1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997,1998,2003 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_bus.h" 33 #include "opt_ddb.h" 34 35 #include <sys/param.h> 36 #include <sys/conf.h> 37 #include <sys/domainset.h> 38 #include <sys/eventhandler.h> 39 #include <sys/lock.h> 40 #include <sys/kernel.h> 41 #include <sys/limits.h> 42 #include <sys/malloc.h> 43 #include <sys/module.h> 44 #include <sys/mutex.h> 45 #include <sys/priv.h> 46 #include <machine/bus.h> 47 #include <sys/random.h> 48 #include <sys/refcount.h> 49 #include <sys/rman.h> 50 #include <sys/sbuf.h> 51 #include <sys/smp.h> 52 #include <sys/sysctl.h> 53 #include <sys/systm.h> 54 #include <sys/bus.h> 55 #include <sys/cpuset.h> 56 57 #include <net/vnet.h> 58 59 #include <machine/cpu.h> 60 #include <machine/stdarg.h> 61 62 #include <vm/uma.h> 63 #include <vm/vm.h> 64 65 #include <ddb/ddb.h> 66 67 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 68 NULL); 69 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 70 NULL); 71 72 static bool disable_failed_devs = false; 73 SYSCTL_BOOL(_hw_bus, OID_AUTO, disable_failed_devices, CTLFLAG_RWTUN, &disable_failed_devs, 74 0, "Do not retry attaching devices that return an error from DEVICE_ATTACH the first time"); 75 76 /* 77 * Used to attach drivers to devclasses. 78 */ 79 typedef struct driverlink *driverlink_t; 80 struct driverlink { 81 kobj_class_t driver; 82 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 83 int pass; 84 int flags; 85 #define DL_DEFERRED_PROBE 1 /* Probe deferred on this */ 86 TAILQ_ENTRY(driverlink) passlink; 87 }; 88 89 /* 90 * Forward declarations 91 */ 92 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 93 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 94 typedef TAILQ_HEAD(device_list, _device) device_list_t; 95 96 struct devclass { 97 TAILQ_ENTRY(devclass) link; 98 devclass_t parent; /* parent in devclass hierarchy */ 99 driver_list_t drivers; /* bus devclasses store drivers for bus */ 100 char *name; 101 device_t *devices; /* array of devices indexed by unit */ 102 int maxunit; /* size of devices array */ 103 int flags; 104 #define DC_HAS_CHILDREN 1 105 106 struct sysctl_ctx_list sysctl_ctx; 107 struct sysctl_oid *sysctl_tree; 108 }; 109 110 /** 111 * @brief Implementation of _device. 112 * 113 * The structure is named "_device" instead of "device" to avoid type confusion 114 * caused by other subsystems defining a (struct device). 115 */ 116 struct _device { 117 /* 118 * A device is a kernel object. The first field must be the 119 * current ops table for the object. 120 */ 121 KOBJ_FIELDS; 122 123 /* 124 * Device hierarchy. 125 */ 126 TAILQ_ENTRY(_device) link; /**< list of devices in parent */ 127 TAILQ_ENTRY(_device) devlink; /**< global device list membership */ 128 device_t parent; /**< parent of this device */ 129 device_list_t children; /**< list of child devices */ 130 131 /* 132 * Details of this device. 133 */ 134 driver_t *driver; /**< current driver */ 135 devclass_t devclass; /**< current device class */ 136 int unit; /**< current unit number */ 137 char* nameunit; /**< name+unit e.g. foodev0 */ 138 char* desc; /**< driver specific description */ 139 u_int busy; /**< count of calls to device_busy() */ 140 device_state_t state; /**< current device state */ 141 uint32_t devflags; /**< api level flags for device_get_flags() */ 142 u_int flags; /**< internal device flags */ 143 u_int order; /**< order from device_add_child_ordered() */ 144 void *ivars; /**< instance variables */ 145 void *softc; /**< current driver's variables */ 146 147 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 148 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 149 }; 150 151 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 152 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 153 154 EVENTHANDLER_LIST_DEFINE(device_attach); 155 EVENTHANDLER_LIST_DEFINE(device_detach); 156 EVENTHANDLER_LIST_DEFINE(device_nomatch); 157 EVENTHANDLER_LIST_DEFINE(dev_lookup); 158 159 static void devctl2_init(void); 160 static bool device_frozen; 161 162 #define DRIVERNAME(d) ((d)? d->name : "no driver") 163 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 164 165 #ifdef BUS_DEBUG 166 167 static int bus_debug = 1; 168 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 169 "Bus debug level"); 170 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 171 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 172 173 /** 174 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 175 * prevent syslog from deleting initial spaces 176 */ 177 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 178 179 static void print_device_short(device_t dev, int indent); 180 static void print_device(device_t dev, int indent); 181 void print_device_tree_short(device_t dev, int indent); 182 void print_device_tree(device_t dev, int indent); 183 static void print_driver_short(driver_t *driver, int indent); 184 static void print_driver(driver_t *driver, int indent); 185 static void print_driver_list(driver_list_t drivers, int indent); 186 static void print_devclass_short(devclass_t dc, int indent); 187 static void print_devclass(devclass_t dc, int indent); 188 void print_devclass_list_short(void); 189 void print_devclass_list(void); 190 191 #else 192 /* Make the compiler ignore the function calls */ 193 #define PDEBUG(a) /* nop */ 194 #define DEVICENAME(d) /* nop */ 195 196 #define print_device_short(d,i) /* nop */ 197 #define print_device(d,i) /* nop */ 198 #define print_device_tree_short(d,i) /* nop */ 199 #define print_device_tree(d,i) /* nop */ 200 #define print_driver_short(d,i) /* nop */ 201 #define print_driver(d,i) /* nop */ 202 #define print_driver_list(d,i) /* nop */ 203 #define print_devclass_short(d,i) /* nop */ 204 #define print_devclass(d,i) /* nop */ 205 #define print_devclass_list_short() /* nop */ 206 #define print_devclass_list() /* nop */ 207 #endif 208 209 /* 210 * dev sysctl tree 211 */ 212 213 enum { 214 DEVCLASS_SYSCTL_PARENT, 215 }; 216 217 static int 218 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 219 { 220 devclass_t dc = (devclass_t)arg1; 221 const char *value; 222 223 switch (arg2) { 224 case DEVCLASS_SYSCTL_PARENT: 225 value = dc->parent ? dc->parent->name : ""; 226 break; 227 default: 228 return (EINVAL); 229 } 230 return (SYSCTL_OUT_STR(req, value)); 231 } 232 233 static void 234 devclass_sysctl_init(devclass_t dc) 235 { 236 if (dc->sysctl_tree != NULL) 237 return; 238 sysctl_ctx_init(&dc->sysctl_ctx); 239 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 240 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 241 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 242 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 243 OID_AUTO, "%parent", 244 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 245 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 246 "parent class"); 247 } 248 249 enum { 250 DEVICE_SYSCTL_DESC, 251 DEVICE_SYSCTL_DRIVER, 252 DEVICE_SYSCTL_LOCATION, 253 DEVICE_SYSCTL_PNPINFO, 254 DEVICE_SYSCTL_PARENT, 255 }; 256 257 static int 258 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 259 { 260 struct sbuf sb; 261 device_t dev = (device_t)arg1; 262 int error; 263 264 sbuf_new_for_sysctl(&sb, NULL, 1024, req); 265 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 266 bus_topo_lock(); 267 switch (arg2) { 268 case DEVICE_SYSCTL_DESC: 269 sbuf_cat(&sb, dev->desc ? dev->desc : ""); 270 break; 271 case DEVICE_SYSCTL_DRIVER: 272 sbuf_cat(&sb, dev->driver ? dev->driver->name : ""); 273 break; 274 case DEVICE_SYSCTL_LOCATION: 275 bus_child_location(dev, &sb); 276 break; 277 case DEVICE_SYSCTL_PNPINFO: 278 bus_child_pnpinfo(dev, &sb); 279 break; 280 case DEVICE_SYSCTL_PARENT: 281 sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : ""); 282 break; 283 default: 284 error = EINVAL; 285 goto out; 286 } 287 error = sbuf_finish(&sb); 288 out: 289 bus_topo_unlock(); 290 sbuf_delete(&sb); 291 return (error); 292 } 293 294 static void 295 device_sysctl_init(device_t dev) 296 { 297 devclass_t dc = dev->devclass; 298 int domain; 299 300 if (dev->sysctl_tree != NULL) 301 return; 302 devclass_sysctl_init(dc); 303 sysctl_ctx_init(&dev->sysctl_ctx); 304 dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx, 305 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 306 dev->nameunit + strlen(dc->name), 307 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index"); 308 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 309 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 310 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 311 "device description"); 312 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 313 OID_AUTO, "%driver", 314 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 315 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 316 "device driver name"); 317 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 318 OID_AUTO, "%location", 319 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 320 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 321 "device location relative to parent"); 322 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 323 OID_AUTO, "%pnpinfo", 324 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 325 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 326 "device identification"); 327 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 328 OID_AUTO, "%parent", 329 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 330 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 331 "parent device"); 332 if (bus_get_domain(dev, &domain) == 0) 333 SYSCTL_ADD_INT(&dev->sysctl_ctx, 334 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", 335 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, domain, "NUMA domain"); 336 } 337 338 static void 339 device_sysctl_update(device_t dev) 340 { 341 devclass_t dc = dev->devclass; 342 343 if (dev->sysctl_tree == NULL) 344 return; 345 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 346 } 347 348 static void 349 device_sysctl_fini(device_t dev) 350 { 351 if (dev->sysctl_tree == NULL) 352 return; 353 sysctl_ctx_free(&dev->sysctl_ctx); 354 dev->sysctl_tree = NULL; 355 } 356 357 static struct device_list bus_data_devices; 358 static int bus_data_generation = 1; 359 360 static kobj_method_t null_methods[] = { 361 KOBJMETHOD_END 362 }; 363 364 DEFINE_CLASS(null, null_methods, 0); 365 366 void 367 bus_topo_assert(void) 368 { 369 370 GIANT_REQUIRED; 371 } 372 373 struct mtx * 374 bus_topo_mtx(void) 375 { 376 377 return (&Giant); 378 } 379 380 void 381 bus_topo_lock(void) 382 { 383 384 mtx_lock(bus_topo_mtx()); 385 } 386 387 void 388 bus_topo_unlock(void) 389 { 390 391 mtx_unlock(bus_topo_mtx()); 392 } 393 394 /* 395 * Bus pass implementation 396 */ 397 398 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 399 int bus_current_pass = BUS_PASS_ROOT; 400 401 /** 402 * @internal 403 * @brief Register the pass level of a new driver attachment 404 * 405 * Register a new driver attachment's pass level. If no driver 406 * attachment with the same pass level has been added, then @p new 407 * will be added to the global passes list. 408 * 409 * @param new the new driver attachment 410 */ 411 static void 412 driver_register_pass(struct driverlink *new) 413 { 414 struct driverlink *dl; 415 416 /* We only consider pass numbers during boot. */ 417 if (bus_current_pass == BUS_PASS_DEFAULT) 418 return; 419 420 /* 421 * Walk the passes list. If we already know about this pass 422 * then there is nothing to do. If we don't, then insert this 423 * driver link into the list. 424 */ 425 TAILQ_FOREACH(dl, &passes, passlink) { 426 if (dl->pass < new->pass) 427 continue; 428 if (dl->pass == new->pass) 429 return; 430 TAILQ_INSERT_BEFORE(dl, new, passlink); 431 return; 432 } 433 TAILQ_INSERT_TAIL(&passes, new, passlink); 434 } 435 436 /** 437 * @brief Raise the current bus pass 438 * 439 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 440 * method on the root bus to kick off a new device tree scan for each 441 * new pass level that has at least one driver. 442 */ 443 void 444 bus_set_pass(int pass) 445 { 446 struct driverlink *dl; 447 448 if (bus_current_pass > pass) 449 panic("Attempt to lower bus pass level"); 450 451 TAILQ_FOREACH(dl, &passes, passlink) { 452 /* Skip pass values below the current pass level. */ 453 if (dl->pass <= bus_current_pass) 454 continue; 455 456 /* 457 * Bail once we hit a driver with a pass level that is 458 * too high. 459 */ 460 if (dl->pass > pass) 461 break; 462 463 /* 464 * Raise the pass level to the next level and rescan 465 * the tree. 466 */ 467 bus_current_pass = dl->pass; 468 BUS_NEW_PASS(root_bus); 469 } 470 471 /* 472 * If there isn't a driver registered for the requested pass, 473 * then bus_current_pass might still be less than 'pass'. Set 474 * it to 'pass' in that case. 475 */ 476 if (bus_current_pass < pass) 477 bus_current_pass = pass; 478 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 479 } 480 481 /* 482 * Devclass implementation 483 */ 484 485 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 486 487 /** 488 * @internal 489 * @brief Find or create a device class 490 * 491 * If a device class with the name @p classname exists, return it, 492 * otherwise if @p create is non-zero create and return a new device 493 * class. 494 * 495 * If @p parentname is non-NULL, the parent of the devclass is set to 496 * the devclass of that name. 497 * 498 * @param classname the devclass name to find or create 499 * @param parentname the parent devclass name or @c NULL 500 * @param create non-zero to create a devclass 501 */ 502 static devclass_t 503 devclass_find_internal(const char *classname, const char *parentname, 504 int create) 505 { 506 devclass_t dc; 507 508 PDEBUG(("looking for %s", classname)); 509 if (!classname) 510 return (NULL); 511 512 TAILQ_FOREACH(dc, &devclasses, link) { 513 if (!strcmp(dc->name, classname)) 514 break; 515 } 516 517 if (create && !dc) { 518 PDEBUG(("creating %s", classname)); 519 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 520 M_BUS, M_NOWAIT | M_ZERO); 521 if (!dc) 522 return (NULL); 523 dc->parent = NULL; 524 dc->name = (char*) (dc + 1); 525 strcpy(dc->name, classname); 526 TAILQ_INIT(&dc->drivers); 527 TAILQ_INSERT_TAIL(&devclasses, dc, link); 528 529 bus_data_generation_update(); 530 } 531 532 /* 533 * If a parent class is specified, then set that as our parent so 534 * that this devclass will support drivers for the parent class as 535 * well. If the parent class has the same name don't do this though 536 * as it creates a cycle that can trigger an infinite loop in 537 * device_probe_child() if a device exists for which there is no 538 * suitable driver. 539 */ 540 if (parentname && dc && !dc->parent && 541 strcmp(classname, parentname) != 0) { 542 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 543 dc->parent->flags |= DC_HAS_CHILDREN; 544 } 545 546 return (dc); 547 } 548 549 /** 550 * @brief Create a device class 551 * 552 * If a device class with the name @p classname exists, return it, 553 * otherwise create and return a new device class. 554 * 555 * @param classname the devclass name to find or create 556 */ 557 devclass_t 558 devclass_create(const char *classname) 559 { 560 return (devclass_find_internal(classname, NULL, TRUE)); 561 } 562 563 /** 564 * @brief Find a device class 565 * 566 * If a device class with the name @p classname exists, return it, 567 * otherwise return @c NULL. 568 * 569 * @param classname the devclass name to find 570 */ 571 devclass_t 572 devclass_find(const char *classname) 573 { 574 return (devclass_find_internal(classname, NULL, FALSE)); 575 } 576 577 /** 578 * @brief Register that a device driver has been added to a devclass 579 * 580 * Register that a device driver has been added to a devclass. This 581 * is called by devclass_add_driver to accomplish the recursive 582 * notification of all the children classes of dc, as well as dc. 583 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 584 * the devclass. 585 * 586 * We do a full search here of the devclass list at each iteration 587 * level to save storing children-lists in the devclass structure. If 588 * we ever move beyond a few dozen devices doing this, we may need to 589 * reevaluate... 590 * 591 * @param dc the devclass to edit 592 * @param driver the driver that was just added 593 */ 594 static void 595 devclass_driver_added(devclass_t dc, driver_t *driver) 596 { 597 devclass_t parent; 598 int i; 599 600 /* 601 * Call BUS_DRIVER_ADDED for any existing buses in this class. 602 */ 603 for (i = 0; i < dc->maxunit; i++) 604 if (dc->devices[i] && device_is_attached(dc->devices[i])) 605 BUS_DRIVER_ADDED(dc->devices[i], driver); 606 607 /* 608 * Walk through the children classes. Since we only keep a 609 * single parent pointer around, we walk the entire list of 610 * devclasses looking for children. We set the 611 * DC_HAS_CHILDREN flag when a child devclass is created on 612 * the parent, so we only walk the list for those devclasses 613 * that have children. 614 */ 615 if (!(dc->flags & DC_HAS_CHILDREN)) 616 return; 617 parent = dc; 618 TAILQ_FOREACH(dc, &devclasses, link) { 619 if (dc->parent == parent) 620 devclass_driver_added(dc, driver); 621 } 622 } 623 624 static void 625 device_handle_nomatch(device_t dev) 626 { 627 BUS_PROBE_NOMATCH(dev->parent, dev); 628 EVENTHANDLER_DIRECT_INVOKE(device_nomatch, dev); 629 dev->flags |= DF_DONENOMATCH; 630 } 631 632 /** 633 * @brief Add a device driver to a device class 634 * 635 * Add a device driver to a devclass. This is normally called 636 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 637 * all devices in the devclass will be called to allow them to attempt 638 * to re-probe any unmatched children. 639 * 640 * @param dc the devclass to edit 641 * @param driver the driver to register 642 */ 643 int 644 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 645 { 646 driverlink_t dl; 647 devclass_t child_dc; 648 const char *parentname; 649 650 PDEBUG(("%s", DRIVERNAME(driver))); 651 652 /* Don't allow invalid pass values. */ 653 if (pass <= BUS_PASS_ROOT) 654 return (EINVAL); 655 656 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 657 if (!dl) 658 return (ENOMEM); 659 660 /* 661 * Compile the driver's methods. Also increase the reference count 662 * so that the class doesn't get freed when the last instance 663 * goes. This means we can safely use static methods and avoids a 664 * double-free in devclass_delete_driver. 665 */ 666 kobj_class_compile((kobj_class_t) driver); 667 668 /* 669 * If the driver has any base classes, make the 670 * devclass inherit from the devclass of the driver's 671 * first base class. This will allow the system to 672 * search for drivers in both devclasses for children 673 * of a device using this driver. 674 */ 675 if (driver->baseclasses) 676 parentname = driver->baseclasses[0]->name; 677 else 678 parentname = NULL; 679 child_dc = devclass_find_internal(driver->name, parentname, TRUE); 680 if (dcp != NULL) 681 *dcp = child_dc; 682 683 dl->driver = driver; 684 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 685 driver->refs++; /* XXX: kobj_mtx */ 686 dl->pass = pass; 687 driver_register_pass(dl); 688 689 if (device_frozen) { 690 dl->flags |= DL_DEFERRED_PROBE; 691 } else { 692 devclass_driver_added(dc, driver); 693 } 694 bus_data_generation_update(); 695 return (0); 696 } 697 698 /** 699 * @brief Register that a device driver has been deleted from a devclass 700 * 701 * Register that a device driver has been removed from a devclass. 702 * This is called by devclass_delete_driver to accomplish the 703 * recursive notification of all the children classes of busclass, as 704 * well as busclass. Each layer will attempt to detach the driver 705 * from any devices that are children of the bus's devclass. The function 706 * will return an error if a device fails to detach. 