1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997,1998,2003 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_bus.h" 33 #include "opt_ddb.h" 34 35 #include <sys/param.h> 36 #include <sys/conf.h> 37 #include <sys/domainset.h> 38 #include <sys/eventhandler.h> 39 #include <sys/filio.h> 40 #include <sys/lock.h> 41 #include <sys/kernel.h> 42 #include <sys/kobj.h> 43 #include <sys/limits.h> 44 #include <sys/malloc.h> 45 #include <sys/module.h> 46 #include <sys/mutex.h> 47 #include <sys/poll.h> 48 #include <sys/priv.h> 49 #include <sys/proc.h> 50 #include <sys/condvar.h> 51 #include <sys/queue.h> 52 #include <machine/bus.h> 53 #include <sys/random.h> 54 #include <sys/rman.h> 55 #include <sys/sbuf.h> 56 #include <sys/selinfo.h> 57 #include <sys/signalvar.h> 58 #include <sys/smp.h> 59 #include <sys/sysctl.h> 60 #include <sys/systm.h> 61 #include <sys/uio.h> 62 #include <sys/bus.h> 63 #include <sys/cpuset.h> 64 65 #include <net/vnet.h> 66 67 #include <machine/cpu.h> 68 #include <machine/stdarg.h> 69 70 #include <vm/uma.h> 71 #include <vm/vm.h> 72 73 #include <ddb/ddb.h> 74 75 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 76 NULL); 77 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 78 NULL); 79 80 /* 81 * Used to attach drivers to devclasses. 82 */ 83 typedef struct driverlink *driverlink_t; 84 struct driverlink { 85 kobj_class_t driver; 86 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 87 int pass; 88 int flags; 89 #define DL_DEFERRED_PROBE 1 /* Probe deferred on this */ 90 TAILQ_ENTRY(driverlink) passlink; 91 }; 92 93 /* 94 * Forward declarations 95 */ 96 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 97 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 98 typedef TAILQ_HEAD(device_list, _device) device_list_t; 99 100 struct devclass { 101 TAILQ_ENTRY(devclass) link; 102 devclass_t parent; /* parent in devclass hierarchy */ 103 driver_list_t drivers; /* bus devclasses store drivers for bus */ 104 char *name; 105 device_t *devices; /* array of devices indexed by unit */ 106 int maxunit; /* size of devices array */ 107 int flags; 108 #define DC_HAS_CHILDREN 1 109 110 struct sysctl_ctx_list sysctl_ctx; 111 struct sysctl_oid *sysctl_tree; 112 }; 113 114 /** 115 * @brief Implementation of _device. 116 * 117 * The structure is named "_device" instead of "device" to avoid type confusion 118 * caused by other subsystems defining a (struct device). 119 */ 120 struct _device { 121 /* 122 * A device is a kernel object. The first field must be the 123 * current ops table for the object. 124 */ 125 KOBJ_FIELDS; 126 127 /* 128 * Device hierarchy. 129 */ 130 TAILQ_ENTRY(_device) link; /**< list of devices in parent */ 131 TAILQ_ENTRY(_device) devlink; /**< global device list membership */ 132 device_t parent; /**< parent of this device */ 133 device_list_t children; /**< list of child devices */ 134 135 /* 136 * Details of this device. 137 */ 138 driver_t *driver; /**< current driver */ 139 devclass_t devclass; /**< current device class */ 140 int unit; /**< current unit number */ 141 char* nameunit; /**< name+unit e.g. foodev0 */ 142 char* desc; /**< driver specific description */ 143 int busy; /**< count of calls to device_busy() */ 144 device_state_t state; /**< current device state */ 145 uint32_t devflags; /**< api level flags for device_get_flags() */ 146 u_int flags; /**< internal device flags */ 147 u_int order; /**< order from device_add_child_ordered() */ 148 void *ivars; /**< instance variables */ 149 void *softc; /**< current driver's variables */ 150 151 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 152 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 153 }; 154 155 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 156 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 157 158 EVENTHANDLER_LIST_DEFINE(device_attach); 159 EVENTHANDLER_LIST_DEFINE(device_detach); 160 EVENTHANDLER_LIST_DEFINE(dev_lookup); 161 162 static void devctl2_init(void); 163 static bool device_frozen; 164 165 #define DRIVERNAME(d) ((d)? d->name : "no driver") 166 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 167 168 #ifdef BUS_DEBUG 169 170 static int bus_debug = 1; 171 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 172 "Bus debug level"); 173 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 174 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 175 176 /** 177 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 178 * prevent syslog from deleting initial spaces 179 */ 180 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 181 182 static void print_device_short(device_t dev, int indent); 183 static void print_device(device_t dev, int indent); 184 void print_device_tree_short(device_t dev, int indent); 185 void print_device_tree(device_t dev, int indent); 186 static void print_driver_short(driver_t *driver, int indent); 187 static void print_driver(driver_t *driver, int indent); 188 static void print_driver_list(driver_list_t drivers, int indent); 189 static void print_devclass_short(devclass_t dc, int indent); 190 static void print_devclass(devclass_t dc, int indent); 191 void print_devclass_list_short(void); 192 void print_devclass_list(void); 193 194 #else 195 /* Make the compiler ignore the function calls */ 196 #define PDEBUG(a) /* nop */ 197 #define DEVICENAME(d) /* nop */ 198 199 #define print_device_short(d,i) /* nop */ 200 #define print_device(d,i) /* nop */ 201 #define print_device_tree_short(d,i) /* nop */ 202 #define print_device_tree(d,i) /* nop */ 203 #define print_driver_short(d,i) /* nop */ 204 #define print_driver(d,i) /* nop */ 205 #define print_driver_list(d,i) /* nop */ 206 #define print_devclass_short(d,i) /* nop */ 207 #define print_devclass(d,i) /* nop */ 208 #define print_devclass_list_short() /* nop */ 209 #define print_devclass_list() /* nop */ 210 #endif 211 212 /* 213 * dev sysctl tree 214 */ 215 216 enum { 217 DEVCLASS_SYSCTL_PARENT, 218 }; 219 220 static int 221 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 222 { 223 devclass_t dc = (devclass_t)arg1; 224 const char *value; 225 226 switch (arg2) { 227 case DEVCLASS_SYSCTL_PARENT: 228 value = dc->parent ? dc->parent->name : ""; 229 break; 230 default: 231 return (EINVAL); 232 } 233 return (SYSCTL_OUT_STR(req, value)); 234 } 235 236 static void 237 devclass_sysctl_init(devclass_t dc) 238 { 239 if (dc->sysctl_tree != NULL) 240 return; 241 sysctl_ctx_init(&dc->sysctl_ctx); 242 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 243 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 244 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 245 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 246 OID_AUTO, "%parent", 247 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 248 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 249 "parent class"); 250 } 251 252 enum { 253 DEVICE_SYSCTL_DESC, 254 DEVICE_SYSCTL_DRIVER, 255 DEVICE_SYSCTL_LOCATION, 256 DEVICE_SYSCTL_PNPINFO, 257 DEVICE_SYSCTL_PARENT, 258 }; 259 260 static int 261 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 262 { 263 struct sbuf sb; 264 device_t dev = (device_t)arg1; 265 int error; 266 267 sbuf_new_for_sysctl(&sb, NULL, 1024, req); 268 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 269 switch (arg2) { 270 case DEVICE_SYSCTL_DESC: 271 sbuf_cat(&sb, dev->desc ? dev->desc : ""); 272 break; 273 case DEVICE_SYSCTL_DRIVER: 274 sbuf_cat(&sb, dev->driver ? dev->driver->name : ""); 275 break; 276 case DEVICE_SYSCTL_LOCATION: 277 bus_child_location(dev, &sb); 278 break; 279 case DEVICE_SYSCTL_PNPINFO: 280 bus_child_pnpinfo(dev, &sb); 281 break; 282 case DEVICE_SYSCTL_PARENT: 283 sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : ""); 284 break; 285 default: 286 sbuf_delete(&sb); 287 return (EINVAL); 288 } 289 error = sbuf_finish(&sb); 290 sbuf_delete(&sb); 291 return (error); 292 } 293 294 static void 295 device_sysctl_init(device_t dev) 296 { 297 devclass_t dc = dev->devclass; 298 int domain; 299 300 if (dev->sysctl_tree != NULL) 301 return; 302 devclass_sysctl_init(dc); 303 sysctl_ctx_init(&dev->sysctl_ctx); 304 dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx, 305 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 306 dev->nameunit + strlen(dc->name), 307 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index"); 308 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 309 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 310 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 311 "device description"); 312 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 313 OID_AUTO, "%driver", 314 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 315 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 316 "device driver name"); 317 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 318 OID_AUTO, "%location", 319 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 320 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 321 "device location relative to parent"); 322 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 323 OID_AUTO, "%pnpinfo", 324 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 325 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 326 "device identification"); 327 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 328 OID_AUTO, "%parent", 329 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 330 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 331 "parent device"); 332 if (bus_get_domain(dev, &domain) == 0) 333 SYSCTL_ADD_INT(&dev->sysctl_ctx, 334 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", 335 CTLFLAG_RD, NULL, domain, "NUMA domain"); 336 } 337 338 static void 339 device_sysctl_update(device_t dev) 340 { 341 devclass_t dc = dev->devclass; 342 343 if (dev->sysctl_tree == NULL) 344 return; 345 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 346 } 347 348 static void 349 device_sysctl_fini(device_t dev) 350 { 351 if (dev->sysctl_tree == NULL) 352 return; 353 sysctl_ctx_free(&dev->sysctl_ctx); 354 dev->sysctl_tree = NULL; 355 } 356 357 /* 358 * /dev/devctl implementation 359 */ 360 361 /* 362 * This design allows only one reader for /dev/devctl. This is not desirable 363 * in the long run, but will get a lot of hair out of this implementation. 364 * Maybe we should make this device a clonable device. 365 * 366 * Also note: we specifically do not attach a device to the device_t tree 367 * to avoid potential chicken and egg problems. One could argue that all 368 * of this belongs to the root node. 369 */ 370 371 #define DEVCTL_DEFAULT_QUEUE_LEN 1000 372 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS); 373 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 374 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN | 375 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length"); 376 377 static d_open_t devopen; 378 static d_close_t devclose; 379 static d_read_t devread; 380 static d_ioctl_t devioctl; 381 static d_poll_t devpoll; 382 static d_kqfilter_t devkqfilter; 383 384 static struct cdevsw dev_cdevsw = { 385 .d_version = D_VERSION, 386 .d_open = devopen, 387 .d_close = devclose, 388 .d_read = devread, 389 .d_ioctl = devioctl, 390 .d_poll = devpoll, 391 .d_kqfilter = devkqfilter, 392 .d_name = "devctl", 393 }; 394 395 #define DEVCTL_BUFFER (1024 - sizeof(void *)) 396 struct dev_event_info { 397 STAILQ_ENTRY(dev_event_info) dei_link; 398 char dei_data[DEVCTL_BUFFER]; 399 }; 400 401 STAILQ_HEAD(devq, dev_event_info); 402 403 static struct dev_softc { 404 int inuse; 405 int nonblock; 406 int queued; 407 int async; 408 struct mtx mtx; 409 struct cv cv; 410 struct selinfo sel; 411 struct devq devq; 412 struct sigio *sigio; 413 uma_zone_t zone; 414 } devsoftc; 415 416 static void filt_devctl_detach(struct knote *kn); 417 static int filt_devctl_read(struct knote *kn, long hint); 418 419 struct filterops devctl_rfiltops = { 420 .f_isfd = 1, 421 .f_detach = filt_devctl_detach, 422 .f_event = filt_devctl_read, 423 }; 424 425 static struct cdev *devctl_dev; 426 427 static void 428 devinit(void) 429 { 430 int reserve; 431 uma_zone_t z; 432 433 devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL, 434 UID_ROOT, GID_WHEEL, 0600, "devctl"); 435 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 436 cv_init(&devsoftc.cv, "dev cv"); 437 STAILQ_INIT(&devsoftc.devq); 438 knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx); 439 if (devctl_queue_length > 0) { 440 /* 441 * Allocate a zone for the messages. Preallocate 2% of these for 442 * a reserve. Allow only devctl_queue_length slabs to cap memory 443 * usage. The reserve usually allows coverage of surges of 444 * events during memory shortages. Normally we won't have to 445 * re-use events from the queue, but will in extreme shortages. 446 */ 447 z = devsoftc.zone = uma_zcreate("DEVCTL", 448 sizeof(struct dev_event_info), NULL, NULL, NULL, NULL, 449 UMA_ALIGN_PTR, 0); 450 reserve = max(devctl_queue_length / 50, 100); /* 2% reserve */ 451 uma_zone_set_max(z, devctl_queue_length); 452 uma_zone_set_maxcache(z, 0); 453 uma_zone_reserve(z, reserve); 454 uma_prealloc(z, reserve); 455 } 456 devctl2_init(); 457 } 458 459 static int 460 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td) 461 { 462 mtx_lock(&devsoftc.mtx); 463 if (devsoftc.inuse) { 464 mtx_unlock(&devsoftc.mtx); 465 return (EBUSY); 466 } 467 /* move to init */ 468 devsoftc.inuse = 1; 469 mtx_unlock(&devsoftc.mtx); 470 return (0); 471 } 472 473 static int 474 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td) 475 { 476 mtx_lock(&devsoftc.mtx); 477 devsoftc.inuse = 0; 478 devsoftc.nonblock = 0; 479 devsoftc.async = 0; 480 cv_broadcast(&devsoftc.cv); 481 funsetown(&devsoftc.sigio); 482 mtx_unlock(&devsoftc.mtx); 483 return (0); 484 } 485 486 /* 487 * The read channel for this device is used to report changes to 488 * userland in realtime. We are required to free the data as well as 489 * the n1 object because we allocate them separately. Also note that 490 * we return one record at a time. If you try to read this device a 491 * character at a time, you will lose the rest of the data. Listening 492 * programs are expected to cope. 493 */ 494 static int 495 devread(struct cdev *dev, struct uio *uio, int ioflag) 496 { 497 struct dev_event_info *n1; 498 int rv; 499 500 mtx_lock(&devsoftc.mtx); 501 while (STAILQ_EMPTY(&devsoftc.devq)) { 502 if (devsoftc.nonblock) { 503 mtx_unlock(&devsoftc.mtx); 504 return (EAGAIN); 505 } 506 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 507 if (rv) { 508 /* 509 * Need to translate ERESTART to EINTR here? -- jake 510 */ 511 mtx_unlock(&devsoftc.mtx); 512 return (rv); 513 } 514 } 515 n1 = STAILQ_FIRST(&devsoftc.devq); 516 STAILQ_REMOVE_HEAD(&devsoftc.devq, dei_link); 517 devsoftc.queued--; 518 mtx_unlock(&devsoftc.mtx); 519 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 520 uma_zfree(devsoftc.zone, n1); 521 return (rv); 522 } 523 524 static int 525 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) 526 { 527 switch (cmd) { 528 case FIONBIO: 529 if (*(int*)data) 530 devsoftc.nonblock = 1; 531 else 532 devsoftc.nonblock = 0; 533 return (0); 534 case FIOASYNC: 535 if (*(int*)data) 536 devsoftc.async = 1; 537 else 538 devsoftc.async = 0; 539 return (0); 540 case FIOSETOWN: 541 return fsetown(*(int *)data, &devsoftc.sigio); 542 case FIOGETOWN: 543 *(int *)data = fgetown(&devsoftc.sigio); 544 return (0); 545 546 /* (un)Support for other fcntl() calls. */ 547 case FIOCLEX: 548 case FIONCLEX: 549 case FIONREAD: 550 default: 551 break; 552 } 553 return (ENOTTY); 554 } 555 556 static int 557 devpoll(struct cdev *dev, int events, struct thread *td) 558 { 559 int revents = 0; 560 561 mtx_lock(&devsoftc.mtx); 562 if (events & (POLLIN | POLLRDNORM)) { 563 if (!STAILQ_EMPTY(&devsoftc.devq)) 564 revents = events & (POLLIN | POLLRDNORM); 565 else 566 selrecord(td, &devsoftc.sel); 567 } 568 mtx_unlock(&devsoftc.mtx); 569 570 return (revents); 571 } 572 573 static int 574 devkqfilter(struct cdev *dev, struct knote *kn) 575 { 576 int error; 577 578 if (kn->kn_filter == EVFILT_READ) { 579 kn->kn_fop = &devctl_rfiltops; 580 knlist_add(&devsoftc.sel.si_note, kn, 0); 581 error = 0; 582 } else 583 error = EINVAL; 584 return (error); 585 } 586 587 static void 588 filt_devctl_detach(struct knote *kn) 589 { 590 knlist_remove(&devsoftc.sel.si_note, kn, 0); 591 } 592 593 static int 594 filt_devctl_read(struct knote *kn, long hint) 595 { 596 kn->kn_data = devsoftc.queued; 597 return (kn->kn_data != 0); 598 } 599 600 /** 601 * @brief Return whether the userland process is running 602 */ 603 bool 604 devctl_process_running(void) 605 { 606 return (devsoftc.inuse == 1); 607 } 608 609 static struct dev_event_info * 610 devctl_alloc_dei(void) 611 { 612 struct dev_event_info *dei = NULL; 613 614 mtx_lock(&devsoftc.mtx); 615 if (devctl_queue_length == 0) 616 goto out; 617 dei = uma_zalloc(devsoftc.zone, M_NOWAIT); 618 if (dei == NULL) 619 dei = uma_zalloc(devsoftc.zone, M_NOWAIT | M_USE_RESERVE); 620 if (dei == NULL) { 621 /* 622 * Guard against no items in the queue. Normally, this won't 623 * happen, but if lots of events happen all at once and there's 624 * a chance we're out of allocated space but none have yet been 625 * queued when we get here, leaving nothing to steal. This can 626 * also happen with error injection. Fail safe by returning 627 * NULL in that case.. 628 */ 629 if (devsoftc.queued == 0) 630 goto out; 631 dei = STAILQ_FIRST(&devsoftc.devq); 632 STAILQ_REMOVE_HEAD(&devsoftc.devq, dei_link); 633 devsoftc.queued--; 634 } 635 MPASS(dei != NULL); 636 *dei->dei_data = '\0'; 637 out: 638 mtx_unlock(&devsoftc.mtx); 639 return (dei); 640 } 641 642 static struct dev_event_info * 643 devctl_alloc_dei_sb(struct sbuf *sb) 644 { 645 struct dev_event_info *dei; 646 647 dei = devctl_alloc_dei(); 648 if (dei != NULL) 649 sbuf_new(sb, dei->dei_data, sizeof(dei->dei_data), SBUF_FIXEDLEN); 650 return (dei); 651 } 652 653 static void 654 devctl_free_dei(struct dev_event_info *dei) 655 { 656 uma_zfree(devsoftc.zone, dei); 657 } 658 659 static void 660 devctl_queue(struct dev_event_info *dei) 661 { 662 mtx_lock(&devsoftc.mtx); 663 STAILQ_INSERT_TAIL(&devsoftc.devq, dei, dei_link); 664 devsoftc.queued++; 665 cv_broadcast(&devsoftc.cv); 666 KNOTE_LOCKED(&devsoftc.sel.si_note, 0); 667 mtx_unlock(&devsoftc.mtx); 668 selwakeup(&devsoftc.sel); 669 if (devsoftc.async && devsoftc.sigio != NULL) 670 pgsigio(&devsoftc.sigio, SIGIO, 0); 671 } 672 673 /** 674 * @brief Send a 'notification' to userland, using standard ways 675 */ 676 void 677 devctl_notify(const char *system, const char *subsystem, const char *type, 678 const char *data) 679 { 680 struct dev_event_info *dei; 681 struct sbuf sb; 682 683 if (system == NULL || subsystem == NULL || type == NULL) 684 return; 685 dei = devctl_alloc_dei_sb(&sb); 686 if (dei == NULL) 687 return; 688 sbuf_cpy(&sb, "!system="); 689 sbuf_cat(&sb, system); 690 sbuf_cat(&sb, " subsystem="); 691 sbuf_cat(&sb, subsystem); 692 sbuf_cat(&sb, " type="); 693 sbuf_cat(&sb, type); 694 if (data != NULL) { 695 sbuf_putc(&sb, ' '); 696 sbuf_cat(&sb, data); 697 } 698 sbuf_putc(&sb, '\n'); 699 if (sbuf_finish(&sb) != 0) 700 devctl_free_dei(dei); /* overflow -> drop it */ 701 else 702 devctl_queue(dei); 703 } 704 705 /* 706 * Common routine that tries to make sending messages as easy as possible. 707 * We allocate memory for the data, copy strings into that, but do not 708 * free it unless there's an error. The dequeue part of the driver should 709 * free the data. We don't send data when the device is disabled. We do 710 * send data, even when we have no listeners, because we wish to avoid 711 * races relating to startup and restart of listening applications. 712 * 713 * devaddq is designed to string together the type of event, with the 714 * object of that event, plus the plug and play info and location info 715 * for that event. This is likely most useful for devices, but less 716 * useful for other consumers of this interface. Those should use 717 * the devctl_notify() interface instead. 