, device_t child, const char *locator, 4643 struct sbuf *sb) 4644 { 4645 int rv = 0; 4646 device_t parent; 4647 4648 /* 4649 * We don't recurse on ACPI since either we know the handle for the 4650 * device or we don't. And if we're in the generic routine, we don't 4651 * have a ACPI override. All other locators build up a path by having 4652 * their parents create a path and then adding the path element for this 4653 * node. That's why we recurse with parent, bus rather than the typical 4654 * parent, child: each spot in the tree is independent of what our child 4655 * will do with this path. 4656 */ 4657 parent = device_get_parent(bus); 4658 if (parent != NULL && strcmp(locator, BUS_LOCATOR_ACPI) != 0) { 4659 rv = BUS_GET_DEVICE_PATH(parent, bus, locator, sb); 4660 } 4661 if (strcmp(locator, BUS_LOCATOR_FREEBSD) == 0) { 4662 if (rv == 0) { 4663 sbuf_printf(sb, "/%s", device_get_nameunit(child)); 4664 } 4665 return (rv); 4666 } 4667 /* 4668 * Don't know what to do. So assume we do nothing. Not sure that's 4669 * the right thing, but keeps us from having a big list here. 4670 */ 4671 return (0); 4672 } 4673 4674 4675 /** 4676 * @brief Helper function for implementing BUS_RESCAN(). 4677 * 4678 * This null implementation of BUS_RESCAN() always fails to indicate 4679 * the bus does not support rescanning. 4680 */ 4681 int 4682 bus_null_rescan(device_t dev) 4683 { 4684 return (ENXIO); 4685 } 4686 4687 /* 4688 * Some convenience functions to make it easier for drivers to use the 4689 * resource-management functions. All these really do is hide the 4690 * indirection through the parent's method table, making for slightly 4691 * less-wordy code. In the future, it might make sense for this code 4692 * to maintain some sort of a list of resources allocated by each device. 4693 */ 4694 4695 int 4696 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4697 struct resource **res) 4698 { 4699 int i; 4700 4701 for (i = 0; rs[i].type != -1; i++) 4702 res[i] = NULL; 4703 for (i = 0; rs[i].type != -1; i++) { 4704 res[i] = bus_alloc_resource_any(dev, 4705 rs[i].type, &rs[i].rid, rs[i].flags); 4706 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4707 bus_release_resources(dev, rs, res); 4708 return (ENXIO); 4709 } 4710 } 4711 return (0); 4712 } 4713 4714 void 4715 bus_release_resources(device_t dev, const struct resource_spec *rs, 4716 struct resource **res) 4717 { 4718 int i; 4719 4720 for (i = 0; rs[i].type != -1; i++) 4721 if (res[i] != NULL) { 4722 bus_release_resource( 4723 dev, rs[i].type, rs[i].rid, res[i]); 4724 res[i] = NULL; 4725 } 4726 } 4727 4728 /** 4729 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4730 * 4731 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4732 * parent of @p dev. 4733 */ 4734 struct resource * 4735 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, 4736 rman_res_t end, rman_res_t count, u_int flags) 4737 { 4738 struct resource *res; 4739 4740 if (dev->parent == NULL) 4741 return (NULL); 4742 res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4743 count, flags); 4744 return (res); 4745 } 4746 4747 /** 4748 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4749 * 4750 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4751 * parent of @p dev. 4752 */ 4753 int 4754 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start, 4755 rman_res_t end) 4756 { 4757 if (dev->parent == NULL) 4758 return (EINVAL); 4759 return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); 4760 } 4761 4762 /** 4763 * @brief Wrapper function for BUS_TRANSLATE_RESOURCE(). 4764 * 4765 * This function simply calls the BUS_TRANSLATE_RESOURCE() method of the 4766 * parent of @p dev. 4767 */ 4768 int 4769 bus_translate_resource(device_t dev, int type, rman_res_t start, 4770 rman_res_t *newstart) 4771 { 4772 if (dev->parent == NULL) 4773 return (EINVAL); 4774 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, newstart)); 4775 } 4776 4777 /** 4778 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4779 * 4780 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4781 * parent of @p dev. 4782 */ 4783 int 4784 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 4785 { 4786 if (dev->parent == NULL) 4787 return (EINVAL); 4788 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4789 } 4790 4791 /** 4792 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4793 * 4794 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4795 * parent of @p dev. 4796 */ 4797 int 4798 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 4799 { 4800 if (dev->parent == NULL) 4801 return (EINVAL); 4802 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4803 } 4804 4805 /** 4806 * @brief Wrapper function for BUS_MAP_RESOURCE(). 4807 * 4808 * This function simply calls the BUS_MAP_RESOURCE() method of the 4809 * parent of @p dev. 4810 */ 4811 int 4812 bus_map_resource(device_t dev, int type, struct resource *r, 4813 struct resource_map_request *args, struct resource_map *map) 4814 { 4815 if (dev->parent == NULL) 4816 return (EINVAL); 4817 return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map)); 4818 } 4819 4820 /** 4821 * @brief Wrapper function for BUS_UNMAP_RESOURCE(). 