707 * 708 * We do a full search here of the devclass list at each iteration 709 * level to save storing children-lists in the devclass structure. If 710 * we ever move beyond a few dozen devices doing this, we may need to 711 * reevaluate... 712 * 713 * @param busclass the devclass of the parent bus 714 * @param dc the devclass of the driver being deleted 715 * @param driver the driver being deleted 716 */ 717 static int 718 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 719 { 720 devclass_t parent; 721 device_t dev; 722 int error, i; 723 724 /* 725 * Disassociate from any devices. We iterate through all the 726 * devices in the devclass of the driver and detach any which are 727 * using the driver and which have a parent in the devclass which 728 * we are deleting from. 729 * 730 * Note that since a driver can be in multiple devclasses, we 731 * should not detach devices which are not children of devices in 732 * the affected devclass. 733 * 734 * If we're frozen, we don't generate NOMATCH events. Mark to 735 * generate later. 736 */ 737 for (i = 0; i < dc->maxunit; i++) { 738 if (dc->devices[i]) { 739 dev = dc->devices[i]; 740 if (dev->driver == driver && dev->parent && 741 dev->parent->devclass == busclass) { 742 if ((error = device_detach(dev)) != 0) 743 return (error); 744 if (device_frozen) { 745 dev->flags &= ~DF_DONENOMATCH; 746 dev->flags |= DF_NEEDNOMATCH; 747 } else { 748 device_handle_nomatch(dev); 749 } 750 } 751 } 752 } 753 754 /* 755 * Walk through the children classes. Since we only keep a 756 * single parent pointer around, we walk the entire list of 757 * devclasses looking for children. We set the 758 * DC_HAS_CHILDREN flag when a child devclass is created on 759 * the parent, so we only walk the list for those devclasses 760 * that have children. 761 */ 762 if (!(busclass->flags & DC_HAS_CHILDREN)) 763 return (0); 764 parent = busclass; 765 TAILQ_FOREACH(busclass, &devclasses, link) { 766 if (busclass->parent == parent) { 767 error = devclass_driver_deleted(busclass, dc, driver); 768 if (error) 769 return (error); 770 } 771 } 772 return (0); 773 } 774 775 /** 776 * @brief Delete a device driver from a device class 777 * 778 * Delete a device driver from a devclass. This is normally called 779 * automatically by DRIVER_MODULE(). 780 * 781 * If the driver is currently attached to any devices, 782 * devclass_delete_driver() will first attempt to detach from each 783 * device. If one of the detach calls fails, the driver will not be 784 * deleted. 785 * 786 * @param dc the devclass to edit 787 * @param driver the driver to unregister 788 */ 789 int 790 devclass_delete_driver(devclass_t busclass, driver_t *driver) 791 { 792 devclass_t dc = devclass_find(driver->name); 793 driverlink_t dl; 794 int error; 795 796 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 797 798 if (!dc) 799 return (0); 800 801 /* 802 * Find the link structure in the bus' list of drivers. 803 */ 804 TAILQ_FOREACH(dl, &busclass->drivers, link) { 805 if (dl->driver == driver) 806 break; 807 } 808 809 if (!dl) { 810 PDEBUG(("%s not found in %s list", driver->name, 811 busclass->name)); 812 return (ENOENT); 813 } 814 815 error = devclass_driver_deleted(busclass, dc, driver); 816 if (error != 0) 817 return (error); 818 819 TAILQ_REMOVE(&busclass->drivers, dl, link); 820 free(dl, M_BUS); 821 822 /* XXX: kobj_mtx */ 823 driver->refs--; 824 if (driver->refs == 0) 825 kobj_class_free((kobj_class_t) driver); 826 827 bus_data_generation_update(); 828 return (0); 829 } 830 831 /** 832 * @brief Quiesces a set of device drivers from a device class 833 * 834 * Quiesce a device driver from a devclass. This is normally called 835 * automatically by DRIVER_MODULE(). 836 * 837 * If the driver is currently attached to any devices, 838 * devclass_quiesece_driver() will first attempt to quiesce each 839 * device. 840 * 841 * @param dc the devclass to edit 842 * @param driver the driver to unregister 843 */ 844 static int 845 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 846 { 847 devclass_t dc = devclass_find(driver->name); 848 driverlink_t dl; 849 device_t dev; 850 int i; 851 int error; 852 853 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 854 855 if (!dc) 856 return (0); 857 858 /* 859 * Find the link structure in the bus' list of drivers. 860 */ 861 TAILQ_FOREACH(dl, &busclass->drivers, link) { 862 if (dl->driver == driver) 863 break; 864 } 865 866 if (!dl) { 867 PDEBUG(("%s not found in %s list", driver->name, 868 busclass->name)); 869 return (ENOENT); 870 } 871 872 /* 873 * Quiesce all devices. We iterate through all the devices in 874 * the devclass of the driver and quiesce any which are using 875 * the driver and which have a parent in the devclass which we 876 * are quiescing. 877 * 878 * Note that since a driver can be in multiple devclasses, we 879 * should not quiesce devices which are not children of 880 * devices in the affected devclass. 881 */ 882 for (i = 0; i < dc->maxunit; i++) { 883 if (dc->devices[i]) { 884 dev = dc->devices[i]; 885 if (dev->driver == driver && dev->parent && 886 dev->parent->devclass == busclass) { 887 if ((error = device_quiesce(dev)) != 0) 888 return (error); 889 } 890 } 891 } 892 893 return (0); 894 } 895 896 /** 897 * @internal 898 */ 899 static driverlink_t 900 devclass_find_driver_internal(devclass_t dc, const char *classname) 901 { 902 driverlink_t dl; 903 904 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 905 906 TAILQ_FOREACH(dl, &dc->drivers, link) { 907 if (!strcmp(dl->driver->name, classname)) 908 return (dl); 909 } 910 911 PDEBUG(("not found")); 912 return (NULL); 913 } 914 915 /** 916 * @brief Return the name of the devclass 917 */ 918 const char * 919 devclass_get_name(devclass_t dc) 920 { 921 return (dc->name); 922 } 923 924 /** 925 * @brief Find a device given a unit number 926 * 927 * @param dc the devclass to search 928 * @param unit the unit number to search for 929 * 930 * @returns the device with the given unit number or @c 931 * NULL if there is no such device 932 */ 933 device_t 934 devclass_get_device(devclass_t dc, int unit) 935 { 936 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 937 return (NULL); 938 return (dc->devices[unit]); 939 } 940 941 /** 942 * @brief Find the softc field of a device given a unit number 943 * 944 * @param dc the devclass to search 945 * @param unit the unit number to search for 946 * 947 * @returns the softc field of the device with the given 948 * unit number or @c NULL if there is no such 949 * device 950 */ 951 void * 952 devclass_get_softc(devclass_t dc, int unit) 953 { 954 device_t dev; 955 956 dev = devclass_get_device(dc, unit); 957 if (!dev) 958 return (NULL); 959 960 return (device_get_softc(dev)); 961 } 962 963 /** 964 * @brief Get a list of devices in the devclass 965 * 966 * An array containing a list of all the devices in the given devclass 967 * is allocated and returned in @p *devlistp. The number of devices 968 * in the array is returned in @p *devcountp. The caller should free 969 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 970 * 971 * @param dc the devclass to examine 972 * @param devlistp points at location for array pointer return 973 * value 974 * @param devcountp points at location for array size return value 975 * 976 * @retval 0 success 977 * @retval ENOMEM the array allocation failed 978 */ 979 int 980 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 981 { 982 int count, i; 983 device_t *list; 984 985 count = devclass_get_count(dc); 986 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 987 if (!list) 988 return (ENOMEM); 989 990 count = 0; 991 for (i = 0; i < dc->maxunit; i++) { 992 if (dc->devices[i]) { 993 list[count] = dc->devices[i]; 994 count++; 995 } 996 } 997 998 *devlistp = list; 999 *devcountp = count; 1000 1001 return (0); 1002 } 1003 1004 /** 1005 * @brief Get a list of drivers in the devclass 1006 * 1007 * An array containing a list of pointers to all the drivers in the 1008 * given devclass is allocated and returned in @p *listp. The number 1009 * of drivers in the array is returned in @p *countp. The caller should 1010 * free the array using @c free(p, M_TEMP). 1011 * 1012 * @param dc the devclass to examine 1013 * @param listp gives location for array pointer return value 1014 * @param countp gives location for number of array elements 1015 * return value 1016 * 1017 * @retval 0 success 1018 * @retval ENOMEM the array allocation failed 1019 */ 1020 int 1021 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1022 { 1023 driverlink_t dl; 1024 driver_t **list; 1025 int count; 1026 1027 count = 0; 1028 TAILQ_FOREACH(dl, &dc->drivers, link) 1029 count++; 1030 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1031 if (list == NULL) 1032 return (ENOMEM); 1033 1034 count = 0; 1035 TAILQ_FOREACH(dl, &dc->drivers, link) { 1036 list[count] = dl->driver; 1037 count++; 1038 } 1039 *listp = list; 1040 *countp = count; 1041 1042 return (0); 1043 } 1044 1045 /** 1046 * @brief Get the number of devices in a devclass 1047 * 1048 * @param dc the devclass to examine 1049 */ 1050 int 1051 devclass_get_count(devclass_t dc) 1052 { 1053 int count, i; 1054 1055 count = 0; 1056 for (i = 0; i < dc->maxunit; i++) 1057 if (dc->devices[i]) 1058 count++; 1059 return (count); 1060 } 1061 1062 /** 1063 * @brief Get the maximum unit number used in a devclass 1064 * 1065 * Note that this is one greater than the highest currently-allocated 1066 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1067 * that not even the devclass has been allocated yet. 1068 * 1069 * @param dc the devclass to examine 1070 */ 1071 int 1072 devclass_get_maxunit(devclass_t dc) 1073 { 1074 if (dc == NULL) 1075 return (-1); 1076 return (dc->maxunit); 1077 } 1078 1079 /** 1080 * @brief Find a free unit number in a devclass 1081 * 1082 * This function searches for the first unused unit number greater 1083 * that or equal to @p unit. 1084 * 1085 * @param dc the devclass to examine 1086 * @param unit the first unit number to check 1087 */ 1088 int 1089 devclass_find_free_unit(devclass_t dc, int unit) 1090 { 1091 if (dc == NULL) 1092 return (unit); 1093 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1094 unit++; 1095 return (unit); 1096 } 1097 1098 /** 1099 * @brief Set the parent of a devclass 1100 * 1101 * The parent class is normally initialised automatically by 1102 * DRIVER_MODULE(). 1103 * 1104 * @param dc the devclass to edit 1105 * @param pdc the new parent devclass 1106 */ 1107 void 1108 devclass_set_parent(devclass_t dc, devclass_t pdc) 1109 { 1110 dc->parent = pdc; 1111 } 1112 1113 /** 1114 * @brief Get the parent of a devclass 1115 * 1116 * @param dc the devclass to examine 1117 */ 1118 devclass_t 1119 devclass_get_parent(devclass_t dc) 1120 { 1121 return (dc->parent); 1122 } 1123 1124 struct sysctl_ctx_list * 1125 devclass_get_sysctl_ctx(devclass_t dc) 1126 { 1127 return (&dc->sysctl_ctx); 1128 } 1129 1130 struct sysctl_oid * 1131 devclass_get_sysctl_tree(devclass_t dc) 1132 { 1133 return (dc->sysctl_tree); 1134 } 1135 1136 /** 1137 * @internal 1138 * @brief Allocate a unit number 1139 * 1140 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1141 * will do). The allocated unit number is returned in @p *unitp. 1142 1143 * @param dc the devclass to allocate from 1144 * @param unitp points at the location for the allocated unit 1145 * number 1146 * 1147 * @retval 0 success 1148 * @retval EEXIST the requested unit number is already allocated 1149 * @retval ENOMEM memory allocation failure 1150 */ 1151 static int 1152 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1153 { 1154 const char *s; 1155 int unit = *unitp; 1156 1157 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1158 1159 /* Ask the parent bus if it wants to wire this device. */ 1160 if (unit == -1) 1161 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1162 &unit); 1163 1164 /* If we were given a wired unit number, check for existing device */ 1165 /* XXX imp XXX */ 1166 if (unit != -1) { 1167 if (unit >= 0 && unit < dc->maxunit && 1168 dc->devices[unit] != NULL) { 1169 if (bootverbose) 1170 printf("%s: %s%d already exists; skipping it\n", 1171 dc->name, dc->name, *unitp); 1172 return (EEXIST); 1173 } 1174 } else { 1175 /* Unwired device, find the next available slot for it */ 1176 unit = 0; 1177 for (unit = 0;; unit++) { 1178 /* If this device slot is already in use, skip it. */ 1179 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1180 continue; 1181 1182 /* If there is an "at" hint for a unit then skip it. */ 1183 if (resource_string_value(dc->name, unit, "at", &s) == 1184 0) 1185 continue; 1186 1187 break; 1188 } 1189 } 1190 1191 /* 1192 * We've selected a unit beyond the length of the table, so let's 1193 * extend the table to make room for all units up to and including 1194 * this one. 1195 */ 1196 if (unit >= dc->maxunit) { 1197 device_t *newlist, *oldlist; 1198 int newsize; 1199 1200 oldlist = dc->devices; 1201 newsize = roundup((unit + 1), 1202 MAX(1, MINALLOCSIZE / sizeof(device_t))); 1203 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1204 if (!newlist) 1205 return (ENOMEM); 1206 if (oldlist != NULL) 1207 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1208 bzero(newlist + dc->maxunit, 1209 sizeof(device_t) * (newsize - dc->maxunit)); 1210 dc->devices = newlist; 1211 dc->maxunit = newsize; 1212 if (oldlist != NULL) 1213 free(oldlist, M_BUS); 1214 } 1215 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1216 1217 *unitp = unit; 1218 return (0); 1219 } 1220 1221 /** 1222 * @internal 1223 * @brief Add a device to a devclass 1224 * 1225 * A unit number is allocated for the device (using the device's 1226 * preferred unit number if any) and the device is registered in the 1227 * devclass. This allows the device to be looked up by its unit 1228 * number, e.g. by decoding a dev_t minor number. 1229 * 1230 * @param dc the devclass to add to 1231 * @param dev the device to add 1232 * 1233 * @retval 0 success 1234 * @retval EEXIST the requested unit number is already allocated 1235 * @retval ENOMEM memory allocation failure 1236 */ 1237 static int 1238 devclass_add_device(devclass_t dc, device_t dev) 1239 { 1240 int buflen, error; 1241 1242 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1243 1244 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1245 if (buflen < 0) 1246 return (ENOMEM); 1247 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1248 if (!dev->nameunit) 1249 return (ENOMEM); 1250 1251 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1252 free(dev->nameunit, M_BUS); 1253 dev->nameunit = NULL; 1254 return (error); 1255 } 1256 dc->devices[dev->unit] = dev; 1257 dev->devclass = dc; 1258 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1259 1260 return (0); 1261 } 1262 1263 /** 1264 * @internal 1265 * @brief Delete a device from a devclass 1266 * 1267 * The device is removed from the devclass's device list and its unit 1268 * number is freed. 1269 1270 * @param dc the devclass to delete from 1271 * @param dev the device to delete 1272 * 1273 * @retval 0 success 1274 */ 1275 static int 1276 devclass_delete_device(devclass_t dc, device_t dev) 1277 { 1278 if (!dc || !dev) 1279 return (0); 1280 1281 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1282 1283 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1284 panic("devclass_delete_device: inconsistent device class"); 1285 dc->devices[dev->unit] = NULL; 1286 if (dev->flags & DF_WILDCARD) 1287 dev->unit = -1; 1288 dev->devclass = NULL; 1289 free(dev->nameunit, M_BUS); 1290 dev->nameunit = NULL; 1291 1292 return (0); 1293 } 1294 1295 /** 1296 * @internal 1297 * @brief Make a new device and add it as a child of @p parent 1298 * 1299 * @param parent the parent of the new device 1300 * @param name the devclass name of the new device or @c NULL 1301 * to leave the devclass unspecified 1302 * @parem unit the unit number of the new device of @c -1 to 1303 * leave the unit number unspecified 1304 * 1305 * @returns the new device 1306 */ 1307 static device_t 1308 make_device(device_t parent, const char *name, int unit) 1309 { 1310 device_t dev; 1311 devclass_t dc; 1312 1313 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1314 1315 if (name) { 1316 dc = devclass_find_internal(name, NULL, TRUE); 1317 if (!dc) { 1318 printf("make_device: can't find device class %s\n", 1319 name); 1320 return (NULL); 1321 } 1322 } else { 1323 dc = NULL; 1324 } 1325 1326 dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO); 1327 if (!dev) 1328 return (NULL); 1329 1330 dev->parent = parent; 1331 TAILQ_INIT(&dev->children); 1332 kobj_init((kobj_t) dev, &null_class); 1333 dev->driver = NULL; 1334 dev->devclass = NULL; 1335 dev->unit = unit; 1336 dev->nameunit = NULL; 1337 dev->desc = NULL; 1338 dev->busy = 0; 1339 dev->devflags = 0; 1340 dev->flags = DF_ENABLED; 1341 dev->order = 0; 1342 if (unit == -1) 1343 dev->flags |= DF_WILDCARD; 1344 if (name) { 1345 dev->flags |= DF_FIXEDCLASS; 1346 if (devclass_add_device(dc, dev)) { 1347 kobj_delete((kobj_t) dev, M_BUS); 1348 return (NULL); 1349 } 1350 } 1351 if (parent != NULL && device_has_quiet_children(parent)) 1352 dev->flags |= DF_QUIET | DF_QUIET_CHILDREN; 1353 dev->ivars = NULL; 1354 dev->softc = NULL; 1355 1356 dev->state = DS_NOTPRESENT; 1357 1358 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1359 bus_data_generation_update(); 1360 1361 return (dev); 1362 } 1363 1364 /** 1365 * @internal 1366 * @brief Print a description of a device. 1367 */ 1368 static int 1369 device_print_child(device_t dev, device_t child) 1370 { 1371 int retval = 0; 1372 1373 if (device_is_alive(child)) 1374 retval += BUS_PRINT_CHILD(dev, child); 1375 else 1376 retval += device_printf(child, " not found\n"); 1377 1378 return (retval); 1379 } 1380 1381 /** 1382 * @brief Create a new device 1383 * 1384 * This creates a new device and adds it as a child of an existing 1385 * parent device. The new device will be added after the last existing 1386 * child with order zero. 1387 * 1388 * @param dev the device which will be the parent of the 1389 * new child device 1390 * @param name devclass name for new device or @c NULL if not 1391 * specified 1392 * @param unit unit number for new device or @c -1 if not 1393 * specified 1394 * 1395 * @returns the new device 1396 */ 1397 device_t 1398 device_add_child(device_t dev, const char *name, int unit) 1399 { 1400 return (device_add_child_ordered(dev, 0, name, unit)); 1401 } 1402 1403 /** 1404 * @brief Create a new device 1405 * 1406 * This creates a new device and adds it as a child of an existing 1407 * parent device. The new device will be added after the last existing 1408 * child with the same order. 1409 * 1410 * @param dev the device which will be the parent of the 1411 * new child device 1412 * @param order a value which is used to partially sort the 1413 * children of @p dev - devices created using 1414 * lower values of @p order appear first in @p 1415 * dev's list of children 1416 * @param name devclass name for new device or @c NULL if not 1417 * specified 1418 * @param unit unit number for new device or @c -1 if not 1419 * specified 1420 * 1421 * @returns the new device 1422 */ 1423 device_t 1424 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1425 { 1426 device_t child; 1427 device_t place; 1428 1429 PDEBUG(("%s at %s with order %u as unit %d", 1430 name, DEVICENAME(dev), order, unit)); 1431 KASSERT(name != NULL || unit == -1, 1432 ("child device with wildcard name and specific unit number")); 1433 1434 child = make_device(dev, name, unit); 1435 if (child == NULL) 1436 return (child); 1437 child->order = order; 1438 1439 TAILQ_FOREACH(place, &dev->children, link) { 1440 if (place->order > order) 1441 break; 1442 } 1443 1444 if (place) { 1445 /* 1446 * The device 'place' is the first device whose order is 1447 * greater than the new child. 