718 * 719 * Output: 720 * ${type}${what} at $(location dev) $(pnp-info dev) on $(parent dev) 721 */ 722 static void 723 devaddq(const char *type, const char *what, device_t dev) 724 { 725 struct dev_event_info *dei; 726 const char *parstr; 727 struct sbuf sb; 728 729 dei = devctl_alloc_dei_sb(&sb); 730 if (dei == NULL) 731 return; 732 sbuf_cpy(&sb, type); 733 sbuf_cat(&sb, what); 734 sbuf_cat(&sb, " at "); 735 736 /* Add in the location */ 737 bus_child_location(dev, &sb); 738 sbuf_putc(&sb, ' '); 739 740 /* Add in pnpinfo */ 741 bus_child_pnpinfo(dev, &sb); 742 743 /* Get the parent of this device, or / if high enough in the tree. */ 744 if (device_get_parent(dev) == NULL) 745 parstr = "."; /* Or '/' ? */ 746 else 747 parstr = device_get_nameunit(device_get_parent(dev)); 748 sbuf_cat(&sb, " on "); 749 sbuf_cat(&sb, parstr); 750 sbuf_putc(&sb, '\n'); 751 if (sbuf_finish(&sb) != 0) 752 goto bad; 753 devctl_queue(dei); 754 return; 755 bad: 756 devctl_free_dei(dei); 757 } 758 759 /* 760 * A device was added to the tree. We are called just after it successfully 761 * attaches (that is, probe and attach success for this device). No call 762 * is made if a device is merely parented into the tree. See devnomatch 763 * if probe fails. If attach fails, no notification is sent (but maybe 764 * we should have a different message for this). 765 */ 766 static void 767 devadded(device_t dev) 768 { 769 devaddq("+", device_get_nameunit(dev), dev); 770 } 771 772 /* 773 * A device was removed from the tree. We are called just before this 774 * happens. 775 */ 776 static void 777 devremoved(device_t dev) 778 { 779 devaddq("-", device_get_nameunit(dev), dev); 780 } 781 782 /* 783 * Called when there's no match for this device. This is only called 784 * the first time that no match happens, so we don't keep getting this 785 * message. Should that prove to be undesirable, we can change it. 786 * This is called when all drivers that can attach to a given bus 787 * decline to accept this device. Other errors may not be detected. 788 */ 789 static void 790 devnomatch(device_t dev) 791 { 792 devaddq("?", "", dev); 793 } 794 795 static int 796 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS) 797 { 798 int q, error; 799 800 q = devctl_queue_length; 801 error = sysctl_handle_int(oidp, &q, 0, req); 802 if (error || !req->newptr) 803 return (error); 804 if (q < 0) 805 return (EINVAL); 806 807 /* 808 * When set as a tunable, we've not yet initialized the mutex. 809 * It is safe to just assign to devctl_queue_length and return 810 * as we're racing no one. We'll use whatever value set in 811 * devinit. 812 */ 813 if (!mtx_initialized(&devsoftc.mtx)) { 814 devctl_queue_length = q; 815 return (0); 816 } 817 818 /* 819 * XXX It's hard to grow or shrink the UMA zone. Only allow 820 * disabling the queue size for the moment until underlying 821 * UMA issues can be sorted out. 822 */ 823 if (q != 0) 824 return (EINVAL); 825 if (q == devctl_queue_length) 826 return (0); 827 mtx_lock(&devsoftc.mtx); 828 devctl_queue_length = 0; 829 uma_zdestroy(devsoftc.zone); 830 devsoftc.zone = 0; 831 mtx_unlock(&devsoftc.mtx); 832 return (0); 833 } 834 835 /** 836 * @brief safely quotes strings that might have double quotes in them. 837 * 838 * The devctl protocol relies on quoted strings having matching quotes. 839 * This routine quotes any internal quotes so the resulting string 840 * is safe to pass to snprintf to construct, for example pnp info strings. 841 * 842 * @param sb sbuf to place the characters into 843 * @param src Original buffer. 844 */ 845 void 846 devctl_safe_quote_sb(struct sbuf *sb, const char *src) 847 { 848 while (*src != '\0') { 849 if (*src == '"' || *src == '\\') 850 sbuf_putc(sb, '\\'); 851 sbuf_putc(sb, *src++); 852 } 853 } 854 855 /* End of /dev/devctl code */ 856 857 static struct device_list bus_data_devices; 858 static int bus_data_generation = 1; 859 860 static kobj_method_t null_methods[] = { 861 KOBJMETHOD_END 862 }; 863 864 DEFINE_CLASS(null, null_methods, 0); 865 866 /* 867 * Bus pass implementation 868 */ 869 870 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 871 int bus_current_pass = BUS_PASS_ROOT; 872 873 /** 874 * @internal 875 * @brief Register the pass level of a new driver attachment 876 * 877 * Register a new driver attachment's pass level. If no driver 878 * attachment with the same pass level has been added, then @p new 879 * will be added to the global passes list. 880 * 881 * @param new the new driver attachment 882 */ 883 static void 884 driver_register_pass(struct driverlink *new) 885 { 886 struct driverlink *dl; 887 888 /* We only consider pass numbers during boot. */ 889 if (bus_current_pass == BUS_PASS_DEFAULT) 890 return; 891 892 /* 893 * Walk the passes list. If we already know about this pass 894 * then there is nothing to do. If we don't, then insert this 895 * driver link into the list. 896 */ 897 TAILQ_FOREACH(dl, &passes, passlink) { 898 if (dl->pass < new->pass) 899 continue; 900 if (dl->pass == new->pass) 901 return; 902 TAILQ_INSERT_BEFORE(dl, new, passlink); 903 return; 904 } 905 TAILQ_INSERT_TAIL(&passes, new, passlink); 906 } 907 908 /** 909 * @brief Raise the current bus pass 910 * 911 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 912 * method on the root bus to kick off a new device tree scan for each 913 * new pass level that has at least one driver. 914 */ 915 void 916 bus_set_pass(int pass) 917 { 918 struct driverlink *dl; 919 920 if (bus_current_pass > pass) 921 panic("Attempt to lower bus pass level"); 922 923 TAILQ_FOREACH(dl, &passes, passlink) { 924 /* Skip pass values below the current pass level. */ 925 if (dl->pass <= bus_current_pass) 926 continue; 927 928 /* 929 * Bail once we hit a driver with a pass level that is 930 * too high. 931 */ 932 if (dl->pass > pass) 933 break; 934 935 /* 936 * Raise the pass level to the next level and rescan 937 * the tree. 938 */ 939 bus_current_pass = dl->pass; 940 BUS_NEW_PASS(root_bus); 941 } 942 943 /* 944 * If there isn't a driver registered for the requested pass, 945 * then bus_current_pass might still be less than 'pass'. Set 946 * it to 'pass' in that case. 947 */ 948 if (bus_current_pass < pass) 949 bus_current_pass = pass; 950 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 951 } 952 953 /* 954 * Devclass implementation 955 */ 956 957 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 958 959 /** 960 * @internal 961 * @brief Find or create a device class 962 * 963 * If a device class with the name @p classname exists, return it, 964 * otherwise if @p create is non-zero create and return a new device 965 * class. 966 * 967 * If @p parentname is non-NULL, the parent of the devclass is set to 968 * the devclass of that name. 969 * 970 * @param classname the devclass name to find or create 971 * @param parentname the parent devclass name or @c NULL 972 * @param create non-zero to create a devclass 973 */ 974 static devclass_t 975 devclass_find_internal(const char *classname, const char *parentname, 976 int create) 977 { 978 devclass_t dc; 979 980 PDEBUG(("looking for %s", classname)); 981 if (!classname) 982 return (NULL); 983 984 TAILQ_FOREACH(dc, &devclasses, link) { 985 if (!strcmp(dc->name, classname)) 986 break; 987 } 988 989 if (create && !dc) { 990 PDEBUG(("creating %s", classname)); 991 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 992 M_BUS, M_NOWAIT | M_ZERO); 993 if (!dc) 994 return (NULL); 995 dc->parent = NULL; 996 dc->name = (char*) (dc + 1); 997 strcpy(dc->name, classname); 998 TAILQ_INIT(&dc->drivers); 999 TAILQ_INSERT_TAIL(&devclasses, dc, link); 1000 1001 bus_data_generation_update(); 1002 } 1003 1004 /* 1005 * If a parent class is specified, then set that as our parent so 1006 * that this devclass will support drivers for the parent class as 1007 * well. If the parent class has the same name don't do this though 1008 * as it creates a cycle that can trigger an infinite loop in 1009 * device_probe_child() if a device exists for which there is no 1010 * suitable driver. 1011 */ 1012 if (parentname && dc && !dc->parent && 1013 strcmp(classname, parentname) != 0) { 1014 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 1015 dc->parent->flags |= DC_HAS_CHILDREN; 1016 } 1017 1018 return (dc); 1019 } 1020 1021 /** 1022 * @brief Create a device class 1023 * 1024 * If a device class with the name @p classname exists, return it, 1025 * otherwise create and return a new device class. 1026 * 1027 * @param classname the devclass name to find or create 1028 */ 1029 devclass_t 1030 devclass_create(const char *classname) 1031 { 1032 return (devclass_find_internal(classname, NULL, TRUE)); 1033 } 1034 1035 /** 1036 * @brief Find a device class 1037 * 1038 * If a device class with the name @p classname exists, return it, 1039 * otherwise return @c NULL. 1040 * 1041 * @param classname the devclass name to find 1042 */ 1043 devclass_t 1044 devclass_find(const char *classname) 1045 { 1046 return (devclass_find_internal(classname, NULL, FALSE)); 1047 } 1048 1049 /** 1050 * @brief Register that a device driver has been added to a devclass 1051 * 1052 * Register that a device driver has been added to a devclass. This 1053 * is called by devclass_add_driver to accomplish the recursive 1054 * notification of all the children classes of dc, as well as dc. 1055 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 1056 * the devclass. 1057 * 1058 * We do a full search here of the devclass list at each iteration 1059 * level to save storing children-lists in the devclass structure. If 1060 * we ever move beyond a few dozen devices doing this, we may need to 1061 * reevaluate... 1062 * 1063 * @param dc the devclass to edit 1064 * @param driver the driver that was just added 1065 */ 1066 static void 1067 devclass_driver_added(devclass_t dc, driver_t *driver) 1068 { 1069 devclass_t parent; 1070 int i; 1071 1072 /* 1073 * Call BUS_DRIVER_ADDED for any existing buses in this class. 1074 */ 1075 for (i = 0; i < dc->maxunit; i++) 1076 if (dc->devices[i] && device_is_attached(dc->devices[i])) 1077 BUS_DRIVER_ADDED(dc->devices[i], driver); 1078 1079 /* 1080 * Walk through the children classes. Since we only keep a 1081 * single parent pointer around, we walk the entire list of 1082 * devclasses looking for children. We set the 1083 * DC_HAS_CHILDREN flag when a child devclass is created on 1084 * the parent, so we only walk the list for those devclasses 1085 * that have children. 1086 */ 1087 if (!(dc->flags & DC_HAS_CHILDREN)) 1088 return; 1089 parent = dc; 1090 TAILQ_FOREACH(dc, &devclasses, link) { 1091 if (dc->parent == parent) 1092 devclass_driver_added(dc, driver); 1093 } 1094 } 1095 1096 /** 1097 * @brief Add a device driver to a device class 1098 * 1099 * Add a device driver to a devclass. This is normally called 1100 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 1101 * all devices in the devclass will be called to allow them to attempt 1102 * to re-probe any unmatched children. 1103 * 1104 * @param dc the devclass to edit 1105 * @param driver the driver to register 1106 */ 1107 int 1108 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 1109 { 1110 driverlink_t dl; 1111 const char *parentname; 1112 1113 PDEBUG(("%s", DRIVERNAME(driver))); 1114 1115 /* Don't allow invalid pass values. */ 1116 if (pass <= BUS_PASS_ROOT) 1117 return (EINVAL); 1118 1119 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 1120 if (!dl) 1121 return (ENOMEM); 1122 1123 /* 1124 * Compile the driver's methods. Also increase the reference count 1125 * so that the class doesn't get freed when the last instance 1126 * goes. This means we can safely use static methods and avoids a 1127 * double-free in devclass_delete_driver. 1128 */ 1129 kobj_class_compile((kobj_class_t) driver); 1130 1131 /* 1132 * If the driver has any base classes, make the 1133 * devclass inherit from the devclass of the driver's 1134 * first base class. This will allow the system to 1135 * search for drivers in both devclasses for children 1136 * of a device using this driver. 1137 */ 1138 if (driver->baseclasses) 1139 parentname = driver->baseclasses[0]->name; 1140 else 1141 parentname = NULL; 1142 *dcp = devclass_find_internal(driver->name, parentname, TRUE); 1143 1144 dl->driver = driver; 1145 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 1146 driver->refs++; /* XXX: kobj_mtx */ 1147 dl->pass = pass; 1148 driver_register_pass(dl); 1149 1150 if (device_frozen) { 1151 dl->flags |= DL_DEFERRED_PROBE; 1152 } else { 1153 devclass_driver_added(dc, driver); 1154 } 1155 bus_data_generation_update(); 1156 return (0); 1157 } 1158 1159 /** 1160 * @brief Register that a device driver has been deleted from a devclass 1161 * 1162 * Register that a device driver has been removed from a devclass. 1163 * This is called by devclass_delete_driver to accomplish the 1164 * recursive notification of all the children classes of busclass, as 1165 * well as busclass. Each layer will attempt to detach the driver 1166 * from any devices that are children of the bus's devclass. The function 1167 * will return an error if a device fails to detach. 1168 * 1169 * We do a full search here of the devclass list at each iteration 1170 * level to save storing children-lists in the devclass structure. If 1171 * we ever move beyond a few dozen devices doing this, we may need to 1172 * reevaluate... 1173 * 1174 * @param busclass the devclass of the parent bus 1175 * @param dc the devclass of the driver being deleted 1176 * @param driver the driver being deleted 1177 */ 1178 static int 1179 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 1180 { 1181 devclass_t parent; 1182 device_t dev; 1183 int error, i; 1184 1185 /* 1186 * Disassociate from any devices. We iterate through all the 1187 * devices in the devclass of the driver and detach any which are 1188 * using the driver and which have a parent in the devclass which 1189 * we are deleting from. 1190 * 1191 * Note that since a driver can be in multiple devclasses, we 1192 * should not detach devices which are not children of devices in 1193 * the affected devclass. 1194 * 1195 * If we're frozen, we don't generate NOMATCH events. Mark to 1196 * generate later. 1197 */ 1198 for (i = 0; i < dc->maxunit; i++) { 1199 if (dc->devices[i]) { 1200 dev = dc->devices[i]; 1201 if (dev->driver == driver && dev->parent && 1202 dev->parent->devclass == busclass) { 1203 if ((error = device_detach(dev)) != 0) 1204 return (error); 1205 if (device_frozen) { 1206 dev->flags &= ~DF_DONENOMATCH; 1207 dev->flags |= DF_NEEDNOMATCH; 1208 } else { 1209 BUS_PROBE_NOMATCH(dev->parent, dev); 1210 devnomatch(dev); 1211 dev->flags |= DF_DONENOMATCH; 1212 } 1213 } 1214 } 1215 } 1216 1217 /* 1218 * Walk through the children classes. Since we only keep a 1219 * single parent pointer around, we walk the entire list of 1220 * devclasses looking for children. We set the 1221 * DC_HAS_CHILDREN flag when a child devclass is created on 1222 * the parent, so we only walk the list for those devclasses 1223 * that have children. 1224 */ 1225 if (!(busclass->flags & DC_HAS_CHILDREN)) 1226 return (0); 1227 parent = busclass; 1228 TAILQ_FOREACH(busclass, &devclasses, link) { 1229 if (busclass->parent == parent) { 1230 error = devclass_driver_deleted(busclass, dc, driver); 1231 if (error) 1232 return (error); 1233 } 1234 } 1235 return (0); 1236 } 1237 1238 /** 1239 * @brief Delete a device driver from a device class 1240 * 1241 * Delete a device driver from a devclass. This is normally called 1242 * automatically by DRIVER_MODULE(). 1243 * 1244 * If the driver is currently attached to any devices, 1245 * devclass_delete_driver() will first attempt to detach from each 1246 * device. If one of the detach calls fails, the driver will not be 1247 * deleted. 1248 * 1249 * @param dc the devclass to edit 1250 * @param driver the driver to unregister 1251 */ 1252 int 1253 devclass_delete_driver(devclass_t busclass, driver_t *driver) 1254 { 1255 devclass_t dc = devclass_find(driver->name); 1256 driverlink_t dl; 1257 int error; 1258 1259 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1260 1261 if (!dc) 1262 return (0); 1263 1264 /* 1265 * Find the link structure in the bus' list of drivers. 1266 */ 1267 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1268 if (dl->driver == driver) 1269 break; 1270 } 1271 1272 if (!dl) { 1273 PDEBUG(("%s not found in %s list", driver->name, 1274 busclass->name)); 1275 return (ENOENT); 1276 } 1277 1278 error = devclass_driver_deleted(busclass, dc, driver); 1279 if (error != 0) 1280 return (error); 1281 1282 TAILQ_REMOVE(&busclass->drivers, dl, link); 1283 free(dl, M_BUS); 1284 1285 /* XXX: kobj_mtx */ 1286 driver->refs--; 1287 if (driver->refs == 0) 1288 kobj_class_free((kobj_class_t) driver); 1289 1290 bus_data_generation_update(); 1291 return (0); 1292 } 1293 1294 /** 1295 * @brief Quiesces a set of device drivers from a device class 1296 * 1297 * Quiesce a device driver from a devclass. This is normally called 1298 * automatically by DRIVER_MODULE(). 1299 * 1300 * If the driver is currently attached to any devices, 1301 * devclass_quiesece_driver() will first attempt to quiesce each 1302 * device. 1303 * 1304 * @param dc the devclass to edit 1305 * @param driver the driver to unregister 1306 */ 1307 static int 1308 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 1309 { 1310 devclass_t dc = devclass_find(driver->name); 1311 driverlink_t dl; 1312 device_t dev; 1313 int i; 1314 int error; 1315 1316 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1317 1318 if (!dc) 1319 return (0); 1320 1321 /* 1322 * Find the link structure in the bus' list of drivers. 1323 */ 1324 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1325 if (dl->driver == driver) 1326 break; 1327 } 1328 1329 if (!dl) { 1330 PDEBUG(("%s not found in %s list", driver->name, 1331 busclass->name)); 1332 return (ENOENT); 1333 } 1334 1335 /* 1336 * Quiesce all devices. We iterate through all the devices in 1337 * the devclass of the driver and quiesce any which are using 1338 * the driver and which have a parent in the devclass which we 1339 * are quiescing. 1340 * 1341 * Note that since a driver can be in multiple devclasses, we 1342 * should not quiesce devices which are not children of 1343 * devices in the affected devclass. 1344 */ 1345 for (i = 0; i < dc->maxunit; i++) { 1346 if (dc->devices[i]) { 1347 dev = dc->devices[i]; 1348 if (dev->driver == driver && dev->parent && 1349 dev->parent->devclass == busclass) { 1350 if ((error = device_quiesce(dev)) != 0) 1351 return (error); 1352 } 1353 } 1354 } 1355 1356 return (0); 1357 } 1358 1359 /** 1360 * @internal 1361 */ 1362 static driverlink_t 1363 devclass_find_driver_internal(devclass_t dc, const char *classname) 1364 { 1365 driverlink_t dl; 1366 1367 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1368 1369 TAILQ_FOREACH(dl, &dc->drivers, link) { 1370 if (!strcmp(dl->driver->name, classname)) 1371 return (dl); 1372 } 1373 1374 PDEBUG(("not found")); 1375 return (NULL); 1376 } 1377 1378 /** 1379 * @brief Return the name of the devclass 1380 */ 1381 const char * 1382 devclass_get_name(devclass_t dc) 1383 { 1384 return (dc->name); 1385 } 1386 1387 /** 1388 * @brief Find a device given a unit number 1389 * 1390 * @param dc the devclass to search 1391 * @param unit the unit number to search for 1392 * 1393 * @returns the device with the given unit number or @c 1394 * NULL if there is no such device 1395 */ 1396 device_t 1397 devclass_get_device(devclass_t dc, int unit) 1398 { 1399 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1400 return (NULL); 1401 return (dc->devices[unit]); 1402 } 1403 1404 /** 1405 * @brief Find the softc field of a device given a unit number 1406 * 1407 * @param dc the devclass to search 1408 * @param unit the unit number to search for 1409 * 1410 * @returns the softc field of the device with the given 1411 * unit number or @c NULL if there is no such 1412 * device 1413 */ 1414 void * 1415 devclass_get_softc(devclass_t dc, int unit) 1416 { 1417 device_t dev; 1418 1419 dev = devclass_get_device(dc, unit); 1420 if (!dev) 1421 return (NULL); 1422 1423 return (device_get_softc(dev)); 1424 } 1425 1426 /** 1427 * @brief Get a list of devices in the devclass 1428 * 1429 * An array containing a list of all the devices in the given devclass 1430 * is allocated and returned in @p *devlistp. The number of devices 1431 * in the array is returned in @p *devcountp. The caller should free 1432 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1433 * 1434 * @param dc the devclass to examine 1435 * @param devlistp points at location for array pointer return 1436 * value 1437 * @param devcountp points at location for array size return value 1438 * 1439 * @retval 0 success 1440 * @retval ENOMEM the array allocation failed 1441 */ 1442 int 1443 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1444 { 1445 int count, i; 1446 device_t *list; 1447 1448 count = devclass_get_count(dc); 1449 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1450 if (!list) 1451 return (ENOMEM); 1452 1453 count = 0; 1454 for (i = 0; i < dc->maxunit; i++) { 1455 if (dc->devices[i]) { 1456 list[count] = dc->devices[i]; 1457 count++; 1458 } 1459 } 1460 1461 *devlistp = list; 1462 *devcountp = count; 1463 1464 return (0); 1465 } 1466 1467 /** 1468 * @brief Get a list of drivers in the devclass 1469 * 1470 * An array containing a list of pointers to all the drivers in the 1471 * given devclass is allocated and returned in @p *listp. The number 1472 * of drivers in the array is returned in @p *countp. The caller should 1473 * free the array using @c free(p, M_TEMP). 