4822 * 4823 * This function simply calls the BUS_UNMAP_RESOURCE() method of the 4824 * parent of @p dev. 4825 */ 4826 int 4827 bus_unmap_resource(device_t dev, int type, struct resource *r, 4828 struct resource_map *map) 4829 { 4830 if (dev->parent == NULL) 4831 return (EINVAL); 4832 return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map)); 4833 } 4834 4835 /** 4836 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4837 * 4838 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4839 * parent of @p dev. 4840 */ 4841 int 4842 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 4843 { 4844 int rv; 4845 4846 if (dev->parent == NULL) 4847 return (EINVAL); 4848 rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r); 4849 return (rv); 4850 } 4851 4852 /** 4853 * @brief Wrapper function for BUS_SETUP_INTR(). 4854 * 4855 * This function simply calls the BUS_SETUP_INTR() method of the 4856 * parent of @p dev. 4857 */ 4858 int 4859 bus_setup_intr(device_t dev, struct resource *r, int flags, 4860 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4861 { 4862 int error; 4863 4864 if (dev->parent == NULL) 4865 return (EINVAL); 4866 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4867 arg, cookiep); 4868 if (error != 0) 4869 return (error); 4870 if (handler != NULL && !(flags & INTR_MPSAFE)) 4871 device_printf(dev, "[GIANT-LOCKED]\n"); 4872 return (0); 4873 } 4874 4875 /** 4876 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4877 * 4878 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4879 * parent of @p dev. 4880 */ 4881 int 4882 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4883 { 4884 if (dev->parent == NULL) 4885 return (EINVAL); 4886 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4887 } 4888 4889 /** 4890 * @brief Wrapper function for BUS_SUSPEND_INTR(). 4891 * 4892 * This function simply calls the BUS_SUSPEND_INTR() method of the 4893 * parent of @p dev. 4894 */ 4895 int 4896 bus_suspend_intr(device_t dev, struct resource *r) 4897 { 4898 if (dev->parent == NULL) 4899 return (EINVAL); 4900 return (BUS_SUSPEND_INTR(dev->parent, dev, r)); 4901 } 4902 4903 /** 4904 * @brief Wrapper function for BUS_RESUME_INTR(). 4905 * 4906 * This function simply calls the BUS_RESUME_INTR() method of the 4907 * parent of @p dev. 4908 */ 4909 int 4910 bus_resume_intr(device_t dev, struct resource *r) 4911 { 4912 if (dev->parent == NULL) 4913 return (EINVAL); 4914 return (BUS_RESUME_INTR(dev->parent, dev, r)); 4915 } 4916 4917 /** 4918 * @brief Wrapper function for BUS_BIND_INTR(). 4919 * 4920 * This function simply calls the BUS_BIND_INTR() method of the 4921 * parent of @p dev. 4922 */ 4923 int 4924 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4925 { 4926 if (dev->parent == NULL) 4927 return (EINVAL); 4928 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4929 } 4930 4931 /** 4932 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4933 * 4934 * This function first formats the requested description into a 4935 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4936 * the parent of @p dev. 4937 */ 4938 int 4939 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4940 const char *fmt, ...) 4941 { 4942 va_list ap; 4943 char descr[MAXCOMLEN + 1]; 4944 4945 if (dev->parent == NULL) 4946 return (EINVAL); 4947 va_start(ap, fmt); 4948 vsnprintf(descr, sizeof(descr), fmt, ap); 4949 va_end(ap); 4950 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4951 } 4952 4953 /** 4954 * @brief Wrapper function for BUS_SET_RESOURCE(). 4955 * 4956 * This function simply calls the BUS_SET_RESOURCE() method of the 4957 * parent of @p dev. 4958 */ 4959 int 4960 bus_set_resource(device_t dev, int type, int rid, 4961 rman_res_t start, rman_res_t count) 4962 { 4963 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4964 start, count)); 4965 } 4966 4967 /** 4968 * @brief Wrapper function for BUS_GET_RESOURCE(). 4969 * 4970 * This function simply calls the BUS_GET_RESOURCE() method of the 4971 * parent of @p dev. 4972 */ 4973 int 4974 bus_get_resource(device_t dev, int type, int rid, 4975 rman_res_t *startp, rman_res_t *countp) 4976 { 4977 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4978 startp, countp)); 4979 } 4980 4981 /** 4982 * @brief Wrapper function for BUS_GET_RESOURCE(). 4983 * 4984 * This function simply calls the BUS_GET_RESOURCE() method of the 4985 * parent of @p dev and returns the start value. 4986 */ 4987 rman_res_t 4988 bus_get_resource_start(device_t dev, int type, int rid) 4989 { 4990 rman_res_t start; 4991 rman_res_t count; 4992 int error; 4993 4994 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4995 &start, &count); 4996 if (error) 4997 return (0); 4998 return (start); 4999 } 5000 5001 /** 5002 * @brief Wrapper function for BUS_GET_RESOURCE(). 5003 * 5004 * This function simply calls the BUS_GET_RESOURCE() method of the 5005 * parent of @p dev and returns the count value. 5006 */ 5007 rman_res_t 5008 bus_get_resource_count(device_t dev, int type, int rid) 5009 { 5010 rman_res_t start; 5011 rman_res_t count; 5012 int error; 5013 5014 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 5015 &start, &count); 5016 if (error) 5017 return (0); 5018 return (count); 5019 } 5020 5021 /** 5022 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 5023 * 5024 * This function simply calls the BUS_DELETE_RESOURCE() method of the 5025 * parent of @p dev. 5026 */ 5027 void 5028 bus_delete_resource(device_t dev, int type, int rid) 5029 { 5030 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 5031 } 5032 5033 /** 5034 * @brief Wrapper function for BUS_CHILD_PRESENT(). 