1448 */ 1449 TAILQ_INSERT_BEFORE(place, child, link); 1450 } else { 1451 /* 1452 * The new child's order is greater or equal to the order of 1453 * any existing device. Add the child to the tail of the list. 1454 */ 1455 TAILQ_INSERT_TAIL(&dev->children, child, link); 1456 } 1457 1458 bus_data_generation_update(); 1459 return (child); 1460 } 1461 1462 /** 1463 * @brief Delete a device 1464 * 1465 * This function deletes a device along with all of its children. If 1466 * the device currently has a driver attached to it, the device is 1467 * detached first using device_detach(). 1468 * 1469 * @param dev the parent device 1470 * @param child the device to delete 1471 * 1472 * @retval 0 success 1473 * @retval non-zero a unit error code describing the error 1474 */ 1475 int 1476 device_delete_child(device_t dev, device_t child) 1477 { 1478 int error; 1479 device_t grandchild; 1480 1481 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1482 1483 /* detach parent before deleting children, if any */ 1484 if ((error = device_detach(child)) != 0) 1485 return (error); 1486 1487 /* remove children second */ 1488 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1489 error = device_delete_child(child, grandchild); 1490 if (error) 1491 return (error); 1492 } 1493 1494 if (child->devclass) 1495 devclass_delete_device(child->devclass, child); 1496 if (child->parent) 1497 BUS_CHILD_DELETED(dev, child); 1498 TAILQ_REMOVE(&dev->children, child, link); 1499 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1500 kobj_delete((kobj_t) child, M_BUS); 1501 1502 bus_data_generation_update(); 1503 return (0); 1504 } 1505 1506 /** 1507 * @brief Delete all children devices of the given device, if any. 1508 * 1509 * This function deletes all children devices of the given device, if 1510 * any, using the device_delete_child() function for each device it 1511 * finds. If a child device cannot be deleted, this function will 1512 * return an error code. 1513 * 1514 * @param dev the parent device 1515 * 1516 * @retval 0 success 1517 * @retval non-zero a device would not detach 1518 */ 1519 int 1520 device_delete_children(device_t dev) 1521 { 1522 device_t child; 1523 int error; 1524 1525 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 1526 1527 error = 0; 1528 1529 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 1530 error = device_delete_child(dev, child); 1531 if (error) { 1532 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 1533 break; 1534 } 1535 } 1536 return (error); 1537 } 1538 1539 /** 1540 * @brief Find a device given a unit number 1541 * 1542 * This is similar to devclass_get_devices() but only searches for 1543 * devices which have @p dev as a parent. 1544 * 1545 * @param dev the parent device to search 1546 * @param unit the unit number to search for. If the unit is -1, 1547 * return the first child of @p dev which has name 1548 * @p classname (that is, the one with the lowest unit.) 1549 * 1550 * @returns the device with the given unit number or @c 1551 * NULL if there is no such device 1552 */ 1553 device_t 1554 device_find_child(device_t dev, const char *classname, int unit) 1555 { 1556 devclass_t dc; 1557 device_t child; 1558 1559 dc = devclass_find(classname); 1560 if (!dc) 1561 return (NULL); 1562 1563 if (unit != -1) { 1564 child = devclass_get_device(dc, unit); 1565 if (child && child->parent == dev) 1566 return (child); 1567 } else { 1568 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 1569 child = devclass_get_device(dc, unit); 1570 if (child && child->parent == dev) 1571 return (child); 1572 } 1573 } 1574 return (NULL); 1575 } 1576 1577 /** 1578 * @internal 1579 */ 1580 static driverlink_t 1581 first_matching_driver(devclass_t dc, device_t dev) 1582 { 1583 if (dev->devclass) 1584 return (devclass_find_driver_internal(dc, dev->devclass->name)); 1585 return (TAILQ_FIRST(&dc->drivers)); 1586 } 1587 1588 /** 1589 * @internal 1590 */ 1591 static driverlink_t 1592 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 1593 { 1594 if (dev->devclass) { 1595 driverlink_t dl; 1596 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 1597 if (!strcmp(dev->devclass->name, dl->driver->name)) 1598 return (dl); 1599 return (NULL); 1600 } 1601 return (TAILQ_NEXT(last, link)); 1602 } 1603 1604 /** 1605 * @internal 1606 */ 1607 int 1608 device_probe_child(device_t dev, device_t child) 1609 { 1610 devclass_t dc; 1611 driverlink_t best = NULL; 1612 driverlink_t dl; 1613 int result, pri = 0; 1614 /* We should preserve the devclass (or lack of) set by the bus. */ 1615 int hasclass = (child->devclass != NULL); 1616 1617 bus_topo_assert(); 1618 1619 dc = dev->devclass; 1620 if (!dc) 1621 panic("device_probe_child: parent device has no devclass"); 1622 1623 /* 1624 * If the state is already probed, then return. 1625 */ 1626 if (child->state == DS_ALIVE) 1627 return (0); 1628 1629 for (; dc; dc = dc->parent) { 1630 for (dl = first_matching_driver(dc, child); 1631 dl; 1632 dl = next_matching_driver(dc, child, dl)) { 1633 /* If this driver's pass is too high, then ignore it. */ 1634 if (dl->pass > bus_current_pass) 1635 continue; 1636 1637 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 1638 result = device_set_driver(child, dl->driver); 1639 if (result == ENOMEM) 1640 return (result); 1641 else if (result != 0) 1642 continue; 1643 if (!hasclass) { 1644 if (device_set_devclass(child, 1645 dl->driver->name) != 0) { 1646 char const * devname = 1647 device_get_name(child); 1648 if (devname == NULL) 1649 devname = "(unknown)"; 1650 printf("driver bug: Unable to set " 1651 "devclass (class: %s " 1652 "devname: %s)\n", 1653 dl->driver->name, 1654 devname); 1655 (void)device_set_driver(child, NULL); 1656 continue; 1657 } 1658 } 1659 1660 /* Fetch any flags for the device before probing. */ 1661 resource_int_value(dl->driver->name, child->unit, 1662 "flags", &child->devflags); 1663 1664 result = DEVICE_PROBE(child); 1665 1666 /* 1667 * If the driver returns SUCCESS, there can be 1668 * no higher match for this device. 1669 */ 1670 if (result == 0) { 1671 best = dl; 1672 pri = 0; 1673 break; 1674 } 1675 1676 /* Reset flags and devclass before the next probe. */ 1677 child->devflags = 0; 1678 if (!hasclass) 1679 (void)device_set_devclass(child, NULL); 1680 1681 /* 1682 * Reset DF_QUIET in case this driver doesn't 1683 * end up as the best driver. 1684 */ 1685 device_verbose(child); 1686 1687 /* 1688 * Probes that return BUS_PROBE_NOWILDCARD or lower 1689 * only match on devices whose driver was explicitly 1690 * specified. 1691 */ 1692 if (result <= BUS_PROBE_NOWILDCARD && 1693 !(child->flags & DF_FIXEDCLASS)) { 1694 result = ENXIO; 1695 } 1696 1697 /* 1698 * The driver returned an error so it 1699 * certainly doesn't match. 1700 */ 1701 if (result > 0) { 1702 (void)device_set_driver(child, NULL); 1703 continue; 1704 } 1705 1706 /* 1707 * A priority lower than SUCCESS, remember the 1708 * best matching driver. Initialise the value 1709 * of pri for the first match. 1710 */ 1711 if (best == NULL || result > pri) { 1712 best = dl; 1713 pri = result; 1714 continue; 1715 } 1716 } 1717 /* 1718 * If we have an unambiguous match in this devclass, 1719 * don't look in the parent. 1720 */ 1721 if (best && pri == 0) 1722 break; 1723 } 1724 1725 if (best == NULL) 1726 return (ENXIO); 1727 1728 /* 1729 * If we found a driver, change state and initialise the devclass. 1730 */ 1731 if (pri < 0) { 1732 /* Set the winning driver, devclass, and flags. */ 1733 result = device_set_driver(child, best->driver); 1734 if (result != 0) 1735 return (result); 1736 if (!child->devclass) { 1737 result = device_set_devclass(child, best->driver->name); 1738 if (result != 0) { 1739 (void)device_set_driver(child, NULL); 1740 return (result); 1741 } 1742 } 1743 resource_int_value(best->driver->name, child->unit, 1744 "flags", &child->devflags); 1745 1746 /* 1747 * A bit bogus. Call the probe method again to make sure 1748 * that we have the right description. 1749 */ 1750 result = DEVICE_PROBE(child); 1751 if (result > 0) { 1752 if (!hasclass) 1753 (void)device_set_devclass(child, NULL); 1754 (void)device_set_driver(child, NULL); 1755 return (result); 1756 } 1757 } 1758 1759 child->state = DS_ALIVE; 1760 bus_data_generation_update(); 1761 return (0); 1762 } 1763 1764 /** 1765 * @brief Return the parent of a device 1766 */ 1767 device_t 1768 device_get_parent(device_t dev) 1769 { 1770 return (dev->parent); 1771 } 1772 1773 /** 1774 * @brief Get a list of children of a device 1775 * 1776 * An array containing a list of all the children of the given device 1777 * is allocated and returned in @p *devlistp. The number of devices 1778 * in the array is returned in @p *devcountp. The caller should free 1779 * the array using @c free(p, M_TEMP). 1780 * 1781 * @param dev the device to examine 1782 * @param devlistp points at location for array pointer return 1783 * value 1784 * @param devcountp points at location for array size return value 1785 * 1786 * @retval 0 success 1787 * @retval ENOMEM the array allocation failed 1788 */ 1789 int 1790 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 1791 { 1792 int count; 1793 device_t child; 1794 device_t *list; 1795 1796 count = 0; 1797 TAILQ_FOREACH(child, &dev->children, link) { 1798 count++; 1799 } 1800 if (count == 0) { 1801 *devlistp = NULL; 1802 *devcountp = 0; 1803 return (0); 1804 } 1805 1806 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1807 if (!list) 1808 return (ENOMEM); 1809 1810 count = 0; 1811 TAILQ_FOREACH(child, &dev->children, link) { 1812 list[count] = child; 1813 count++; 1814 } 1815 1816 *devlistp = list; 1817 *devcountp = count; 1818 1819 return (0); 1820 } 1821 1822 /** 1823 * @brief Return the current driver for the device or @c NULL if there 1824 * is no driver currently attached 1825 */ 1826 driver_t * 1827 device_get_driver(device_t dev) 1828 { 1829 return (dev->driver); 1830 } 1831 1832 /** 1833 * @brief Return the current devclass for the device or @c NULL if 1834 * there is none. 1835 */ 1836 devclass_t 1837 device_get_devclass(device_t dev) 1838 { 1839 return (dev->devclass); 1840 } 1841 1842 /** 1843 * @brief Return the name of the device's devclass or @c NULL if there 1844 * is none. 1845 */ 1846 const char * 1847 device_get_name(device_t dev) 1848 { 1849 if (dev != NULL && dev->devclass) 1850 return (devclass_get_name(dev->devclass)); 1851 return (NULL); 1852 } 1853 1854 /** 1855 * @brief Return a string containing the device's devclass name 1856 * followed by an ascii representation of the device's unit number 1857 * (e.g. @c "foo2"). 1858 */ 1859 const char * 1860 device_get_nameunit(device_t dev) 1861 { 1862 return (dev->nameunit); 1863 } 1864 1865 /** 1866 * @brief Return the device's unit number. 1867 */ 1868 int 1869 device_get_unit(device_t dev) 1870 { 1871 return (dev->unit); 1872 } 1873 1874 /** 1875 * @brief Return the device's description string 1876 */ 1877 const char * 1878 device_get_desc(device_t dev) 1879 { 1880 return (dev->desc); 1881 } 1882 1883 /** 1884 * @brief Return the device's flags 1885 */ 1886 uint32_t 1887 device_get_flags(device_t dev) 1888 { 1889 return (dev->devflags); 1890 } 1891 1892 struct sysctl_ctx_list * 1893 device_get_sysctl_ctx(device_t dev) 1894 { 1895 return (&dev->sysctl_ctx); 1896 } 1897 1898 struct sysctl_oid * 1899 device_get_sysctl_tree(device_t dev) 1900 { 1901 return (dev->sysctl_tree); 1902 } 1903 1904 /** 1905 * @brief Print the name of the device followed by a colon and a space 1906 * 1907 * @returns the number of characters printed 1908 */ 1909 int 1910 device_print_prettyname(device_t dev) 1911 { 1912 const char *name = device_get_name(dev); 1913 1914 if (name == NULL) 1915 return (printf("unknown: ")); 1916 return (printf("%s%d: ", name, device_get_unit(dev))); 1917 } 1918 1919 /** 1920 * @brief Print the name of the device followed by a colon, a space 1921 * and the result of calling vprintf() with the value of @p fmt and 1922 * the following arguments. 1923 * 1924 * @returns the number of characters printed 1925 */ 1926 int 1927 device_printf(device_t dev, const char * fmt, ...) 1928 { 1929 char buf[128]; 1930 struct sbuf sb; 1931 const char *name; 1932 va_list ap; 1933 size_t retval; 1934 1935 retval = 0; 1936 1937 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 1938 sbuf_set_drain(&sb, sbuf_printf_drain, &retval); 1939 1940 name = device_get_name(dev); 1941 1942 if (name == NULL) 1943 sbuf_cat(&sb, "unknown: "); 1944 else 1945 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 1946 1947 va_start(ap, fmt); 1948 sbuf_vprintf(&sb, fmt, ap); 1949 va_end(ap); 1950 1951 sbuf_finish(&sb); 1952 sbuf_delete(&sb); 1953 1954 return (retval); 1955 } 1956 1957 /** 1958 * @brief Print the name of the device followed by a colon, a space 1959 * and the result of calling log() with the value of @p fmt and 1960 * the following arguments. 1961 * 1962 * @returns the number of characters printed 1963 */ 1964 int 1965 device_log(device_t dev, int pri, const char * fmt, ...) 1966 { 1967 char buf[128]; 1968 struct sbuf sb; 1969 const char *name; 1970 va_list ap; 1971 size_t retval; 1972 1973 retval = 0; 1974 1975 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 1976 1977 name = device_get_name(dev); 1978 1979 if (name == NULL) 1980 sbuf_cat(&sb, "unknown: "); 1981 else 1982 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 1983 1984 va_start(ap, fmt); 1985 sbuf_vprintf(&sb, fmt, ap); 1986 va_end(ap); 1987 1988 sbuf_finish(&sb); 1989 1990 log(pri, "%.*s", (int) sbuf_len(&sb), sbuf_data(&sb)); 1991 retval = sbuf_len(&sb); 1992 1993 sbuf_delete(&sb); 1994 1995 return (retval); 1996 } 1997 1998 /** 1999 * @internal 2000 */ 2001 static void 2002 device_set_desc_internal(device_t dev, const char* desc, int copy) 2003 { 2004 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2005 free(dev->desc, M_BUS); 2006 dev->flags &= ~DF_DESCMALLOCED; 2007 dev->desc = NULL; 2008 } 2009 2010 if (copy && desc) { 2011 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2012 if (dev->desc) { 2013 strcpy(dev->desc, desc); 2014 dev->flags |= DF_DESCMALLOCED; 2015 } 2016 } else { 2017 /* Avoid a -Wcast-qual warning */ 2018 dev->desc = (char *)(uintptr_t) desc; 2019 } 2020 2021 bus_data_generation_update(); 2022 } 2023 2024 /** 2025 * @brief Set the device's description 2026 * 2027 * The value of @c desc should be a string constant that will not 2028 * change (at least until the description is changed in a subsequent 2029 * call to device_set_desc() or device_set_desc_copy()). 2030 */ 2031 void 2032 device_set_desc(device_t dev, const char* desc) 2033 { 2034 device_set_desc_internal(dev, desc, FALSE); 2035 } 2036 2037 /** 2038 * @brief Set the device's description 2039 * 2040 * The string pointed to by @c desc is copied. Use this function if 2041 * the device description is generated, (e.g. with sprintf()). 2042 */ 2043 void 2044 device_set_desc_copy(device_t dev, const char* desc) 2045 { 2046 device_set_desc_internal(dev, desc, TRUE); 2047 } 2048 2049 /** 2050 * @brief Set the device's flags 2051 */ 2052 void 2053 device_set_flags(device_t dev, uint32_t flags) 2054 { 2055 dev->devflags = flags; 2056 } 2057 2058 /** 2059 * @brief Return the device's softc field 2060 * 2061 * The softc is allocated and zeroed when a driver is attached, based 2062 * on the size field of the driver. 2063 */ 2064 void * 2065 device_get_softc(device_t dev) 2066 { 2067 return (dev->softc); 2068 } 2069 2070 /** 2071 * @brief Set the device's softc field 2072 * 2073 * Most drivers do not need to use this since the softc is allocated 2074 * automatically when the driver is attached. 2075 */ 2076 void 2077 device_set_softc(device_t dev, void *softc) 2078 { 2079 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2080 free(dev->softc, M_BUS_SC); 2081 dev->softc = softc; 2082 if (dev->softc) 2083 dev->flags |= DF_EXTERNALSOFTC; 2084 else 2085 dev->flags &= ~DF_EXTERNALSOFTC; 2086 } 2087 2088 /** 2089 * @brief Free claimed softc 2090 * 2091 * Most drivers do not need to use this since the softc is freed 2092 * automatically when the driver is detached. 2093 */ 2094 void 2095 device_free_softc(void *softc) 2096 { 2097 free(softc, M_BUS_SC); 2098 } 2099 2100 /** 2101 * @brief Claim softc 2102 * 2103 * This function can be used to let the driver free the automatically 2104 * allocated softc using "device_free_softc()". This function is 2105 * useful when the driver is refcounting the softc and the softc 2106 * cannot be freed when the "device_detach" method is called. 2107 */ 2108 void 2109 device_claim_softc(device_t dev) 2110 { 2111 if (dev->softc) 2112 dev->flags |= DF_EXTERNALSOFTC; 2113 else 2114 dev->flags &= ~DF_EXTERNALSOFTC; 2115 } 2116 2117 /** 2118 * @brief Get the device's ivars field 2119 * 2120 * The ivars field is used by the parent device to store per-device 2121 * state (e.g. the physical location of the device or a list of 2122 * resources). 2123 */ 2124 void * 2125 device_get_ivars(device_t dev) 2126 { 2127 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2128 return (dev->ivars); 2129 } 2130 2131 /** 2132 * @brief Set the device's ivars field 2133 */ 2134 void 2135 device_set_ivars(device_t dev, void * ivars) 2136 { 2137 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2138 dev->ivars = ivars; 2139 } 2140 2141 /** 2142 * @brief Return the device's state 2143 */ 2144 device_state_t 2145 device_get_state(device_t dev) 2146 { 2147 return (dev->state); 2148 } 2149 2150 /** 2151 * @brief Set the DF_ENABLED flag for the device 2152 */ 2153 void 2154 device_enable(device_t dev) 2155 { 2156 dev->flags |= DF_ENABLED; 2157 } 2158 2159 /** 2160 * @brief Clear the DF_ENABLED flag for the device 2161 */ 2162 void 2163 device_disable(device_t dev) 2164 { 2165 dev->flags &= ~DF_ENABLED; 2166 } 2167 2168 /** 2169 * @brief Increment the busy counter for the device 2170 */ 2171 void 2172 device_busy(device_t dev) 2173 { 2174 2175 /* 2176 * Mark the device as busy, recursively up the tree if this busy count 2177 * goes 0->1. 2178 */ 2179 if (refcount_acquire(&dev->busy) == 0 && dev->parent != NULL) 2180 device_busy(dev->parent); 2181 } 2182 2183 /** 2184 * @brief Decrement the busy counter for the device 2185 */ 2186 void 2187 device_unbusy(device_t dev) 2188 { 2189 2190 /* 2191 * Mark the device as unbsy, recursively if this is the last busy count. 2192 */ 2193 if (refcount_release(&dev->busy) && dev->parent != NULL) 2194 device_unbusy(dev->parent); 2195 } 2196 2197 /** 2198 * @brief Set the DF_QUIET flag for the device 2199 */ 2200 void 2201 device_quiet(device_t dev) 2202 { 2203 dev->flags |= DF_QUIET; 2204 } 2205 2206 /** 2207 * @brief Set the DF_QUIET_CHILDREN flag for the device 2208 */ 2209 void 2210 device_quiet_children(device_t dev) 2211 { 2212 dev->flags |= DF_QUIET_CHILDREN; 2213 } 2214 2215 /** 2216 * @brief Clear the DF_QUIET flag for the device 2217 */ 2218 void 2219 device_verbose(device_t dev) 2220 { 2221 dev->flags &= ~DF_QUIET; 2222 } 2223 2224 ssize_t 2225 device_get_property(device_t dev, const char *prop, void *val, size_t sz, 2226 device_property_type_t type) 2227 { 2228 device_t bus = device_get_parent(dev); 2229 2230 switch (type) { 2231 case DEVICE_PROP_ANY: 2232 case DEVICE_PROP_BUFFER: 2233 case DEVICE_PROP_HANDLE: /* Size checks done in implementation. */ 2234 break; 2235 case DEVICE_PROP_UINT32: 2236 if (sz % 4 != 0) 2237 return (-1); 2238 break; 2239 case DEVICE_PROP_UINT64: 2240 if (sz % 8 != 0) 2241 return (-1); 2242 break; 2243 default: 2244 return (-1); 2245 } 2246 2247 return (BUS_GET_PROPERTY(bus, dev, prop, val, sz, type)); 2248 } 2249 2250 bool 2251 device_has_property(device_t dev, const char *prop) 2252 { 2253 return (device_get_property(dev, prop, NULL, 0, DEVICE_PROP_ANY) >= 0); 2254 } 2255 2256 /** 2257 * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device 2258 */ 2259 int 2260 device_has_quiet_children(device_t dev) 2261 { 2262 return ((dev->flags & DF_QUIET_CHILDREN) != 0); 2263 } 2264 2265 /** 2266 * @brief Return non-zero if the DF_QUIET flag is set on the device 2267 */ 2268 int 2269 device_is_quiet(device_t dev) 2270 { 2271 return ((dev->flags & DF_QUIET) != 0); 2272 } 2273 2274 /** 2275 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2276 */ 2277 int 2278 device_is_enabled(device_t dev) 2279 { 2280 return ((dev->flags & DF_ENABLED) != 0); 2281 } 2282 2283 /** 2284 * @brief Return non-zero if the device was successfully probed 2285 */ 2286 int 2287 device_is_alive(device_t dev) 2288 { 2289 return (dev->state >= DS_ALIVE); 2290 } 2291 2292 /** 2293 * @brief Return non-zero if the device currently has a driver 2294 * attached to it 2295 */ 2296 int 2297 device_is_attached(device_t dev) 2298 { 2299 return (dev->state >= DS_ATTACHED); 2300 } 2301 2302 /** 2303 * @brief Return non-zero if the device is currently suspended. 