1474 * 1475 * @param dc the devclass to examine 1476 * @param listp gives location for array pointer return value 1477 * @param countp gives location for number of array elements 1478 * return value 1479 * 1480 * @retval 0 success 1481 * @retval ENOMEM the array allocation failed 1482 */ 1483 int 1484 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1485 { 1486 driverlink_t dl; 1487 driver_t **list; 1488 int count; 1489 1490 count = 0; 1491 TAILQ_FOREACH(dl, &dc->drivers, link) 1492 count++; 1493 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1494 if (list == NULL) 1495 return (ENOMEM); 1496 1497 count = 0; 1498 TAILQ_FOREACH(dl, &dc->drivers, link) { 1499 list[count] = dl->driver; 1500 count++; 1501 } 1502 *listp = list; 1503 *countp = count; 1504 1505 return (0); 1506 } 1507 1508 /** 1509 * @brief Get the number of devices in a devclass 1510 * 1511 * @param dc the devclass to examine 1512 */ 1513 int 1514 devclass_get_count(devclass_t dc) 1515 { 1516 int count, i; 1517 1518 count = 0; 1519 for (i = 0; i < dc->maxunit; i++) 1520 if (dc->devices[i]) 1521 count++; 1522 return (count); 1523 } 1524 1525 /** 1526 * @brief Get the maximum unit number used in a devclass 1527 * 1528 * Note that this is one greater than the highest currently-allocated 1529 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1530 * that not even the devclass has been allocated yet. 1531 * 1532 * @param dc the devclass to examine 1533 */ 1534 int 1535 devclass_get_maxunit(devclass_t dc) 1536 { 1537 if (dc == NULL) 1538 return (-1); 1539 return (dc->maxunit); 1540 } 1541 1542 /** 1543 * @brief Find a free unit number in a devclass 1544 * 1545 * This function searches for the first unused unit number greater 1546 * that or equal to @p unit. 1547 * 1548 * @param dc the devclass to examine 1549 * @param unit the first unit number to check 1550 */ 1551 int 1552 devclass_find_free_unit(devclass_t dc, int unit) 1553 { 1554 if (dc == NULL) 1555 return (unit); 1556 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1557 unit++; 1558 return (unit); 1559 } 1560 1561 /** 1562 * @brief Set the parent of a devclass 1563 * 1564 * The parent class is normally initialised automatically by 1565 * DRIVER_MODULE(). 1566 * 1567 * @param dc the devclass to edit 1568 * @param pdc the new parent devclass 1569 */ 1570 void 1571 devclass_set_parent(devclass_t dc, devclass_t pdc) 1572 { 1573 dc->parent = pdc; 1574 } 1575 1576 /** 1577 * @brief Get the parent of a devclass 1578 * 1579 * @param dc the devclass to examine 1580 */ 1581 devclass_t 1582 devclass_get_parent(devclass_t dc) 1583 { 1584 return (dc->parent); 1585 } 1586 1587 struct sysctl_ctx_list * 1588 devclass_get_sysctl_ctx(devclass_t dc) 1589 { 1590 return (&dc->sysctl_ctx); 1591 } 1592 1593 struct sysctl_oid * 1594 devclass_get_sysctl_tree(devclass_t dc) 1595 { 1596 return (dc->sysctl_tree); 1597 } 1598 1599 /** 1600 * @internal 1601 * @brief Allocate a unit number 1602 * 1603 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1604 * will do). The allocated unit number is returned in @p *unitp. 1605 1606 * @param dc the devclass to allocate from 1607 * @param unitp points at the location for the allocated unit 1608 * number 1609 * 1610 * @retval 0 success 1611 * @retval EEXIST the requested unit number is already allocated 1612 * @retval ENOMEM memory allocation failure 1613 */ 1614 static int 1615 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1616 { 1617 const char *s; 1618 int unit = *unitp; 1619 1620 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1621 1622 /* Ask the parent bus if it wants to wire this device. */ 1623 if (unit == -1) 1624 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1625 &unit); 1626 1627 /* If we were given a wired unit number, check for existing device */ 1628 /* XXX imp XXX */ 1629 if (unit != -1) { 1630 if (unit >= 0 && unit < dc->maxunit && 1631 dc->devices[unit] != NULL) { 1632 if (bootverbose) 1633 printf("%s: %s%d already exists; skipping it\n", 1634 dc->name, dc->name, *unitp); 1635 return (EEXIST); 1636 } 1637 } else { 1638 /* Unwired device, find the next available slot for it */ 1639 unit = 0; 1640 for (unit = 0;; unit++) { 1641 /* If this device slot is already in use, skip it. */ 1642 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1643 continue; 1644 1645 /* If there is an "at" hint for a unit then skip it. */ 1646 if (resource_string_value(dc->name, unit, "at", &s) == 1647 0) 1648 continue; 1649 1650 break; 1651 } 1652 } 1653 1654 /* 1655 * We've selected a unit beyond the length of the table, so let's 1656 * extend the table to make room for all units up to and including 1657 * this one. 1658 */ 1659 if (unit >= dc->maxunit) { 1660 device_t *newlist, *oldlist; 1661 int newsize; 1662 1663 oldlist = dc->devices; 1664 newsize = roundup((unit + 1), 1665 MAX(1, MINALLOCSIZE / sizeof(device_t))); 1666 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1667 if (!newlist) 1668 return (ENOMEM); 1669 if (oldlist != NULL) 1670 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1671 bzero(newlist + dc->maxunit, 1672 sizeof(device_t) * (newsize - dc->maxunit)); 1673 dc->devices = newlist; 1674 dc->maxunit = newsize; 1675 if (oldlist != NULL) 1676 free(oldlist, M_BUS); 1677 } 1678 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1679 1680 *unitp = unit; 1681 return (0); 1682 } 1683 1684 /** 1685 * @internal 1686 * @brief Add a device to a devclass 1687 * 1688 * A unit number is allocated for the device (using the device's 1689 * preferred unit number if any) and the device is registered in the 1690 * devclass. This allows the device to be looked up by its unit 1691 * number, e.g. by decoding a dev_t minor number. 1692 * 1693 * @param dc the devclass to add to 1694 * @param dev the device to add 1695 * 1696 * @retval 0 success 1697 * @retval EEXIST the requested unit number is already allocated 1698 * @retval ENOMEM memory allocation failure 1699 */ 1700 static int 1701 devclass_add_device(devclass_t dc, device_t dev) 1702 { 1703 int buflen, error; 1704 1705 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1706 1707 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1708 if (buflen < 0) 1709 return (ENOMEM); 1710 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1711 if (!dev->nameunit) 1712 return (ENOMEM); 1713 1714 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1715 free(dev->nameunit, M_BUS); 1716 dev->nameunit = NULL; 1717 return (error); 1718 } 1719 dc->devices[dev->unit] = dev; 1720 dev->devclass = dc; 1721 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1722 1723 return (0); 1724 } 1725 1726 /** 1727 * @internal 1728 * @brief Delete a device from a devclass 1729 * 1730 * The device is removed from the devclass's device list and its unit 1731 * number is freed. 1732 1733 * @param dc the devclass to delete from 1734 * @param dev the device to delete 1735 * 1736 * @retval 0 success 1737 */ 1738 static int 1739 devclass_delete_device(devclass_t dc, device_t dev) 1740 { 1741 if (!dc || !dev) 1742 return (0); 1743 1744 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1745 1746 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1747 panic("devclass_delete_device: inconsistent device class"); 1748 dc->devices[dev->unit] = NULL; 1749 if (dev->flags & DF_WILDCARD) 1750 dev->unit = -1; 1751 dev->devclass = NULL; 1752 free(dev->nameunit, M_BUS); 1753 dev->nameunit = NULL; 1754 1755 return (0); 1756 } 1757 1758 /** 1759 * @internal 1760 * @brief Make a new device and add it as a child of @p parent 1761 * 1762 * @param parent the parent of the new device 1763 * @param name the devclass name of the new device or @c NULL 1764 * to leave the devclass unspecified 1765 * @parem unit the unit number of the new device of @c -1 to 1766 * leave the unit number unspecified 1767 * 1768 * @returns the new device 1769 */ 1770 static device_t 1771 make_device(device_t parent, const char *name, int unit) 1772 { 1773 device_t dev; 1774 devclass_t dc; 1775 1776 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1777 1778 if (name) { 1779 dc = devclass_find_internal(name, NULL, TRUE); 1780 if (!dc) { 1781 printf("make_device: can't find device class %s\n", 1782 name); 1783 return (NULL); 1784 } 1785 } else { 1786 dc = NULL; 1787 } 1788 1789 dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO); 1790 if (!dev) 1791 return (NULL); 1792 1793 dev->parent = parent; 1794 TAILQ_INIT(&dev->children); 1795 kobj_init((kobj_t) dev, &null_class); 1796 dev->driver = NULL; 1797 dev->devclass = NULL; 1798 dev->unit = unit; 1799 dev->nameunit = NULL; 1800 dev->desc = NULL; 1801 dev->busy = 0; 1802 dev->devflags = 0; 1803 dev->flags = DF_ENABLED; 1804 dev->order = 0; 1805 if (unit == -1) 1806 dev->flags |= DF_WILDCARD; 1807 if (name) { 1808 dev->flags |= DF_FIXEDCLASS; 1809 if (devclass_add_device(dc, dev)) { 1810 kobj_delete((kobj_t) dev, M_BUS); 1811 return (NULL); 1812 } 1813 } 1814 if (parent != NULL && device_has_quiet_children(parent)) 1815 dev->flags |= DF_QUIET | DF_QUIET_CHILDREN; 1816 dev->ivars = NULL; 1817 dev->softc = NULL; 1818 1819 dev->state = DS_NOTPRESENT; 1820 1821 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1822 bus_data_generation_update(); 1823 1824 return (dev); 1825 } 1826 1827 /** 1828 * @internal 1829 * @brief Print a description of a device. 1830 */ 1831 static int 1832 device_print_child(device_t dev, device_t child) 1833 { 1834 int retval = 0; 1835 1836 if (device_is_alive(child)) 1837 retval += BUS_PRINT_CHILD(dev, child); 1838 else 1839 retval += device_printf(child, " not found\n"); 1840 1841 return (retval); 1842 } 1843 1844 /** 1845 * @brief Create a new device 1846 * 1847 * This creates a new device and adds it as a child of an existing 1848 * parent device. The new device will be added after the last existing 1849 * child with order zero. 1850 * 1851 * @param dev the device which will be the parent of the 1852 * new child device 1853 * @param name devclass name for new device or @c NULL if not 1854 * specified 1855 * @param unit unit number for new device or @c -1 if not 1856 * specified 1857 * 1858 * @returns the new device 1859 */ 1860 device_t 1861 device_add_child(device_t dev, const char *name, int unit) 1862 { 1863 return (device_add_child_ordered(dev, 0, name, unit)); 1864 } 1865 1866 /** 1867 * @brief Create a new device 1868 * 1869 * This creates a new device and adds it as a child of an existing 1870 * parent device. The new device will be added after the last existing 1871 * child with the same order. 1872 * 1873 * @param dev the device which will be the parent of the 1874 * new child device 1875 * @param order a value which is used to partially sort the 1876 * children of @p dev - devices created using 1877 * lower values of @p order appear first in @p 1878 * dev's list of children 1879 * @param name devclass name for new device or @c NULL if not 1880 * specified 1881 * @param unit unit number for new device or @c -1 if not 1882 * specified 1883 * 1884 * @returns the new device 1885 */ 1886 device_t 1887 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1888 { 1889 device_t child; 1890 device_t place; 1891 1892 PDEBUG(("%s at %s with order %u as unit %d", 1893 name, DEVICENAME(dev), order, unit)); 1894 KASSERT(name != NULL || unit == -1, 1895 ("child device with wildcard name and specific unit number")); 1896 1897 child = make_device(dev, name, unit); 1898 if (child == NULL) 1899 return (child); 1900 child->order = order; 1901 1902 TAILQ_FOREACH(place, &dev->children, link) { 1903 if (place->order > order) 1904 break; 1905 } 1906 1907 if (place) { 1908 /* 1909 * The device 'place' is the first device whose order is 1910 * greater than the new child. 1911 */ 1912 TAILQ_INSERT_BEFORE(place, child, link); 1913 } else { 1914 /* 1915 * The new child's order is greater or equal to the order of 1916 * any existing device. Add the child to the tail of the list. 1917 */ 1918 TAILQ_INSERT_TAIL(&dev->children, child, link); 1919 } 1920 1921 bus_data_generation_update(); 1922 return (child); 1923 } 1924 1925 /** 1926 * @brief Delete a device 1927 * 1928 * This function deletes a device along with all of its children. If 1929 * the device currently has a driver attached to it, the device is 1930 * detached first using device_detach(). 1931 * 1932 * @param dev the parent device 1933 * @param child the device to delete 1934 * 1935 * @retval 0 success 1936 * @retval non-zero a unit error code describing the error 1937 */ 1938 int 1939 device_delete_child(device_t dev, device_t child) 1940 { 1941 int error; 1942 device_t grandchild; 1943 1944 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1945 1946 /* detach parent before deleting children, if any */ 1947 if ((error = device_detach(child)) != 0) 1948 return (error); 1949 1950 /* remove children second */ 1951 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1952 error = device_delete_child(child, grandchild); 1953 if (error) 1954 return (error); 1955 } 1956 1957 if (child->devclass) 1958 devclass_delete_device(child->devclass, child); 1959 if (child->parent) 1960 BUS_CHILD_DELETED(dev, child); 1961 TAILQ_REMOVE(&dev->children, child, link); 1962 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1963 kobj_delete((kobj_t) child, M_BUS); 1964 1965 bus_data_generation_update(); 1966 return (0); 1967 } 1968 1969 /** 1970 * @brief Delete all children devices of the given device, if any. 1971 * 1972 * This function deletes all children devices of the given device, if 1973 * any, using the device_delete_child() function for each device it 1974 * finds. If a child device cannot be deleted, this function will 1975 * return an error code. 1976 * 1977 * @param dev the parent device 1978 * 1979 * @retval 0 success 1980 * @retval non-zero a device would not detach 1981 */ 1982 int 1983 device_delete_children(device_t dev) 1984 { 1985 device_t child; 1986 int error; 1987 1988 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 1989 1990 error = 0; 1991 1992 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 1993 error = device_delete_child(dev, child); 1994 if (error) { 1995 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 1996 break; 1997 } 1998 } 1999 return (error); 2000 } 2001 2002 /** 2003 * @brief Find a device given a unit number 2004 * 2005 * This is similar to devclass_get_devices() but only searches for 2006 * devices which have @p dev as a parent. 2007 * 2008 * @param dev the parent device to search 2009 * @param unit the unit number to search for. If the unit is -1, 2010 * return the first child of @p dev which has name 2011 * @p classname (that is, the one with the lowest unit.) 2012 * 2013 * @returns the device with the given unit number or @c 2014 * NULL if there is no such device 2015 */ 2016 device_t 2017 device_find_child(device_t dev, const char *classname, int unit) 2018 { 2019 devclass_t dc; 2020 device_t child; 2021 2022 dc = devclass_find(classname); 2023 if (!dc) 2024 return (NULL); 2025 2026 if (unit != -1) { 2027 child = devclass_get_device(dc, unit); 2028 if (child && child->parent == dev) 2029 return (child); 2030 } else { 2031 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 2032 child = devclass_get_device(dc, unit); 2033 if (child && child->parent == dev) 2034 return (child); 2035 } 2036 } 2037 return (NULL); 2038 } 2039 2040 /** 2041 * @internal 2042 */ 2043 static driverlink_t 2044 first_matching_driver(devclass_t dc, device_t dev) 2045 { 2046 if (dev->devclass) 2047 return (devclass_find_driver_internal(dc, dev->devclass->name)); 2048 return (TAILQ_FIRST(&dc->drivers)); 2049 } 2050 2051 /** 2052 * @internal 2053 */ 2054 static driverlink_t 2055 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 2056 { 2057 if (dev->devclass) { 2058 driverlink_t dl; 2059 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 2060 if (!strcmp(dev->devclass->name, dl->driver->name)) 2061 return (dl); 2062 return (NULL); 2063 } 2064 return (TAILQ_NEXT(last, link)); 2065 } 2066 2067 /** 2068 * @internal 2069 */ 2070 int 2071 device_probe_child(device_t dev, device_t child) 2072 { 2073 devclass_t dc; 2074 driverlink_t best = NULL; 2075 driverlink_t dl; 2076 int result, pri = 0; 2077 int hasclass = (child->devclass != NULL); 2078 2079 GIANT_REQUIRED; 2080 2081 dc = dev->devclass; 2082 if (!dc) 2083 panic("device_probe_child: parent device has no devclass"); 2084 2085 /* 2086 * If the state is already probed, then return. However, don't 2087 * return if we can rebid this object. 2088 */ 2089 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 2090 return (0); 2091 2092 for (; dc; dc = dc->parent) { 2093 for (dl = first_matching_driver(dc, child); 2094 dl; 2095 dl = next_matching_driver(dc, child, dl)) { 2096 /* If this driver's pass is too high, then ignore it. */ 2097 if (dl->pass > bus_current_pass) 2098 continue; 2099 2100 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 2101 result = device_set_driver(child, dl->driver); 2102 if (result == ENOMEM) 2103 return (result); 2104 else if (result != 0) 2105 continue; 2106 if (!hasclass) { 2107 if (device_set_devclass(child, 2108 dl->driver->name) != 0) { 2109 char const * devname = 2110 device_get_name(child); 2111 if (devname == NULL) 2112 devname = "(unknown)"; 2113 printf("driver bug: Unable to set " 2114 "devclass (class: %s " 2115 "devname: %s)\n", 2116 dl->driver->name, 2117 devname); 2118 (void)device_set_driver(child, NULL); 2119 continue; 2120 } 2121 } 2122 2123 /* Fetch any flags for the device before probing. */ 2124 resource_int_value(dl->driver->name, child->unit, 2125 "flags", &child->devflags); 2126 2127 result = DEVICE_PROBE(child); 2128 2129 /* Reset flags and devclass before the next probe. */ 2130 child->devflags = 0; 2131 if (!hasclass) 2132 (void)device_set_devclass(child, NULL); 2133 2134 /* 2135 * If the driver returns SUCCESS, there can be 2136 * no higher match for this device. 2137 */ 2138 if (result == 0) { 2139 best = dl; 2140 pri = 0; 2141 break; 2142 } 2143 2144 /* 2145 * Reset DF_QUIET in case this driver doesn't 2146 * end up as the best driver. 2147 */ 2148 device_verbose(child); 2149 2150 /* 2151 * Probes that return BUS_PROBE_NOWILDCARD or lower 2152 * only match on devices whose driver was explicitly 2153 * specified. 2154 */ 2155 if (result <= BUS_PROBE_NOWILDCARD && 2156 !(child->flags & DF_FIXEDCLASS)) { 2157 result = ENXIO; 2158 } 2159 2160 /* 2161 * The driver returned an error so it 2162 * certainly doesn't match. 2163 */ 2164 if (result > 0) { 2165 (void)device_set_driver(child, NULL); 2166 continue; 2167 } 2168 2169 /* 2170 * A priority lower than SUCCESS, remember the 2171 * best matching driver. Initialise the value 2172 * of pri for the first match. 2173 */ 2174 if (best == NULL || result > pri) { 2175 best = dl; 2176 pri = result; 2177 continue; 2178 } 2179 } 2180 /* 2181 * If we have an unambiguous match in this devclass, 2182 * don't look in the parent. 2183 */ 2184 if (best && pri == 0) 2185 break; 2186 } 2187 2188 /* 2189 * If we found a driver, change state and initialise the devclass. 2190 */ 2191 /* XXX What happens if we rebid and got no best? */ 2192 if (best) { 2193 /* 2194 * If this device was attached, and we were asked to 2195 * rescan, and it is a different driver, then we have 2196 * to detach the old driver and reattach this new one. 2197 * Note, we don't have to check for DF_REBID here 2198 * because if the state is > DS_ALIVE, we know it must 2199 * be. 2200 * 2201 * This assumes that all DF_REBID drivers can have 2202 * their probe routine called at any time and that 2203 * they are idempotent as well as completely benign in 2204 * normal operations. 2205 * 2206 * We also have to make sure that the detach 2207 * succeeded, otherwise we fail the operation (or 2208 * maybe it should just fail silently? I'm torn). 2209 */ 2210 if (child->state > DS_ALIVE && best->driver != child->driver) 2211 if ((result = device_detach(dev)) != 0) 2212 return (result); 2213 2214 /* Set the winning driver, devclass, and flags. */ 2215 if (!child->devclass) { 2216 result = device_set_devclass(child, best->driver->name); 2217 if (result != 0) 2218 return (result); 2219 } 2220 result = device_set_driver(child, best->driver); 2221 if (result != 0) 2222 return (result); 2223 resource_int_value(best->driver->name, child->unit, 2224 "flags", &child->devflags); 2225 2226 if (pri < 0) { 2227 /* 2228 * A bit bogus. Call the probe method again to make 2229 * sure that we have the right description. 