5035 * 5036 * This function simply calls the BUS_CHILD_PRESENT() method of the 5037 * parent of @p dev. 5038 */ 5039 int 5040 bus_child_present(device_t child) 5041 { 5042 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 5043 } 5044 5045 /** 5046 * @brief Wrapper function for BUS_CHILD_PNPINFO(). 5047 * 5048 * This function simply calls the BUS_CHILD_PNPINFO() method of the parent of @p 5049 * dev. 5050 */ 5051 int 5052 bus_child_pnpinfo(device_t child, struct sbuf *sb) 5053 { 5054 device_t parent; 5055 5056 parent = device_get_parent(child); 5057 if (parent == NULL) 5058 return (0); 5059 return (BUS_CHILD_PNPINFO(parent, child, sb)); 5060 } 5061 5062 /** 5063 * @brief Generic implementation that does nothing for bus_child_pnpinfo 5064 * 5065 * This function has the right signature and returns 0 since the sbuf is passed 5066 * to us to append to. 5067 */ 5068 int 5069 bus_generic_child_pnpinfo(device_t dev, device_t child, struct sbuf *sb) 5070 { 5071 return (0); 5072 } 5073 5074 /** 5075 * @brief Wrapper function for BUS_CHILD_LOCATION(). 5076 * 5077 * This function simply calls the BUS_CHILD_LOCATION() method of the parent of 5078 * @p dev. 5079 */ 5080 int 5081 bus_child_location(device_t child, struct sbuf *sb) 5082 { 5083 device_t parent; 5084 5085 parent = device_get_parent(child); 5086 if (parent == NULL) 5087 return (0); 5088 return (BUS_CHILD_LOCATION(parent, child, sb)); 5089 } 5090 5091 /** 5092 * @brief Generic implementation that does nothing for bus_child_location 5093 * 5094 * This function has the right signature and returns 0 since the sbuf is passed 5095 * to us to append to. 5096 */ 5097 int 5098 bus_generic_child_location(device_t dev, device_t child, struct sbuf *sb) 5099 { 5100 return (0); 5101 } 5102 5103 /** 5104 * @brief Wrapper function for BUS_GET_CPUS(). 5105 * 5106 * This function simply calls the BUS_GET_CPUS() method of the 5107 * parent of @p dev. 5108 */ 5109 int 5110 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) 5111 { 5112 device_t parent; 5113 5114 parent = device_get_parent(dev); 5115 if (parent == NULL) 5116 return (EINVAL); 5117 return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset)); 5118 } 5119 5120 /** 5121 * @brief Wrapper function for BUS_GET_DMA_TAG(). 5122 * 5123 * This function simply calls the BUS_GET_DMA_TAG() method of the 5124 * parent of @p dev. 5125 */ 5126 bus_dma_tag_t 5127 bus_get_dma_tag(device_t dev) 5128 { 5129 device_t parent; 5130 5131 parent = device_get_parent(dev); 5132 if (parent == NULL) 5133 return (NULL); 5134 return (BUS_GET_DMA_TAG(parent, dev)); 5135 } 5136 5137 /** 5138 * @brief Wrapper function for BUS_GET_BUS_TAG(). 5139 * 5140 * This function simply calls the BUS_GET_BUS_TAG() method of the 5141 * parent of @p dev. 5142 */ 5143 bus_space_tag_t 5144 bus_get_bus_tag(device_t dev) 5145 { 5146 device_t parent; 5147 5148 parent = device_get_parent(dev); 5149 if (parent == NULL) 5150 return ((bus_space_tag_t)0); 5151 return (BUS_GET_BUS_TAG(parent, dev)); 5152 } 5153 5154 /** 5155 * @brief Wrapper function for BUS_GET_DOMAIN(). 5156 * 5157 * This function simply calls the BUS_GET_DOMAIN() method of the 5158 * parent of @p dev. 5159 */ 5160 int 5161 bus_get_domain(device_t dev, int *domain) 5162 { 5163 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); 5164 } 5165 5166 /* Resume all devices and then notify userland that we're up again. */ 5167 static int 5168 root_resume(device_t dev) 5169 { 5170 int error; 5171 5172 error = bus_generic_resume(dev); 5173 if (error == 0) { 5174 devctl_notify("kern", "power", "resume", NULL); /* Deprecated gone in 14 */ 5175 devctl_notify("kernel", "power", "resume", NULL); 5176 } 5177 return (error); 5178 } 5179 5180 static int 5181 root_print_child(device_t dev, device_t child) 5182 { 5183 int retval = 0; 5184 5185 retval += bus_print_child_header(dev, child); 5186 retval += printf("\n"); 5187 5188 return (retval); 5189 } 5190 5191 static int 5192 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 5193 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 5194 { 5195 /* 5196 * If an interrupt mapping gets to here something bad has happened. 5197 */ 5198 panic("root_setup_intr"); 5199 } 5200 5201 /* 5202 * If we get here, assume that the device is permanent and really is 5203 * present in the system. Removable bus drivers are expected to intercept 5204 * this call long before it gets here. We return -1 so that drivers that 5205 * really care can check vs -1 or some ERRNO returned higher in the food 5206 * chain. 