2304 */ 2305 int 2306 device_is_suspended(device_t dev) 2307 { 2308 return ((dev->flags & DF_SUSPENDED) != 0); 2309 } 2310 2311 /** 2312 * @brief Set the devclass of a device 2313 * @see devclass_add_device(). 2314 */ 2315 int 2316 device_set_devclass(device_t dev, const char *classname) 2317 { 2318 devclass_t dc; 2319 int error; 2320 2321 if (!classname) { 2322 if (dev->devclass) 2323 devclass_delete_device(dev->devclass, dev); 2324 return (0); 2325 } 2326 2327 if (dev->devclass) { 2328 printf("device_set_devclass: device class already set\n"); 2329 return (EINVAL); 2330 } 2331 2332 dc = devclass_find_internal(classname, NULL, TRUE); 2333 if (!dc) 2334 return (ENOMEM); 2335 2336 error = devclass_add_device(dc, dev); 2337 2338 bus_data_generation_update(); 2339 return (error); 2340 } 2341 2342 /** 2343 * @brief Set the devclass of a device and mark the devclass fixed. 2344 * @see device_set_devclass() 2345 */ 2346 int 2347 device_set_devclass_fixed(device_t dev, const char *classname) 2348 { 2349 int error; 2350 2351 if (classname == NULL) 2352 return (EINVAL); 2353 2354 error = device_set_devclass(dev, classname); 2355 if (error) 2356 return (error); 2357 dev->flags |= DF_FIXEDCLASS; 2358 return (0); 2359 } 2360 2361 /** 2362 * @brief Query the device to determine if it's of a fixed devclass 2363 * @see device_set_devclass_fixed() 2364 */ 2365 bool 2366 device_is_devclass_fixed(device_t dev) 2367 { 2368 return ((dev->flags & DF_FIXEDCLASS) != 0); 2369 } 2370 2371 /** 2372 * @brief Set the driver of a device 2373 * 2374 * @retval 0 success 2375 * @retval EBUSY the device already has a driver attached 2376 * @retval ENOMEM a memory allocation failure occurred 2377 */ 2378 int 2379 device_set_driver(device_t dev, driver_t *driver) 2380 { 2381 int domain; 2382 struct domainset *policy; 2383 2384 if (dev->state >= DS_ATTACHED) 2385 return (EBUSY); 2386 2387 if (dev->driver == driver) 2388 return (0); 2389 2390 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2391 free(dev->softc, M_BUS_SC); 2392 dev->softc = NULL; 2393 } 2394 device_set_desc(dev, NULL); 2395 kobj_delete((kobj_t) dev, NULL); 2396 dev->driver = driver; 2397 if (driver) { 2398 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2399 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2400 if (bus_get_domain(dev, &domain) == 0) 2401 policy = DOMAINSET_PREF(domain); 2402 else 2403 policy = DOMAINSET_RR(); 2404 dev->softc = malloc_domainset(driver->size, M_BUS_SC, 2405 policy, M_NOWAIT | M_ZERO); 2406 if (!dev->softc) { 2407 kobj_delete((kobj_t) dev, NULL); 2408 kobj_init((kobj_t) dev, &null_class); 2409 dev->driver = NULL; 2410 return (ENOMEM); 2411 } 2412 } 2413 } else { 2414 kobj_init((kobj_t) dev, &null_class); 2415 } 2416 2417 bus_data_generation_update(); 2418 return (0); 2419 } 2420 2421 /** 2422 * @brief Probe a device, and return this status. 2423 * 2424 * This function is the core of the device autoconfiguration 2425 * system. Its purpose is to select a suitable driver for a device and 2426 * then call that driver to initialise the hardware appropriately. The 2427 * driver is selected by calling the DEVICE_PROBE() method of a set of 2428 * candidate drivers and then choosing the driver which returned the 2429 * best value. This driver is then attached to the device using 2430 * device_attach(). 2431 * 2432 * The set of suitable drivers is taken from the list of drivers in 2433 * the parent device's devclass. If the device was originally created 2434 * with a specific class name (see device_add_child()), only drivers 2435 * with that name are probed, otherwise all drivers in the devclass 2436 * are probed. If no drivers return successful probe values in the 2437 * parent devclass, the search continues in the parent of that 2438 * devclass (see devclass_get_parent()) if any. 2439 * 2440 * @param dev the device to initialise 2441 * 2442 * @retval 0 success 2443 * @retval ENXIO no driver was found 2444 * @retval ENOMEM memory allocation failure 2445 * @retval non-zero some other unix error code 2446 * @retval -1 Device already attached 2447 */ 2448 int 2449 device_probe(device_t dev) 2450 { 2451 int error; 2452 2453 bus_topo_assert(); 2454 2455 if (dev->state >= DS_ALIVE) 2456 return (-1); 2457 2458 if (!(dev->flags & DF_ENABLED)) { 2459 if (bootverbose && device_get_name(dev) != NULL) { 2460 device_print_prettyname(dev); 2461 printf("not probed (disabled)\n"); 2462 } 2463 return (-1); 2464 } 2465 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2466 if (bus_current_pass == BUS_PASS_DEFAULT && 2467 !(dev->flags & DF_DONENOMATCH)) { 2468 device_handle_nomatch(dev); 2469 } 2470 return (error); 2471 } 2472 return (0); 2473 } 2474 2475 /** 2476 * @brief Probe a device and attach a driver if possible 2477 * 2478 * calls device_probe() and attaches if that was successful. 2479 */ 2480 int 2481 device_probe_and_attach(device_t dev) 2482 { 2483 int error; 2484 2485 bus_topo_assert(); 2486 2487 error = device_probe(dev); 2488 if (error == -1) 2489 return (0); 2490 else if (error != 0) 2491 return (error); 2492 2493 CURVNET_SET_QUIET(vnet0); 2494 error = device_attach(dev); 2495 CURVNET_RESTORE(); 2496 return error; 2497 } 2498 2499 /** 2500 * @brief Attach a device driver to a device 2501 * 2502 * This function is a wrapper around the DEVICE_ATTACH() driver 2503 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2504 * device's sysctl tree, optionally prints a description of the device 2505 * and queues a notification event for user-based device management 2506 * services. 2507 * 2508 * Normally this function is only called internally from 2509 * device_probe_and_attach(). 2510 * 2511 * @param dev the device to initialise 2512 * 2513 * @retval 0 success 2514 * @retval ENXIO no driver was found 2515 * @retval ENOMEM memory allocation failure 2516 * @retval non-zero some other unix error code 2517 */ 2518 int 2519 device_attach(device_t dev) 2520 { 2521 uint64_t attachtime; 2522 uint16_t attachentropy; 2523 int error; 2524 2525 if (resource_disabled(dev->driver->name, dev->unit)) { 2526 device_disable(dev); 2527 if (bootverbose) 2528 device_printf(dev, "disabled via hints entry\n"); 2529 return (ENXIO); 2530 } 2531 2532 device_sysctl_init(dev); 2533 if (!device_is_quiet(dev)) 2534 device_print_child(dev->parent, dev); 2535 attachtime = get_cyclecount(); 2536 dev->state = DS_ATTACHING; 2537 if ((error = DEVICE_ATTACH(dev)) != 0) { 2538 printf("device_attach: %s%d attach returned %d\n", 2539 dev->driver->name, dev->unit, error); 2540 if (disable_failed_devs) { 2541 /* 2542 * When the user has asked to disable failed devices, we 2543 * directly disable the device, but leave it in the 2544 * attaching state. It will not try to probe/attach the 2545 * device further. This leaves the device numbering 2546 * intact for other similar devices in the system. It 2547 * can be removed from this state with devctl. 2548 */ 2549 device_disable(dev); 2550 } else { 2551 /* 2552 * Otherwise, when attach fails, tear down the state 2553 * around that so we can retry when, for example, new 2554 * drivers are loaded. 2555 */ 2556 if (!(dev->flags & DF_FIXEDCLASS)) 2557 devclass_delete_device(dev->devclass, dev); 2558 (void)device_set_driver(dev, NULL); 2559 device_sysctl_fini(dev); 2560 KASSERT(dev->busy == 0, ("attach failed but busy")); 2561 dev->state = DS_NOTPRESENT; 2562 } 2563 return (error); 2564 } 2565 dev->flags |= DF_ATTACHED_ONCE; 2566 /* 2567 * We only need the low bits of this time, but ranges from tens to thousands 2568 * have been seen, so keep 2 bytes' worth. 2569 */ 2570 attachentropy = (uint16_t)(get_cyclecount() - attachtime); 2571 random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH); 2572 device_sysctl_update(dev); 2573 dev->state = DS_ATTACHED; 2574 dev->flags &= ~DF_DONENOMATCH; 2575 EVENTHANDLER_DIRECT_INVOKE(device_attach, dev); 2576 return (0); 2577 } 2578 2579 /** 2580 * @brief Detach a driver from a device 2581 * 2582 * This function is a wrapper around the DEVICE_DETACH() driver 2583 * method. If the call to DEVICE_DETACH() succeeds, it calls 2584 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2585 * notification event for user-based device management services and 2586 * cleans up the device's sysctl tree. 2587 * 2588 * @param dev the device to un-initialise 2589 * 2590 * @retval 0 success 2591 * @retval ENXIO no driver was found 2592 * @retval ENOMEM memory allocation failure 2593 * @retval non-zero some other unix error code 2594 */ 2595 int 2596 device_detach(device_t dev) 2597 { 2598 int error; 2599 2600 bus_topo_assert(); 2601 2602 PDEBUG(("%s", DEVICENAME(dev))); 2603 if (dev->busy > 0) 2604 return (EBUSY); 2605 if (dev->state == DS_ATTACHING) { 2606 device_printf(dev, "device in attaching state! Deferring detach.\n"); 2607 return (EBUSY); 2608 } 2609 if (dev->state != DS_ATTACHED) 2610 return (0); 2611 2612 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN); 2613 if ((error = DEVICE_DETACH(dev)) != 0) { 2614 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 2615 EVHDEV_DETACH_FAILED); 2616 return (error); 2617 } else { 2618 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 2619 EVHDEV_DETACH_COMPLETE); 2620 } 2621 if (!device_is_quiet(dev)) 2622 device_printf(dev, "detached\n"); 2623 if (dev->parent) 2624 BUS_CHILD_DETACHED(dev->parent, dev); 2625 2626 if (!(dev->flags & DF_FIXEDCLASS)) 2627 devclass_delete_device(dev->devclass, dev); 2628 2629 device_verbose(dev); 2630 dev->state = DS_NOTPRESENT; 2631 (void)device_set_driver(dev, NULL); 2632 device_sysctl_fini(dev); 2633 2634 return (0); 2635 } 2636 2637 /** 2638 * @brief Tells a driver to quiesce itself. 2639 * 2640 * This function is a wrapper around the DEVICE_QUIESCE() driver 2641 * method. If the call to DEVICE_QUIESCE() succeeds. 2642 * 2643 * @param dev the device to quiesce 2644 * 2645 * @retval 0 success 2646 * @retval ENXIO no driver was found 2647 * @retval ENOMEM memory allocation failure 2648 * @retval non-zero some other unix error code 2649 */ 2650 int 2651 device_quiesce(device_t dev) 2652 { 2653 PDEBUG(("%s", DEVICENAME(dev))); 2654 if (dev->busy > 0) 2655 return (EBUSY); 2656 if (dev->state != DS_ATTACHED) 2657 return (0); 2658 2659 return (DEVICE_QUIESCE(dev)); 2660 } 2661 2662 /** 2663 * @brief Notify a device of system shutdown 2664 * 2665 * This function calls the DEVICE_SHUTDOWN() driver method if the 2666 * device currently has an attached driver. 2667 * 2668 * @returns the value returned by DEVICE_SHUTDOWN() 2669 */ 2670 int 2671 device_shutdown(device_t dev) 2672 { 2673 if (dev->state < DS_ATTACHED) 2674 return (0); 2675 return (DEVICE_SHUTDOWN(dev)); 2676 } 2677 2678 /** 2679 * @brief Set the unit number of a device 2680 * 2681 * This function can be used to override the unit number used for a 2682 * device (e.g. to wire a device to a pre-configured unit number). 2683 */ 2684 int 2685 device_set_unit(device_t dev, int unit) 2686 { 2687 devclass_t dc; 2688 int err; 2689 2690 if (unit == dev->unit) 2691 return (0); 2692 dc = device_get_devclass(dev); 2693 if (unit < dc->maxunit && dc->devices[unit]) 2694 return (EBUSY); 2695 err = devclass_delete_device(dc, dev); 2696 if (err) 2697 return (err); 2698 dev->unit = unit; 2699 err = devclass_add_device(dc, dev); 2700 if (err) 2701 return (err); 2702 2703 bus_data_generation_update(); 2704 return (0); 2705 } 2706 2707 /*======================================*/ 2708 /* 2709 * Some useful method implementations to make life easier for bus drivers. 2710 */ 2711 2712 void 2713 resource_init_map_request_impl(struct resource_map_request *args, size_t sz) 2714 { 2715 bzero(args, sz); 2716 args->size = sz; 2717 args->memattr = VM_MEMATTR_DEVICE; 2718 } 2719 2720 /** 2721 * @brief Initialise a resource list. 2722 * 2723 * @param rl the resource list to initialise 2724 */ 2725 void 2726 resource_list_init(struct resource_list *rl) 2727 { 2728 STAILQ_INIT(rl); 2729 } 2730 2731 /** 2732 * @brief Reclaim memory used by a resource list. 2733 * 2734 * This function frees the memory for all resource entries on the list 2735 * (if any). 2736 * 2737 * @param rl the resource list to free 2738 */ 2739 void 2740 resource_list_free(struct resource_list *rl) 2741 { 2742 struct resource_list_entry *rle; 2743 2744 while ((rle = STAILQ_FIRST(rl)) != NULL) { 2745 if (rle->res) 2746 panic("resource_list_free: resource entry is busy"); 2747 STAILQ_REMOVE_HEAD(rl, link); 2748 free(rle, M_BUS); 2749 } 2750 } 2751 2752 /** 2753 * @brief Add a resource entry. 2754 * 2755 * This function adds a resource entry using the given @p type, @p 2756 * start, @p end and @p count values. A rid value is chosen by 2757 * searching sequentially for the first unused rid starting at zero. 2758 * 2759 * @param rl the resource list to edit 2760 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2761 * @param start the start address of the resource 2762 * @param end the end address of the resource 2763 * @param count XXX end-start+1 2764 */ 2765 int 2766 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start, 2767 rman_res_t end, rman_res_t count) 2768 { 2769 int rid; 2770 2771 rid = 0; 2772 while (resource_list_find(rl, type, rid) != NULL) 2773 rid++; 2774 resource_list_add(rl, type, rid, start, end, count); 2775 return (rid); 2776 } 2777 2778 /** 2779 * @brief Add or modify a resource entry. 2780 * 2781 * If an existing entry exists with the same type and rid, it will be 2782 * modified using the given values of @p start, @p end and @p 2783 * count. If no entry exists, a new one will be created using the 2784 * given values. The resource list entry that matches is then returned. 2785 * 2786 * @param rl the resource list to edit 2787 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2788 * @param rid the resource identifier 2789 * @param start the start address of the resource 2790 * @param end the end address of the resource 2791 * @param count XXX end-start+1 2792 */ 2793 struct resource_list_entry * 2794 resource_list_add(struct resource_list *rl, int type, int rid, 2795 rman_res_t start, rman_res_t end, rman_res_t count) 2796 { 2797 struct resource_list_entry *rle; 2798 2799 rle = resource_list_find(rl, type, rid); 2800 if (!rle) { 2801 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 2802 M_NOWAIT); 2803 if (!rle) 2804 panic("resource_list_add: can't record entry"); 2805 STAILQ_INSERT_TAIL(rl, rle, link); 2806 rle->type = type; 2807 rle->rid = rid; 2808 rle->res = NULL; 2809 rle->flags = 0; 2810 } 2811 2812 if (rle->res) 2813 panic("resource_list_add: resource entry is busy"); 2814 2815 rle->start = start; 2816 rle->end = end; 2817 rle->count = count; 2818 return (rle); 2819 } 2820 2821 /** 2822 * @brief Determine if a resource entry is busy. 2823 * 2824 * Returns true if a resource entry is busy meaning that it has an 2825 * associated resource that is not an unallocated "reserved" resource. 2826 * 2827 * @param rl the resource list to search 2828 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2829 * @param rid the resource identifier 2830 * 2831 * @returns Non-zero if the entry is busy, zero otherwise. 2832 */ 2833 int 2834 resource_list_busy(struct resource_list *rl, int type, int rid) 2835 { 2836 struct resource_list_entry *rle; 2837 2838 rle = resource_list_find(rl, type, rid); 2839 if (rle == NULL || rle->res == NULL) 2840 return (0); 2841 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 2842 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 2843 ("reserved resource is active")); 2844 return (0); 2845 } 2846 return (1); 2847 } 2848 2849 /** 2850 * @brief Determine if a resource entry is reserved. 2851 * 2852 * Returns true if a resource entry is reserved meaning that it has an 2853 * associated "reserved" resource. The resource can either be 2854 * allocated or unallocated. 2855 * 2856 * @param rl the resource list to search 2857 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2858 * @param rid the resource identifier 2859 * 2860 * @returns Non-zero if the entry is reserved, zero otherwise. 2861 */ 2862 int 2863 resource_list_reserved(struct resource_list *rl, int type, int rid) 2864 { 2865 struct resource_list_entry *rle; 2866 2867 rle = resource_list_find(rl, type, rid); 2868 if (rle != NULL && rle->flags & RLE_RESERVED) 2869 return (1); 2870 return (0); 2871 } 2872 2873 /** 2874 * @brief Find a resource entry by type and rid. 2875 * 2876 * @param rl the resource list to search 2877 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2878 * @param rid the resource identifier 2879 * 2880 * @returns the resource entry pointer or NULL if there is no such 2881 * entry. 2882 */ 2883 struct resource_list_entry * 2884 resource_list_find(struct resource_list *rl, int type, int rid) 2885 { 2886 struct resource_list_entry *rle; 2887 2888 STAILQ_FOREACH(rle, rl, link) { 2889 if (rle->type == type && rle->rid == rid) 2890 return (rle); 2891 } 2892 return (NULL); 2893 } 2894 2895 /** 2896 * @brief Delete a resource entry. 2897 * 2898 * @param rl the resource list to edit 2899 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2900 * @param rid the resource identifier 2901 */ 2902 void 2903 resource_list_delete(struct resource_list *rl, int type, int rid) 2904 { 2905 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 2906 2907 if (rle) { 2908 if (rle->res != NULL) 2909 panic("resource_list_delete: resource has not been released"); 2910 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 2911 free(rle, M_BUS); 2912 } 2913 } 2914 2915 /** 2916 * @brief Allocate a reserved resource 2917 * 2918 * This can be used by buses to force the allocation of resources 2919 * that are always active in the system even if they are not allocated 2920 * by a driver (e.g. PCI BARs). This function is usually called when 2921 * adding a new child to the bus. The resource is allocated from the 2922 * parent bus when it is reserved. The resource list entry is marked 2923 * with RLE_RESERVED to note that it is a reserved resource. 2924 * 2925 * Subsequent attempts to allocate the resource with 2926 * resource_list_alloc() will succeed the first time and will set 2927 * RLE_ALLOCATED to note that it has been allocated. When a reserved 2928 * resource that has been allocated is released with 2929 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 2930 * the actual resource remains allocated. The resource can be released to 2931 * the parent bus by calling resource_list_unreserve(). 