2230 */ 2231 DEVICE_PROBE(child); 2232 #if 0 2233 child->flags |= DF_REBID; 2234 #endif 2235 } else 2236 child->flags &= ~DF_REBID; 2237 child->state = DS_ALIVE; 2238 2239 bus_data_generation_update(); 2240 return (0); 2241 } 2242 2243 return (ENXIO); 2244 } 2245 2246 /** 2247 * @brief Return the parent of a device 2248 */ 2249 device_t 2250 device_get_parent(device_t dev) 2251 { 2252 return (dev->parent); 2253 } 2254 2255 /** 2256 * @brief Get a list of children of a device 2257 * 2258 * An array containing a list of all the children of the given device 2259 * is allocated and returned in @p *devlistp. The number of devices 2260 * in the array is returned in @p *devcountp. The caller should free 2261 * the array using @c free(p, M_TEMP). 2262 * 2263 * @param dev the device to examine 2264 * @param devlistp points at location for array pointer return 2265 * value 2266 * @param devcountp points at location for array size return value 2267 * 2268 * @retval 0 success 2269 * @retval ENOMEM the array allocation failed 2270 */ 2271 int 2272 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 2273 { 2274 int count; 2275 device_t child; 2276 device_t *list; 2277 2278 count = 0; 2279 TAILQ_FOREACH(child, &dev->children, link) { 2280 count++; 2281 } 2282 if (count == 0) { 2283 *devlistp = NULL; 2284 *devcountp = 0; 2285 return (0); 2286 } 2287 2288 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 2289 if (!list) 2290 return (ENOMEM); 2291 2292 count = 0; 2293 TAILQ_FOREACH(child, &dev->children, link) { 2294 list[count] = child; 2295 count++; 2296 } 2297 2298 *devlistp = list; 2299 *devcountp = count; 2300 2301 return (0); 2302 } 2303 2304 /** 2305 * @brief Return the current driver for the device or @c NULL if there 2306 * is no driver currently attached 2307 */ 2308 driver_t * 2309 device_get_driver(device_t dev) 2310 { 2311 return (dev->driver); 2312 } 2313 2314 /** 2315 * @brief Return the current devclass for the device or @c NULL if 2316 * there is none. 2317 */ 2318 devclass_t 2319 device_get_devclass(device_t dev) 2320 { 2321 return (dev->devclass); 2322 } 2323 2324 /** 2325 * @brief Return the name of the device's devclass or @c NULL if there 2326 * is none. 2327 */ 2328 const char * 2329 device_get_name(device_t dev) 2330 { 2331 if (dev != NULL && dev->devclass) 2332 return (devclass_get_name(dev->devclass)); 2333 return (NULL); 2334 } 2335 2336 /** 2337 * @brief Return a string containing the device's devclass name 2338 * followed by an ascii representation of the device's unit number 2339 * (e.g. @c "foo2"). 2340 */ 2341 const char * 2342 device_get_nameunit(device_t dev) 2343 { 2344 return (dev->nameunit); 2345 } 2346 2347 /** 2348 * @brief Return the device's unit number. 2349 */ 2350 int 2351 device_get_unit(device_t dev) 2352 { 2353 return (dev->unit); 2354 } 2355 2356 /** 2357 * @brief Return the device's description string 2358 */ 2359 const char * 2360 device_get_desc(device_t dev) 2361 { 2362 return (dev->desc); 2363 } 2364 2365 /** 2366 * @brief Return the device's flags 2367 */ 2368 uint32_t 2369 device_get_flags(device_t dev) 2370 { 2371 return (dev->devflags); 2372 } 2373 2374 struct sysctl_ctx_list * 2375 device_get_sysctl_ctx(device_t dev) 2376 { 2377 return (&dev->sysctl_ctx); 2378 } 2379 2380 struct sysctl_oid * 2381 device_get_sysctl_tree(device_t dev) 2382 { 2383 return (dev->sysctl_tree); 2384 } 2385 2386 /** 2387 * @brief Print the name of the device followed by a colon and a space 2388 * 2389 * @returns the number of characters printed 2390 */ 2391 int 2392 device_print_prettyname(device_t dev) 2393 { 2394 const char *name = device_get_name(dev); 2395 2396 if (name == NULL) 2397 return (printf("unknown: ")); 2398 return (printf("%s%d: ", name, device_get_unit(dev))); 2399 } 2400 2401 /** 2402 * @brief Print the name of the device followed by a colon, a space 2403 * and the result of calling vprintf() with the value of @p fmt and 2404 * the following arguments. 2405 * 2406 * @returns the number of characters printed 2407 */ 2408 int 2409 device_printf(device_t dev, const char * fmt, ...) 2410 { 2411 char buf[128]; 2412 struct sbuf sb; 2413 const char *name; 2414 va_list ap; 2415 size_t retval; 2416 2417 retval = 0; 2418 2419 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 2420 sbuf_set_drain(&sb, sbuf_printf_drain, &retval); 2421 2422 name = device_get_name(dev); 2423 2424 if (name == NULL) 2425 sbuf_cat(&sb, "unknown: "); 2426 else 2427 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 2428 2429 va_start(ap, fmt); 2430 sbuf_vprintf(&sb, fmt, ap); 2431 va_end(ap); 2432 2433 sbuf_finish(&sb); 2434 sbuf_delete(&sb); 2435 2436 return (retval); 2437 } 2438 2439 /** 2440 * @brief Print the name of the device followed by a colon, a space 2441 * and the result of calling log() with the value of @p fmt and 2442 * the following arguments. 2443 * 2444 * @returns the number of characters printed 2445 */ 2446 int 2447 device_log(device_t dev, int pri, const char * fmt, ...) 2448 { 2449 char buf[128]; 2450 struct sbuf sb; 2451 const char *name; 2452 va_list ap; 2453 size_t retval; 2454 2455 retval = 0; 2456 2457 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 2458 2459 name = device_get_name(dev); 2460 2461 if (name == NULL) 2462 sbuf_cat(&sb, "unknown: "); 2463 else 2464 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 2465 2466 va_start(ap, fmt); 2467 sbuf_vprintf(&sb, fmt, ap); 2468 va_end(ap); 2469 2470 sbuf_finish(&sb); 2471 2472 log(pri, "%.*s", (int) sbuf_len(&sb), sbuf_data(&sb)); 2473 retval = sbuf_len(&sb); 2474 2475 sbuf_delete(&sb); 2476 2477 return (retval); 2478 } 2479 2480 /** 2481 * @internal 2482 */ 2483 static void 2484 device_set_desc_internal(device_t dev, const char* desc, int copy) 2485 { 2486 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2487 free(dev->desc, M_BUS); 2488 dev->flags &= ~DF_DESCMALLOCED; 2489 dev->desc = NULL; 2490 } 2491 2492 if (copy && desc) { 2493 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2494 if (dev->desc) { 2495 strcpy(dev->desc, desc); 2496 dev->flags |= DF_DESCMALLOCED; 2497 } 2498 } else { 2499 /* Avoid a -Wcast-qual warning */ 2500 dev->desc = (char *)(uintptr_t) desc; 2501 } 2502 2503 bus_data_generation_update(); 2504 } 2505 2506 /** 2507 * @brief Set the device's description 2508 * 2509 * The value of @c desc should be a string constant that will not 2510 * change (at least until the description is changed in a subsequent 2511 * call to device_set_desc() or device_set_desc_copy()). 2512 */ 2513 void 2514 device_set_desc(device_t dev, const char* desc) 2515 { 2516 device_set_desc_internal(dev, desc, FALSE); 2517 } 2518 2519 /** 2520 * @brief Set the device's description 2521 * 2522 * The string pointed to by @c desc is copied. Use this function if 2523 * the device description is generated, (e.g. with sprintf()). 2524 */ 2525 void 2526 device_set_desc_copy(device_t dev, const char* desc) 2527 { 2528 device_set_desc_internal(dev, desc, TRUE); 2529 } 2530 2531 /** 2532 * @brief Set the device's flags 2533 */ 2534 void 2535 device_set_flags(device_t dev, uint32_t flags) 2536 { 2537 dev->devflags = flags; 2538 } 2539 2540 /** 2541 * @brief Return the device's softc field 2542 * 2543 * The softc is allocated and zeroed when a driver is attached, based 2544 * on the size field of the driver. 2545 */ 2546 void * 2547 device_get_softc(device_t dev) 2548 { 2549 return (dev->softc); 2550 } 2551 2552 /** 2553 * @brief Set the device's softc field 2554 * 2555 * Most drivers do not need to use this since the softc is allocated 2556 * automatically when the driver is attached. 2557 */ 2558 void 2559 device_set_softc(device_t dev, void *softc) 2560 { 2561 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2562 free(dev->softc, M_BUS_SC); 2563 dev->softc = softc; 2564 if (dev->softc) 2565 dev->flags |= DF_EXTERNALSOFTC; 2566 else 2567 dev->flags &= ~DF_EXTERNALSOFTC; 2568 } 2569 2570 /** 2571 * @brief Free claimed softc 2572 * 2573 * Most drivers do not need to use this since the softc is freed 2574 * automatically when the driver is detached. 2575 */ 2576 void 2577 device_free_softc(void *softc) 2578 { 2579 free(softc, M_BUS_SC); 2580 } 2581 2582 /** 2583 * @brief Claim softc 2584 * 2585 * This function can be used to let the driver free the automatically 2586 * allocated softc using "device_free_softc()". This function is 2587 * useful when the driver is refcounting the softc and the softc 2588 * cannot be freed when the "device_detach" method is called. 2589 */ 2590 void 2591 device_claim_softc(device_t dev) 2592 { 2593 if (dev->softc) 2594 dev->flags |= DF_EXTERNALSOFTC; 2595 else 2596 dev->flags &= ~DF_EXTERNALSOFTC; 2597 } 2598 2599 /** 2600 * @brief Get the device's ivars field 2601 * 2602 * The ivars field is used by the parent device to store per-device 2603 * state (e.g. the physical location of the device or a list of 2604 * resources). 2605 */ 2606 void * 2607 device_get_ivars(device_t dev) 2608 { 2609 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2610 return (dev->ivars); 2611 } 2612 2613 /** 2614 * @brief Set the device's ivars field 2615 */ 2616 void 2617 device_set_ivars(device_t dev, void * ivars) 2618 { 2619 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2620 dev->ivars = ivars; 2621 } 2622 2623 /** 2624 * @brief Return the device's state 2625 */ 2626 device_state_t 2627 device_get_state(device_t dev) 2628 { 2629 return (dev->state); 2630 } 2631 2632 /** 2633 * @brief Set the DF_ENABLED flag for the device 2634 */ 2635 void 2636 device_enable(device_t dev) 2637 { 2638 dev->flags |= DF_ENABLED; 2639 } 2640 2641 /** 2642 * @brief Clear the DF_ENABLED flag for the device 2643 */ 2644 void 2645 device_disable(device_t dev) 2646 { 2647 dev->flags &= ~DF_ENABLED; 2648 } 2649 2650 /** 2651 * @brief Increment the busy counter for the device 2652 */ 2653 void 2654 device_busy(device_t dev) 2655 { 2656 if (dev->state < DS_ATTACHING) 2657 panic("device_busy: called for unattached device"); 2658 if (dev->busy == 0 && dev->parent) 2659 device_busy(dev->parent); 2660 dev->busy++; 2661 if (dev->state == DS_ATTACHED) 2662 dev->state = DS_BUSY; 2663 } 2664 2665 /** 2666 * @brief Decrement the busy counter for the device 2667 */ 2668 void 2669 device_unbusy(device_t dev) 2670 { 2671 if (dev->busy != 0 && dev->state != DS_BUSY && 2672 dev->state != DS_ATTACHING) 2673 panic("device_unbusy: called for non-busy device %s", 2674 device_get_nameunit(dev)); 2675 dev->busy--; 2676 if (dev->busy == 0) { 2677 if (dev->parent) 2678 device_unbusy(dev->parent); 2679 if (dev->state == DS_BUSY) 2680 dev->state = DS_ATTACHED; 2681 } 2682 } 2683 2684 /** 2685 * @brief Set the DF_QUIET flag for the device 2686 */ 2687 void 2688 device_quiet(device_t dev) 2689 { 2690 dev->flags |= DF_QUIET; 2691 } 2692 2693 /** 2694 * @brief Set the DF_QUIET_CHILDREN flag for the device 2695 */ 2696 void 2697 device_quiet_children(device_t dev) 2698 { 2699 dev->flags |= DF_QUIET_CHILDREN; 2700 } 2701 2702 /** 2703 * @brief Clear the DF_QUIET flag for the device 2704 */ 2705 void 2706 device_verbose(device_t dev) 2707 { 2708 dev->flags &= ~DF_QUIET; 2709 } 2710 2711 /** 2712 * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device 2713 */ 2714 int 2715 device_has_quiet_children(device_t dev) 2716 { 2717 return ((dev->flags & DF_QUIET_CHILDREN) != 0); 2718 } 2719 2720 /** 2721 * @brief Return non-zero if the DF_QUIET flag is set on the device 2722 */ 2723 int 2724 device_is_quiet(device_t dev) 2725 { 2726 return ((dev->flags & DF_QUIET) != 0); 2727 } 2728 2729 /** 2730 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2731 */ 2732 int 2733 device_is_enabled(device_t dev) 2734 { 2735 return ((dev->flags & DF_ENABLED) != 0); 2736 } 2737 2738 /** 2739 * @brief Return non-zero if the device was successfully probed 2740 */ 2741 int 2742 device_is_alive(device_t dev) 2743 { 2744 return (dev->state >= DS_ALIVE); 2745 } 2746 2747 /** 2748 * @brief Return non-zero if the device currently has a driver 2749 * attached to it 2750 */ 2751 int 2752 device_is_attached(device_t dev) 2753 { 2754 return (dev->state >= DS_ATTACHED); 2755 } 2756 2757 /** 2758 * @brief Return non-zero if the device is currently suspended. 2759 */ 2760 int 2761 device_is_suspended(device_t dev) 2762 { 2763 return ((dev->flags & DF_SUSPENDED) != 0); 2764 } 2765 2766 /** 2767 * @brief Set the devclass of a device 2768 * @see devclass_add_device(). 2769 */ 2770 int 2771 device_set_devclass(device_t dev, const char *classname) 2772 { 2773 devclass_t dc; 2774 int error; 2775 2776 if (!classname) { 2777 if (dev->devclass) 2778 devclass_delete_device(dev->devclass, dev); 2779 return (0); 2780 } 2781 2782 if (dev->devclass) { 2783 printf("device_set_devclass: device class already set\n"); 2784 return (EINVAL); 2785 } 2786 2787 dc = devclass_find_internal(classname, NULL, TRUE); 2788 if (!dc) 2789 return (ENOMEM); 2790 2791 error = devclass_add_device(dc, dev); 2792 2793 bus_data_generation_update(); 2794 return (error); 2795 } 2796 2797 /** 2798 * @brief Set the devclass of a device and mark the devclass fixed. 2799 * @see device_set_devclass() 2800 */ 2801 int 2802 device_set_devclass_fixed(device_t dev, const char *classname) 2803 { 2804 int error; 2805 2806 if (classname == NULL) 2807 return (EINVAL); 2808 2809 error = device_set_devclass(dev, classname); 2810 if (error) 2811 return (error); 2812 dev->flags |= DF_FIXEDCLASS; 2813 return (0); 2814 } 2815 2816 /** 2817 * @brief Query the device to determine if it's of a fixed devclass 2818 * @see device_set_devclass_fixed() 2819 */ 2820 bool 2821 device_is_devclass_fixed(device_t dev) 2822 { 2823 return ((dev->flags & DF_FIXEDCLASS) != 0); 2824 } 2825 2826 /** 2827 * @brief Set the driver of a device 2828 * 2829 * @retval 0 success 2830 * @retval EBUSY the device already has a driver attached 2831 * @retval ENOMEM a memory allocation failure occurred 2832 */ 2833 int 2834 device_set_driver(device_t dev, driver_t *driver) 2835 { 2836 int domain; 2837 struct domainset *policy; 2838 2839 if (dev->state >= DS_ATTACHED) 2840 return (EBUSY); 2841 2842 if (dev->driver == driver) 2843 return (0); 2844 2845 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2846 free(dev->softc, M_BUS_SC); 2847 dev->softc = NULL; 2848 } 2849 device_set_desc(dev, NULL); 2850 kobj_delete((kobj_t) dev, NULL); 2851 dev->driver = driver; 2852 if (driver) { 2853 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2854 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2855 if (bus_get_domain(dev, &domain) == 0) 2856 policy = DOMAINSET_PREF(domain); 2857 else 2858 policy = DOMAINSET_RR(); 2859 dev->softc = malloc_domainset(driver->size, M_BUS_SC, 2860 policy, M_NOWAIT | M_ZERO); 2861 if (!dev->softc) { 2862 kobj_delete((kobj_t) dev, NULL); 2863 kobj_init((kobj_t) dev, &null_class); 2864 dev->driver = NULL; 2865 return (ENOMEM); 2866 } 2867 } 2868 } else { 2869 kobj_init((kobj_t) dev, &null_class); 2870 } 2871 2872 bus_data_generation_update(); 2873 return (0); 2874 } 2875 2876 /** 2877 * @brief Probe a device, and return this status. 2878 * 2879 * This function is the core of the device autoconfiguration 2880 * system. Its purpose is to select a suitable driver for a device and 2881 * then call that driver to initialise the hardware appropriately. The 2882 * driver is selected by calling the DEVICE_PROBE() method of a set of 2883 * candidate drivers and then choosing the driver which returned the 2884 * best value. This driver is then attached to the device using 2885 * device_attach(). 2886 * 2887 * The set of suitable drivers is taken from the list of drivers in 2888 * the parent device's devclass. If the device was originally created 2889 * with a specific class name (see device_add_child()), only drivers 2890 * with that name are probed, otherwise all drivers in the devclass 2891 * are probed. If no drivers return successful probe values in the 2892 * parent devclass, the search continues in the parent of that 2893 * devclass (see devclass_get_parent()) if any. 2894 * 2895 * @param dev the device to initialise 2896 * 2897 * @retval 0 success 2898 * @retval ENXIO no driver was found 2899 * @retval ENOMEM memory allocation failure 2900 * @retval non-zero some other unix error code 2901 * @retval -1 Device already attached 2902 */ 2903 int 2904 device_probe(device_t dev) 2905 { 2906 int error; 2907 2908 GIANT_REQUIRED; 2909 2910 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2911 return (-1); 2912 2913 if (!(dev->flags & DF_ENABLED)) { 2914 if (bootverbose && device_get_name(dev) != NULL) { 2915 device_print_prettyname(dev); 2916 printf("not probed (disabled)\n"); 2917 } 2918 return (-1); 2919 } 2920 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2921 if (bus_current_pass == BUS_PASS_DEFAULT && 2922 !(dev->flags & DF_DONENOMATCH)) { 2923 BUS_PROBE_NOMATCH(dev->parent, dev); 2924 devnomatch(dev); 2925 dev->flags |= DF_DONENOMATCH; 2926 } 2927 return (error); 2928 } 2929 return (0); 2930 } 2931 2932 /** 2933 * @brief Probe a device and attach a driver if possible 2934 * 2935 * calls device_probe() and attaches if that was successful. 2936 */ 2937 int 2938 device_probe_and_attach(device_t dev) 2939 { 2940 int error; 2941 2942 GIANT_REQUIRED; 2943 2944 error = device_probe(dev); 2945 if (error == -1) 2946 return (0); 2947 else if (error != 0) 2948 return (error); 2949 2950 CURVNET_SET_QUIET(vnet0); 2951 error = device_attach(dev); 2952 CURVNET_RESTORE(); 2953 return error; 2954 } 2955 2956 /** 2957 * @brief Attach a device driver to a device 2958 * 2959 * This function is a wrapper around the DEVICE_ATTACH() driver 2960 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2961 * device's sysctl tree, optionally prints a description of the device 2962 * and queues a notification event for user-based device management 2963 * services. 2964 * 2965 * Normally this function is only called internally from 2966 * device_probe_and_attach(). 2967 * 2968 * @param dev the device to initialise 2969 * 2970 * @retval 0 success 2971 * @retval ENXIO no driver was found 2972 * @retval ENOMEM memory allocation failure 2973 * @retval non-zero some other unix error code 2974 */ 2975 int 2976 device_attach(device_t dev) 2977 { 2978 uint64_t attachtime; 2979 uint16_t attachentropy; 2980 int error; 2981 2982 if (resource_disabled(dev->driver->name, dev->unit)) { 2983 device_disable(dev); 2984 if (bootverbose) 2985 device_printf(dev, "disabled via hints entry\n"); 2986 return (ENXIO); 2987 } 2988 2989 device_sysctl_init(dev); 2990 if (!device_is_quiet(dev)) 2991 device_print_child(dev->parent, dev); 2992 attachtime = get_cyclecount(); 2993 dev->state = DS_ATTACHING; 2994 if ((error = DEVICE_ATTACH(dev)) != 0) { 2995 printf("device_attach: %s%d attach returned %d\n", 2996 dev->driver->name, dev->unit, error); 2997 if (!(dev->flags & DF_FIXEDCLASS)) 2998 devclass_delete_device(dev->devclass, dev); 2999 (void)device_set_driver(dev, NULL); 3000 device_sysctl_fini(dev); 3001 KASSERT(dev->busy == 0, ("attach failed but busy")); 3002 dev->state = DS_NOTPRESENT; 3003 return (error); 3004 } 3005 dev->flags |= DF_ATTACHED_ONCE; 3006 /* We only need the low bits of this time, but ranges from tens to thousands 3007 * have been seen, so keep 2 bytes' worth. 3008 */ 3009 attachentropy = (uint16_t)(get_cyclecount() - attachtime); 3010 random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH); 3011 device_sysctl_update(dev); 3012 if (dev->busy) 3013 dev->state = DS_BUSY; 3014 else 3015 dev->state = DS_ATTACHED; 3016 dev->flags &= ~DF_DONENOMATCH; 3017 EVENTHANDLER_DIRECT_INVOKE(device_attach, dev); 3018 devadded(dev); 3019 return (0); 3020 } 3021 3022 /** 3023 * @brief Detach a driver from a device 3024 * 3025 * This function is a wrapper around the DEVICE_DETACH() driver 3026 * method. If the call to DEVICE_DETACH() succeeds, it calls 3027 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 3028 * notification event for user-based device management services and 3029 * cleans up the device's sysctl tree. 3030 * 3031 * @param dev the device to un-initialise 3032 * 3033 * @retval 0 success 3034 * @retval ENXIO no driver was found 3035 * @retval ENOMEM memory allocation failure 3036 * @retval non-zero some other unix error code 3037 */ 3038 int 3039 device_detach(device_t dev) 3040 { 3041 int error; 3042 3043 GIANT_REQUIRED; 3044 3045 PDEBUG(("%s", DEVICENAME(dev))); 3046 if (dev->state == DS_BUSY) 3047 return (EBUSY); 3048 if (dev->state == DS_ATTACHING) { 3049 device_printf(dev, "device in attaching state! Deferring detach.