5207 */ 5208 static int 5209 root_child_present(device_t dev, device_t child) 5210 { 5211 return (-1); 5212 } 5213 5214 static int 5215 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 5216 cpuset_t *cpuset) 5217 { 5218 switch (op) { 5219 case INTR_CPUS: 5220 /* Default to returning the set of all CPUs. */ 5221 if (setsize != sizeof(cpuset_t)) 5222 return (EINVAL); 5223 *cpuset = all_cpus; 5224 return (0); 5225 default: 5226 return (EINVAL); 5227 } 5228 } 5229 5230 static kobj_method_t root_methods[] = { 5231 /* Device interface */ 5232 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 5233 KOBJMETHOD(device_suspend, bus_generic_suspend), 5234 KOBJMETHOD(device_resume, root_resume), 5235 5236 /* Bus interface */ 5237 KOBJMETHOD(bus_print_child, root_print_child), 5238 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 5239 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 5240 KOBJMETHOD(bus_setup_intr, root_setup_intr), 5241 KOBJMETHOD(bus_child_present, root_child_present), 5242 KOBJMETHOD(bus_get_cpus, root_get_cpus), 5243 5244 KOBJMETHOD_END 5245 }; 5246 5247 static driver_t root_driver = { 5248 "root", 5249 root_methods, 5250 1, /* no softc */ 5251 }; 5252 5253 device_t root_bus; 5254 devclass_t root_devclass; 5255 5256 static int 5257 root_bus_module_handler(module_t mod, int what, void* arg) 5258 { 5259 switch (what) { 5260 case MOD_LOAD: 5261 TAILQ_INIT(&bus_data_devices); 5262 kobj_class_compile((kobj_class_t) &root_driver); 5263 root_bus = make_device(NULL, "root", 0); 5264 root_bus->desc = "System root bus"; 5265 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 5266 root_bus->driver = &root_driver; 5267 root_bus->state = DS_ATTACHED; 5268 root_devclass = devclass_find_internal("root", NULL, FALSE); 5269 devinit(); 5270 return (0); 5271 5272 case MOD_SHUTDOWN: 5273 device_shutdown(root_bus); 5274 return (0); 5275 default: 5276 return (EOPNOTSUPP); 5277 } 5278 5279 return (0); 5280 } 5281 5282 static moduledata_t root_bus_mod = { 5283 "rootbus", 5284 root_bus_module_handler, 5285 NULL 5286 }; 5287 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 5288 5289 /** 5290 * @brief Automatically configure devices 5291 * 5292 * This function begins the autoconfiguration process by calling 5293 * device_probe_and_attach() for each child of the @c root0 device. 5294 */ 5295 void 5296 root_bus_configure(void) 5297 { 5298 PDEBUG((".")); 5299 5300 /* Eventually this will be split up, but this is sufficient for now. */ 5301 bus_set_pass(BUS_PASS_DEFAULT); 5302 } 5303 5304 /** 5305 * @brief Module handler for registering device drivers 5306 * 5307 * This module handler is used to automatically register device 5308 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 5309 * devclass_add_driver() for the driver described by the 5310 * driver_module_data structure pointed to by @p arg 5311 */ 5312 int 5313 driver_module_handler(module_t mod, int what, void *arg) 5314 { 5315 struct driver_module_data *dmd; 5316 devclass_t bus_devclass; 5317 kobj_class_t driver; 5318 int error, pass; 5319 5320 dmd = (struct driver_module_data *)arg; 5321 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 5322 error = 0; 5323 5324 switch (what) { 5325 case MOD_LOAD: 5326 if (dmd->dmd_chainevh) 5327 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5328 5329 pass = dmd->dmd_pass; 5330 driver = dmd->dmd_driver; 5331 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 5332 DRIVERNAME(driver), dmd->dmd_busname, pass)); 5333 error = devclass_add_driver(bus_devclass, driver, pass, 5334 dmd->dmd_devclass); 5335 break; 5336 5337 case MOD_UNLOAD: 5338 PDEBUG(("Unloading module: driver %s from bus %s", 5339 DRIVERNAME(dmd->dmd_driver), 5340 dmd->dmd_busname)); 5341 error = devclass_delete_driver(bus_devclass, 5342 dmd->dmd_driver); 5343 5344 if (!error && dmd->dmd_chainevh) 5345 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5346 break; 5347 case MOD_QUIESCE: 5348 PDEBUG(("Quiesce module: driver %s from bus %s", 5349 DRIVERNAME(dmd->dmd_driver), 5350 dmd->dmd_busname)); 5351 error = devclass_quiesce_driver(bus_devclass, 5352 dmd->dmd_driver); 5353 5354 if (!error && dmd->dmd_chainevh) 5355 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5356 break; 5357 default: 5358 error = EOPNOTSUPP; 5359 break; 5360 } 5361 5362 return (error); 5363 } 5364 5365 /** 5366 * @brief Enumerate all hinted devices for this bus. 5367 * 5368 * Walks through the hints for this bus and calls the bus_hinted_child 5369 * routine for each one it fines. It searches first for the specific 5370 * bus that's being probed for hinted children (eg isa0), and then for 5371 * generic children (eg isa). 5372 * 5373 * @param dev bus device to enumerate 5374 */ 5375 void 5376 bus_enumerate_hinted_children(device_t bus) 5377 { 5378 int i; 5379 const char *dname, *busname; 5380 int dunit; 5381 5382 /* 5383 * enumerate all devices on the specific bus 5384 */ 5385 busname = device_get_nameunit(bus); 5386 i = 0; 5387 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5388 BUS_HINTED_CHILD(bus, dname, dunit); 5389 5390 /* 5391 * and all the generic ones. 5392 */ 5393 busname = device_get_name(bus); 5394 i = 0; 5395 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5396 BUS_HINTED_CHILD(bus, dname, dunit); 5397 } 5398 5399 #ifdef BUS_DEBUG 5400 5401 /* the _short versions avoid iteration by not calling anything that prints 5402 * more than oneliners. I love oneliners. 