2932 * 2933 * @param rl the resource list to allocate from 2934 * @param bus the parent device of @p child 2935 * @param child the device for which the resource is being reserved 2936 * @param type the type of resource to allocate 2937 * @param rid a pointer to the resource identifier 2938 * @param start hint at the start of the resource range - pass 2939 * @c 0 for any start address 2940 * @param end hint at the end of the resource range - pass 2941 * @c ~0 for any end address 2942 * @param count hint at the size of range required - pass @c 1 2943 * for any size 2944 * @param flags any extra flags to control the resource 2945 * allocation - see @c RF_XXX flags in 2946 * <sys/rman.h> for details 2947 * 2948 * @returns the resource which was allocated or @c NULL if no 2949 * resource could be allocated 2950 */ 2951 struct resource * 2952 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 2953 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 2954 { 2955 struct resource_list_entry *rle = NULL; 2956 int passthrough = (device_get_parent(child) != bus); 2957 struct resource *r; 2958 2959 if (passthrough) 2960 panic( 2961 "resource_list_reserve() should only be called for direct children"); 2962 if (flags & RF_ACTIVE) 2963 panic( 2964 "resource_list_reserve() should only reserve inactive resources"); 2965 2966 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 2967 flags); 2968 if (r != NULL) { 2969 rle = resource_list_find(rl, type, *rid); 2970 rle->flags |= RLE_RESERVED; 2971 } 2972 return (r); 2973 } 2974 2975 /** 2976 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 2977 * 2978 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 2979 * and passing the allocation up to the parent of @p bus. This assumes 2980 * that the first entry of @c device_get_ivars(child) is a struct 2981 * resource_list. This also handles 'passthrough' allocations where a 2982 * child is a remote descendant of bus by passing the allocation up to 2983 * the parent of bus. 2984 * 2985 * Typically, a bus driver would store a list of child resources 2986 * somewhere in the child device's ivars (see device_get_ivars()) and 2987 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 2988 * then call resource_list_alloc() to perform the allocation. 2989 * 2990 * @param rl the resource list to allocate from 2991 * @param bus the parent device of @p child 2992 * @param child the device which is requesting an allocation 2993 * @param type the type of resource to allocate 2994 * @param rid a pointer to the resource identifier 2995 * @param start hint at the start of the resource range - pass 2996 * @c 0 for any start address 2997 * @param end hint at the end of the resource range - pass 2998 * @c ~0 for any end address 2999 * @param count hint at the size of range required - pass @c 1 3000 * for any size 3001 * @param flags any extra flags to control the resource 3002 * allocation - see @c RF_XXX flags in 3003 * <sys/rman.h> for details 3004 * 3005 * @returns the resource which was allocated or @c NULL if no 3006 * resource could be allocated 3007 */ 3008 struct resource * 3009 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3010 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3011 { 3012 struct resource_list_entry *rle = NULL; 3013 int passthrough = (device_get_parent(child) != bus); 3014 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 3015 3016 if (passthrough) { 3017 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3018 type, rid, start, end, count, flags)); 3019 } 3020 3021 rle = resource_list_find(rl, type, *rid); 3022 3023 if (!rle) 3024 return (NULL); /* no resource of that type/rid */ 3025 3026 if (rle->res) { 3027 if (rle->flags & RLE_RESERVED) { 3028 if (rle->flags & RLE_ALLOCATED) 3029 return (NULL); 3030 if ((flags & RF_ACTIVE) && 3031 bus_activate_resource(child, type, *rid, 3032 rle->res) != 0) 3033 return (NULL); 3034 rle->flags |= RLE_ALLOCATED; 3035 return (rle->res); 3036 } 3037 device_printf(bus, 3038 "resource entry %#x type %d for child %s is busy\n", *rid, 3039 type, device_get_nameunit(child)); 3040 return (NULL); 3041 } 3042 3043 if (isdefault) { 3044 start = rle->start; 3045 count = ulmax(count, rle->count); 3046 end = ulmax(rle->end, start + count - 1); 3047 } 3048 3049 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3050 type, rid, start, end, count, flags); 3051 3052 /* 3053 * Record the new range. 3054 */ 3055 if (rle->res) { 3056 rle->start = rman_get_start(rle->res); 3057 rle->end = rman_get_end(rle->res); 3058 rle->count = count; 3059 } 3060 3061 return (rle->res); 3062 } 3063 3064 /** 3065 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3066 * 3067 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3068 * used with resource_list_alloc(). 3069 * 3070 * @param rl the resource list which was allocated from 3071 * @param bus the parent device of @p child 3072 * @param child the device which is requesting a release 3073 * @param type the type of resource to release 3074 * @param rid the resource identifier 3075 * @param res the resource to release 3076 * 3077 * @retval 0 success 3078 * @retval non-zero a standard unix error code indicating what 3079 * error condition prevented the operation 3080 */ 3081 int 3082 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3083 int type, int rid, struct resource *res) 3084 { 3085 struct resource_list_entry *rle = NULL; 3086 int passthrough = (device_get_parent(child) != bus); 3087 int error; 3088 3089 if (passthrough) { 3090 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3091 type, rid, res)); 3092 } 3093 3094 rle = resource_list_find(rl, type, rid); 3095 3096 if (!rle) 3097 panic("resource_list_release: can't find resource"); 3098 if (!rle->res) 3099 panic("resource_list_release: resource entry is not busy"); 3100 if (rle->flags & RLE_RESERVED) { 3101 if (rle->flags & RLE_ALLOCATED) { 3102 if (rman_get_flags(res) & RF_ACTIVE) { 3103 error = bus_deactivate_resource(child, type, 3104 rid, res); 3105 if (error) 3106 return (error); 3107 } 3108 rle->flags &= ~RLE_ALLOCATED; 3109 return (0); 3110 } 3111 return (EINVAL); 3112 } 3113 3114 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3115 type, rid, res); 3116 if (error) 3117 return (error); 3118 3119 rle->res = NULL; 3120 return (0); 3121 } 3122 3123 /** 3124 * @brief Release all active resources of a given type 3125 * 3126 * Release all active resources of a specified type. This is intended 3127 * to be used to cleanup resources leaked by a driver after detach or 3128 * a failed attach. 3129 * 3130 * @param rl the resource list which was allocated from 3131 * @param bus the parent device of @p child 3132 * @param child the device whose active resources are being released 3133 * @param type the type of resources to release 3134 * 3135 * @retval 0 success 3136 * @retval EBUSY at least one resource was active 3137 */ 3138 int 3139 resource_list_release_active(struct resource_list *rl, device_t bus, 3140 device_t child, int type) 3141 { 3142 struct resource_list_entry *rle; 3143 int error, retval; 3144 3145 retval = 0; 3146 STAILQ_FOREACH(rle, rl, link) { 3147 if (rle->type != type) 3148 continue; 3149 if (rle->res == NULL) 3150 continue; 3151 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3152 RLE_RESERVED) 3153 continue; 3154 retval = EBUSY; 3155 error = resource_list_release(rl, bus, child, type, 3156 rman_get_rid(rle->res), rle->res); 3157 if (error != 0) 3158 device_printf(bus, 3159 "Failed to release active resource: %d\n", error); 3160 } 3161 return (retval); 3162 } 3163 3164 /** 3165 * @brief Fully release a reserved resource 3166 * 3167 * Fully releases a resource reserved via resource_list_reserve(). 3168 * 3169 * @param rl the resource list which was allocated from 3170 * @param bus the parent device of @p child 3171 * @param child the device whose reserved resource is being released 3172 * @param type the type of resource to release 3173 * @param rid the resource identifier 3174 * @param res the resource to release 3175 * 3176 * @retval 0 success 3177 * @retval non-zero a standard unix error code indicating what 3178 * error condition prevented the operation 3179 */ 3180 int 3181 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3182 int type, int rid) 3183 { 3184 struct resource_list_entry *rle = NULL; 3185 int passthrough = (device_get_parent(child) != bus); 3186 3187 if (passthrough) 3188 panic( 3189 "resource_list_unreserve() should only be called for direct children"); 3190 3191 rle = resource_list_find(rl, type, rid); 3192 3193 if (!rle) 3194 panic("resource_list_unreserve: can't find resource"); 3195 if (!(rle->flags & RLE_RESERVED)) 3196 return (EINVAL); 3197 if (rle->flags & RLE_ALLOCATED) 3198 return (EBUSY); 3199 rle->flags &= ~RLE_RESERVED; 3200 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3201 } 3202 3203 /** 3204 * @brief Print a description of resources in a resource list 3205 * 3206 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3207 * The name is printed if at least one resource of the given type is available. 3208 * The format is used to print resource start and end. 3209 * 3210 * @param rl the resource list to print 3211 * @param name the name of @p type, e.g. @c "memory" 3212 * @param type type type of resource entry to print 3213 * @param format printf(9) format string to print resource 3214 * start and end values 3215 * 3216 * @returns the number of characters printed 3217 */ 3218 int 3219 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3220 const char *format) 3221 { 3222 struct resource_list_entry *rle; 3223 int printed, retval; 3224 3225 printed = 0; 3226 retval = 0; 3227 /* Yes, this is kinda cheating */ 3228 STAILQ_FOREACH(rle, rl, link) { 3229 if (rle->type == type) { 3230 if (printed == 0) 3231 retval += printf(" %s ", name); 3232 else 3233 retval += printf(","); 3234 printed++; 3235 retval += printf(format, rle->start); 3236 if (rle->count > 1) { 3237 retval += printf("-"); 3238 retval += printf(format, rle->start + 3239 rle->count - 1); 3240 } 3241 } 3242 } 3243 return (retval); 3244 } 3245 3246 /** 3247 * @brief Releases all the resources in a list. 3248 * 3249 * @param rl The resource list to purge. 3250 * 3251 * @returns nothing 3252 */ 3253 void 3254 resource_list_purge(struct resource_list *rl) 3255 { 3256 struct resource_list_entry *rle; 3257 3258 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3259 if (rle->res) 3260 bus_release_resource(rman_get_device(rle->res), 3261 rle->type, rle->rid, rle->res); 3262 STAILQ_REMOVE_HEAD(rl, link); 3263 free(rle, M_BUS); 3264 } 3265 } 3266 3267 device_t 3268 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3269 { 3270 return (device_add_child_ordered(dev, order, name, unit)); 3271 } 3272 3273 /** 3274 * @brief Helper function for implementing DEVICE_PROBE() 3275 * 3276 * This function can be used to help implement the DEVICE_PROBE() for 3277 * a bus (i.e. a device which has other devices attached to it). It 3278 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3279 * devclass. 3280 */ 3281 int 3282 bus_generic_probe(device_t dev) 3283 { 3284 devclass_t dc = dev->devclass; 3285 driverlink_t dl; 3286 3287 TAILQ_FOREACH(dl, &dc->drivers, link) { 3288 /* 3289 * If this driver's pass is too high, then ignore it. 3290 * For most drivers in the default pass, this will 3291 * never be true. For early-pass drivers they will 3292 * only call the identify routines of eligible drivers 3293 * when this routine is called. Drivers for later 3294 * passes should have their identify routines called 3295 * on early-pass buses during BUS_NEW_PASS(). 3296 */ 3297 if (dl->pass > bus_current_pass) 3298 continue; 3299 DEVICE_IDENTIFY(dl->driver, dev); 3300 } 3301 3302 return (0); 3303 } 3304 3305 /** 3306 * @brief Helper function for implementing DEVICE_ATTACH() 3307 * 3308 * This function can be used to help implement the DEVICE_ATTACH() for 3309 * a bus. It calls device_probe_and_attach() for each of the device's 3310 * children. 3311 */ 3312 int 3313 bus_generic_attach(device_t dev) 3314 { 3315 device_t child; 3316 3317 TAILQ_FOREACH(child, &dev->children, link) { 3318 device_probe_and_attach(child); 3319 } 3320 3321 return (0); 3322 } 3323 3324 /** 3325 * @brief Helper function for delaying attaching children 3326 * 3327 * Many buses can't run transactions on the bus which children need to probe and 3328 * attach until after interrupts and/or timers are running. This function 3329 * delays their attach until interrupts and timers are enabled. 3330 */ 3331 int 3332 bus_delayed_attach_children(device_t dev) 3333 { 3334 /* Probe and attach the bus children when interrupts are available */ 3335 config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev); 3336 3337 return (0); 3338 } 3339 3340 /** 3341 * @brief Helper function for implementing DEVICE_DETACH() 3342 * 3343 * This function can be used to help implement the DEVICE_DETACH() for 3344 * a bus. It calls device_detach() for each of the device's 3345 * children. 3346 */ 3347 int 3348 bus_generic_detach(device_t dev) 3349 { 3350 device_t child; 3351 int error; 3352 3353 if (dev->state != DS_ATTACHED) 3354 return (EBUSY); 3355 3356 /* 3357 * Detach children in the reverse order. 3358 * See bus_generic_suspend for details. 3359 */ 3360 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3361 if ((error = device_detach(child)) != 0) 3362 return (error); 3363 } 3364 3365 return (0); 3366 } 3367 3368 /** 3369 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3370 * 3371 * This function can be used to help implement the DEVICE_SHUTDOWN() 3372 * for a bus. It calls device_shutdown() for each of the device's 3373 * children. 3374 */ 3375 int 3376 bus_generic_shutdown(device_t dev) 3377 { 3378 device_t child; 3379 3380 /* 3381 * Shut down children in the reverse order. 3382 * See bus_generic_suspend for details. 3383 */ 3384 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3385 device_shutdown(child); 3386 } 3387 3388 return (0); 3389 } 3390 3391 /** 3392 * @brief Default function for suspending a child device. 3393 * 3394 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). 3395 */ 3396 int 3397 bus_generic_suspend_child(device_t dev, device_t child) 3398 { 3399 int error; 3400 3401 error = DEVICE_SUSPEND(child); 3402 3403 if (error == 0) 3404 child->flags |= DF_SUSPENDED; 3405 3406 return (error); 3407 } 3408 3409 /** 3410 * @brief Default function for resuming a child device. 3411 * 3412 * This function is to be used by a bus's DEVICE_RESUME_CHILD(). 3413 */ 3414 int 3415 bus_generic_resume_child(device_t dev, device_t child) 3416 { 3417 DEVICE_RESUME(child); 3418 child->flags &= ~DF_SUSPENDED; 3419 3420 return (0); 3421 } 3422 3423 /** 3424 * @brief Helper function for implementing DEVICE_SUSPEND() 3425 * 3426 * This function can be used to help implement the DEVICE_SUSPEND() 3427 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3428 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3429 * operation is aborted and any devices which were suspended are 3430 * resumed immediately by calling their DEVICE_RESUME() methods. 3431 */ 3432 int 3433 bus_generic_suspend(device_t dev) 3434 { 3435 int error; 3436 device_t child; 3437 3438 /* 3439 * Suspend children in the reverse order. 3440 * For most buses all children are equal, so the order does not matter. 3441 * Other buses, such as acpi, carefully order their child devices to 3442 * express implicit dependencies between them. For such buses it is 3443 * safer to bring down devices in the reverse order. 3444 */ 3445 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3446 error = BUS_SUSPEND_CHILD(dev, child); 3447 if (error != 0) { 3448 child = TAILQ_NEXT(child, link); 3449 if (child != NULL) { 3450 TAILQ_FOREACH_FROM(child, &dev->children, link) 3451 BUS_RESUME_CHILD(dev, child); 3452 } 3453 return (error); 3454 } 3455 } 3456 return (0); 3457 } 3458 3459 /** 3460 * @brief Helper function for implementing DEVICE_RESUME() 3461 * 3462 * This function can be used to help implement the DEVICE_RESUME() for 3463 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3464 */ 3465 int 3466 bus_generic_resume(device_t dev) 3467 { 3468 device_t child; 3469 3470 TAILQ_FOREACH(child, &dev->children, link) { 3471 BUS_RESUME_CHILD(dev, child); 3472 /* if resume fails, there's nothing we can usefully do... */ 3473 } 3474 return (0); 3475 } 3476 3477 /** 3478 * @brief Helper function for implementing BUS_RESET_POST 3479 * 3480 * Bus can use this function to implement common operations of 3481 * re-attaching or resuming the children after the bus itself was 3482 * reset, and after restoring bus-unique state of children. 3483 * 3484 * @param dev The bus 3485 * #param flags DEVF_RESET_* 3486 */ 3487 int 3488 bus_helper_reset_post(device_t dev, int flags) 3489 { 3490 device_t child; 3491 int error, error1; 3492 3493 error = 0; 3494 TAILQ_FOREACH(child, &dev->children,link) { 3495 BUS_RESET_POST(dev, child); 3496 error1 = (flags & DEVF_RESET_DETACH) != 0 ? 3497 device_probe_and_attach(child) : 3498 BUS_RESUME_CHILD(dev, child); 3499 if (error == 0 && error1 != 0) 3500 error = error1; 3501 } 3502 return (error); 3503 } 3504 3505 static void 3506 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags) 3507 { 3508 child = TAILQ_NEXT(child, link); 3509 if (child == NULL) 3510 return; 3511 TAILQ_FOREACH_FROM(child, &dev->children,link) { 3512 BUS_RESET_POST(dev, child); 3513 if ((flags & DEVF_RESET_DETACH) != 0) 3514 device_probe_and_attach(child); 3515 else 3516 BUS_RESUME_CHILD(dev, child); 3517 } 3518 } 3519 3520 /** 3521 * @brief Helper function for implementing BUS_RESET_PREPARE 3522 * 3523 * Bus can use this function to implement common operations of 3524 * detaching or suspending the children before the bus itself is 3525 * reset, and then save bus-unique state of children that must 3526 * persists around reset. 3527 * 3528 * @param dev The bus 3529 * #param flags DEVF_RESET_* 3530 */ 3531 int 3532 bus_helper_reset_prepare(device_t dev, int flags) 3533 { 3534 device_t child; 3535 int error; 3536 3537 if (dev->state != DS_ATTACHED) 3538 return (EBUSY); 3539 3540 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3541 if ((flags & DEVF_RESET_DETACH) != 0) { 3542 error = device_get_state(child) == DS_ATTACHED ? 3543 device_detach(child) : 0; 3544 } else { 3545 error = BUS_SUSPEND_CHILD(dev, child); 3546 } 3547 if (error == 0) { 3548 error = BUS_RESET_PREPARE(dev, child); 3549 if (error != 0) { 3550 if ((flags & DEVF_RESET_DETACH) != 0) 3551 device_probe_and_attach(child); 3552 else 3553 BUS_RESUME_CHILD(dev, child); 3554 } 3555 } 3556 if (error != 0) { 3557 bus_helper_reset_prepare_rollback(dev, child, flags); 3558 return (error); 3559 } 3560 } 3561 return (0); 3562 } 3563 3564 /** 3565 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3566 * 3567 * This function prints the first part of the ascii representation of 3568 * @p child, including its name, unit and description (if any - see 3569 * device_set_desc()). 3570 * 3571 * @returns the number of characters printed 3572 */ 3573 int 3574 bus_print_child_header(device_t dev, device_t child) 3575 { 3576 int retval = 0; 3577 3578 if (device_get_desc(child)) { 3579 retval += device_printf(child, "<%s>", device_get_desc(child)); 3580 } else { 3581 retval += printf("%s", device_get_nameunit(child)); 3582 } 3583 3584 return (retval); 3585 } 3586 3587 /** 3588 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3589 * 3590 * This function prints the last part of the ascii representation of 3591 * @p child, which consists of the string @c " on " followed by the 3592 * name and unit of the @p dev. 3593 * 3594 * @returns the number of characters printed 3595 */ 3596 int 3597 bus_print_child_footer(device_t dev, device_t child) 3598 { 3599 return (printf(" on %s\n", device_get_nameunit(dev))); 3600 } 3601 3602 /** 3603 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3604 * 3605 * This function prints out the VM domain for the given device. 3606 * 3607 * @returns the number of characters printed 3608 */ 3609 int 3610 bus_print_child_domain(device_t dev, device_t child) 3611 { 3612 int domain; 3613 3614 /* No domain? Don't print anything */ 3615 if (BUS_GET_DOMAIN(dev, child, &domain) != 0) 3616 return (0); 3617 3618 return (printf(" numa-domain %d", domain)); 3619 } 3620 3621 /** 3622 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3623 * 3624 * This function simply calls bus_print_child_header() followed by 3625 * bus_print_child_footer(). 