\n"); 3050 return (EBUSY); 3051 } 3052 if (dev->state != DS_ATTACHED) 3053 return (0); 3054 3055 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN); 3056 if ((error = DEVICE_DETACH(dev)) != 0) { 3057 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 3058 EVHDEV_DETACH_FAILED); 3059 return (error); 3060 } else { 3061 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 3062 EVHDEV_DETACH_COMPLETE); 3063 } 3064 devremoved(dev); 3065 if (!device_is_quiet(dev)) 3066 device_printf(dev, "detached\n"); 3067 if (dev->parent) 3068 BUS_CHILD_DETACHED(dev->parent, dev); 3069 3070 if (!(dev->flags & DF_FIXEDCLASS)) 3071 devclass_delete_device(dev->devclass, dev); 3072 3073 device_verbose(dev); 3074 dev->state = DS_NOTPRESENT; 3075 (void)device_set_driver(dev, NULL); 3076 device_sysctl_fini(dev); 3077 3078 return (0); 3079 } 3080 3081 /** 3082 * @brief Tells a driver to quiesce itself. 3083 * 3084 * This function is a wrapper around the DEVICE_QUIESCE() driver 3085 * method. If the call to DEVICE_QUIESCE() succeeds. 3086 * 3087 * @param dev the device to quiesce 3088 * 3089 * @retval 0 success 3090 * @retval ENXIO no driver was found 3091 * @retval ENOMEM memory allocation failure 3092 * @retval non-zero some other unix error code 3093 */ 3094 int 3095 device_quiesce(device_t dev) 3096 { 3097 PDEBUG(("%s", DEVICENAME(dev))); 3098 if (dev->state == DS_BUSY) 3099 return (EBUSY); 3100 if (dev->state != DS_ATTACHED) 3101 return (0); 3102 3103 return (DEVICE_QUIESCE(dev)); 3104 } 3105 3106 /** 3107 * @brief Notify a device of system shutdown 3108 * 3109 * This function calls the DEVICE_SHUTDOWN() driver method if the 3110 * device currently has an attached driver. 3111 * 3112 * @returns the value returned by DEVICE_SHUTDOWN() 3113 */ 3114 int 3115 device_shutdown(device_t dev) 3116 { 3117 if (dev->state < DS_ATTACHED) 3118 return (0); 3119 return (DEVICE_SHUTDOWN(dev)); 3120 } 3121 3122 /** 3123 * @brief Set the unit number of a device 3124 * 3125 * This function can be used to override the unit number used for a 3126 * device (e.g. to wire a device to a pre-configured unit number). 3127 */ 3128 int 3129 device_set_unit(device_t dev, int unit) 3130 { 3131 devclass_t dc; 3132 int err; 3133 3134 dc = device_get_devclass(dev); 3135 if (unit < dc->maxunit && dc->devices[unit]) 3136 return (EBUSY); 3137 err = devclass_delete_device(dc, dev); 3138 if (err) 3139 return (err); 3140 dev->unit = unit; 3141 err = devclass_add_device(dc, dev); 3142 if (err) 3143 return (err); 3144 3145 bus_data_generation_update(); 3146 return (0); 3147 } 3148 3149 /*======================================*/ 3150 /* 3151 * Some useful method implementations to make life easier for bus drivers. 3152 */ 3153 3154 void 3155 resource_init_map_request_impl(struct resource_map_request *args, size_t sz) 3156 { 3157 bzero(args, sz); 3158 args->size = sz; 3159 args->memattr = VM_MEMATTR_DEVICE; 3160 } 3161 3162 /** 3163 * @brief Initialise a resource list. 3164 * 3165 * @param rl the resource list to initialise 3166 */ 3167 void 3168 resource_list_init(struct resource_list *rl) 3169 { 3170 STAILQ_INIT(rl); 3171 } 3172 3173 /** 3174 * @brief Reclaim memory used by a resource list. 3175 * 3176 * This function frees the memory for all resource entries on the list 3177 * (if any). 3178 * 3179 * @param rl the resource list to free 3180 */ 3181 void 3182 resource_list_free(struct resource_list *rl) 3183 { 3184 struct resource_list_entry *rle; 3185 3186 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3187 if (rle->res) 3188 panic("resource_list_free: resource entry is busy"); 3189 STAILQ_REMOVE_HEAD(rl, link); 3190 free(rle, M_BUS); 3191 } 3192 } 3193 3194 /** 3195 * @brief Add a resource entry. 3196 * 3197 * This function adds a resource entry using the given @p type, @p 3198 * start, @p end and @p count values. A rid value is chosen by 3199 * searching sequentially for the first unused rid starting at zero. 3200 * 3201 * @param rl the resource list to edit 3202 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3203 * @param start the start address of the resource 3204 * @param end the end address of the resource 3205 * @param count XXX end-start+1 3206 */ 3207 int 3208 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start, 3209 rman_res_t end, rman_res_t count) 3210 { 3211 int rid; 3212 3213 rid = 0; 3214 while (resource_list_find(rl, type, rid) != NULL) 3215 rid++; 3216 resource_list_add(rl, type, rid, start, end, count); 3217 return (rid); 3218 } 3219 3220 /** 3221 * @brief Add or modify a resource entry. 3222 * 3223 * If an existing entry exists with the same type and rid, it will be 3224 * modified using the given values of @p start, @p end and @p 3225 * count. If no entry exists, a new one will be created using the 3226 * given values. The resource list entry that matches is then returned. 3227 * 3228 * @param rl the resource list to edit 3229 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3230 * @param rid the resource identifier 3231 * @param start the start address of the resource 3232 * @param end the end address of the resource 3233 * @param count XXX end-start+1 3234 */ 3235 struct resource_list_entry * 3236 resource_list_add(struct resource_list *rl, int type, int rid, 3237 rman_res_t start, rman_res_t end, rman_res_t count) 3238 { 3239 struct resource_list_entry *rle; 3240 3241 rle = resource_list_find(rl, type, rid); 3242 if (!rle) { 3243 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 3244 M_NOWAIT); 3245 if (!rle) 3246 panic("resource_list_add: can't record entry"); 3247 STAILQ_INSERT_TAIL(rl, rle, link); 3248 rle->type = type; 3249 rle->rid = rid; 3250 rle->res = NULL; 3251 rle->flags = 0; 3252 } 3253 3254 if (rle->res) 3255 panic("resource_list_add: resource entry is busy"); 3256 3257 rle->start = start; 3258 rle->end = end; 3259 rle->count = count; 3260 return (rle); 3261 } 3262 3263 /** 3264 * @brief Determine if a resource entry is busy. 3265 * 3266 * Returns true if a resource entry is busy meaning that it has an 3267 * associated resource that is not an unallocated "reserved" resource. 3268 * 3269 * @param rl the resource list to search 3270 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3271 * @param rid the resource identifier 3272 * 3273 * @returns Non-zero if the entry is busy, zero otherwise. 3274 */ 3275 int 3276 resource_list_busy(struct resource_list *rl, int type, int rid) 3277 { 3278 struct resource_list_entry *rle; 3279 3280 rle = resource_list_find(rl, type, rid); 3281 if (rle == NULL || rle->res == NULL) 3282 return (0); 3283 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 3284 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 3285 ("reserved resource is active")); 3286 return (0); 3287 } 3288 return (1); 3289 } 3290 3291 /** 3292 * @brief Determine if a resource entry is reserved. 3293 * 3294 * Returns true if a resource entry is reserved meaning that it has an 3295 * associated "reserved" resource. The resource can either be 3296 * allocated or unallocated. 3297 * 3298 * @param rl the resource list to search 3299 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3300 * @param rid the resource identifier 3301 * 3302 * @returns Non-zero if the entry is reserved, zero otherwise. 3303 */ 3304 int 3305 resource_list_reserved(struct resource_list *rl, int type, int rid) 3306 { 3307 struct resource_list_entry *rle; 3308 3309 rle = resource_list_find(rl, type, rid); 3310 if (rle != NULL && rle->flags & RLE_RESERVED) 3311 return (1); 3312 return (0); 3313 } 3314 3315 /** 3316 * @brief Find a resource entry by type and rid. 3317 * 3318 * @param rl the resource list to search 3319 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3320 * @param rid the resource identifier 3321 * 3322 * @returns the resource entry pointer or NULL if there is no such 3323 * entry. 3324 */ 3325 struct resource_list_entry * 3326 resource_list_find(struct resource_list *rl, int type, int rid) 3327 { 3328 struct resource_list_entry *rle; 3329 3330 STAILQ_FOREACH(rle, rl, link) { 3331 if (rle->type == type && rle->rid == rid) 3332 return (rle); 3333 } 3334 return (NULL); 3335 } 3336 3337 /** 3338 * @brief Delete a resource entry. 3339 * 3340 * @param rl the resource list to edit 3341 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3342 * @param rid the resource identifier 3343 */ 3344 void 3345 resource_list_delete(struct resource_list *rl, int type, int rid) 3346 { 3347 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3348 3349 if (rle) { 3350 if (rle->res != NULL) 3351 panic("resource_list_delete: resource has not been released"); 3352 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3353 free(rle, M_BUS); 3354 } 3355 } 3356 3357 /** 3358 * @brief Allocate a reserved resource 3359 * 3360 * This can be used by buses to force the allocation of resources 3361 * that are always active in the system even if they are not allocated 3362 * by a driver (e.g. PCI BARs). This function is usually called when 3363 * adding a new child to the bus. The resource is allocated from the 3364 * parent bus when it is reserved. The resource list entry is marked 3365 * with RLE_RESERVED to note that it is a reserved resource. 3366 * 3367 * Subsequent attempts to allocate the resource with 3368 * resource_list_alloc() will succeed the first time and will set 3369 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3370 * resource that has been allocated is released with 3371 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3372 * the actual resource remains allocated. The resource can be released to 3373 * the parent bus by calling resource_list_unreserve(). 3374 * 3375 * @param rl the resource list to allocate from 3376 * @param bus the parent device of @p child 3377 * @param child the device for which the resource is being reserved 3378 * @param type the type of resource to allocate 3379 * @param rid a pointer to the resource identifier 3380 * @param start hint at the start of the resource range - pass 3381 * @c 0 for any start address 3382 * @param end hint at the end of the resource range - pass 3383 * @c ~0 for any end address 3384 * @param count hint at the size of range required - pass @c 1 3385 * for any size 3386 * @param flags any extra flags to control the resource 3387 * allocation - see @c RF_XXX flags in 3388 * <sys/rman.h> for details 3389 * 3390 * @returns the resource which was allocated or @c NULL if no 3391 * resource could be allocated 3392 */ 3393 struct resource * 3394 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3395 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3396 { 3397 struct resource_list_entry *rle = NULL; 3398 int passthrough = (device_get_parent(child) != bus); 3399 struct resource *r; 3400 3401 if (passthrough) 3402 panic( 3403 "resource_list_reserve() should only be called for direct children"); 3404 if (flags & RF_ACTIVE) 3405 panic( 3406 "resource_list_reserve() should only reserve inactive resources"); 3407 3408 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3409 flags); 3410 if (r != NULL) { 3411 rle = resource_list_find(rl, type, *rid); 3412 rle->flags |= RLE_RESERVED; 3413 } 3414 return (r); 3415 } 3416 3417 /** 3418 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3419 * 3420 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3421 * and passing the allocation up to the parent of @p bus. This assumes 3422 * that the first entry of @c device_get_ivars(child) is a struct 3423 * resource_list. This also handles 'passthrough' allocations where a 3424 * child is a remote descendant of bus by passing the allocation up to 3425 * the parent of bus. 3426 * 3427 * Typically, a bus driver would store a list of child resources 3428 * somewhere in the child device's ivars (see device_get_ivars()) and 3429 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3430 * then call resource_list_alloc() to perform the allocation. 3431 * 3432 * @param rl the resource list to allocate from 3433 * @param bus the parent device of @p child 3434 * @param child the device which is requesting an allocation 3435 * @param type the type of resource to allocate 3436 * @param rid a pointer to the resource identifier 3437 * @param start hint at the start of the resource range - pass 3438 * @c 0 for any start address 3439 * @param end hint at the end of the resource range - pass 3440 * @c ~0 for any end address 3441 * @param count hint at the size of range required - pass @c 1 3442 * for any size 3443 * @param flags any extra flags to control the resource 3444 * allocation - see @c RF_XXX flags in 3445 * <sys/rman.h> for details 3446 * 3447 * @returns the resource which was allocated or @c NULL if no 3448 * resource could be allocated 3449 */ 3450 struct resource * 3451 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3452 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3453 { 3454 struct resource_list_entry *rle = NULL; 3455 int passthrough = (device_get_parent(child) != bus); 3456 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 3457 3458 if (passthrough) { 3459 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3460 type, rid, start, end, count, flags)); 3461 } 3462 3463 rle = resource_list_find(rl, type, *rid); 3464 3465 if (!rle) 3466 return (NULL); /* no resource of that type/rid */ 3467 3468 if (rle->res) { 3469 if (rle->flags & RLE_RESERVED) { 3470 if (rle->flags & RLE_ALLOCATED) 3471 return (NULL); 3472 if ((flags & RF_ACTIVE) && 3473 bus_activate_resource(child, type, *rid, 3474 rle->res) != 0) 3475 return (NULL); 3476 rle->flags |= RLE_ALLOCATED; 3477 return (rle->res); 3478 } 3479 device_printf(bus, 3480 "resource entry %#x type %d for child %s is busy\n", *rid, 3481 type, device_get_nameunit(child)); 3482 return (NULL); 3483 } 3484 3485 if (isdefault) { 3486 start = rle->start; 3487 count = ulmax(count, rle->count); 3488 end = ulmax(rle->end, start + count - 1); 3489 } 3490 3491 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3492 type, rid, start, end, count, flags); 3493 3494 /* 3495 * Record the new range. 3496 */ 3497 if (rle->res) { 3498 rle->start = rman_get_start(rle->res); 3499 rle->end = rman_get_end(rle->res); 3500 rle->count = count; 3501 } 3502 3503 return (rle->res); 3504 } 3505 3506 /** 3507 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3508 * 3509 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3510 * used with resource_list_alloc(). 3511 * 3512 * @param rl the resource list which was allocated from 3513 * @param bus the parent device of @p child 3514 * @param child the device which is requesting a release 3515 * @param type the type of resource to release 3516 * @param rid the resource identifier 3517 * @param res the resource to release 3518 * 3519 * @retval 0 success 3520 * @retval non-zero a standard unix error code indicating what 3521 * error condition prevented the operation 3522 */ 3523 int 3524 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3525 int type, int rid, struct resource *res) 3526 { 3527 struct resource_list_entry *rle = NULL; 3528 int passthrough = (device_get_parent(child) != bus); 3529 int error; 3530 3531 if (passthrough) { 3532 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3533 type, rid, res)); 3534 } 3535 3536 rle = resource_list_find(rl, type, rid); 3537 3538 if (!rle) 3539 panic("resource_list_release: can't find resource"); 3540 if (!rle->res) 3541 panic("resource_list_release: resource entry is not busy"); 3542 if (rle->flags & RLE_RESERVED) { 3543 if (rle->flags & RLE_ALLOCATED) { 3544 if (rman_get_flags(res) & RF_ACTIVE) { 3545 error = bus_deactivate_resource(child, type, 3546 rid, res); 3547 if (error) 3548 return (error); 3549 } 3550 rle->flags &= ~RLE_ALLOCATED; 3551 return (0); 3552 } 3553 return (EINVAL); 3554 } 3555 3556 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3557 type, rid, res); 3558 if (error) 3559 return (error); 3560 3561 rle->res = NULL; 3562 return (0); 3563 } 3564 3565 /** 3566 * @brief Release all active resources of a given type 3567 * 3568 * Release all active resources of a specified type. This is intended 3569 * to be used to cleanup resources leaked by a driver after detach or 3570 * a failed attach. 3571 * 3572 * @param rl the resource list which was allocated from 3573 * @param bus the parent device of @p child 3574 * @param child the device whose active resources are being released 3575 * @param type the type of resources to release 3576 * 3577 * @retval 0 success 3578 * @retval EBUSY at least one resource was active 3579 */ 3580 int 3581 resource_list_release_active(struct resource_list *rl, device_t bus, 3582 device_t child, int type) 3583 { 3584 struct resource_list_entry *rle; 3585 int error, retval; 3586 3587 retval = 0; 3588 STAILQ_FOREACH(rle, rl, link) { 3589 if (rle->type != type) 3590 continue; 3591 if (rle->res == NULL) 3592 continue; 3593 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3594 RLE_RESERVED) 3595 continue; 3596 retval = EBUSY; 3597 error = resource_list_release(rl, bus, child, type, 3598 rman_get_rid(rle->res), rle->res); 3599 if (error != 0) 3600 device_printf(bus, 3601 "Failed to release active resource: %d\n", error); 3602 } 3603 return (retval); 3604 } 3605 3606 /** 3607 * @brief Fully release a reserved resource 3608 * 3609 * Fully releases a resource reserved via resource_list_reserve(). 3610 * 3611 * @param rl the resource list which was allocated from 3612 * @param bus the parent device of @p child 3613 * @param child the device whose reserved resource is being released 3614 * @param type the type of resource to release 3615 * @param rid the resource identifier 3616 * @param res the resource to release 3617 * 3618 * @retval 0 success 3619 * @retval non-zero a standard unix error code indicating what 3620 * error condition prevented the operation 3621 */ 3622 int 3623 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3624 int type, int rid) 3625 { 3626 struct resource_list_entry *rle = NULL; 3627 int passthrough = (device_get_parent(child) != bus); 3628 3629 if (passthrough) 3630 panic( 3631 "resource_list_unreserve() should only be called for direct children"); 3632 3633 rle = resource_list_find(rl, type, rid); 3634 3635 if (!rle) 3636 panic("resource_list_unreserve: can't find resource"); 3637 if (!(rle->flags & RLE_RESERVED)) 3638 return (EINVAL); 3639 if (rle->flags & RLE_ALLOCATED) 3640 return (EBUSY); 3641 rle->flags &= ~RLE_RESERVED; 3642 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3643 } 3644 3645 /** 3646 * @brief Print a description of resources in a resource list 3647 * 3648 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3649 * The name is printed if at least one resource of the given type is available. 3650 * The format is used to print resource start and end. 3651 * 3652 * @param rl the resource list to print 3653 * @param name the name of @p type, e.g. @c "memory" 3654 * @param type type type of resource entry to print 3655 * @param format printf(9) format string to print resource 3656 * start and end values 3657 * 3658 * @returns the number of characters printed 3659 */ 3660 int 3661 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3662 const char *format) 3663 { 3664 struct resource_list_entry *rle; 3665 int printed, retval; 3666 3667 printed = 0; 3668 retval = 0; 3669 /* Yes, this is kinda cheating */ 3670 STAILQ_FOREACH(rle, rl, link) { 3671 if (rle->type == type) { 3672 if (printed == 0) 3673 retval += printf(" %s ", name); 3674 else 3675 retval += printf(","); 3676 printed++; 3677 retval += printf(format, rle->start); 3678 if (rle->count > 1) { 3679 retval += printf("-"); 3680 retval += printf(format, rle->start + 3681 rle->count - 1); 3682 } 3683 } 3684 } 3685 return (retval); 3686 } 3687 3688 /** 3689 * @brief Releases all the resources in a list. 3690 * 3691 * @param rl The resource list to purge. 3692 * 3693 * @returns nothing 3694 */ 3695 void 3696 resource_list_purge(struct resource_list *rl) 3697 { 3698 struct resource_list_entry *rle; 3699 3700 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3701 if (rle->res) 3702 bus_release_resource(rman_get_device(rle->res), 3703 rle->type, rle->rid, rle->res); 3704 STAILQ_REMOVE_HEAD(rl, link); 3705 free(rle, M_BUS); 3706 } 3707 } 3708 3709 device_t 3710 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3711 { 3712 return (device_add_child_ordered(dev, order, name, unit)); 3713 } 3714 3715 /** 3716 * @brief Helper function for implementing DEVICE_PROBE() 3717 * 3718 * This function can be used to help implement the DEVICE_PROBE() for 3719 * a bus (i.e. a device which has other devices attached to it). It 3720 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3721 * devclass. 