5403 */ 5404 5405 static void 5406 print_device_short(device_t dev, int indent) 5407 { 5408 if (!dev) 5409 return; 5410 5411 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 5412 dev->unit, dev->desc, 5413 (dev->parent? "":"no "), 5414 (TAILQ_EMPTY(&dev->children)? "no ":""), 5415 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 5416 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 5417 (dev->flags&DF_WILDCARD? "wildcard,":""), 5418 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 5419 (dev->flags&DF_SUSPENDED? "suspended,":""), 5420 (dev->ivars? "":"no "), 5421 (dev->softc? "":"no "), 5422 dev->busy)); 5423 } 5424 5425 static void 5426 print_device(device_t dev, int indent) 5427 { 5428 if (!dev) 5429 return; 5430 5431 print_device_short(dev, indent); 5432 5433 indentprintf(("Parent:\n")); 5434 print_device_short(dev->parent, indent+1); 5435 indentprintf(("Driver:\n")); 5436 print_driver_short(dev->driver, indent+1); 5437 indentprintf(("Devclass:\n")); 5438 print_devclass_short(dev->devclass, indent+1); 5439 } 5440 5441 void 5442 print_device_tree_short(device_t dev, int indent) 5443 /* print the device and all its children (indented) */ 5444 { 5445 device_t child; 5446 5447 if (!dev) 5448 return; 5449 5450 print_device_short(dev, indent); 5451 5452 TAILQ_FOREACH(child, &dev->children, link) { 5453 print_device_tree_short(child, indent+1); 5454 } 5455 } 5456 5457 void 5458 print_device_tree(device_t dev, int indent) 5459 /* print the device and all its children (indented) */ 5460 { 5461 device_t child; 5462 5463 if (!dev) 5464 return; 5465 5466 print_device(dev, indent); 5467 5468 TAILQ_FOREACH(child, &dev->children, link) { 5469 print_device_tree(child, indent+1); 5470 } 5471 } 5472 5473 static void 5474 print_driver_short(driver_t *driver, int indent) 5475 { 5476 if (!driver) 5477 return; 5478 5479 indentprintf(("driver %s: softc size = %zd\n", 5480 driver->name, driver->size)); 5481 } 5482 5483 static void 5484 print_driver(driver_t *driver, int indent) 5485 { 5486 if (!driver) 5487 return; 5488 5489 print_driver_short(driver, indent); 5490 } 5491 5492 static void 5493 print_driver_list(driver_list_t drivers, int indent) 5494 { 5495 driverlink_t driver; 5496 5497 TAILQ_FOREACH(driver, &drivers, link) { 5498 print_driver(driver->driver, indent); 5499 } 5500 } 5501 5502 static void 5503 print_devclass_short(devclass_t dc, int indent) 5504 { 5505 if ( !dc ) 5506 return; 5507 5508 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 5509 } 5510 5511 static void 5512 print_devclass(devclass_t dc, int indent) 5513 { 5514 int i; 5515 5516 if ( !dc ) 5517 return; 5518 5519 print_devclass_short(dc, indent); 5520 indentprintf(("Drivers:\n")); 5521 print_driver_list(dc->drivers, indent+1); 5522 5523 indentprintf(("Devices:\n")); 5524 for (i = 0; i < dc->maxunit; i++) 5525 if (dc->devices[i]) 5526 print_device(dc->devices[i], indent+1); 5527 } 5528 5529 void 5530 print_devclass_list_short(void) 5531 { 5532 devclass_t dc; 5533 5534 printf("Short listing of devclasses, drivers & devices:\n"); 5535 TAILQ_FOREACH(dc, &devclasses, link) { 5536 print_devclass_short(dc, 0); 5537 } 5538 } 5539 5540 void 5541 print_devclass_list(void) 5542 { 5543 devclass_t dc; 5544 5545 printf("Full listing of devclasses, drivers & devices:\n"); 5546 TAILQ_FOREACH(dc, &devclasses, link) { 5547 print_devclass(dc, 0); 5548 } 5549 } 5550 5551 #endif 5552 5553 /* 5554 * User-space access to the device tree. 5555 * 5556 * We implement a small set of nodes: 5557 * 5558 * hw.bus Single integer read method to obtain the 5559 * current generation count. 5560 * hw.bus.devices Reads the entire device tree in flat space. 5561 * hw.bus.rman Resource manager interface 5562 * 5563 * We might like to add the ability to scan devclasses and/or drivers to 5564 * determine what else is currently loaded/available. 5565 */ 5566 5567 static int 5568 sysctl_bus_info(SYSCTL_HANDLER_ARGS) 5569 { 5570 struct u_businfo ubus; 5571 5572 ubus.ub_version = BUS_USER_VERSION; 5573 ubus.ub_generation = bus_data_generation; 5574 5575 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 5576 } 5577 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD | 5578 CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo", 5579 "bus-related data"); 5580 5581 static int 5582 sysctl_devices(SYSCTL_HANDLER_ARGS) 5583 { 5584 struct sbuf sb; 5585 int *name = (int *)arg1; 5586 u_int namelen = arg2; 5587 int index; 5588 device_t dev; 5589 struct u_device *udev; 5590 int error; 5591 5592 if (namelen != 2) 5593 return (EINVAL); 5594 5595 if (bus_data_generation_check(name[0])) 5596 return (EINVAL); 5597 5598 index = name[1]; 5599 5600 /* 5601 * Scan the list of devices, looking for the requested index. 5602 */ 5603 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5604 if (index-- == 0) 5605 break; 5606 } 5607 if (dev == NULL) 5608 return (ENOENT); 5609 5610 /* 5611 * Populate the return item, careful not to overflow the buffer. 5612 */ 5613 udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO); 5614 if (udev == NULL) 5615 return (ENOMEM); 5616 udev->dv_handle = (uintptr_t)dev; 5617 udev->dv_parent = (uintptr_t)dev->parent; 5618 udev->dv_devflags = dev->devflags; 5619 udev->dv_flags = dev->flags; 5620 udev->dv_state = dev->state; 5621 sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN); 5622 if (dev->nameunit != NULL) 5623 sbuf_cat(&sb, dev->nameunit); 5624 sbuf_putc(&sb, '\0'); 5625 if (dev->desc != NULL) 5626 sbuf_cat(&sb, dev->desc); 5627 sbuf_putc(&sb, '\0'); 5628 if (dev->driver != NULL) 5629 sbuf_cat(&sb, dev->driver->name); 5630 sbuf_putc(&sb, '\0'); 5631 bus_child_pnpinfo(dev, &sb); 5632 sbuf_putc(&sb, '\0'); 5633 bus_child_location(dev, &sb); 5634 sbuf_putc(&sb, '\0'); 5635 error = sbuf_finish(&sb); 5636 if (error == 0) 5637 error = SYSCTL_OUT(req, udev, sizeof(*udev)); 5638 sbuf_delete(&sb); 5639 free(udev, M_BUS); 