3626 * 3627 * @returns the number of characters printed 3628 */ 3629 int 3630 bus_generic_print_child(device_t dev, device_t child) 3631 { 3632 int retval = 0; 3633 3634 retval += bus_print_child_header(dev, child); 3635 retval += bus_print_child_domain(dev, child); 3636 retval += bus_print_child_footer(dev, child); 3637 3638 return (retval); 3639 } 3640 3641 /** 3642 * @brief Stub function for implementing BUS_READ_IVAR(). 3643 * 3644 * @returns ENOENT 3645 */ 3646 int 3647 bus_generic_read_ivar(device_t dev, device_t child, int index, 3648 uintptr_t * result) 3649 { 3650 return (ENOENT); 3651 } 3652 3653 /** 3654 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3655 * 3656 * @returns ENOENT 3657 */ 3658 int 3659 bus_generic_write_ivar(device_t dev, device_t child, int index, 3660 uintptr_t value) 3661 { 3662 return (ENOENT); 3663 } 3664 3665 /** 3666 * @brief Helper function for implementing BUS_GET_PROPERTY(). 3667 * 3668 * This simply calls the BUS_GET_PROPERTY of the parent of dev, 3669 * until a non-default implementation is found. 3670 */ 3671 ssize_t 3672 bus_generic_get_property(device_t dev, device_t child, const char *propname, 3673 void *propvalue, size_t size, device_property_type_t type) 3674 { 3675 if (device_get_parent(dev) != NULL) 3676 return (BUS_GET_PROPERTY(device_get_parent(dev), child, 3677 propname, propvalue, size, type)); 3678 3679 return (-1); 3680 } 3681 3682 /** 3683 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3684 * 3685 * @returns NULL 3686 */ 3687 struct resource_list * 3688 bus_generic_get_resource_list(device_t dev, device_t child) 3689 { 3690 return (NULL); 3691 } 3692 3693 /** 3694 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3695 * 3696 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3697 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3698 * and then calls device_probe_and_attach() for each unattached child. 3699 */ 3700 void 3701 bus_generic_driver_added(device_t dev, driver_t *driver) 3702 { 3703 device_t child; 3704 3705 DEVICE_IDENTIFY(driver, dev); 3706 TAILQ_FOREACH(child, &dev->children, link) { 3707 if (child->state == DS_NOTPRESENT) 3708 device_probe_and_attach(child); 3709 } 3710 } 3711 3712 /** 3713 * @brief Helper function for implementing BUS_NEW_PASS(). 3714 * 3715 * This implementing of BUS_NEW_PASS() first calls the identify 3716 * routines for any drivers that probe at the current pass. Then it 3717 * walks the list of devices for this bus. If a device is already 3718 * attached, then it calls BUS_NEW_PASS() on that device. If the 3719 * device is not already attached, it attempts to attach a driver to 3720 * it. 3721 */ 3722 void 3723 bus_generic_new_pass(device_t dev) 3724 { 3725 driverlink_t dl; 3726 devclass_t dc; 3727 device_t child; 3728 3729 dc = dev->devclass; 3730 TAILQ_FOREACH(dl, &dc->drivers, link) { 3731 if (dl->pass == bus_current_pass) 3732 DEVICE_IDENTIFY(dl->driver, dev); 3733 } 3734 TAILQ_FOREACH(child, &dev->children, link) { 3735 if (child->state >= DS_ATTACHED) 3736 BUS_NEW_PASS(child); 3737 else if (child->state == DS_NOTPRESENT) 3738 device_probe_and_attach(child); 3739 } 3740 } 3741 3742 /** 3743 * @brief Helper function for implementing BUS_SETUP_INTR(). 3744 * 3745 * This simple implementation of BUS_SETUP_INTR() simply calls the 3746 * BUS_SETUP_INTR() method of the parent of @p dev. 3747 */ 3748 int 3749 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3750 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3751 void **cookiep) 3752 { 3753 /* Propagate up the bus hierarchy until someone handles it. */ 3754 if (dev->parent) 3755 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3756 filter, intr, arg, cookiep)); 3757 return (EINVAL); 3758 } 3759 3760 /** 3761 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3762 * 3763 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3764 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3765 */ 3766 int 3767 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3768 void *cookie) 3769 { 3770 /* Propagate up the bus hierarchy until someone handles it. */ 3771 if (dev->parent) 3772 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3773 return (EINVAL); 3774 } 3775 3776 /** 3777 * @brief Helper function for implementing BUS_SUSPEND_INTR(). 3778 * 3779 * This simple implementation of BUS_SUSPEND_INTR() simply calls the 3780 * BUS_SUSPEND_INTR() method of the parent of @p dev. 3781 */ 3782 int 3783 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq) 3784 { 3785 /* Propagate up the bus hierarchy until someone handles it. */ 3786 if (dev->parent) 3787 return (BUS_SUSPEND_INTR(dev->parent, child, irq)); 3788 return (EINVAL); 3789 } 3790 3791 /** 3792 * @brief Helper function for implementing BUS_RESUME_INTR(). 3793 * 3794 * This simple implementation of BUS_RESUME_INTR() simply calls the 3795 * BUS_RESUME_INTR() method of the parent of @p dev. 3796 */ 3797 int 3798 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq) 3799 { 3800 /* Propagate up the bus hierarchy until someone handles it. */ 3801 if (dev->parent) 3802 return (BUS_RESUME_INTR(dev->parent, child, irq)); 3803 return (EINVAL); 3804 } 3805 3806 /** 3807 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 3808 * 3809 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 3810 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 3811 */ 3812 int 3813 bus_generic_adjust_resource(device_t dev, device_t child, int type, 3814 struct resource *r, rman_res_t start, rman_res_t end) 3815 { 3816 /* Propagate up the bus hierarchy until someone handles it. */ 3817 if (dev->parent) 3818 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, 3819 end)); 3820 return (EINVAL); 3821 } 3822 3823 /* 3824 * @brief Helper function for implementing BUS_TRANSLATE_RESOURCE(). 3825 * 3826 * This simple implementation of BUS_TRANSLATE_RESOURCE() simply calls the 3827 * BUS_TRANSLATE_RESOURCE() method of the parent of @p dev. If there is no 3828 * parent, no translation happens. 3829 */ 3830 int 3831 bus_generic_translate_resource(device_t dev, int type, rman_res_t start, 3832 rman_res_t *newstart) 3833 { 3834 if (dev->parent) 3835 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, 3836 newstart)); 3837 *newstart = start; 3838 return (0); 3839 } 3840 3841 /** 3842 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3843 * 3844 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 3845 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 3846 */ 3847 struct resource * 3848 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 3849 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3850 { 3851 /* Propagate up the bus hierarchy until someone handles it. */ 3852 if (dev->parent) 3853 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 3854 start, end, count, flags)); 3855 return (NULL); 3856 } 3857 3858 /** 3859 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3860 * 3861 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 3862 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 3863 */ 3864 int 3865 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 3866 struct resource *r) 3867 { 3868 /* Propagate up the bus hierarchy until someone handles it. */ 3869 if (dev->parent) 3870 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 3871 r)); 3872 return (EINVAL); 3873 } 3874 3875 /** 3876 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 3877 * 3878 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 3879 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 3880 */ 3881 int 3882 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 3883 struct resource *r) 3884 { 3885 /* Propagate up the bus hierarchy until someone handles it. */ 3886 if (dev->parent) 3887 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 3888 r)); 3889 return (EINVAL); 3890 } 3891 3892 /** 3893 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 3894 * 3895 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 3896 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 3897 */ 3898 int 3899 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 3900 int rid, struct resource *r) 3901 { 3902 /* Propagate up the bus hierarchy until someone handles it. */ 3903 if (dev->parent) 3904 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 3905 r)); 3906 return (EINVAL); 3907 } 3908 3909 /** 3910 * @brief Helper function for implementing BUS_MAP_RESOURCE(). 3911 * 3912 * This simple implementation of BUS_MAP_RESOURCE() simply calls the 3913 * BUS_MAP_RESOURCE() method of the parent of @p dev. 3914 */ 3915 int 3916 bus_generic_map_resource(device_t dev, device_t child, int type, 3917 struct resource *r, struct resource_map_request *args, 3918 struct resource_map *map) 3919 { 3920 /* Propagate up the bus hierarchy until someone handles it. */ 3921 if (dev->parent) 3922 return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args, 3923 map)); 3924 return (EINVAL); 3925 } 3926 3927 /** 3928 * @brief Helper function for implementing BUS_UNMAP_RESOURCE(). 3929 * 3930 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the 3931 * BUS_UNMAP_RESOURCE() method of the parent of @p dev. 3932 */ 3933 int 3934 bus_generic_unmap_resource(device_t dev, device_t child, int type, 3935 struct resource *r, struct resource_map *map) 3936 { 3937 /* Propagate up the bus hierarchy until someone handles it. */ 3938 if (dev->parent) 3939 return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map)); 3940 return (EINVAL); 3941 } 3942 3943 /** 3944 * @brief Helper function for implementing BUS_BIND_INTR(). 3945 * 3946 * This simple implementation of BUS_BIND_INTR() simply calls the 3947 * BUS_BIND_INTR() method of the parent of @p dev. 3948 */ 3949 int 3950 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 3951 int cpu) 3952 { 3953 /* Propagate up the bus hierarchy until someone handles it. */ 3954 if (dev->parent) 3955 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 3956 return (EINVAL); 3957 } 3958 3959 /** 3960 * @brief Helper function for implementing BUS_CONFIG_INTR(). 3961 * 3962 * This simple implementation of BUS_CONFIG_INTR() simply calls the 3963 * BUS_CONFIG_INTR() method of the parent of @p dev. 3964 */ 3965 int 3966 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 3967 enum intr_polarity pol) 3968 { 3969 /* Propagate up the bus hierarchy until someone handles it. */ 3970 if (dev->parent) 3971 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 3972 return (EINVAL); 3973 } 3974 3975 /** 3976 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 3977 * 3978 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 3979 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 3980 */ 3981 int 3982 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 3983 void *cookie, const char *descr) 3984 { 3985 /* Propagate up the bus hierarchy until someone handles it. */ 3986 if (dev->parent) 3987 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 3988 descr)); 3989 return (EINVAL); 3990 } 3991 3992 /** 3993 * @brief Helper function for implementing BUS_GET_CPUS(). 3994 * 3995 * This simple implementation of BUS_GET_CPUS() simply calls the 3996 * BUS_GET_CPUS() method of the parent of @p dev. 3997 */ 3998 int 3999 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op, 4000 size_t setsize, cpuset_t *cpuset) 4001 { 4002 /* Propagate up the bus hierarchy until someone handles it. */ 4003 if (dev->parent != NULL) 4004 return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset)); 4005 return (EINVAL); 4006 } 4007 4008 /** 4009 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 4010 * 4011 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 4012 * BUS_GET_DMA_TAG() method of the parent of @p dev. 4013 */ 4014 bus_dma_tag_t 4015 bus_generic_get_dma_tag(device_t dev, device_t child) 4016 { 4017 /* Propagate up the bus hierarchy until someone handles it. */ 4018 if (dev->parent != NULL) 4019 return (BUS_GET_DMA_TAG(dev->parent, child)); 4020 return (NULL); 4021 } 4022 4023 /** 4024 * @brief Helper function for implementing BUS_GET_BUS_TAG(). 4025 * 4026 * This simple implementation of BUS_GET_BUS_TAG() simply calls the 4027 * BUS_GET_BUS_TAG() method of the parent of @p dev. 4028 */ 4029 bus_space_tag_t 4030 bus_generic_get_bus_tag(device_t dev, device_t child) 4031 { 4032 /* Propagate up the bus hierarchy until someone handles it. */ 4033 if (dev->parent != NULL) 4034 return (BUS_GET_BUS_TAG(dev->parent, child)); 4035 return ((bus_space_tag_t)0); 4036 } 4037 4038 /** 4039 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4040 * 4041 * This implementation of BUS_GET_RESOURCE() uses the 4042 * resource_list_find() function to do most of the work. It calls 4043 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4044 * search. 4045 */ 4046 int 4047 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4048 rman_res_t *startp, rman_res_t *countp) 4049 { 4050 struct resource_list * rl = NULL; 4051 struct resource_list_entry * rle = NULL; 4052 4053 rl = BUS_GET_RESOURCE_LIST(dev, child); 4054 if (!rl) 4055 return (EINVAL); 4056 4057 rle = resource_list_find(rl, type, rid); 4058 if (!rle) 4059 return (ENOENT); 4060 4061 if (startp) 4062 *startp = rle->start; 4063 if (countp) 4064 *countp = rle->count; 4065 4066 return (0); 4067 } 4068 4069 /** 4070 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4071 * 4072 * This implementation of BUS_SET_RESOURCE() uses the 4073 * resource_list_add() function to do most of the work. It calls 4074 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4075 * edit. 4076 */ 4077 int 4078 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4079 rman_res_t start, rman_res_t count) 4080 { 4081 struct resource_list * rl = NULL; 4082 4083 rl = BUS_GET_RESOURCE_LIST(dev, child); 4084 if (!rl) 4085 return (EINVAL); 4086 4087 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4088 4089 return (0); 4090 } 4091 4092 /** 4093 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4094 * 4095 * This implementation of BUS_DELETE_RESOURCE() uses the 4096 * resource_list_delete() function to do most of the work. It calls 4097 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4098 * edit. 4099 */ 4100 void 4101 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4102 { 4103 struct resource_list * rl = NULL; 4104 4105 rl = BUS_GET_RESOURCE_LIST(dev, child); 4106 if (!rl) 4107 return; 4108 4109 resource_list_delete(rl, type, rid); 4110 4111 return; 4112 } 4113 4114 /** 4115 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4116 * 4117 * This implementation of BUS_RELEASE_RESOURCE() uses the 4118 * resource_list_release() function to do most of the work. It calls 4119 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4120 */ 4121 int 4122 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 4123 int rid, struct resource *r) 4124 { 4125 struct resource_list * rl = NULL; 4126 4127 if (device_get_parent(child) != dev) 4128 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 4129 type, rid, r)); 4130 4131 rl = BUS_GET_RESOURCE_LIST(dev, child); 4132 if (!rl) 4133 return (EINVAL); 4134 4135 return (resource_list_release(rl, dev, child, type, rid, r)); 4136 } 4137 4138 /** 4139 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4140 * 4141 * This implementation of BUS_ALLOC_RESOURCE() uses the 4142 * resource_list_alloc() function to do most of the work. It calls 4143 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4144 */ 4145 struct resource * 4146 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4147 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4148 { 4149 struct resource_list * rl = NULL; 4150 4151 if (device_get_parent(child) != dev) 4152 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4153 type, rid, start, end, count, flags)); 4154 4155 rl = BUS_GET_RESOURCE_LIST(dev, child); 4156 if (!rl) 4157 return (NULL); 4158 4159 return (resource_list_alloc(rl, dev, child, type, rid, 4160 start, end, count, flags)); 4161 } 4162 4163 /** 4164 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4165 * 4166 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4167 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4168 */ 4169 int 4170 bus_generic_child_present(device_t dev, device_t child) 4171 { 4172 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4173 } 4174 4175 int 4176 bus_generic_get_domain(device_t dev, device_t child, int *domain) 4177 { 4178 if (dev->parent) 4179 return (BUS_GET_DOMAIN(dev->parent, dev, domain)); 4180 4181 return (ENOENT); 4182 } 4183 4184 /** 4185 * @brief Helper function to implement normal BUS_GET_DEVICE_PATH() 4186 * 4187 * This function knows how to (a) pass the request up the tree if there's 4188 * a parent and (b) Knows how to supply a FreeBSD locator. 4189 * 4190 * @param bus bus in the walk up the tree 4191 * @param child leaf node to print information about 4192 * @param locator BUS_LOCATOR_xxx string for locator 4193 * @param sb Buffer to print information into 4194 */ 4195 int 4196 bus_generic_get_device_path(device_t bus, device_t child, const char *locator, 4197 struct sbuf *sb) 4198 { 4199 int rv = 0; 4200 device_t parent; 4201 4202 /* 4203 * We don't recurse on ACPI since either we know the handle for the 4204 * device or we don't. And if we're in the generic routine, we don't 4205 * have a ACPI override. All other locators build up a path by having 4206 * their parents create a path and then adding the path element for this 4207 * node. That's why we recurse with parent, bus rather than the typical 4208 * parent, child: each spot in the tree is independent of what our child 4209 * will do with this path. 4210 */ 4211 parent = device_get_parent(bus); 4212 if (parent != NULL && strcmp(locator, BUS_LOCATOR_ACPI) != 0) { 4213 rv = BUS_GET_DEVICE_PATH(parent, bus, locator, sb); 4214 } 4215 if (strcmp(locator, BUS_LOCATOR_FREEBSD) == 0) { 4216 if (rv == 0) { 4217 sbuf_printf(sb, "/%s", device_get_nameunit(child)); 4218 } 4219 return (rv); 4220 } 4221 /* 4222 * Don't know what to do. So assume we do nothing. Not sure that's 4223 * the right thing, but keeps us from having a big list here. 4224 */ 4225 return (0); 4226 } 4227 4228 4229 /** 4230 * @brief Helper function for implementing BUS_RESCAN(). 4231 * 4232 * This null implementation of BUS_RESCAN() always fails to indicate 4233 * the bus does not support rescanning. 4234 */ 4235 int 4236 bus_null_rescan(device_t dev) 4237 { 4238 return (ENODEV); 4239 } 4240 4241 /* 4242 * Some convenience functions to make it easier for drivers to use the 4243 * resource-management functions. All these really do is hide the 4244 * indirection through the parent's method table, making for slightly 4245 * less-wordy code. In the future, it might make sense for this code 4246 * to maintain some sort of a list of resources allocated by each device. 4247 */ 4248 4249 int 4250 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4251 struct resource **res) 4252 { 4253 int i; 4254 4255 for (i = 0; rs[i].type != -1; i++) 4256 res[i] = NULL; 4257 for (i = 0; rs[i].type != -1; i++) { 4258 res[i] = bus_alloc_resource_any(dev, 4259 rs[i].type, &rs[i].rid, rs[i].flags); 4260 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4261 bus_release_resources(dev, rs, res); 4262 return (ENXIO); 4263 } 4264 } 4265 return (0); 4266 } 4267 4268 void 4269 bus_release_resources(device_t dev, const struct resource_spec *rs, 4270 struct resource **res) 4271 { 4272 int i; 4273 4274 for (i = 0; rs[i].type != -1; i++) 4275 if (res[i] != NULL) { 4276 bus_release_resource( 4277 dev, rs[i].type, rs[i].rid, res[i]); 4278 res[i] = NULL; 4279 } 4280 } 4281 4282 /** 4283 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4284 * 4285 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4286 * parent of @p dev. 4287 */ 4288 struct resource * 4289 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, 4290 rman_res_t end, rman_res_t count, u_int flags) 4291 { 4292 struct resource *res; 4293 4294 if (dev->parent == NULL) 4295 return (NULL); 4296 res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4297 count, flags); 4298 return (res); 4299 } 4300 4301 /** 4302 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4303 * 4304 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4305 * parent of @p dev. 4306 */ 4307 int 4308 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start, 4309 rman_res_t end) 4310 { 4311 if (dev->parent == NULL) 4312 return (EINVAL); 4313 return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); 4314 } 4315 4316 /** 4317 * @brief Wrapper function for BUS_TRANSLATE_RESOURCE(). 