3722 */ 3723 int 3724 bus_generic_probe(device_t dev) 3725 { 3726 devclass_t dc = dev->devclass; 3727 driverlink_t dl; 3728 3729 TAILQ_FOREACH(dl, &dc->drivers, link) { 3730 /* 3731 * If this driver's pass is too high, then ignore it. 3732 * For most drivers in the default pass, this will 3733 * never be true. For early-pass drivers they will 3734 * only call the identify routines of eligible drivers 3735 * when this routine is called. Drivers for later 3736 * passes should have their identify routines called 3737 * on early-pass buses during BUS_NEW_PASS(). 3738 */ 3739 if (dl->pass > bus_current_pass) 3740 continue; 3741 DEVICE_IDENTIFY(dl->driver, dev); 3742 } 3743 3744 return (0); 3745 } 3746 3747 /** 3748 * @brief Helper function for implementing DEVICE_ATTACH() 3749 * 3750 * This function can be used to help implement the DEVICE_ATTACH() for 3751 * a bus. It calls device_probe_and_attach() for each of the device's 3752 * children. 3753 */ 3754 int 3755 bus_generic_attach(device_t dev) 3756 { 3757 device_t child; 3758 3759 TAILQ_FOREACH(child, &dev->children, link) { 3760 device_probe_and_attach(child); 3761 } 3762 3763 return (0); 3764 } 3765 3766 /** 3767 * @brief Helper function for delaying attaching children 3768 * 3769 * Many buses can't run transactions on the bus which children need to probe and 3770 * attach until after interrupts and/or timers are running. This function 3771 * delays their attach until interrupts and timers are enabled. 3772 */ 3773 int 3774 bus_delayed_attach_children(device_t dev) 3775 { 3776 /* Probe and attach the bus children when interrupts are available */ 3777 config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev); 3778 3779 return (0); 3780 } 3781 3782 /** 3783 * @brief Helper function for implementing DEVICE_DETACH() 3784 * 3785 * This function can be used to help implement the DEVICE_DETACH() for 3786 * a bus. It calls device_detach() for each of the device's 3787 * children. 3788 */ 3789 int 3790 bus_generic_detach(device_t dev) 3791 { 3792 device_t child; 3793 int error; 3794 3795 if (dev->state != DS_ATTACHED) 3796 return (EBUSY); 3797 3798 /* 3799 * Detach children in the reverse order. 3800 * See bus_generic_suspend for details. 3801 */ 3802 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3803 if ((error = device_detach(child)) != 0) 3804 return (error); 3805 } 3806 3807 return (0); 3808 } 3809 3810 /** 3811 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3812 * 3813 * This function can be used to help implement the DEVICE_SHUTDOWN() 3814 * for a bus. It calls device_shutdown() for each of the device's 3815 * children. 3816 */ 3817 int 3818 bus_generic_shutdown(device_t dev) 3819 { 3820 device_t child; 3821 3822 /* 3823 * Shut down children in the reverse order. 3824 * See bus_generic_suspend for details. 3825 */ 3826 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3827 device_shutdown(child); 3828 } 3829 3830 return (0); 3831 } 3832 3833 /** 3834 * @brief Default function for suspending a child device. 3835 * 3836 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). 3837 */ 3838 int 3839 bus_generic_suspend_child(device_t dev, device_t child) 3840 { 3841 int error; 3842 3843 error = DEVICE_SUSPEND(child); 3844 3845 if (error == 0) 3846 child->flags |= DF_SUSPENDED; 3847 3848 return (error); 3849 } 3850 3851 /** 3852 * @brief Default function for resuming a child device. 3853 * 3854 * This function is to be used by a bus's DEVICE_RESUME_CHILD(). 3855 */ 3856 int 3857 bus_generic_resume_child(device_t dev, device_t child) 3858 { 3859 DEVICE_RESUME(child); 3860 child->flags &= ~DF_SUSPENDED; 3861 3862 return (0); 3863 } 3864 3865 /** 3866 * @brief Helper function for implementing DEVICE_SUSPEND() 3867 * 3868 * This function can be used to help implement the DEVICE_SUSPEND() 3869 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3870 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3871 * operation is aborted and any devices which were suspended are 3872 * resumed immediately by calling their DEVICE_RESUME() methods. 3873 */ 3874 int 3875 bus_generic_suspend(device_t dev) 3876 { 3877 int error; 3878 device_t child; 3879 3880 /* 3881 * Suspend children in the reverse order. 3882 * For most buses all children are equal, so the order does not matter. 3883 * Other buses, such as acpi, carefully order their child devices to 3884 * express implicit dependencies between them. For such buses it is 3885 * safer to bring down devices in the reverse order. 3886 */ 3887 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3888 error = BUS_SUSPEND_CHILD(dev, child); 3889 if (error != 0) { 3890 child = TAILQ_NEXT(child, link); 3891 if (child != NULL) { 3892 TAILQ_FOREACH_FROM(child, &dev->children, link) 3893 BUS_RESUME_CHILD(dev, child); 3894 } 3895 return (error); 3896 } 3897 } 3898 return (0); 3899 } 3900 3901 /** 3902 * @brief Helper function for implementing DEVICE_RESUME() 3903 * 3904 * This function can be used to help implement the DEVICE_RESUME() for 3905 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3906 */ 3907 int 3908 bus_generic_resume(device_t dev) 3909 { 3910 device_t child; 3911 3912 TAILQ_FOREACH(child, &dev->children, link) { 3913 BUS_RESUME_CHILD(dev, child); 3914 /* if resume fails, there's nothing we can usefully do... */ 3915 } 3916 return (0); 3917 } 3918 3919 /** 3920 * @brief Helper function for implementing BUS_RESET_POST 3921 * 3922 * Bus can use this function to implement common operations of 3923 * re-attaching or resuming the children after the bus itself was 3924 * reset, and after restoring bus-unique state of children. 3925 * 3926 * @param dev The bus 3927 * #param flags DEVF_RESET_* 3928 */ 3929 int 3930 bus_helper_reset_post(device_t dev, int flags) 3931 { 3932 device_t child; 3933 int error, error1; 3934 3935 error = 0; 3936 TAILQ_FOREACH(child, &dev->children,link) { 3937 BUS_RESET_POST(dev, child); 3938 error1 = (flags & DEVF_RESET_DETACH) != 0 ? 3939 device_probe_and_attach(child) : 3940 BUS_RESUME_CHILD(dev, child); 3941 if (error == 0 && error1 != 0) 3942 error = error1; 3943 } 3944 return (error); 3945 } 3946 3947 static void 3948 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags) 3949 { 3950 child = TAILQ_NEXT(child, link); 3951 if (child == NULL) 3952 return; 3953 TAILQ_FOREACH_FROM(child, &dev->children,link) { 3954 BUS_RESET_POST(dev, child); 3955 if ((flags & DEVF_RESET_DETACH) != 0) 3956 device_probe_and_attach(child); 3957 else 3958 BUS_RESUME_CHILD(dev, child); 3959 } 3960 } 3961 3962 /** 3963 * @brief Helper function for implementing BUS_RESET_PREPARE 3964 * 3965 * Bus can use this function to implement common operations of 3966 * detaching or suspending the children before the bus itself is 3967 * reset, and then save bus-unique state of children that must 3968 * persists around reset. 3969 * 3970 * @param dev The bus 3971 * #param flags DEVF_RESET_* 3972 */ 3973 int 3974 bus_helper_reset_prepare(device_t dev, int flags) 3975 { 3976 device_t child; 3977 int error; 3978 3979 if (dev->state != DS_ATTACHED) 3980 return (EBUSY); 3981 3982 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3983 if ((flags & DEVF_RESET_DETACH) != 0) { 3984 error = device_get_state(child) == DS_ATTACHED ? 3985 device_detach(child) : 0; 3986 } else { 3987 error = BUS_SUSPEND_CHILD(dev, child); 3988 } 3989 if (error == 0) { 3990 error = BUS_RESET_PREPARE(dev, child); 3991 if (error != 0) { 3992 if ((flags & DEVF_RESET_DETACH) != 0) 3993 device_probe_and_attach(child); 3994 else 3995 BUS_RESUME_CHILD(dev, child); 3996 } 3997 } 3998 if (error != 0) { 3999 bus_helper_reset_prepare_rollback(dev, child, flags); 4000 return (error); 4001 } 4002 } 4003 return (0); 4004 } 4005 4006 /** 4007 * @brief Helper function for implementing BUS_PRINT_CHILD(). 4008 * 4009 * This function prints the first part of the ascii representation of 4010 * @p child, including its name, unit and description (if any - see 4011 * device_set_desc()). 4012 * 4013 * @returns the number of characters printed 4014 */ 4015 int 4016 bus_print_child_header(device_t dev, device_t child) 4017 { 4018 int retval = 0; 4019 4020 if (device_get_desc(child)) { 4021 retval += device_printf(child, "<%s>", device_get_desc(child)); 4022 } else { 4023 retval += printf("%s", device_get_nameunit(child)); 4024 } 4025 4026 return (retval); 4027 } 4028 4029 /** 4030 * @brief Helper function for implementing BUS_PRINT_CHILD(). 4031 * 4032 * This function prints the last part of the ascii representation of 4033 * @p child, which consists of the string @c " on " followed by the 4034 * name and unit of the @p dev. 4035 * 4036 * @returns the number of characters printed 4037 */ 4038 int 4039 bus_print_child_footer(device_t dev, device_t child) 4040 { 4041 return (printf(" on %s\n", device_get_nameunit(dev))); 4042 } 4043 4044 /** 4045 * @brief Helper function for implementing BUS_PRINT_CHILD(). 4046 * 4047 * This function prints out the VM domain for the given device. 4048 * 4049 * @returns the number of characters printed 4050 */ 4051 int 4052 bus_print_child_domain(device_t dev, device_t child) 4053 { 4054 int domain; 4055 4056 /* No domain? Don't print anything */ 4057 if (BUS_GET_DOMAIN(dev, child, &domain) != 0) 4058 return (0); 4059 4060 return (printf(" numa-domain %d", domain)); 4061 } 4062 4063 /** 4064 * @brief Helper function for implementing BUS_PRINT_CHILD(). 4065 * 4066 * This function simply calls bus_print_child_header() followed by 4067 * bus_print_child_footer(). 4068 * 4069 * @returns the number of characters printed 4070 */ 4071 int 4072 bus_generic_print_child(device_t dev, device_t child) 4073 { 4074 int retval = 0; 4075 4076 retval += bus_print_child_header(dev, child); 4077 retval += bus_print_child_domain(dev, child); 4078 retval += bus_print_child_footer(dev, child); 4079 4080 return (retval); 4081 } 4082 4083 /** 4084 * @brief Stub function for implementing BUS_READ_IVAR(). 4085 * 4086 * @returns ENOENT 4087 */ 4088 int 4089 bus_generic_read_ivar(device_t dev, device_t child, int index, 4090 uintptr_t * result) 4091 { 4092 return (ENOENT); 4093 } 4094 4095 /** 4096 * @brief Stub function for implementing BUS_WRITE_IVAR(). 4097 * 4098 * @returns ENOENT 4099 */ 4100 int 4101 bus_generic_write_ivar(device_t dev, device_t child, int index, 4102 uintptr_t value) 4103 { 4104 return (ENOENT); 4105 } 4106 4107 /** 4108 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 4109 * 4110 * @returns NULL 4111 */ 4112 struct resource_list * 4113 bus_generic_get_resource_list(device_t dev, device_t child) 4114 { 4115 return (NULL); 4116 } 4117 4118 /** 4119 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 4120 * 4121 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 4122 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 4123 * and then calls device_probe_and_attach() for each unattached child. 4124 */ 4125 void 4126 bus_generic_driver_added(device_t dev, driver_t *driver) 4127 { 4128 device_t child; 4129 4130 DEVICE_IDENTIFY(driver, dev); 4131 TAILQ_FOREACH(child, &dev->children, link) { 4132 if (child->state == DS_NOTPRESENT || 4133 (child->flags & DF_REBID)) 4134 device_probe_and_attach(child); 4135 } 4136 } 4137 4138 /** 4139 * @brief Helper function for implementing BUS_NEW_PASS(). 4140 * 4141 * This implementing of BUS_NEW_PASS() first calls the identify 4142 * routines for any drivers that probe at the current pass. Then it 4143 * walks the list of devices for this bus. If a device is already 4144 * attached, then it calls BUS_NEW_PASS() on that device. If the 4145 * device is not already attached, it attempts to attach a driver to 4146 * it. 4147 */ 4148 void 4149 bus_generic_new_pass(device_t dev) 4150 { 4151 driverlink_t dl; 4152 devclass_t dc; 4153 device_t child; 4154 4155 dc = dev->devclass; 4156 TAILQ_FOREACH(dl, &dc->drivers, link) { 4157 if (dl->pass == bus_current_pass) 4158 DEVICE_IDENTIFY(dl->driver, dev); 4159 } 4160 TAILQ_FOREACH(child, &dev->children, link) { 4161 if (child->state >= DS_ATTACHED) 4162 BUS_NEW_PASS(child); 4163 else if (child->state == DS_NOTPRESENT) 4164 device_probe_and_attach(child); 4165 } 4166 } 4167 4168 /** 4169 * @brief Helper function for implementing BUS_SETUP_INTR(). 4170 * 4171 * This simple implementation of BUS_SETUP_INTR() simply calls the 4172 * BUS_SETUP_INTR() method of the parent of @p dev. 4173 */ 4174 int 4175 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 4176 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 4177 void **cookiep) 4178 { 4179 /* Propagate up the bus hierarchy until someone handles it. */ 4180 if (dev->parent) 4181 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 4182 filter, intr, arg, cookiep)); 4183 return (EINVAL); 4184 } 4185 4186 /** 4187 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 4188 * 4189 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 4190 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 4191 */ 4192 int 4193 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 4194 void *cookie) 4195 { 4196 /* Propagate up the bus hierarchy until someone handles it. */ 4197 if (dev->parent) 4198 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 4199 return (EINVAL); 4200 } 4201 4202 /** 4203 * @brief Helper function for implementing BUS_SUSPEND_INTR(). 4204 * 4205 * This simple implementation of BUS_SUSPEND_INTR() simply calls the 4206 * BUS_SUSPEND_INTR() method of the parent of @p dev. 4207 */ 4208 int 4209 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq) 4210 { 4211 /* Propagate up the bus hierarchy until someone handles it. */ 4212 if (dev->parent) 4213 return (BUS_SUSPEND_INTR(dev->parent, child, irq)); 4214 return (EINVAL); 4215 } 4216 4217 /** 4218 * @brief Helper function for implementing BUS_RESUME_INTR(). 4219 * 4220 * This simple implementation of BUS_RESUME_INTR() simply calls the 4221 * BUS_RESUME_INTR() method of the parent of @p dev. 4222 */ 4223 int 4224 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq) 4225 { 4226 /* Propagate up the bus hierarchy until someone handles it. */ 4227 if (dev->parent) 4228 return (BUS_RESUME_INTR(dev->parent, child, irq)); 4229 return (EINVAL); 4230 } 4231 4232 /** 4233 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 4234 * 4235 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 4236 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 4237 */ 4238 int 4239 bus_generic_adjust_resource(device_t dev, device_t child, int type, 4240 struct resource *r, rman_res_t start, rman_res_t end) 4241 { 4242 /* Propagate up the bus hierarchy until someone handles it. */ 4243 if (dev->parent) 4244 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, 4245 end)); 4246 return (EINVAL); 4247 } 4248 4249 /** 4250 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4251 * 4252 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 4253 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 4254 */ 4255 struct resource * 4256 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 4257 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4258 { 4259 /* Propagate up the bus hierarchy until someone handles it. */ 4260 if (dev->parent) 4261 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 4262 start, end, count, flags)); 4263 return (NULL); 4264 } 4265 4266 /** 4267 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4268 * 4269 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 4270 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 4271 */ 4272 int 4273 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 4274 struct resource *r) 4275 { 4276 /* Propagate up the bus hierarchy until someone handles it. */ 4277 if (dev->parent) 4278 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 4279 r)); 4280 return (EINVAL); 4281 } 4282 4283 /** 4284 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 4285 * 4286 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 4287 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 4288 */ 4289 int 4290 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 4291 struct resource *r) 4292 { 4293 /* Propagate up the bus hierarchy until someone handles it. */ 4294 if (dev->parent) 4295 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 4296 r)); 4297 return (EINVAL); 4298 } 4299 4300 /** 4301 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 4302 * 4303 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 4304 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 4305 */ 4306 int 4307 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 4308 int rid, struct resource *r) 4309 { 4310 /* Propagate up the bus hierarchy until someone handles it. */ 4311 if (dev->parent) 4312 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 4313 r)); 4314 return (EINVAL); 4315 } 4316 4317 /** 4318 * @brief Helper function for implementing BUS_MAP_RESOURCE(). 4319 * 4320 * This simple implementation of BUS_MAP_RESOURCE() simply calls the 4321 * BUS_MAP_RESOURCE() method of the parent of @p dev. 4322 */ 4323 int 4324 bus_generic_map_resource(device_t dev, device_t child, int type, 4325 struct resource *r, struct resource_map_request *args, 4326 struct resource_map *map) 4327 { 4328 /* Propagate up the bus hierarchy until someone handles it. */ 4329 if (dev->parent) 4330 return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args, 4331 map)); 4332 return (EINVAL); 4333 } 4334 4335 /** 4336 * @brief Helper function for implementing BUS_UNMAP_RESOURCE(). 4337 * 4338 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the 4339 * BUS_UNMAP_RESOURCE() method of the parent of @p dev. 4340 */ 4341 int 4342 bus_generic_unmap_resource(device_t dev, device_t child, int type, 4343 struct resource *r, struct resource_map *map) 4344 { 4345 /* Propagate up the bus hierarchy until someone handles it. */ 4346 if (dev->parent) 4347 return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map)); 4348 return (EINVAL); 4349 } 4350 4351 /** 4352 * @brief Helper function for implementing BUS_BIND_INTR(). 4353 * 4354 * This simple implementation of BUS_BIND_INTR() simply calls the 4355 * BUS_BIND_INTR() method of the parent of @p dev. 4356 */ 4357 int 4358 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 4359 int cpu) 4360 { 4361 /* Propagate up the bus hierarchy until someone handles it. */ 4362 if (dev->parent) 4363 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 4364 return (EINVAL); 4365 } 4366 4367 /** 4368 * @brief Helper function for implementing BUS_CONFIG_INTR(). 4369 * 4370 * This simple implementation of BUS_CONFIG_INTR() simply calls the 4371 * BUS_CONFIG_INTR() method of the parent of @p dev. 4372 */ 4373 int 4374 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 4375 enum intr_polarity pol) 4376 { 4377 /* Propagate up the bus hierarchy until someone handles it. */ 4378 if (dev->parent) 4379 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 4380 return (EINVAL); 4381 } 4382 4383 /** 4384 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 4385 * 4386 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 4387 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 4388 */ 4389 int 4390 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 4391 void *cookie, const char *descr) 4392 { 4393 /* Propagate up the bus hierarchy until someone handles it. */ 4394 if (dev->parent) 4395 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 4396 descr)); 4397 return (EINVAL); 4398 } 4399 4400 /** 4401 * @brief Helper function for implementing BUS_GET_CPUS(). 4402 * 4403 * This simple implementation of BUS_GET_CPUS() simply calls the 4404 * BUS_GET_CPUS() method of the parent of @p dev. 4405 */ 4406 int 4407 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op, 4408 size_t setsize, cpuset_t *cpuset) 4409 { 4410 /* Propagate up the bus hierarchy until someone handles it. */ 4411 if (dev->parent != NULL) 4412 return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset)); 4413 return (EINVAL); 4414 } 4415 4416 /** 4417 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 4418 * 4419 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 4420 * BUS_GET_DMA_TAG() method of the parent of @p dev. 4421 */ 4422 bus_dma_tag_t 4423 bus_generic_get_dma_tag(device_t dev, device_t child) 4424 { 4425 /* Propagate up the bus hierarchy until someone handles it. */ 4426 if (dev->parent != NULL) 4427 return (BUS_GET_DMA_TAG(dev->parent, child)); 4428 return (NULL); 4429 } 4430 4431 /** 4432 * @brief Helper function for implementing BUS_GET_BUS_TAG(). 