5640 return (error); 5641 } 5642 5643 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, 5644 CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices, 5645 "system device tree"); 5646 5647 int 5648 bus_data_generation_check(int generation) 5649 { 5650 if (generation != bus_data_generation) 5651 return (1); 5652 5653 /* XXX generate optimised lists here? */ 5654 return (0); 5655 } 5656 5657 void 5658 bus_data_generation_update(void) 5659 { 5660 atomic_add_int(&bus_data_generation, 1); 5661 } 5662 5663 int 5664 bus_free_resource(device_t dev, int type, struct resource *r) 5665 { 5666 if (r == NULL) 5667 return (0); 5668 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 5669 } 5670 5671 device_t 5672 device_lookup_by_name(const char *name) 5673 { 5674 device_t dev; 5675 5676 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5677 if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0) 5678 return (dev); 5679 } 5680 return (NULL); 5681 } 5682 5683 /* 5684 * /dev/devctl2 implementation. The existing /dev/devctl device has 5685 * implicit semantics on open, so it could not be reused for this. 5686 * Another option would be to call this /dev/bus? 5687 */ 5688 static int 5689 find_device(struct devreq *req, device_t *devp) 5690 { 5691 device_t dev; 5692 5693 /* 5694 * First, ensure that the name is nul terminated. 5695 */ 5696 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL) 5697 return (EINVAL); 5698 5699 /* 5700 * Second, try to find an attached device whose name matches 5701 * 'name'. 5702 */ 5703 dev = device_lookup_by_name(req->dr_name); 5704 if (dev != NULL) { 5705 *devp = dev; 5706 return (0); 5707 } 5708 5709 /* Finally, give device enumerators a chance. */ 5710 dev = NULL; 5711 EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev); 5712 if (dev == NULL) 5713 return (ENOENT); 5714 *devp = dev; 5715 return (0); 5716 } 5717 5718 static bool 5719 driver_exists(device_t bus, const char *driver) 5720 { 5721 devclass_t dc; 5722 5723 for (dc = bus->devclass; dc != NULL; dc = dc->parent) { 5724 if (devclass_find_driver_internal(dc, driver) != NULL) 5725 return (true); 5726 } 5727 return (false); 5728 } 5729 5730 static void 5731 device_gen_nomatch(device_t dev) 5732 { 5733 device_t child; 5734 5735 if (dev->flags & DF_NEEDNOMATCH && 5736 dev->state == DS_NOTPRESENT) { 5737 BUS_PROBE_NOMATCH(dev->parent, dev); 5738 devnomatch(dev); 5739 dev->flags |= DF_DONENOMATCH; 5740 } 5741 dev->flags &= ~DF_NEEDNOMATCH; 5742 TAILQ_FOREACH(child, &dev->children, link) { 5743 device_gen_nomatch(child); 5744 } 5745 } 5746 5747 static void 5748 device_do_deferred_actions(void) 5749 { 5750 devclass_t dc; 5751 driverlink_t dl; 5752 5753 /* 5754 * Walk through the devclasses to find all the drivers we've tagged as 5755 * deferred during the freeze and call the driver added routines. They 5756 * have already been added to the lists in the background, so the driver 5757 * added routines that trigger a probe will have all the right bidders 5758 * for the probe auction. 5759 */ 5760 TAILQ_FOREACH(dc, &devclasses, link) { 5761 TAILQ_FOREACH(dl, &dc->drivers, link) { 5762 if (dl->flags & DL_DEFERRED_PROBE) { 5763 devclass_driver_added(dc, dl->driver); 5764 dl->flags &= ~DL_DEFERRED_PROBE; 5765 } 5766 } 5767 } 5768 5769 /* 5770 * We also defer no-match events during a freeze. Walk the tree and 5771 * generate all the pent-up events that are still relevant. 5772 */ 5773 device_gen_nomatch(root_bus); 5774 bus_data_generation_update(); 5775 } 5776 5777 static char * 5778 device_get_path(device_t dev, const char *locator) 5779 { 5780 struct sbuf *sb; 5781 ssize_t len; 5782 char *rv = NULL; 5783 int error; 5784 5785 sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND | SBUF_INCLUDENUL); 5786 error = BUS_GET_DEVICE_PATH(device_get_parent(dev), dev, locator, sb); 5787 sbuf_finish(sb); /* Note: errors checked with sbuf_len() below */ 5788 if (error != 0) 5789 goto out; 5790 len = sbuf_len(sb); 5791 if (len <= 1) 5792 goto out; 5793 rv = malloc(len, M_BUS, M_NOWAIT); 5794 memcpy(rv, sbuf_data(sb), len); 5795 out: 5796 sbuf_delete(sb); 5797 return (rv); 5798 } 5799 5800 static int 5801 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag, 5802 struct thread *td) 5803 { 5804 struct devreq *req; 5805 device_t dev; 5806 int error, old; 5807 5808 /* Locate the device to control. */ 5809 bus_topo_lock(); 5810 req = (struct devreq *)data; 5811 switch (cmd) { 5812 case DEV_ATTACH: 5813 case DEV_DETACH: 5814 case DEV_ENABLE: 5815 case DEV_DISABLE: 5816 case DEV_SUSPEND: 5817 case DEV_RESUME: 5818 case DEV_SET_DRIVER: 5819 case DEV_CLEAR_DRIVER: 5820 case DEV_RESCAN: 5821 case DEV_DELETE: 5822 case DEV_RESET: 5823 error = priv_check(td, PRIV_DRIVER); 5824 if (error == 0) 5825 error = find_device(req, &dev); 5826 break; 5827 case DEV_FREEZE: 5828 case DEV_THAW: 5829 error = priv_check(td, PRIV_DRIVER); 5830 break; 5831 case DEV_GET_PATH: 5832 error = find_device(req, &dev); 5833 break; 5834 default: 5835 error = ENOTTY; 5836 break; 5837 } 5838 if (error) { 5839 bus_topo_unlock(); 5840 return (error); 5841 } 5842 5843 /* Perform the requested operation. */ 5844 switch (cmd) { 5845 case DEV_ATTACH: 5846 if (device_is_attached(dev)) 5847 error = EBUSY; 5848 else if (!device_is_enabled(dev)) 5849 error = ENXIO; 5850 else 5851 error = device_probe_and_attach(dev); 5852 break; 5853 case DEV_DETACH: 5854 if (!device_is_attached(dev)) { 5855 error = ENXIO; 5856 break; 5857 } 5858 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5859 error = device_quiesce(dev); 5860 if (error) 5861 break; 5862 } 5863 error = device_detach(dev); 5864 break; 5865 case DEV_ENABLE: 5866 if (device_is_enabled(dev)) { 5867 error = EBUSY; 5868 break; 5869 } 5870 5871 /* 5872 * If the device has been probed but not attached (e.g. 5873 * when it has been disabled by a loader hint), just 5874 * attach the device rather than doing a full probe. 