4318 * 4319 * This function simply calls the BUS_TRANSLATE_RESOURCE() method of the 4320 * parent of @p dev. 4321 */ 4322 int 4323 bus_translate_resource(device_t dev, int type, rman_res_t start, 4324 rman_res_t *newstart) 4325 { 4326 if (dev->parent == NULL) 4327 return (EINVAL); 4328 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, newstart)); 4329 } 4330 4331 /** 4332 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4333 * 4334 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4335 * parent of @p dev. 4336 */ 4337 int 4338 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 4339 { 4340 if (dev->parent == NULL) 4341 return (EINVAL); 4342 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4343 } 4344 4345 /** 4346 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4347 * 4348 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4349 * parent of @p dev. 4350 */ 4351 int 4352 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 4353 { 4354 if (dev->parent == NULL) 4355 return (EINVAL); 4356 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4357 } 4358 4359 /** 4360 * @brief Wrapper function for BUS_MAP_RESOURCE(). 4361 * 4362 * This function simply calls the BUS_MAP_RESOURCE() method of the 4363 * parent of @p dev. 4364 */ 4365 int 4366 bus_map_resource(device_t dev, int type, struct resource *r, 4367 struct resource_map_request *args, struct resource_map *map) 4368 { 4369 if (dev->parent == NULL) 4370 return (EINVAL); 4371 return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map)); 4372 } 4373 4374 /** 4375 * @brief Wrapper function for BUS_UNMAP_RESOURCE(). 4376 * 4377 * This function simply calls the BUS_UNMAP_RESOURCE() method of the 4378 * parent of @p dev. 4379 */ 4380 int 4381 bus_unmap_resource(device_t dev, int type, struct resource *r, 4382 struct resource_map *map) 4383 { 4384 if (dev->parent == NULL) 4385 return (EINVAL); 4386 return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map)); 4387 } 4388 4389 /** 4390 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4391 * 4392 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4393 * parent of @p dev. 4394 */ 4395 int 4396 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 4397 { 4398 int rv; 4399 4400 if (dev->parent == NULL) 4401 return (EINVAL); 4402 rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r); 4403 return (rv); 4404 } 4405 4406 /** 4407 * @brief Wrapper function for BUS_SETUP_INTR(). 4408 * 4409 * This function simply calls the BUS_SETUP_INTR() method of the 4410 * parent of @p dev. 4411 */ 4412 int 4413 bus_setup_intr(device_t dev, struct resource *r, int flags, 4414 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4415 { 4416 int error; 4417 4418 if (dev->parent == NULL) 4419 return (EINVAL); 4420 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4421 arg, cookiep); 4422 if (error != 0) 4423 return (error); 4424 if (handler != NULL && !(flags & INTR_MPSAFE)) 4425 device_printf(dev, "[GIANT-LOCKED]\n"); 4426 return (0); 4427 } 4428 4429 /** 4430 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4431 * 4432 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4433 * parent of @p dev. 4434 */ 4435 int 4436 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4437 { 4438 if (dev->parent == NULL) 4439 return (EINVAL); 4440 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4441 } 4442 4443 /** 4444 * @brief Wrapper function for BUS_SUSPEND_INTR(). 4445 * 4446 * This function simply calls the BUS_SUSPEND_INTR() method of the 4447 * parent of @p dev. 4448 */ 4449 int 4450 bus_suspend_intr(device_t dev, struct resource *r) 4451 { 4452 if (dev->parent == NULL) 4453 return (EINVAL); 4454 return (BUS_SUSPEND_INTR(dev->parent, dev, r)); 4455 } 4456 4457 /** 4458 * @brief Wrapper function for BUS_RESUME_INTR(). 4459 * 4460 * This function simply calls the BUS_RESUME_INTR() method of the 4461 * parent of @p dev. 4462 */ 4463 int 4464 bus_resume_intr(device_t dev, struct resource *r) 4465 { 4466 if (dev->parent == NULL) 4467 return (EINVAL); 4468 return (BUS_RESUME_INTR(dev->parent, dev, r)); 4469 } 4470 4471 /** 4472 * @brief Wrapper function for BUS_BIND_INTR(). 4473 * 4474 * This function simply calls the BUS_BIND_INTR() method of the 4475 * parent of @p dev. 4476 */ 4477 int 4478 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4479 { 4480 if (dev->parent == NULL) 4481 return (EINVAL); 4482 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4483 } 4484 4485 /** 4486 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4487 * 4488 * This function first formats the requested description into a 4489 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4490 * the parent of @p dev. 4491 */ 4492 int 4493 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4494 const char *fmt, ...) 4495 { 4496 va_list ap; 4497 char descr[MAXCOMLEN + 1]; 4498 4499 if (dev->parent == NULL) 4500 return (EINVAL); 4501 va_start(ap, fmt); 4502 vsnprintf(descr, sizeof(descr), fmt, ap); 4503 va_end(ap); 4504 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4505 } 4506 4507 /** 4508 * @brief Wrapper function for BUS_SET_RESOURCE(). 4509 * 4510 * This function simply calls the BUS_SET_RESOURCE() method of the 4511 * parent of @p dev. 4512 */ 4513 int 4514 bus_set_resource(device_t dev, int type, int rid, 4515 rman_res_t start, rman_res_t count) 4516 { 4517 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4518 start, count)); 4519 } 4520 4521 /** 4522 * @brief Wrapper function for BUS_GET_RESOURCE(). 4523 * 4524 * This function simply calls the BUS_GET_RESOURCE() method of the 4525 * parent of @p dev. 4526 */ 4527 int 4528 bus_get_resource(device_t dev, int type, int rid, 4529 rman_res_t *startp, rman_res_t *countp) 4530 { 4531 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4532 startp, countp)); 4533 } 4534 4535 /** 4536 * @brief Wrapper function for BUS_GET_RESOURCE(). 4537 * 4538 * This function simply calls the BUS_GET_RESOURCE() method of the 4539 * parent of @p dev and returns the start value. 4540 */ 4541 rman_res_t 4542 bus_get_resource_start(device_t dev, int type, int rid) 4543 { 4544 rman_res_t start; 4545 rman_res_t count; 4546 int error; 4547 4548 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4549 &start, &count); 4550 if (error) 4551 return (0); 4552 return (start); 4553 } 4554 4555 /** 4556 * @brief Wrapper function for BUS_GET_RESOURCE(). 4557 * 4558 * This function simply calls the BUS_GET_RESOURCE() method of the 4559 * parent of @p dev and returns the count value. 4560 */ 4561 rman_res_t 4562 bus_get_resource_count(device_t dev, int type, int rid) 4563 { 4564 rman_res_t start; 4565 rman_res_t count; 4566 int error; 4567 4568 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4569 &start, &count); 4570 if (error) 4571 return (0); 4572 return (count); 4573 } 4574 4575 /** 4576 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4577 * 4578 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4579 * parent of @p dev. 4580 */ 4581 void 4582 bus_delete_resource(device_t dev, int type, int rid) 4583 { 4584 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4585 } 4586 4587 /** 4588 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4589 * 4590 * This function simply calls the BUS_CHILD_PRESENT() method of the 4591 * parent of @p dev. 4592 */ 4593 int 4594 bus_child_present(device_t child) 4595 { 4596 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4597 } 4598 4599 /** 4600 * @brief Wrapper function for BUS_CHILD_PNPINFO(). 4601 * 4602 * This function simply calls the BUS_CHILD_PNPINFO() method of the parent of @p 4603 * dev. 4604 */ 4605 int 4606 bus_child_pnpinfo(device_t child, struct sbuf *sb) 4607 { 4608 device_t parent; 4609 4610 parent = device_get_parent(child); 4611 if (parent == NULL) 4612 return (0); 4613 return (BUS_CHILD_PNPINFO(parent, child, sb)); 4614 } 4615 4616 /** 4617 * @brief Generic implementation that does nothing for bus_child_pnpinfo 4618 * 4619 * This function has the right signature and returns 0 since the sbuf is passed 4620 * to us to append to. 4621 */ 4622 int 4623 bus_generic_child_pnpinfo(device_t dev, device_t child, struct sbuf *sb) 4624 { 4625 return (0); 4626 } 4627 4628 /** 4629 * @brief Wrapper function for BUS_CHILD_LOCATION(). 4630 * 4631 * This function simply calls the BUS_CHILD_LOCATION() method of the parent of 4632 * @p dev. 4633 */ 4634 int 4635 bus_child_location(device_t child, struct sbuf *sb) 4636 { 4637 device_t parent; 4638 4639 parent = device_get_parent(child); 4640 if (parent == NULL) 4641 return (0); 4642 return (BUS_CHILD_LOCATION(parent, child, sb)); 4643 } 4644 4645 /** 4646 * @brief Generic implementation that does nothing for bus_child_location 4647 * 4648 * This function has the right signature and returns 0 since the sbuf is passed 4649 * to us to append to. 4650 */ 4651 int 4652 bus_generic_child_location(device_t dev, device_t child, struct sbuf *sb) 4653 { 4654 return (0); 4655 } 4656 4657 /** 4658 * @brief Wrapper function for BUS_GET_CPUS(). 4659 * 4660 * This function simply calls the BUS_GET_CPUS() method of the 4661 * parent of @p dev. 4662 */ 4663 int 4664 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) 4665 { 4666 device_t parent; 4667 4668 parent = device_get_parent(dev); 4669 if (parent == NULL) 4670 return (EINVAL); 4671 return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset)); 4672 } 4673 4674 /** 4675 * @brief Wrapper function for BUS_GET_DMA_TAG(). 4676 * 4677 * This function simply calls the BUS_GET_DMA_TAG() method of the 4678 * parent of @p dev. 4679 */ 4680 bus_dma_tag_t 4681 bus_get_dma_tag(device_t dev) 4682 { 4683 device_t parent; 4684 4685 parent = device_get_parent(dev); 4686 if (parent == NULL) 4687 return (NULL); 4688 return (BUS_GET_DMA_TAG(parent, dev)); 4689 } 4690 4691 /** 4692 * @brief Wrapper function for BUS_GET_BUS_TAG(). 4693 * 4694 * This function simply calls the BUS_GET_BUS_TAG() method of the 4695 * parent of @p dev. 4696 */ 4697 bus_space_tag_t 4698 bus_get_bus_tag(device_t dev) 4699 { 4700 device_t parent; 4701 4702 parent = device_get_parent(dev); 4703 if (parent == NULL) 4704 return ((bus_space_tag_t)0); 4705 return (BUS_GET_BUS_TAG(parent, dev)); 4706 } 4707 4708 /** 4709 * @brief Wrapper function for BUS_GET_DOMAIN(). 4710 * 4711 * This function simply calls the BUS_GET_DOMAIN() method of the 4712 * parent of @p dev. 4713 */ 4714 int 4715 bus_get_domain(device_t dev, int *domain) 4716 { 4717 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); 4718 } 4719 4720 /* Resume all devices and then notify userland that we're up again. */ 4721 static int 4722 root_resume(device_t dev) 4723 { 4724 int error; 4725 4726 error = bus_generic_resume(dev); 4727 if (error == 0) { 4728 devctl_notify("kernel", "power", "resume", NULL); 4729 } 4730 return (error); 4731 } 4732 4733 static int 4734 root_print_child(device_t dev, device_t child) 4735 { 4736 int retval = 0; 4737 4738 retval += bus_print_child_header(dev, child); 4739 retval += printf("\n"); 4740 4741 return (retval); 4742 } 4743 4744 static int 4745 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 4746 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 4747 { 4748 /* 4749 * If an interrupt mapping gets to here something bad has happened. 4750 */ 4751 panic("root_setup_intr"); 4752 } 4753 4754 /* 4755 * If we get here, assume that the device is permanent and really is 4756 * present in the system. Removable bus drivers are expected to intercept 4757 * this call long before it gets here. We return -1 so that drivers that 4758 * really care can check vs -1 or some ERRNO returned higher in the food 4759 * chain. 4760 */ 4761 static int 4762 root_child_present(device_t dev, device_t child) 4763 { 4764 return (-1); 4765 } 4766 4767 static int 4768 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 4769 cpuset_t *cpuset) 4770 { 4771 switch (op) { 4772 case INTR_CPUS: 4773 /* Default to returning the set of all CPUs. */ 4774 if (setsize != sizeof(cpuset_t)) 4775 return (EINVAL); 4776 *cpuset = all_cpus; 4777 return (0); 4778 default: 4779 return (EINVAL); 4780 } 4781 } 4782 4783 static kobj_method_t root_methods[] = { 4784 /* Device interface */ 4785 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 4786 KOBJMETHOD(device_suspend, bus_generic_suspend), 4787 KOBJMETHOD(device_resume, root_resume), 4788 4789 /* Bus interface */ 4790 KOBJMETHOD(bus_print_child, root_print_child), 4791 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 4792 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 4793 KOBJMETHOD(bus_setup_intr, root_setup_intr), 4794 KOBJMETHOD(bus_child_present, root_child_present), 4795 KOBJMETHOD(bus_get_cpus, root_get_cpus), 4796 4797 KOBJMETHOD_END 4798 }; 4799 4800 static driver_t root_driver = { 4801 "root", 4802 root_methods, 4803 1, /* no softc */ 4804 }; 4805 4806 device_t root_bus; 4807 devclass_t root_devclass; 4808 4809 static int 4810 root_bus_module_handler(module_t mod, int what, void* arg) 4811 { 4812 switch (what) { 4813 case MOD_LOAD: 4814 TAILQ_INIT(&bus_data_devices); 4815 kobj_class_compile((kobj_class_t) &root_driver); 4816 root_bus = make_device(NULL, "root", 0); 4817 root_bus->desc = "System root bus"; 4818 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 4819 root_bus->driver = &root_driver; 4820 root_bus->state = DS_ATTACHED; 4821 root_devclass = devclass_find_internal("root", NULL, FALSE); 4822 devctl2_init(); 4823 return (0); 4824 4825 case MOD_SHUTDOWN: 4826 device_shutdown(root_bus); 4827 return (0); 4828 default: 4829 return (EOPNOTSUPP); 4830 } 4831 4832 return (0); 4833 } 4834 4835 static moduledata_t root_bus_mod = { 4836 "rootbus", 4837 root_bus_module_handler, 4838 NULL 4839 }; 4840 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 4841 4842 /** 4843 * @brief Automatically configure devices 4844 * 4845 * This function begins the autoconfiguration process by calling 4846 * device_probe_and_attach() for each child of the @c root0 device. 4847 */ 4848 void 4849 root_bus_configure(void) 4850 { 4851 PDEBUG((".")); 4852 4853 /* Eventually this will be split up, but this is sufficient for now. */ 4854 bus_set_pass(BUS_PASS_DEFAULT); 4855 } 4856 4857 /** 4858 * @brief Module handler for registering device drivers 4859 * 4860 * This module handler is used to automatically register device 4861 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 4862 * devclass_add_driver() for the driver described by the 4863 * driver_module_data structure pointed to by @p arg 4864 */ 4865 int 4866 driver_module_handler(module_t mod, int what, void *arg) 4867 { 4868 struct driver_module_data *dmd; 4869 devclass_t bus_devclass; 4870 kobj_class_t driver; 4871 int error, pass; 4872 4873 dmd = (struct driver_module_data *)arg; 4874 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 4875 error = 0; 4876 4877 switch (what) { 4878 case MOD_LOAD: 4879 if (dmd->dmd_chainevh) 4880 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4881 4882 pass = dmd->dmd_pass; 4883 driver = dmd->dmd_driver; 4884 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 4885 DRIVERNAME(driver), dmd->dmd_busname, pass)); 4886 error = devclass_add_driver(bus_devclass, driver, pass, 4887 dmd->dmd_devclass); 4888 break; 4889 4890 case MOD_UNLOAD: 4891 PDEBUG(("Unloading module: driver %s from bus %s", 4892 DRIVERNAME(dmd->dmd_driver), 4893 dmd->dmd_busname)); 4894 error = devclass_delete_driver(bus_devclass, 4895 dmd->dmd_driver); 4896 4897 if (!error && dmd->dmd_chainevh) 4898 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4899 break; 4900 case MOD_QUIESCE: 4901 PDEBUG(("Quiesce module: driver %s from bus %s", 4902 DRIVERNAME(dmd->dmd_driver), 4903 dmd->dmd_busname)); 4904 error = devclass_quiesce_driver(bus_devclass, 4905 dmd->dmd_driver); 4906 4907 if (!error && dmd->dmd_chainevh) 4908 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4909 break; 4910 default: 4911 error = EOPNOTSUPP; 4912 break; 4913 } 4914 4915 return (error); 4916 } 4917 4918 /** 4919 * @brief Enumerate all hinted devices for this bus. 4920 * 4921 * Walks through the hints for this bus and calls the bus_hinted_child 4922 * routine for each one it fines. It searches first for the specific 4923 * bus that's being probed for hinted children (eg isa0), and then for 4924 * generic children (eg isa). 4925 * 4926 * @param dev bus device to enumerate 4927 */ 4928 void 4929 bus_enumerate_hinted_children(device_t bus) 4930 { 4931 int i; 4932 const char *dname, *busname; 4933 int dunit; 4934 4935 /* 4936 * enumerate all devices on the specific bus 4937 */ 4938 busname = device_get_nameunit(bus); 4939 i = 0; 4940 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4941 BUS_HINTED_CHILD(bus, dname, dunit); 4942 4943 /* 4944 * and all the generic ones. 4945 */ 4946 busname = device_get_name(bus); 4947 i = 0; 4948 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4949 BUS_HINTED_CHILD(bus, dname, dunit); 4950 } 4951 4952 #ifdef BUS_DEBUG 4953 4954 /* the _short versions avoid iteration by not calling anything that prints 4955 * more than oneliners. I love oneliners. 4956 */ 4957 4958 static void 4959 print_device_short(device_t dev, int indent) 4960 { 4961 if (!dev) 4962 return; 4963 4964 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 4965 dev->unit, dev->desc, 4966 (dev->parent? "":"no "), 4967 (TAILQ_EMPTY(&dev->children)? "no ":""), 4968 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 4969 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 4970 (dev->flags&DF_WILDCARD? "wildcard,":""), 4971 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 4972 (dev->flags&DF_SUSPENDED? "suspended,":""), 4973 (dev->ivars? "":"no "), 4974 (dev->softc? "":"no "), 4975 dev->busy)); 4976 } 4977 4978 static void 4979 print_device(device_t dev, int indent) 4980 { 4981 if (!dev) 4982 return; 4983 4984 print_device_short(dev, indent); 4985 4986 indentprintf(("Parent:\n")); 4987 print_device_short(dev->parent, indent+1); 4988 indentprintf(("Driver:\n")); 4989 print_driver_short(dev->driver, indent+1); 4990 indentprintf(("Devclass:\n")); 4991 print_devclass_short(dev->devclass, indent+1); 4992 } 4993 4994 void 4995 print_device_tree_short(device_t dev, int indent) 4996 /* print the device and all its children (indented) */ 4997 { 4998 device_t child; 4999 5000 if (!dev) 5001 return; 5002 5003 print_device_short(dev, indent); 5004 5005 TAILQ_FOREACH(child, &dev->children, link) { 5006 print_device_tree_short(child, indent+1); 5007 } 5008 } 5009 5010 void 5011 print_device_tree(device_t dev, int indent) 5012 /* print the device and all its children (indented) */ 5013 { 5014 device_t child; 5015 5016 if (!dev) 5017 return; 5018 5019 print_device(dev, indent); 5020 5021 TAILQ_FOREACH(child, &dev->children, link) { 5022 print_device_tree(child, indent+1); 5023 } 5024 } 5025 5026 static void 5027 print_driver_short(driver_t *driver, int indent) 5028 { 5029 if (!driver) 5030 return; 5031 5032 indentprintf(("driver %s: softc size = %zd\n", 5033 driver->name, driver->size)); 5034 } 5035 5036 static void 5037 print_driver(driver_t *driver, int indent) 5038 { 5039 if (!driver) 5040 return; 5041 5042 print_driver_short(driver, indent); 5043 } 5044 5045 static void 5046 print_driver_list(driver_list_t drivers, int indent) 5047 { 5048 driverlink_t driver; 5049 5050 TAILQ_FOREACH(driver, &drivers, link) { 5051 print_driver(driver->driver, indent); 5052 } 5053 } 5054 5055 static void 5056 print_devclass_short(devclass_t dc, int indent) 5057 { 5058 if ( !dc ) 5059 return; 5060 5061 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 5062 } 5063 5064 static void 5065 print_devclass(devclass_t dc, int indent) 5066 { 5067 int i; 5068 5069 if ( !dc ) 5070 return; 5071 5072 print_devclass_short(dc, indent); 5073 indentprintf(("Drivers:\n")); 5074 print_driver_list(dc->drivers, indent+1); 5075 5076 indentprintf(("Devices:\n")); 5077 for (i = 0; i < dc->maxunit; i++) 5078 if (dc->devices[i]) 5079 print_device(dc->devices[i], indent+1); 5080 } 5081 5082 void 5083 print_devclass_list_short(void) 5084 { 5085 devclass_t dc; 5086 5087 printf("Short listing of devclasses, drivers & devices:\n"); 5088 TAILQ_FOREACH(dc, &devclasses, link) { 5089 print_devclass_short(dc, 0); 5090 } 5091 } 5092 5093 void 5094 print_devclass_list(void) 5095 { 5096 devclass_t dc; 5097 5098 printf("Full listing of devclasses, drivers & devices:\n"); 5099 TAILQ_FOREACH(dc, &devclasses, link) { 5100 print_devclass(dc, 0); 5101 } 5102 } 5103 5104 #endif 5105 5106 /* 5107 * User-space access to the device tree. 5108 * 5109 * We implement a small set of nodes: 5110 * 5111 * hw.bus Single integer read method to obtain the 5112 * current generation count. 