4433 * 4434 * This simple implementation of BUS_GET_BUS_TAG() simply calls the 4435 * BUS_GET_BUS_TAG() method of the parent of @p dev. 4436 */ 4437 bus_space_tag_t 4438 bus_generic_get_bus_tag(device_t dev, device_t child) 4439 { 4440 /* Propagate up the bus hierarchy until someone handles it. */ 4441 if (dev->parent != NULL) 4442 return (BUS_GET_BUS_TAG(dev->parent, child)); 4443 return ((bus_space_tag_t)0); 4444 } 4445 4446 /** 4447 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4448 * 4449 * This implementation of BUS_GET_RESOURCE() uses the 4450 * resource_list_find() function to do most of the work. It calls 4451 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4452 * search. 4453 */ 4454 int 4455 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4456 rman_res_t *startp, rman_res_t *countp) 4457 { 4458 struct resource_list * rl = NULL; 4459 struct resource_list_entry * rle = NULL; 4460 4461 rl = BUS_GET_RESOURCE_LIST(dev, child); 4462 if (!rl) 4463 return (EINVAL); 4464 4465 rle = resource_list_find(rl, type, rid); 4466 if (!rle) 4467 return (ENOENT); 4468 4469 if (startp) 4470 *startp = rle->start; 4471 if (countp) 4472 *countp = rle->count; 4473 4474 return (0); 4475 } 4476 4477 /** 4478 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4479 * 4480 * This implementation of BUS_SET_RESOURCE() uses the 4481 * resource_list_add() function to do most of the work. It calls 4482 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4483 * edit. 4484 */ 4485 int 4486 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4487 rman_res_t start, rman_res_t count) 4488 { 4489 struct resource_list * rl = NULL; 4490 4491 rl = BUS_GET_RESOURCE_LIST(dev, child); 4492 if (!rl) 4493 return (EINVAL); 4494 4495 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4496 4497 return (0); 4498 } 4499 4500 /** 4501 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4502 * 4503 * This implementation of BUS_DELETE_RESOURCE() uses the 4504 * resource_list_delete() function to do most of the work. It calls 4505 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4506 * edit. 4507 */ 4508 void 4509 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4510 { 4511 struct resource_list * rl = NULL; 4512 4513 rl = BUS_GET_RESOURCE_LIST(dev, child); 4514 if (!rl) 4515 return; 4516 4517 resource_list_delete(rl, type, rid); 4518 4519 return; 4520 } 4521 4522 /** 4523 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4524 * 4525 * This implementation of BUS_RELEASE_RESOURCE() uses the 4526 * resource_list_release() function to do most of the work. It calls 4527 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4528 */ 4529 int 4530 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 4531 int rid, struct resource *r) 4532 { 4533 struct resource_list * rl = NULL; 4534 4535 if (device_get_parent(child) != dev) 4536 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 4537 type, rid, r)); 4538 4539 rl = BUS_GET_RESOURCE_LIST(dev, child); 4540 if (!rl) 4541 return (EINVAL); 4542 4543 return (resource_list_release(rl, dev, child, type, rid, r)); 4544 } 4545 4546 /** 4547 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4548 * 4549 * This implementation of BUS_ALLOC_RESOURCE() uses the 4550 * resource_list_alloc() function to do most of the work. It calls 4551 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4552 */ 4553 struct resource * 4554 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4555 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4556 { 4557 struct resource_list * rl = NULL; 4558 4559 if (device_get_parent(child) != dev) 4560 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4561 type, rid, start, end, count, flags)); 4562 4563 rl = BUS_GET_RESOURCE_LIST(dev, child); 4564 if (!rl) 4565 return (NULL); 4566 4567 return (resource_list_alloc(rl, dev, child, type, rid, 4568 start, end, count, flags)); 4569 } 4570 4571 /** 4572 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4573 * 4574 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4575 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4576 */ 4577 int 4578 bus_generic_child_present(device_t dev, device_t child) 4579 { 4580 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4581 } 4582 4583 int 4584 bus_generic_get_domain(device_t dev, device_t child, int *domain) 4585 { 4586 if (dev->parent) 4587 return (BUS_GET_DOMAIN(dev->parent, dev, domain)); 4588 4589 return (ENOENT); 4590 } 4591 4592 /** 4593 * @brief Helper function for implementing BUS_RESCAN(). 4594 * 4595 * This null implementation of BUS_RESCAN() always fails to indicate 4596 * the bus does not support rescanning. 4597 */ 4598 int 4599 bus_null_rescan(device_t dev) 4600 { 4601 return (ENXIO); 4602 } 4603 4604 /* 4605 * Some convenience functions to make it easier for drivers to use the 4606 * resource-management functions. All these really do is hide the 4607 * indirection through the parent's method table, making for slightly 4608 * less-wordy code. In the future, it might make sense for this code 4609 * to maintain some sort of a list of resources allocated by each device. 4610 */ 4611 4612 int 4613 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4614 struct resource **res) 4615 { 4616 int i; 4617 4618 for (i = 0; rs[i].type != -1; i++) 4619 res[i] = NULL; 4620 for (i = 0; rs[i].type != -1; i++) { 4621 res[i] = bus_alloc_resource_any(dev, 4622 rs[i].type, &rs[i].rid, rs[i].flags); 4623 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4624 bus_release_resources(dev, rs, res); 4625 return (ENXIO); 4626 } 4627 } 4628 return (0); 4629 } 4630 4631 void 4632 bus_release_resources(device_t dev, const struct resource_spec *rs, 4633 struct resource **res) 4634 { 4635 int i; 4636 4637 for (i = 0; rs[i].type != -1; i++) 4638 if (res[i] != NULL) { 4639 bus_release_resource( 4640 dev, rs[i].type, rs[i].rid, res[i]); 4641 res[i] = NULL; 4642 } 4643 } 4644 4645 /** 4646 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4647 * 4648 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4649 * parent of @p dev. 4650 */ 4651 struct resource * 4652 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, 4653 rman_res_t end, rman_res_t count, u_int flags) 4654 { 4655 struct resource *res; 4656 4657 if (dev->parent == NULL) 4658 return (NULL); 4659 res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4660 count, flags); 4661 return (res); 4662 } 4663 4664 /** 4665 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4666 * 4667 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4668 * parent of @p dev. 4669 */ 4670 int 4671 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start, 4672 rman_res_t end) 4673 { 4674 if (dev->parent == NULL) 4675 return (EINVAL); 4676 return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); 4677 } 4678 4679 /** 4680 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4681 * 4682 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4683 * parent of @p dev. 4684 */ 4685 int 4686 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 4687 { 4688 if (dev->parent == NULL) 4689 return (EINVAL); 4690 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4691 } 4692 4693 /** 4694 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4695 * 4696 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4697 * parent of @p dev. 4698 */ 4699 int 4700 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 4701 { 4702 if (dev->parent == NULL) 4703 return (EINVAL); 4704 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4705 } 4706 4707 /** 4708 * @brief Wrapper function for BUS_MAP_RESOURCE(). 4709 * 4710 * This function simply calls the BUS_MAP_RESOURCE() method of the 4711 * parent of @p dev. 4712 */ 4713 int 4714 bus_map_resource(device_t dev, int type, struct resource *r, 4715 struct resource_map_request *args, struct resource_map *map) 4716 { 4717 if (dev->parent == NULL) 4718 return (EINVAL); 4719 return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map)); 4720 } 4721 4722 /** 4723 * @brief Wrapper function for BUS_UNMAP_RESOURCE(). 4724 * 4725 * This function simply calls the BUS_UNMAP_RESOURCE() method of the 4726 * parent of @p dev. 4727 */ 4728 int 4729 bus_unmap_resource(device_t dev, int type, struct resource *r, 4730 struct resource_map *map) 4731 { 4732 if (dev->parent == NULL) 4733 return (EINVAL); 4734 return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map)); 4735 } 4736 4737 /** 4738 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4739 * 4740 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4741 * parent of @p dev. 4742 */ 4743 int 4744 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 4745 { 4746 int rv; 4747 4748 if (dev->parent == NULL) 4749 return (EINVAL); 4750 rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r); 4751 return (rv); 4752 } 4753 4754 /** 4755 * @brief Wrapper function for BUS_SETUP_INTR(). 4756 * 4757 * This function simply calls the BUS_SETUP_INTR() method of the 4758 * parent of @p dev. 4759 */ 4760 int 4761 bus_setup_intr(device_t dev, struct resource *r, int flags, 4762 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4763 { 4764 int error; 4765 4766 if (dev->parent == NULL) 4767 return (EINVAL); 4768 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4769 arg, cookiep); 4770 if (error != 0) 4771 return (error); 4772 if (handler != NULL && !(flags & INTR_MPSAFE)) 4773 device_printf(dev, "[GIANT-LOCKED]\n"); 4774 return (0); 4775 } 4776 4777 /** 4778 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4779 * 4780 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4781 * parent of @p dev. 4782 */ 4783 int 4784 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4785 { 4786 if (dev->parent == NULL) 4787 return (EINVAL); 4788 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4789 } 4790 4791 /** 4792 * @brief Wrapper function for BUS_SUSPEND_INTR(). 4793 * 4794 * This function simply calls the BUS_SUSPEND_INTR() method of the 4795 * parent of @p dev. 4796 */ 4797 int 4798 bus_suspend_intr(device_t dev, struct resource *r) 4799 { 4800 if (dev->parent == NULL) 4801 return (EINVAL); 4802 return (BUS_SUSPEND_INTR(dev->parent, dev, r)); 4803 } 4804 4805 /** 4806 * @brief Wrapper function for BUS_RESUME_INTR(). 4807 * 4808 * This function simply calls the BUS_RESUME_INTR() method of the 4809 * parent of @p dev. 4810 */ 4811 int 4812 bus_resume_intr(device_t dev, struct resource *r) 4813 { 4814 if (dev->parent == NULL) 4815 return (EINVAL); 4816 return (BUS_RESUME_INTR(dev->parent, dev, r)); 4817 } 4818 4819 /** 4820 * @brief Wrapper function for BUS_BIND_INTR(). 4821 * 4822 * This function simply calls the BUS_BIND_INTR() method of the 4823 * parent of @p dev. 4824 */ 4825 int 4826 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4827 { 4828 if (dev->parent == NULL) 4829 return (EINVAL); 4830 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4831 } 4832 4833 /** 4834 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4835 * 4836 * This function first formats the requested description into a 4837 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4838 * the parent of @p dev. 4839 */ 4840 int 4841 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4842 const char *fmt, ...) 4843 { 4844 va_list ap; 4845 char descr[MAXCOMLEN + 1]; 4846 4847 if (dev->parent == NULL) 4848 return (EINVAL); 4849 va_start(ap, fmt); 4850 vsnprintf(descr, sizeof(descr), fmt, ap); 4851 va_end(ap); 4852 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4853 } 4854 4855 /** 4856 * @brief Wrapper function for BUS_SET_RESOURCE(). 4857 * 4858 * This function simply calls the BUS_SET_RESOURCE() method of the 4859 * parent of @p dev. 4860 */ 4861 int 4862 bus_set_resource(device_t dev, int type, int rid, 4863 rman_res_t start, rman_res_t count) 4864 { 4865 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4866 start, count)); 4867 } 4868 4869 /** 4870 * @brief Wrapper function for BUS_GET_RESOURCE(). 4871 * 4872 * This function simply calls the BUS_GET_RESOURCE() method of the 4873 * parent of @p dev. 4874 */ 4875 int 4876 bus_get_resource(device_t dev, int type, int rid, 4877 rman_res_t *startp, rman_res_t *countp) 4878 { 4879 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4880 startp, countp)); 4881 } 4882 4883 /** 4884 * @brief Wrapper function for BUS_GET_RESOURCE(). 4885 * 4886 * This function simply calls the BUS_GET_RESOURCE() method of the 4887 * parent of @p dev and returns the start value. 4888 */ 4889 rman_res_t 4890 bus_get_resource_start(device_t dev, int type, int rid) 4891 { 4892 rman_res_t start; 4893 rman_res_t count; 4894 int error; 4895 4896 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4897 &start, &count); 4898 if (error) 4899 return (0); 4900 return (start); 4901 } 4902 4903 /** 4904 * @brief Wrapper function for BUS_GET_RESOURCE(). 4905 * 4906 * This function simply calls the BUS_GET_RESOURCE() method of the 4907 * parent of @p dev and returns the count value. 4908 */ 4909 rman_res_t 4910 bus_get_resource_count(device_t dev, int type, int rid) 4911 { 4912 rman_res_t start; 4913 rman_res_t count; 4914 int error; 4915 4916 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4917 &start, &count); 4918 if (error) 4919 return (0); 4920 return (count); 4921 } 4922 4923 /** 4924 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4925 * 4926 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4927 * parent of @p dev. 4928 */ 4929 void 4930 bus_delete_resource(device_t dev, int type, int rid) 4931 { 4932 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4933 } 4934 4935 /** 4936 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4937 * 4938 * This function simply calls the BUS_CHILD_PRESENT() method of the 4939 * parent of @p dev. 4940 */ 4941 int 4942 bus_child_present(device_t child) 4943 { 4944 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4945 } 4946 4947 /** 4948 * @brief Wrapper function for BUS_CHILD_PNPINFO(). 4949 * 4950 * This function simply calls the BUS_CHILD_PNPINFO() method of the parent of @p 4951 * dev. 4952 */ 4953 int 4954 bus_child_pnpinfo(device_t child, struct sbuf *sb) 4955 { 4956 device_t parent; 4957 4958 parent = device_get_parent(child); 4959 if (parent == NULL) 4960 return (0); 4961 return (BUS_CHILD_PNPINFO(parent, child, sb)); 4962 } 4963 4964 /** 4965 * @brief Generic implementation that does nothing for bus_child_pnpinfo 4966 * 4967 * This function has the right signature and returns 0 since the sbuf is passed 4968 * to us to append to. 4969 */ 4970 int 4971 bus_generic_child_pnpinfo(device_t dev, device_t child, struct sbuf *sb) 4972 { 4973 return (0); 4974 } 4975 4976 /** 4977 * @brief Wrapper function for BUS_CHILD_LOCATION(). 4978 * 4979 * This function simply calls the BUS_CHILD_LOCATION() method of the parent of 4980 * @p dev. 4981 */ 4982 int 4983 bus_child_location(device_t child, struct sbuf *sb) 4984 { 4985 device_t parent; 4986 4987 parent = device_get_parent(child); 4988 if (parent == NULL) 4989 return (0); 4990 return (BUS_CHILD_LOCATION(parent, child, sb)); 4991 } 4992 4993 /** 4994 * @brief Generic implementation that does nothing for bus_child_location 4995 * 4996 * This function has the right signature and returns 0 since the sbuf is passed 4997 * to us to append to. 4998 */ 4999 int 5000 bus_generic_child_location(device_t dev, device_t child, struct sbuf *sb) 5001 { 5002 return (0); 5003 } 5004 5005 /** 5006 * @brief Wrapper function for BUS_GET_CPUS(). 5007 * 5008 * This function simply calls the BUS_GET_CPUS() method of the 5009 * parent of @p dev. 5010 */ 5011 int 5012 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) 5013 { 5014 device_t parent; 5015 5016 parent = device_get_parent(dev); 5017 if (parent == NULL) 5018 return (EINVAL); 5019 return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset)); 5020 } 5021 5022 /** 5023 * @brief Wrapper function for BUS_GET_DMA_TAG(). 5024 * 5025 * This function simply calls the BUS_GET_DMA_TAG() method of the 5026 * parent of @p dev. 5027 */ 5028 bus_dma_tag_t 5029 bus_get_dma_tag(device_t dev) 5030 { 5031 device_t parent; 5032 5033 parent = device_get_parent(dev); 5034 if (parent == NULL) 5035 return (NULL); 5036 return (BUS_GET_DMA_TAG(parent, dev)); 5037 } 5038 5039 /** 5040 * @brief Wrapper function for BUS_GET_BUS_TAG(). 5041 * 5042 * This function simply calls the BUS_GET_BUS_TAG() method of the 5043 * parent of @p dev. 5044 */ 5045 bus_space_tag_t 5046 bus_get_bus_tag(device_t dev) 5047 { 5048 device_t parent; 5049 5050 parent = device_get_parent(dev); 5051 if (parent == NULL) 5052 return ((bus_space_tag_t)0); 5053 return (BUS_GET_BUS_TAG(parent, dev)); 5054 } 5055 5056 /** 5057 * @brief Wrapper function for BUS_GET_DOMAIN(). 5058 * 5059 * This function simply calls the BUS_GET_DOMAIN() method of the 5060 * parent of @p dev. 5061 */ 5062 int 5063 bus_get_domain(device_t dev, int *domain) 5064 { 5065 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); 5066 } 5067 5068 /* Resume all devices and then notify userland that we're up again. */ 5069 static int 5070 root_resume(device_t dev) 5071 { 5072 int error; 5073 5074 error = bus_generic_resume(dev); 5075 if (error == 0) { 5076 devctl_notify("kern", "power", "resume", NULL); /* Deprecated gone in 14 */ 5077 devctl_notify("kernel", "power", "resume", NULL); 5078 } 5079 return (error); 5080 } 5081 5082 static int 5083 root_print_child(device_t dev, device_t child) 5084 { 5085 int retval = 0; 5086 5087 retval += bus_print_child_header(dev, child); 5088 retval += printf("\n"); 5089 5090 return (retval); 5091 } 5092 5093 static int 5094 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 5095 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 5096 { 5097 /* 5098 * If an interrupt mapping gets to here something bad has happened. 5099 */ 5100 panic("root_setup_intr"); 5101 } 5102 5103 /* 5104 * If we get here, assume that the device is permanent and really is 5105 * present in the system. Removable bus drivers are expected to intercept 5106 * this call long before it gets here. We return -1 so that drivers that 5107 * really care can check vs -1 or some ERRNO returned higher in the food 5108 * chain. 5109 */ 5110 static int 5111 root_child_present(device_t dev, device_t child) 5112 { 5113 return (-1); 5114 } 5115 5116 static int 5117 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 5118 cpuset_t *cpuset) 5119 { 5120 switch (op) { 5121 case INTR_CPUS: 5122 /* Default to returning the set of all CPUs. */ 5123 if (setsize != sizeof(cpuset_t)) 5124 return (EINVAL); 5125 *cpuset = all_cpus; 5126 return (0); 5127 default: 5128 return (EINVAL); 5129 } 5130 } 5131 5132 static kobj_method_t root_methods[] = { 5133 /* Device interface */ 5134 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 5135 KOBJMETHOD(device_suspend, bus_generic_suspend), 5136 KOBJMETHOD(device_resume, root_resume), 5137 5138 /* Bus interface */ 5139 KOBJMETHOD(bus_print_child, root_print_child), 5140 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 5141 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 5142 KOBJMETHOD(bus_setup_intr, root_setup_intr), 5143 KOBJMETHOD(bus_child_present, root_child_present), 5144 KOBJMETHOD(bus_get_cpus, root_get_cpus), 5145 5146 KOBJMETHOD_END 5147 }; 5148 5149 static driver_t root_driver = { 5150 "root", 5151 root_methods, 5152 1, /* no softc */ 5153 }; 5154 5155 device_t root_bus; 5156 devclass_t root_devclass; 5157 5158 static int 5159 root_bus_module_handler(module_t mod, int what, void* arg) 5160 { 5161 switch (what) { 5162 case MOD_LOAD: 5163 TAILQ_INIT(&bus_data_devices); 5164 kobj_class_compile((kobj_class_t) &root_driver); 5165 root_bus = make_device(NULL, "root", 0); 5166 root_bus->desc = "System root bus"; 5167 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 5168 root_bus->driver = &root_driver; 5169 root_bus->state = DS_ATTACHED; 5170 root_devclass = devclass_find_internal("root", NULL, FALSE); 5171 devinit(); 5172 return (0); 5173 5174 case MOD_SHUTDOWN: 5175 device_shutdown(root_bus); 5176 return (0); 5177 default: 5178 return (EOPNOTSUPP); 5179 } 5180 5181 return (0); 5182 } 5183 5184 static moduledata_t root_bus_mod = { 5185 "rootbus", 5186 root_bus_module_handler, 5187 NULL 5188 }; 5189 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 5190 5191 /** 5192 * @brief Automatically configure devices 5193 * 5194 * This function begins the autoconfiguration process by calling 5195 * device_probe_and_attach() for each child of the @c root0 device. 