5875 */ 5876 device_enable(dev); 5877 if (device_is_alive(dev)) { 5878 /* 5879 * If the device was disabled via a hint, clear 5880 * the hint. 5881 */ 5882 if (resource_disabled(dev->driver->name, dev->unit)) 5883 resource_unset_value(dev->driver->name, 5884 dev->unit, "disabled"); 5885 error = device_attach(dev); 5886 } else 5887 error = device_probe_and_attach(dev); 5888 break; 5889 case DEV_DISABLE: 5890 if (!device_is_enabled(dev)) { 5891 error = ENXIO; 5892 break; 5893 } 5894 5895 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5896 error = device_quiesce(dev); 5897 if (error) 5898 break; 5899 } 5900 5901 /* 5902 * Force DF_FIXEDCLASS on around detach to preserve 5903 * the existing name. 5904 */ 5905 old = dev->flags; 5906 dev->flags |= DF_FIXEDCLASS; 5907 error = device_detach(dev); 5908 if (!(old & DF_FIXEDCLASS)) 5909 dev->flags &= ~DF_FIXEDCLASS; 5910 if (error == 0) 5911 device_disable(dev); 5912 break; 5913 case DEV_SUSPEND: 5914 if (device_is_suspended(dev)) { 5915 error = EBUSY; 5916 break; 5917 } 5918 if (device_get_parent(dev) == NULL) { 5919 error = EINVAL; 5920 break; 5921 } 5922 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev); 5923 break; 5924 case DEV_RESUME: 5925 if (!device_is_suspended(dev)) { 5926 error = EINVAL; 5927 break; 5928 } 5929 if (device_get_parent(dev) == NULL) { 5930 error = EINVAL; 5931 break; 5932 } 5933 error = BUS_RESUME_CHILD(device_get_parent(dev), dev); 5934 break; 5935 case DEV_SET_DRIVER: { 5936 devclass_t dc; 5937 char driver[128]; 5938 5939 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL); 5940 if (error) 5941 break; 5942 if (driver[0] == '\0') { 5943 error = EINVAL; 5944 break; 5945 } 5946 if (dev->devclass != NULL && 5947 strcmp(driver, dev->devclass->name) == 0) 5948 /* XXX: Could possibly force DF_FIXEDCLASS on? */ 5949 break; 5950 5951 /* 5952 * Scan drivers for this device's bus looking for at 5953 * least one matching driver. 5954 */ 5955 if (dev->parent == NULL) { 5956 error = EINVAL; 5957 break; 5958 } 5959 if (!driver_exists(dev->parent, driver)) { 5960 error = ENOENT; 5961 break; 5962 } 5963 dc = devclass_create(driver); 5964 if (dc == NULL) { 5965 error = ENOMEM; 5966 break; 5967 } 5968 5969 /* Detach device if necessary. */ 5970 if (device_is_attached(dev)) { 5971 if (req->dr_flags & DEVF_SET_DRIVER_DETACH) 5972 error = device_detach(dev); 5973 else 5974 error = EBUSY; 5975 if (error) 5976 break; 5977 } 5978 5979 /* Clear any previously-fixed device class and unit. */ 5980 if (dev->flags & DF_FIXEDCLASS) 5981 devclass_delete_device(dev->devclass, dev); 5982 dev->flags |= DF_WILDCARD; 5983 dev->unit = -1; 5984 5985 /* Force the new device class. */ 5986 error = devclass_add_device(dc, dev); 5987 if (error) 5988 break; 5989 dev->flags |= DF_FIXEDCLASS; 5990 error = device_probe_and_attach(dev); 5991 break; 5992 } 5993 case DEV_CLEAR_DRIVER: 5994 if (!(dev->flags & DF_FIXEDCLASS)) { 5995 error = 0; 5996 break; 5997 } 5998 if (device_is_attached(dev)) { 5999 if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH) 6000 error = device_detach(dev); 6001 else 6002 error = EBUSY; 6003 if (error) 6004 break; 6005 } 6006 6007 dev->flags &= ~DF_FIXEDCLASS; 6008 dev->flags |= DF_WILDCARD; 6009 devclass_delete_device(dev->devclass, dev); 6010 error = device_probe_and_attach(dev); 6011 break; 6012 case DEV_RESCAN: 6013 if (!device_is_attached(dev)) { 6014 error = ENXIO; 6015 break; 6016 } 6017 error = BUS_RESCAN(dev); 6018 break; 6019 case DEV_DELETE: { 6020 device_t parent; 6021 6022 parent = device_get_parent(dev); 6023 if (parent == NULL) { 6024 error = EINVAL; 6025 break; 6026 } 6027 if (!(req->dr_flags & DEVF_FORCE_DELETE)) { 6028 if (bus_child_present(dev) != 0) { 6029 error = EBUSY; 6030 break; 6031 } 6032 } 6033 6034 error = device_delete_child(parent, dev); 6035 break; 6036 } 6037 case DEV_FREEZE: 6038 if (device_frozen) 6039 error = EBUSY; 6040 else 6041 device_frozen = true; 6042 break; 6043 case DEV_THAW: 6044 if (!device_frozen) 6045 error = EBUSY; 6046 else { 6047 device_do_deferred_actions(); 6048 device_frozen = false; 6049 } 6050 break; 6051 case DEV_RESET: 6052 if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) { 6053 error = EINVAL; 6054 break; 6055 } 6056 error = BUS_RESET_CHILD(device_get_parent(dev), dev, 6057 req->dr_flags); 6058 break; 6059 case DEV_GET_PATH: { 6060 char locator[64]; 6061 char *path; 6062 ssize_t len; 6063 6064 error = copyinstr(req->dr_buffer.buffer, locator, sizeof(locator), NULL); 6065 if (error) 6066 break; 6067 path = device_get_path(dev, locator); 6068 if (path == NULL) { 6069 error = ENOMEM; 6070 break; 6071 } 6072 len = strlen(path) + 1; 6073 if (req->dr_buffer.length < len) { 6074 error = ENAMETOOLONG; 6075 } else { 6076 