5113 * hw.bus.devices Reads the entire device tree in flat space. 5114 * hw.bus.rman Resource manager interface 5115 * 5116 * We might like to add the ability to scan devclasses and/or drivers to 5117 * determine what else is currently loaded/available. 5118 */ 5119 5120 static int 5121 sysctl_bus_info(SYSCTL_HANDLER_ARGS) 5122 { 5123 struct u_businfo ubus; 5124 5125 ubus.ub_version = BUS_USER_VERSION; 5126 ubus.ub_generation = bus_data_generation; 5127 5128 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 5129 } 5130 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD | 5131 CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo", 5132 "bus-related data"); 5133 5134 static int 5135 sysctl_devices(SYSCTL_HANDLER_ARGS) 5136 { 5137 struct sbuf sb; 5138 int *name = (int *)arg1; 5139 u_int namelen = arg2; 5140 int index; 5141 device_t dev; 5142 struct u_device *udev; 5143 int error; 5144 5145 if (namelen != 2) 5146 return (EINVAL); 5147 5148 if (bus_data_generation_check(name[0])) 5149 return (EINVAL); 5150 5151 index = name[1]; 5152 5153 /* 5154 * Scan the list of devices, looking for the requested index. 5155 */ 5156 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5157 if (index-- == 0) 5158 break; 5159 } 5160 if (dev == NULL) 5161 return (ENOENT); 5162 5163 /* 5164 * Populate the return item, careful not to overflow the buffer. 5165 */ 5166 udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO); 5167 if (udev == NULL) 5168 return (ENOMEM); 5169 udev->dv_handle = (uintptr_t)dev; 5170 udev->dv_parent = (uintptr_t)dev->parent; 5171 udev->dv_devflags = dev->devflags; 5172 udev->dv_flags = dev->flags; 5173 udev->dv_state = dev->state; 5174 sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN); 5175 if (dev->nameunit != NULL) 5176 sbuf_cat(&sb, dev->nameunit); 5177 sbuf_putc(&sb, '\0'); 5178 if (dev->desc != NULL) 5179 sbuf_cat(&sb, dev->desc); 5180 sbuf_putc(&sb, '\0'); 5181 if (dev->driver != NULL) 5182 sbuf_cat(&sb, dev->driver->name); 5183 sbuf_putc(&sb, '\0'); 5184 bus_child_pnpinfo(dev, &sb); 5185 sbuf_putc(&sb, '\0'); 5186 bus_child_location(dev, &sb); 5187 sbuf_putc(&sb, '\0'); 5188 error = sbuf_finish(&sb); 5189 if (error == 0) 5190 error = SYSCTL_OUT(req, udev, sizeof(*udev)); 5191 sbuf_delete(&sb); 5192 free(udev, M_BUS); 5193 return (error); 5194 } 5195 5196 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, 5197 CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices, 5198 "system device tree"); 5199 5200 int 5201 bus_data_generation_check(int generation) 5202 { 5203 if (generation != bus_data_generation) 5204 return (1); 5205 5206 /* XXX generate optimised lists here? */ 5207 return (0); 5208 } 5209 5210 void 5211 bus_data_generation_update(void) 5212 { 5213 atomic_add_int(&bus_data_generation, 1); 5214 } 5215 5216 int 5217 bus_free_resource(device_t dev, int type, struct resource *r) 5218 { 5219 if (r == NULL) 5220 return (0); 5221 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 5222 } 5223 5224 device_t 5225 device_lookup_by_name(const char *name) 5226 { 5227 device_t dev; 5228 5229 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5230 if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0) 5231 return (dev); 5232 } 5233 return (NULL); 5234 } 5235 5236 /* 5237 * /dev/devctl2 implementation. The existing /dev/devctl device has 5238 * implicit semantics on open, so it could not be reused for this. 5239 * Another option would be to call this /dev/bus? 5240 */ 5241 static int 5242 find_device(struct devreq *req, device_t *devp) 5243 { 5244 device_t dev; 5245 5246 /* 5247 * First, ensure that the name is nul terminated. 5248 */ 5249 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL) 5250 return (EINVAL); 5251 5252 /* 5253 * Second, try to find an attached device whose name matches 5254 * 'name'. 5255 */ 5256 dev = device_lookup_by_name(req->dr_name); 5257 if (dev != NULL) { 5258 *devp = dev; 5259 return (0); 5260 } 5261 5262 /* Finally, give device enumerators a chance. */ 5263 dev = NULL; 5264 EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev); 5265 if (dev == NULL) 5266 return (ENOENT); 5267 *devp = dev; 5268 return (0); 5269 } 5270 5271 static bool 5272 driver_exists(device_t bus, const char *driver) 5273 { 5274 devclass_t dc; 5275 5276 for (dc = bus->devclass; dc != NULL; dc = dc->parent) { 5277 if (devclass_find_driver_internal(dc, driver) != NULL) 5278 return (true); 5279 } 5280 return (false); 5281 } 5282 5283 static void 5284 device_gen_nomatch(device_t dev) 5285 { 5286 device_t child; 5287 5288 if (dev->flags & DF_NEEDNOMATCH && 5289 dev->state == DS_NOTPRESENT) { 5290 device_handle_nomatch(dev); 5291 } 5292 dev->flags &= ~DF_NEEDNOMATCH; 5293 TAILQ_FOREACH(child, &dev->children, link) { 5294 device_gen_nomatch(child); 5295 } 5296 } 5297 5298 static void 5299 device_do_deferred_actions(void) 5300 { 5301 devclass_t dc; 5302 driverlink_t dl; 5303 5304 /* 5305 * Walk through the devclasses to find all the drivers we've tagged as 5306 * deferred during the freeze and call the driver added routines. They 5307 * have already been added to the lists in the background, so the driver 5308 * added routines that trigger a probe will have all the right bidders 5309 * for the probe auction. 5310 */ 5311 TAILQ_FOREACH(dc, &devclasses, link) { 5312 TAILQ_FOREACH(dl, &dc->drivers, link) { 5313 if (dl->flags & DL_DEFERRED_PROBE) { 5314 devclass_driver_added(dc, dl->driver); 5315 dl->flags &= ~DL_DEFERRED_PROBE; 5316 } 5317 } 5318 } 5319 5320 /* 5321 * We also defer no-match events during a freeze. Walk the tree and 5322 * generate all the pent-up events that are still relevant. 5323 */ 5324 device_gen_nomatch(root_bus); 5325 bus_data_generation_update(); 5326 } 5327 5328 static int 5329 device_get_path(device_t dev, const char *locator, struct sbuf *sb) 5330 { 5331 device_t parent; 5332 int error; 5333 5334 KASSERT(sb != NULL, ("sb is NULL")); 5335 parent = device_get_parent(dev); 5336 if (parent == NULL) { 5337 error = sbuf_printf(sb, "/"); 5338 } else { 5339 error = BUS_GET_DEVICE_PATH(parent, dev, locator, sb); 5340 if (error == 0) { 5341 error = sbuf_error(sb); 5342 if (error == 0 && sbuf_len(sb) <= 1) 5343 error = EIO; 5344 } 5345 } 5346 sbuf_finish(sb); 5347 return (error); 5348 } 5349 5350 static int 5351 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag, 5352 struct thread *td) 5353 { 5354 struct devreq *req; 5355 device_t dev; 5356 int error, old; 5357 5358 /* Locate the device to control. */ 5359 bus_topo_lock(); 5360 req = (struct devreq *)data; 5361 switch (cmd) { 5362 case DEV_ATTACH: 5363 case DEV_DETACH: 5364 case DEV_ENABLE: 5365 case DEV_DISABLE: 5366 case DEV_SUSPEND: 5367 case DEV_RESUME: 5368 case DEV_SET_DRIVER: 5369 case DEV_CLEAR_DRIVER: 5370 case DEV_RESCAN: 5371 case DEV_DELETE: 5372 case DEV_RESET: 5373 error = priv_check(td, PRIV_DRIVER); 5374 if (error == 0) 5375 error = find_device(req, &dev); 5376 break; 5377 case DEV_FREEZE: 5378 case DEV_THAW: 5379 error = priv_check(td, PRIV_DRIVER); 5380 break; 5381 case DEV_GET_PATH: 5382 error = find_device(req, &dev); 5383 break; 5384 default: 5385 error = ENOTTY; 5386 break; 5387 } 5388 if (error) { 5389 bus_topo_unlock(); 5390 return (error); 5391 } 5392 5393 /* Perform the requested operation. */ 5394 switch (cmd) { 5395 case DEV_ATTACH: 5396 if (device_is_attached(dev)) 5397 error = EBUSY; 5398 else if (!device_is_enabled(dev)) 5399 error = ENXIO; 5400 else 5401 error = device_probe_and_attach(dev); 5402 break; 5403 case DEV_DETACH: 5404 if (!device_is_attached(dev)) { 5405 error = ENXIO; 5406 break; 5407 } 5408 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5409 error = device_quiesce(dev); 5410 if (error) 5411 break; 5412 } 5413 error = device_detach(dev); 5414 break; 5415 case DEV_ENABLE: 5416 if (device_is_enabled(dev)) { 5417 error = EBUSY; 5418 break; 5419 } 5420 5421 /* 5422 * If the device has been probed but not attached (e.g. 5423 * when it has been disabled by a loader hint), just 5424 * attach the device rather than doing a full probe. 5425 */ 5426 device_enable(dev); 5427 if (device_is_alive(dev)) { 5428 /* 5429 * If the device was disabled via a hint, clear 5430 * the hint. 5431 */ 5432 if (resource_disabled(dev->driver->name, dev->unit)) 5433 resource_unset_value(dev->driver->name, 5434 dev->unit, "disabled"); 5435 error = device_attach(dev); 5436 } else 5437 error = device_probe_and_attach(dev); 5438 break; 5439 case DEV_DISABLE: 5440 if (!device_is_enabled(dev)) { 5441 error = ENXIO; 5442 break; 5443 } 5444 5445 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5446 error = device_quiesce(dev); 5447 if (error) 5448 break; 5449 } 5450 5451 /* 5452 * Force DF_FIXEDCLASS on around detach to preserve 5453 * the existing name. 5454 */ 5455 old = dev->flags; 5456 dev->flags |= DF_FIXEDCLASS; 5457 error = device_detach(dev); 5458 if (!(old & DF_FIXEDCLASS)) 5459 dev->flags &= ~DF_FIXEDCLASS; 5460 if (error == 0) 5461 device_disable(dev); 5462 break; 5463 case DEV_SUSPEND: 5464 if (device_is_suspended(dev)) { 5465 error = EBUSY; 5466 break; 5467 } 5468 if (device_get_parent(dev) == NULL) { 5469 error = EINVAL; 5470 break; 5471 } 5472 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev); 5473 break; 5474 case DEV_RESUME: 5475 if (!device_is_suspended(dev)) { 5476 error = EINVAL; 5477 break; 5478 } 5479 if (device_get_parent(dev) == NULL) { 5480 error = EINVAL; 5481 break; 5482 } 5483 error = BUS_RESUME_CHILD(device_get_parent(dev), dev); 5484 break; 5485 case DEV_SET_DRIVER: { 5486 devclass_t dc; 5487 char driver[128]; 5488 5489 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL); 5490 if (error) 5491 break; 5492 if (driver[0] == '\0') { 5493 error = EINVAL; 5494 break; 5495 } 5496 if (dev->devclass != NULL && 5497 strcmp(driver, dev->devclass->name) == 0) 5498 /* XXX: Could possibly force DF_FIXEDCLASS on? */ 5499 break; 5500 5501 /* 5502 * Scan drivers for this device's bus looking for at 5503 * least one matching driver. 5504 */ 5505 if (dev->parent == NULL) { 5506 error = EINVAL; 5507 break; 5508 } 5509 if (!driver_exists(dev->parent, driver)) { 5510 error = ENOENT; 5511 break; 5512 } 5513 dc = devclass_create(driver); 5514 if (dc == NULL) { 5515 error = ENOMEM; 5516 break; 5517 } 5518 5519 /* Detach device if necessary. */ 5520 if (device_is_attached(dev)) { 5521 if (req->dr_flags & DEVF_SET_DRIVER_DETACH) 5522 error = device_detach(dev); 5523 else 5524 error = EBUSY; 5525 if (error) 5526 break; 5527 } 5528 5529 /* Clear any previously-fixed device class and unit. */ 5530 if (dev->flags & DF_FIXEDCLASS) 5531 devclass_delete_device(dev->devclass, dev); 5532 dev->flags |= DF_WILDCARD; 5533 dev->unit = -1; 5534 5535 /* Force the new device class. */ 5536 error = devclass_add_device(dc, dev); 5537 if (error) 5538 break; 5539 dev->flags |= DF_FIXEDCLASS; 5540 error = device_probe_and_attach(dev); 5541 break; 5542 } 5543 case DEV_CLEAR_DRIVER: 5544 if (!(dev->flags & DF_FIXEDCLASS)) { 5545 error = 0; 5546 break; 5547 } 5548 if (device_is_attached(dev)) { 5549 if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH) 5550 error = device_detach(dev); 5551 else 5552 error = EBUSY; 5553 if (error) 5554 break; 5555 } 5556 5557 dev->flags &= ~DF_FIXEDCLASS; 5558 dev->flags |= DF_WILDCARD; 5559 devclass_delete_device(dev->devclass, dev); 5560 error = device_probe_and_attach(dev); 5561 break; 5562 case DEV_RESCAN: 5563 if (!device_is_attached(dev)) { 5564 error = ENXIO; 5565 break; 5566 } 5567 error = BUS_RESCAN(dev); 5568 break; 5569 case DEV_DELETE: { 5570 device_t parent; 5571 5572 parent = device_get_parent(dev); 5573 if (parent == NULL) { 5574 error = EINVAL; 5575 break; 5576 } 5577 if (!(req->dr_flags & DEVF_FORCE_DELETE)) { 5578 if (bus_child_present(dev) != 0) { 5579 error = EBUSY; 5580 break; 5581 } 5582 } 5583 5584 error = device_delete_child(parent, dev); 5585 break; 5586 } 5587 case DEV_FREEZE: 5588 if (device_frozen) 5589 error = EBUSY; 5590 else 5591 device_frozen = true; 5592 break; 5593 case DEV_THAW: 5594 if (!device_frozen) 5595 error = EBUSY; 5596 else { 5597 device_do_deferred_actions(); 5598 device_frozen = false; 5599 } 5600 break; 5601 case DEV_RESET: 5602 if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) { 5603 error = EINVAL; 5604 break; 5605 } 5606 error = BUS_RESET_CHILD(device_get_parent(dev), dev, 5607 req->dr_flags); 5608 break; 5609 case DEV_GET_PATH: { 5610 struct sbuf *sb; 5611 char locator[64]; 5612 ssize_t len; 5613 5614 error = copyinstr(req->dr_buffer.buffer, locator, 5615 sizeof(locator), NULL); 5616 if (error != 0) 5617 break; 5618 sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND | 5619 SBUF_INCLUDENUL /* | SBUF_WAITOK */); 5620 error = device_get_path(dev, locator, sb); 5621 if (error == 0) { 5622 len = sbuf_len(sb); 5623 if (req->dr_buffer.length < len) { 5624 error = ENAMETOOLONG; 5625 } else { 5626 error = copyout(sbuf_data(sb), 5627 req->dr_buffer.buffer, len); 5628 } 5629 req->dr_buffer.length = len; 5630 } 5631 sbuf_delete(sb); 5632 break; 5633 } 5634 } 5635 bus_topo_unlock(); 5636 return (error); 5637 } 5638 5639 static struct cdevsw devctl2_cdevsw = { 5640 .d_version = D_VERSION, 5641 .d_ioctl = devctl2_ioctl, 5642 .d_name = "devctl2", 5643 }; 5644 5645 static void 5646 devctl2_init(void) 5647 { 5648 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL, 5649 UID_ROOT, GID_WHEEL, 0644, "devctl2"); 5650 } 5651 5652 /* 5653 * For maintaining device 'at' location info to avoid recomputing it 5654 */ 5655 struct device_location_node { 5656 const char *dln_locator; 5657 const char *dln_path; 5658 TAILQ_ENTRY(device_location_node) dln_link; 5659 }; 5660 typedef TAILQ_HEAD(device_location_list, device_location_node) device_location_list_t; 5661 5662 struct device_location_cache { 5663 device_location_list_t dlc_list; 5664 }; 5665 5666 5667 /* 5668 * Location cache for wired devices. 5669 */ 5670 device_location_cache_t * 5671 dev_wired_cache_init(void) 5672 { 5673 device_location_cache_t *dcp; 5674 5675 dcp = malloc(sizeof(*dcp), M_BUS, M_WAITOK | M_ZERO); 5676 TAILQ_INIT(&dcp->dlc_list); 5677 5678 return (dcp); 5679 } 5680 5681 void 5682 dev_wired_cache_fini(device_location_cache_t *dcp) 5683 { 5684 struct device_location_node *dln, *tdln; 5685 5686 TAILQ_FOREACH_SAFE(dln, &dcp->dlc_list, dln_link, tdln) { 5687 free(dln, M_BUS); 5688 } 5689 free(dcp, M_BUS); 5690 } 5691 5692 static struct device_location_node * 5693 dev_wired_cache_lookup(device_location_cache_t *dcp, const char *locator) 5694 { 5695 struct device_location_node *dln; 5696 5697 TAILQ_FOREACH(dln, &dcp->dlc_list, dln_link) { 5698 if (strcmp(locator, dln->dln_locator) == 0) 5699 return (dln); 5700 } 5701 5702 return (NULL); 5703 } 5704 5705 static struct device_location_node * 5706 dev_wired_cache_add(device_location_cache_t *dcp, const char *locator, const char *path) 5707 { 5708 struct device_location_node *dln; 5709 size_t loclen, pathlen; 5710 5711 loclen = strlen(locator) + 1; 5712 pathlen = strlen(path) + 1; 5713 dln = malloc(sizeof(*dln) + loclen + pathlen, M_BUS, M_WAITOK | M_ZERO); 5714 dln->dln_locator = (char *)(dln + 1); 5715 memcpy(__DECONST(char *, dln->dln_locator), locator, loclen); 5716 dln->dln_path = dln->dln_locator + loclen; 5717 memcpy(__DECONST(char *, dln->dln_path), path, pathlen); 5718 TAILQ_INSERT_HEAD(&dcp->dlc_list, dln, dln_link); 5719 5720 return (dln); 5721 } 5722 5723 bool 5724 dev_wired_cache_match(device_location_cache_t *dcp, device_t dev, 5725 const char *at) 5726 { 5727 struct sbuf *sb; 5728 const char *cp; 5729 char locator[32]; 5730 int error, len; 5731 struct device_location_node *res; 5732 5733 cp = strchr(at, ':'); 5734 if (cp == NULL) 5735 return (false); 5736 len = cp - at; 5737 if (len > sizeof(locator) - 1) /* Skip too long locator */ 5738 return (false); 5739 memcpy(locator, at, len); 5740 locator[len] = '\0'; 5741 cp++; 5742 5743 error = 0; 5744 /* maybe cache this inside device_t and look that up, but not yet */ 5745 res = dev_wired_cache_lookup(dcp, locator); 5746 if (res == NULL) { 5747 sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND | 5748 SBUF_INCLUDENUL | SBUF_NOWAIT); 5749 if (sb != NULL) { 5750 error = device_get_path(dev, locator, sb); 5751 if (error == 0) { 5752 res = dev_wired_cache_add(dcp, locator, 5753 sbuf_data(sb)); 5754 } 5755 sbuf_delete(sb); 5756 } 5757 } 5758 if (error != 0 || res == NULL || res->dln_path == NULL) 5759 return (false); 5760 5761 return (strcmp(res->dln_path, cp) == 0); 5762 } 5763 5764 /* 5765 * APIs to manage deprecation and obsolescence. 5766 */ 5767 static int obsolete_panic = 0; 5768 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0, 5769 "Panic when obsolete features are used (0 = never, 1 = if obsolete, " 5770 "2 = if deprecated)"); 5771 5772 static void 5773 gone_panic(int major, int running, const char *msg) 5774 { 5775 switch (obsolete_panic) 5776 { 5777 case 0: 5778 return; 5779 case 1: 5780 if (running < major) 5781 return; 5782 /* FALLTHROUGH */ 5783 default: 5784 panic("%s", msg); 5785 } 5786 } 5787 5788 void 5789 _gone_in(int major, const char *msg) 5790 { 5791 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 5792 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 5793 printf("Obsolete code will be removed soon: %s\n", msg); 5794 else 5795 printf("Deprecated code (to be removed in FreeBSD %d): %s\n", 5796 major, msg); 5797 } 5798 5799 void 5800 _gone_in_dev(device_t dev, int major, const char *msg) 5801 { 5802 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 5803 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 5804 device_printf(dev, 5805 "Obsolete code will be removed soon: %s\n", msg); 5806 else 5807 device_printf(dev, 5808 "Deprecated code (to be removed in FreeBSD %d): %s\n", 5809 major, msg); 5810 } 5811 5812 #ifdef DDB 5813 DB_SHOW_COMMAND(device, db_show_device) 5814 { 5815 device_t dev; 5816 5817 if (!have_addr) 5818 return; 5819 5820 dev = (device_t)addr; 5821 5822 db_printf("name: %s\n", device_get_nameunit(dev)); 5823 db_printf(" driver: %s\n", DRIVERNAME(dev->driver)); 5824 db_printf(" class: %s\n", DEVCLANAME(dev->devclass)); 5825 db_printf(" addr: %p\n", dev); 5826 db_printf(" parent: %p\n", dev->parent); 5827 db_printf(" softc: %p\n", dev->softc); 5828 db_printf(" ivars: %p\n", dev->ivars); 5829 } 5830 5831 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices) 5832 { 5833 device_t dev; 5834 5835 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5836 db_show_device((db_expr_t)dev, true, count, modif); 5837 } 5838 } 5839 #endif 5840