5196 */ 5197 void 5198 root_bus_configure(void) 5199 { 5200 PDEBUG((".")); 5201 5202 /* Eventually this will be split up, but this is sufficient for now. */ 5203 bus_set_pass(BUS_PASS_DEFAULT); 5204 } 5205 5206 /** 5207 * @brief Module handler for registering device drivers 5208 * 5209 * This module handler is used to automatically register device 5210 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 5211 * devclass_add_driver() for the driver described by the 5212 * driver_module_data structure pointed to by @p arg 5213 */ 5214 int 5215 driver_module_handler(module_t mod, int what, void *arg) 5216 { 5217 struct driver_module_data *dmd; 5218 devclass_t bus_devclass; 5219 kobj_class_t driver; 5220 int error, pass; 5221 5222 dmd = (struct driver_module_data *)arg; 5223 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 5224 error = 0; 5225 5226 switch (what) { 5227 case MOD_LOAD: 5228 if (dmd->dmd_chainevh) 5229 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5230 5231 pass = dmd->dmd_pass; 5232 driver = dmd->dmd_driver; 5233 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 5234 DRIVERNAME(driver), dmd->dmd_busname, pass)); 5235 error = devclass_add_driver(bus_devclass, driver, pass, 5236 dmd->dmd_devclass); 5237 break; 5238 5239 case MOD_UNLOAD: 5240 PDEBUG(("Unloading module: driver %s from bus %s", 5241 DRIVERNAME(dmd->dmd_driver), 5242 dmd->dmd_busname)); 5243 error = devclass_delete_driver(bus_devclass, 5244 dmd->dmd_driver); 5245 5246 if (!error && dmd->dmd_chainevh) 5247 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5248 break; 5249 case MOD_QUIESCE: 5250 PDEBUG(("Quiesce module: driver %s from bus %s", 5251 DRIVERNAME(dmd->dmd_driver), 5252 dmd->dmd_busname)); 5253 error = devclass_quiesce_driver(bus_devclass, 5254 dmd->dmd_driver); 5255 5256 if (!error && dmd->dmd_chainevh) 5257 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5258 break; 5259 default: 5260 error = EOPNOTSUPP; 5261 break; 5262 } 5263 5264 return (error); 5265 } 5266 5267 /** 5268 * @brief Enumerate all hinted devices for this bus. 5269 * 5270 * Walks through the hints for this bus and calls the bus_hinted_child 5271 * routine for each one it fines. It searches first for the specific 5272 * bus that's being probed for hinted children (eg isa0), and then for 5273 * generic children (eg isa). 5274 * 5275 * @param dev bus device to enumerate 5276 */ 5277 void 5278 bus_enumerate_hinted_children(device_t bus) 5279 { 5280 int i; 5281 const char *dname, *busname; 5282 int dunit; 5283 5284 /* 5285 * enumerate all devices on the specific bus 5286 */ 5287 busname = device_get_nameunit(bus); 5288 i = 0; 5289 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5290 BUS_HINTED_CHILD(bus, dname, dunit); 5291 5292 /* 5293 * and all the generic ones. 5294 */ 5295 busname = device_get_name(bus); 5296 i = 0; 5297 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5298 BUS_HINTED_CHILD(bus, dname, dunit); 5299 } 5300 5301 #ifdef BUS_DEBUG 5302 5303 /* the _short versions avoid iteration by not calling anything that prints 5304 * more than oneliners. I love oneliners. 5305 */ 5306 5307 static void 5308 print_device_short(device_t dev, int indent) 5309 { 5310 if (!dev) 5311 return; 5312 5313 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 5314 dev->unit, dev->desc, 5315 (dev->parent? "":"no "), 5316 (TAILQ_EMPTY(&dev->children)? "no ":""), 5317 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 5318 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 5319 (dev->flags&DF_WILDCARD? "wildcard,":""), 5320 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 5321 (dev->flags&DF_REBID? "rebiddable,":""), 5322 (dev->flags&DF_SUSPENDED? "suspended,":""), 5323 (dev->ivars? "":"no "), 5324 (dev->softc? "":"no "), 5325 dev->busy)); 5326 } 5327 5328 static void 5329 print_device(device_t dev, int indent) 5330 { 5331 if (!dev) 5332 return; 5333 5334 print_device_short(dev, indent); 5335 5336 indentprintf(("Parent:\n")); 5337 print_device_short(dev->parent, indent+1); 5338 indentprintf(("Driver:\n")); 5339 print_driver_short(dev->driver, indent+1); 5340 indentprintf(("Devclass:\n")); 5341 print_devclass_short(dev->devclass, indent+1); 5342 } 5343 5344 void 5345 print_device_tree_short(device_t dev, int indent) 5346 /* print the device and all its children (indented) */ 5347 { 5348 device_t child; 5349 5350 if (!dev) 5351 return; 5352 5353 print_device_short(dev, indent); 5354 5355 TAILQ_FOREACH(child, &dev->children, link) { 5356 print_device_tree_short(child, indent+1); 5357 } 5358 } 5359 5360 void 5361 print_device_tree(device_t dev, int indent) 5362 /* print the device and all its children (indented) */ 5363 { 5364 device_t child; 5365 5366 if (!dev) 5367 return; 5368 5369 print_device(dev, indent); 5370 5371 TAILQ_FOREACH(child, &dev->children, link) { 5372 print_device_tree(child, indent+1); 5373 } 5374 } 5375 5376 static void 5377 print_driver_short(driver_t *driver, int indent) 5378 { 5379 if (!driver) 5380 return; 5381 5382 indentprintf(("driver %s: softc size = %zd\n", 5383 driver->name, driver->size)); 5384 } 5385 5386 static void 5387 print_driver(driver_t *driver, int indent) 5388 { 5389 if (!driver) 5390 return; 5391 5392 print_driver_short(driver, indent); 5393 } 5394 5395 static void 5396 print_driver_list(driver_list_t drivers, int indent) 5397 { 5398 driverlink_t driver; 5399 5400 TAILQ_FOREACH(driver, &drivers, link) { 5401 print_driver(driver->driver, indent); 5402 } 5403 } 5404 5405 static void 5406 print_devclass_short(devclass_t dc, int indent) 5407 { 5408 if ( !dc ) 5409 return; 5410 5411 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 5412 } 5413 5414 static void 5415 print_devclass(devclass_t dc, int indent) 5416 { 5417 int i; 5418 5419 if ( !dc ) 5420 return; 5421 5422 print_devclass_short(dc, indent); 5423 indentprintf(("Drivers:\n")); 5424 print_driver_list(dc->drivers, indent+1); 5425 5426 indentprintf(("Devices:\n")); 5427 for (i = 0; i < dc->maxunit; i++) 5428 if (dc->devices[i]) 5429 print_device(dc->devices[i], indent+1); 5430 } 5431 5432 void 5433 print_devclass_list_short(void) 5434 { 5435 devclass_t dc; 5436 5437 printf("Short listing of devclasses, drivers & devices:\n"); 5438 TAILQ_FOREACH(dc, &devclasses, link) { 5439 print_devclass_short(dc, 0); 5440 } 5441 } 5442 5443 void 5444 print_devclass_list(void) 5445 { 5446 devclass_t dc; 5447 5448 printf("Full listing of devclasses, drivers & devices:\n"); 5449 TAILQ_FOREACH(dc, &devclasses, link) { 5450 print_devclass(dc, 0); 5451 } 5452 } 5453 5454 #endif 5455 5456 /* 5457 * User-space access to the device tree. 5458 * 5459 * We implement a small set of nodes: 5460 * 5461 * hw.bus Single integer read method to obtain the 5462 * current generation count. 5463 * hw.bus.devices Reads the entire device tree in flat space. 5464 * hw.bus.rman Resource manager interface 5465 * 5466 * We might like to add the ability to scan devclasses and/or drivers to 5467 * determine what else is currently loaded/available. 5468 */ 5469 5470 static int 5471 sysctl_bus_info(SYSCTL_HANDLER_ARGS) 5472 { 5473 struct u_businfo ubus; 5474 5475 ubus.ub_version = BUS_USER_VERSION; 5476 ubus.ub_generation = bus_data_generation; 5477 5478 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 5479 } 5480 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD | 5481 CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo", 5482 "bus-related data"); 5483 5484 static int 5485 sysctl_devices(SYSCTL_HANDLER_ARGS) 5486 { 5487 struct sbuf sb; 5488 int *name = (int *)arg1; 5489 u_int namelen = arg2; 5490 int index; 5491 device_t dev; 5492 struct u_device *udev; 5493 int error; 5494 5495 if (namelen != 2) 5496 return (EINVAL); 5497 5498 if (bus_data_generation_check(name[0])) 5499 return (EINVAL); 5500 5501 index = name[1]; 5502 5503 /* 5504 * Scan the list of devices, looking for the requested index. 5505 */ 5506 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5507 if (index-- == 0) 5508 break; 5509 } 5510 if (dev == NULL) 5511 return (ENOENT); 5512 5513 /* 5514 * Populate the return item, careful not to overflow the buffer. 5515 */ 5516 udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO); 5517 if (udev == NULL) 5518 return (ENOMEM); 5519 udev->dv_handle = (uintptr_t)dev; 5520 udev->dv_parent = (uintptr_t)dev->parent; 5521 udev->dv_devflags = dev->devflags; 5522 udev->dv_flags = dev->flags; 5523 udev->dv_state = dev->state; 5524 sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN); 5525 if (dev->nameunit != NULL) 5526 sbuf_cat(&sb, dev->nameunit); 5527 sbuf_putc(&sb, '\0'); 5528 if (dev->desc != NULL) 5529 sbuf_cat(&sb, dev->desc); 5530 sbuf_putc(&sb, '\0'); 5531 if (dev->driver != NULL) 5532 sbuf_cat(&sb, dev->driver->name); 5533 sbuf_putc(&sb, '\0'); 5534 bus_child_pnpinfo(dev, &sb); 5535 sbuf_putc(&sb, '\0'); 5536 bus_child_location(dev, &sb); 5537 sbuf_putc(&sb, '\0'); 5538 error = sbuf_finish(&sb); 5539 if (error == 0) 5540 error = SYSCTL_OUT(req, udev, sizeof(*udev)); 5541 sbuf_delete(&sb); 5542 free(udev, M_BUS); 5543 return (error); 5544 } 5545 5546 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, 5547 CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices, 5548 "system device tree"); 5549 5550 int 5551 bus_data_generation_check(int generation) 5552 { 5553 if (generation != bus_data_generation) 5554 return (1); 5555 5556 /* XXX generate optimised lists here? */ 5557 return (0); 5558 } 5559 5560 void 5561 bus_data_generation_update(void) 5562 { 5563 atomic_add_int(&bus_data_generation, 1); 5564 } 5565 5566 int 5567 bus_free_resource(device_t dev, int type, struct resource *r) 5568 { 5569 if (r == NULL) 5570 return (0); 5571 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 5572 } 5573 5574 device_t 5575 device_lookup_by_name(const char *name) 5576 { 5577 device_t dev; 5578 5579 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5580 if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0) 5581 return (dev); 5582 } 5583 return (NULL); 5584 } 5585 5586 /* 5587 * /dev/devctl2 implementation. The existing /dev/devctl device has 5588 * implicit semantics on open, so it could not be reused for this. 5589 * Another option would be to call this /dev/bus? 5590 */ 5591 static int 5592 find_device(struct devreq *req, device_t *devp) 5593 { 5594 device_t dev; 5595 5596 /* 5597 * First, ensure that the name is nul terminated. 5598 */ 5599 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL) 5600 return (EINVAL); 5601 5602 /* 5603 * Second, try to find an attached device whose name matches 5604 * 'name'. 5605 */ 5606 dev = device_lookup_by_name(req->dr_name); 5607 if (dev != NULL) { 5608 *devp = dev; 5609 return (0); 5610 } 5611 5612 /* Finally, give device enumerators a chance. */ 5613 dev = NULL; 5614 EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev); 5615 if (dev == NULL) 5616 return (ENOENT); 5617 *devp = dev; 5618 return (0); 5619 } 5620 5621 static bool 5622 driver_exists(device_t bus, const char *driver) 5623 { 5624 devclass_t dc; 5625 5626 for (dc = bus->devclass; dc != NULL; dc = dc->parent) { 5627 if (devclass_find_driver_internal(dc, driver) != NULL) 5628 return (true); 5629 } 5630 return (false); 5631 } 5632 5633 static void 5634 device_gen_nomatch(device_t dev) 5635 { 5636 device_t child; 5637 5638 if (dev->flags & DF_NEEDNOMATCH && 5639 dev->state == DS_NOTPRESENT) { 5640 BUS_PROBE_NOMATCH(dev->parent, dev); 5641 devnomatch(dev); 5642 dev->flags |= DF_DONENOMATCH; 5643 } 5644 dev->flags &= ~DF_NEEDNOMATCH; 5645 TAILQ_FOREACH(child, &dev->children, link) { 5646 device_gen_nomatch(child); 5647 } 5648 } 5649 5650 static void 5651 device_do_deferred_actions(void) 5652 { 5653 devclass_t dc; 5654 driverlink_t dl; 5655 5656 /* 5657 * Walk through the devclasses to find all the drivers we've tagged as 5658 * deferred during the freeze and call the driver added routines. They 5659 * have already been added to the lists in the background, so the driver 5660 * added routines that trigger a probe will have all the right bidders 5661 * for the probe auction. 5662 */ 5663 TAILQ_FOREACH(dc, &devclasses, link) { 5664 TAILQ_FOREACH(dl, &dc->drivers, link) { 5665 if (dl->flags & DL_DEFERRED_PROBE) { 5666 devclass_driver_added(dc, dl->driver); 5667 dl->flags &= ~DL_DEFERRED_PROBE; 5668 } 5669 } 5670 } 5671 5672 /* 5673 * We also defer no-match events during a freeze. Walk the tree and 5674 * generate all the pent-up events that are still relevant. 5675 */ 5676 device_gen_nomatch(root_bus); 5677 bus_data_generation_update(); 5678 } 5679 5680 static int 5681 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag, 5682 struct thread *td) 5683 { 5684 struct devreq *req; 5685 device_t dev; 5686 int error, old; 5687 5688 /* Locate the device to control. */ 5689 mtx_lock(&Giant); 5690 req = (struct devreq *)data; 5691 switch (cmd) { 5692 case DEV_ATTACH: 5693 case DEV_DETACH: 5694 case DEV_ENABLE: 5695 case DEV_DISABLE: 5696 case DEV_SUSPEND: 5697 case DEV_RESUME: 5698 case DEV_SET_DRIVER: 5699 case DEV_CLEAR_DRIVER: 5700 case DEV_RESCAN: 5701 case DEV_DELETE: 5702 case DEV_RESET: 5703 error = priv_check(td, PRIV_DRIVER); 5704 if (error == 0) 5705 error = find_device(req, &dev); 5706 break; 5707 case DEV_FREEZE: 5708 case DEV_THAW: 5709 error = priv_check(td, PRIV_DRIVER); 5710 break; 5711 default: 5712 error = ENOTTY; 5713 break; 5714 } 5715 if (error) { 5716 mtx_unlock(&Giant); 5717 return (error); 5718 } 5719 5720 /* Perform the requested operation. */ 5721 switch (cmd) { 5722 case DEV_ATTACH: 5723 if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0) 5724 error = EBUSY; 5725 else if (!device_is_enabled(dev)) 5726 error = ENXIO; 5727 else 5728 error = device_probe_and_attach(dev); 5729 break; 5730 case DEV_DETACH: 5731 if (!device_is_attached(dev)) { 5732 error = ENXIO; 5733 break; 5734 } 5735 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5736 error = device_quiesce(dev); 5737 if (error) 5738 break; 5739 } 5740 error = device_detach(dev); 5741 break; 5742 case DEV_ENABLE: 5743 if (device_is_enabled(dev)) { 5744 error = EBUSY; 5745 break; 5746 } 5747 5748 /* 5749 * If the device has been probed but not attached (e.g. 5750 * when it has been disabled by a loader hint), just 5751 * attach the device rather than doing a full probe. 5752 */ 5753 device_enable(dev); 5754 if (device_is_alive(dev)) { 5755 /* 5756 * If the device was disabled via a hint, clear 5757 * the hint. 5758 */ 5759 if (resource_disabled(dev->driver->name, dev->unit)) 5760 resource_unset_value(dev->driver->name, 5761 dev->unit, "disabled"); 5762 error = device_attach(dev); 5763 } else 5764 error = device_probe_and_attach(dev); 5765 break; 5766 case DEV_DISABLE: 5767 if (!device_is_enabled(dev)) { 5768 error = ENXIO; 5769 break; 5770 } 5771 5772 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5773 error = device_quiesce(dev); 5774 if (error) 5775 break; 5776 } 5777 5778 /* 5779 * Force DF_FIXEDCLASS on around detach to preserve 5780 * the existing name. 5781 */ 5782 old = dev->flags; 5783 dev->flags |= DF_FIXEDCLASS; 5784 error = device_detach(dev); 5785 if (!(old & DF_FIXEDCLASS)) 5786 dev->flags &= ~DF_FIXEDCLASS; 5787 if (error == 0) 5788 device_disable(dev); 5789 break; 5790 case DEV_SUSPEND: 5791 if (device_is_suspended(dev)) { 5792 error = EBUSY; 5793 break; 5794 } 5795 if (device_get_parent(dev) == NULL) { 5796 error = EINVAL; 5797 break; 5798 } 5799 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev); 5800 break; 5801 case DEV_RESUME: 5802 if (!device_is_suspended(dev)) { 5803 error = EINVAL; 5804 break; 5805 } 5806 if (device_get_parent(dev) == NULL) { 5807 error = EINVAL; 5808 break; 5809 } 5810 error = BUS_RESUME_CHILD(device_get_parent(dev), dev); 5811 break; 5812 case DEV_SET_DRIVER: { 5813 devclass_t dc; 5814 char driver[128]; 5815 5816 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL); 5817 if (error) 5818 break; 5819 if (driver[0] == '\0') { 5820 error = EINVAL; 5821 break; 5822 } 5823 if (dev->devclass != NULL && 5824 strcmp(driver, dev->devclass->name) == 0) 5825 /* XXX: Could possibly force DF_FIXEDCLASS on? */ 5826 break; 5827 5828 /* 5829 * Scan drivers for this device's bus looking for at 5830 * least one matching driver. 5831 */ 5832 if (dev->parent == NULL) { 5833 error = EINVAL; 5834 break; 5835 } 5836 if (!driver_exists(dev->parent, driver)) { 5837 error = ENOENT; 5838 break; 5839 } 5840 dc = devclass_create(driver); 5841 if (dc == NULL) { 5842 error = ENOMEM; 5843 break; 5844 } 5845 5846 /* Detach device if necessary. */ 5847 if (device_is_attached(dev)) { 5848 if (req->dr_flags & DEVF_SET_DRIVER_DETACH) 5849 error = device_detach(dev); 5850 else 5851 error = EBUSY; 5852 if (error) 5853 break; 5854 } 5855 5856 /* Clear any previously-fixed device class and unit. */ 5857 if (dev->flags & DF_FIXEDCLASS) 5858 devclass_delete_device(dev->devclass, dev); 5859 dev->flags |= DF_WILDCARD; 5860 dev->unit = -1; 5861 5862 /* Force the new device class. */ 5863 error = devclass_add_device(dc, dev); 5864 if (error) 5865 break; 5866 dev->flags |= DF_FIXEDCLASS; 5867 error = device_probe_and_attach(dev); 5868 break; 5869 } 5870 case DEV_CLEAR_DRIVER: 5871 if (!(dev->flags & DF_FIXEDCLASS)) { 5872 error = 0; 5873 break; 5874 } 5875 if (device_is_attached(dev)) { 5876 if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH) 5877 error = device_detach(dev); 5878 else 5879 error = EBUSY; 5880 if (error) 5881 break; 5882 } 5883 5884 dev->flags &= ~DF_FIXEDCLASS; 5885 dev->flags |= DF_WILDCARD; 5886 devclass_delete_device(dev->devclass, dev); 5887 error = device_probe_and_attach(dev); 5888 break; 5889 case DEV_RESCAN: 5890 if (!device_is_attached(dev)) { 5891 error = ENXIO; 5892 break; 5893 } 5894 error = BUS_RESCAN(dev); 5895 break; 5896 case DEV_DELETE: { 5897 device_t parent; 5898 5899 parent = device_get_parent(dev); 5900 if (parent == NULL) { 5901 error = EINVAL; 5902 break; 5903 } 5904 if (!(req->dr_flags & DEVF_FORCE_DELETE)) { 5905 if (bus_child_present(dev) != 0) { 5906 error = EBUSY; 5907 break; 5908 } 5909 } 5910 5911 error = device_delete_child(parent, dev); 5912 break; 5913 } 5914 case DEV_FREEZE: 5915 if (device_frozen) 5916 error = EBUSY; 5917 else 5918 device_frozen = true; 5919 break; 5920 case DEV_THAW: 5921 if (!device_frozen) 5922 error = EBUSY; 5923 else { 5924 device_do_deferred_actions(); 5925 device_frozen = false; 5926 } 5927 break; 5928 case DEV_RESET: 5929 if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) { 5930 error = EINVAL; 5931 break; 5932 } 5933 error = BUS_RESET_CHILD(device_get_parent(dev), dev, 5934 req->dr_flags); 5935 break; 5936 } 5937 mtx_unlock(&Giant); 5938 return (error); 5939 } 5940 5941 static struct cdevsw devctl2_cdevsw = { 5942 .d_version = D_VERSION, 5943 .d_ioctl = devctl2_ioctl, 5944 .d_name = "devctl2", 5945 }; 5946 5947 static void 5948 devctl2_init(void) 5949 { 5950 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL, 5951 UID_ROOT, GID_WHEEL, 0600, "devctl2"); 5952 } 5953 5954 /* 5955 * APIs to manage deprecation and obsolescence. 5956 */ 5957 static int obsolete_panic = 0; 5958 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0, 5959 "Panic when obsolete features are used (0 = never, 1 = if osbolete, " 5960 "2 = if deprecated)"); 5961 5962 static void 5963 gone_panic(int major, int running, const char *msg) 5964 { 5965 switch (obsolete_panic) 5966 { 5967 case 0: 5968 return; 5969 case 1: 5970 if (running < major) 5971 return; 5972 /* FALLTHROUGH */ 5973 default: 5974 panic("%s", msg); 5975 } 5976 } 5977 5978 void 5979 _gone_in(int major, const char *msg) 5980 { 5981 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 5982 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 5983 printf("Obsolete code will be removed soon: %s\n", msg); 5984 else 5985 printf("Deprecated code (to be removed in FreeBSD %d): %s\n", 5986 major, msg); 5987 } 5988 5989 void 5990 _gone_in_dev(device_t dev, int major, const char *msg) 5991 { 5992 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 5993 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 5994 device_printf(dev, 5995 "Obsolete code will be removed soon: %s\n", msg); 5996 else 5997 device_printf(dev, 5998 "Deprecated code (to be removed in FreeBSD %d): %s\n", 5999 major, msg); 6000 } 6001 6002 #ifdef DDB 6003 DB_SHOW_COMMAND(device, db_show_device) 6004 { 6005 device_t dev; 6006 6007 if (!have_addr) 6008 return; 6009 6010 dev = (device_t)addr; 6011 6012 db_printf("name: %s\n", device_get_nameunit(dev)); 6013 db_printf(" driver: %s\n", DRIVERNAME(dev->driver)); 6014 db_printf(" class: %s\n", DEVCLANAME(dev->devclass)); 6015 db_printf(" addr: %p\n", dev); 6016 db_printf(" parent: %p\n", dev->parent); 6017 db_printf(" softc: %p\n", dev->softc); 6018 db_printf(" ivars: %p\n", dev->ivars); 6019 } 6020 6021 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices) 6022 { 6023 device_t dev; 6024 6025 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 6026 db_show_device((db_expr_t)dev, true, count, modif); 6027 } 6028 } 6029 #endif 6030