error = copyout(path, req->dr_buffer.buffer, len); 6077 } 6078 req->dr_buffer.length = len; 6079 free(path, M_BUS); 6080 break; 6081 } 6082 } 6083 bus_topo_unlock(); 6084 return (error); 6085 } 6086 6087 static struct cdevsw devctl2_cdevsw = { 6088 .d_version = D_VERSION, 6089 .d_ioctl = devctl2_ioctl, 6090 .d_name = "devctl2", 6091 }; 6092 6093 static void 6094 devctl2_init(void) 6095 { 6096 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL, 6097 UID_ROOT, GID_WHEEL, 0644, "devctl2"); 6098 } 6099 6100 /* 6101 * For maintaining device 'at' location info to avoid recomputing it 6102 */ 6103 struct device_location_node { 6104 const char *dln_locator; 6105 const char *dln_path; 6106 TAILQ_ENTRY(device_location_node) dln_link; 6107 }; 6108 typedef TAILQ_HEAD(device_location_list, device_location_node) device_location_list_t; 6109 6110 struct device_location_cache { 6111 device_location_list_t dlc_list; 6112 }; 6113 6114 6115 /* 6116 * Location cache for wired devices. 6117 */ 6118 device_location_cache_t * 6119 dev_wired_cache_init(void) 6120 { 6121 device_location_cache_t *dcp; 6122 6123 dcp = malloc(sizeof(*dcp), M_BUS, M_WAITOK | M_ZERO); 6124 TAILQ_INIT(&dcp->dlc_list); 6125 6126 return (dcp); 6127 } 6128 6129 void 6130 dev_wired_cache_fini(device_location_cache_t *dcp) 6131 { 6132 struct device_location_node *dln, *tdln; 6133 6134 TAILQ_FOREACH_SAFE(dln, &dcp->dlc_list, dln_link, tdln) { 6135 /* Note: one allocation for both node and locator, but not path */ 6136 free(__DECONST(void *, dln->dln_path), M_BUS); 6137 free(dln, M_BUS); 6138 } 6139 free(dcp, M_BUS); 6140 } 6141 6142 static struct device_location_node * 6143 dev_wired_cache_lookup(device_location_cache_t *dcp, const char *locator) 6144 { 6145 struct device_location_node *dln; 6146 6147 TAILQ_FOREACH(dln, &dcp->dlc_list, dln_link) { 6148 if (strcmp(locator, dln->dln_locator) == 0) 6149 return (dln); 6150 } 6151 6152 return (NULL); 6153 } 6154 6155 static struct device_location_node * 6156 dev_wired_cache_add(device_location_cache_t *dcp, const char *locator, const char *path) 6157 { 6158 struct device_location_node *dln; 6159 char *l; 6160 6161 dln = malloc(sizeof(*dln) + strlen(locator) + 1, M_BUS, M_WAITOK | M_ZERO); 6162 dln->dln_locator = l = (char *)(dln + 1); 6163 memcpy(l, locator, strlen(locator) + 1); 6164 dln->dln_path = path; 6165 TAILQ_INSERT_HEAD(&dcp->dlc_list, dln, dln_link); 6166 6167 return (dln); 6168 } 6169 6170 bool 6171 dev_wired_cache_match(device_location_cache_t *dcp, device_t dev, const char *at) 6172 { 6173 const char *cp, *path; 6174 char locator[32]; 6175 int len; 6176 struct device_location_node *res; 6177 6178 cp = strchr(at, ':'); 6179 if (cp == NULL) 6180 return (false); 6181 len = cp - at; 6182 if (len > sizeof(locator) - 1) /* Skip too long locator */ 6183 return (false); 6184 memcpy(locator, at, len); 6185 locator[len] = '\0'; 6186 cp++; 6187 6188 /* maybe cache this inside device_t and look that up, but not yet */ 6189 res = dev_wired_cache_lookup(dcp, locator); 6190 if (res == NULL) { 6191 path = device_get_path(dev, locator); 6192 res = dev_wired_cache_add(dcp, locator, path); 6193 } 6194 if (res == NULL || res->dln_path == NULL) 6195 return (false); 6196 6197 return (strcmp(res->dln_path, cp) == 0); 6198 } 6199 6200 /* 6201 * APIs to manage deprecation and obsolescence. 6202 */ 6203 static int obsolete_panic = 0; 6204 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0, 6205 "Panic when obsolete features are used (0 = never, 1 = if obsolete, " 6206 "2 = if deprecated)"); 6207 6208 static void 6209 gone_panic(int major, int running, const char *msg) 6210 { 6211 switch (obsolete_panic) 6212 { 6213 case 0: 6214 return; 6215 case 1: 6216 if (running < major) 6217 return; 6218 /* FALLTHROUGH */ 6219 default: 6220 panic("%s", msg); 6221 } 6222 } 6223 6224 void 6225 _gone_in(int major, const char *msg) 6226 { 6227 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 6228 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 6229 printf("Obsolete code will be removed soon: %s\n", msg); 6230 else 6231 printf("Deprecated code (to be removed in FreeBSD %d): %s\n", 6232 major, msg); 6233 } 6234 6235 void 6236 _gone_in_dev(device_t dev, int major, const char *msg) 6237 { 6238 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 6239 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 6240 device_printf(dev, 6241 "Obsolete code will be removed soon: %s\n", msg); 6242 else 6243 device_printf(dev, 6244 "Deprecated code (to be removed in FreeBSD %d): %s\n", 6245 major, msg); 6246 } 6247 6248 #ifdef DDB 6249 DB_SHOW_COMMAND(device, db_show_device) 6250 { 6251 device_t dev; 6252 6253 if (!have_addr) 6254 return; 6255 6256 dev = (device_t)addr; 6257 6258 db_printf("name: %s\n", device_get_nameunit(dev)); 6259 db_printf(" driver: %s\n", DRIVERNAME(dev->driver)); 6260 db_printf(" class: %s\n", DEVCLANAME(dev->devclass)); 6261 db_printf(" addr: %p\n", dev); 6262 db_printf(" parent: %p\n", dev->parent); 6263 db_printf(" softc: %p\n", dev->softc); 6264 db_printf(" ivars: %p\n", dev->ivars); 6265 } 6266 6267 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices) 6268 { 6269 device_t dev; 6270 6271 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 6272 db_show_device((db_expr_t)dev, true, count, modif); 6273 } 6274 } 6275 #endif 6276