1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997,1998,2003 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_bus.h" 33 #include "opt_ddb.h" 34 35 #include <sys/param.h> 36 #include <sys/conf.h> 37 #include <sys/domainset.h> 38 #include <sys/eventhandler.h> 39 #include <sys/lock.h> 40 #include <sys/kernel.h> 41 #include <sys/limits.h> 42 #include <sys/malloc.h> 43 #include <sys/module.h> 44 #include <sys/mutex.h> 45 #include <sys/priv.h> 46 #include <machine/bus.h> 47 #include <sys/random.h> 48 #include <sys/refcount.h> 49 #include <sys/rman.h> 50 #include <sys/sbuf.h> 51 #include <sys/smp.h> 52 #include <sys/sysctl.h> 53 #include <sys/systm.h> 54 #include <sys/bus.h> 55 #include <sys/cpuset.h> 56 57 #include <net/vnet.h> 58 59 #include <machine/cpu.h> 60 #include <machine/stdarg.h> 61 62 #include <vm/uma.h> 63 #include <vm/vm.h> 64 65 #include <ddb/ddb.h> 66 67 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 68 NULL); 69 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 70 NULL); 71 72 /* 73 * Used to attach drivers to devclasses. 74 */ 75 typedef struct driverlink *driverlink_t; 76 struct driverlink { 77 kobj_class_t driver; 78 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 79 int pass; 80 int flags; 81 #define DL_DEFERRED_PROBE 1 /* Probe deferred on this */ 82 TAILQ_ENTRY(driverlink) passlink; 83 }; 84 85 /* 86 * Forward declarations 87 */ 88 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 89 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 90 typedef TAILQ_HEAD(device_list, _device) device_list_t; 91 92 struct devclass { 93 TAILQ_ENTRY(devclass) link; 94 devclass_t parent; /* parent in devclass hierarchy */ 95 driver_list_t drivers; /* bus devclasses store drivers for bus */ 96 char *name; 97 device_t *devices; /* array of devices indexed by unit */ 98 int maxunit; /* size of devices array */ 99 int flags; 100 #define DC_HAS_CHILDREN 1 101 102 struct sysctl_ctx_list sysctl_ctx; 103 struct sysctl_oid *sysctl_tree; 104 }; 105 106 /** 107 * @brief Implementation of _device. 108 * 109 * The structure is named "_device" instead of "device" to avoid type confusion 110 * caused by other subsystems defining a (struct device). 111 */ 112 struct _device { 113 /* 114 * A device is a kernel object. The first field must be the 115 * current ops table for the object. 116 */ 117 KOBJ_FIELDS; 118 119 /* 120 * Device hierarchy. 121 */ 122 TAILQ_ENTRY(_device) link; /**< list of devices in parent */ 123 TAILQ_ENTRY(_device) devlink; /**< global device list membership */ 124 device_t parent; /**< parent of this device */ 125 device_list_t children; /**< list of child devices */ 126 127 /* 128 * Details of this device. 129 */ 130 driver_t *driver; /**< current driver */ 131 devclass_t devclass; /**< current device class */ 132 int unit; /**< current unit number */ 133 char* nameunit; /**< name+unit e.g. foodev0 */ 134 char* desc; /**< driver specific description */ 135 u_int busy; /**< count of calls to device_busy() */ 136 device_state_t state; /**< current device state */ 137 uint32_t devflags; /**< api level flags for device_get_flags() */ 138 u_int flags; /**< internal device flags */ 139 u_int order; /**< order from device_add_child_ordered() */ 140 void *ivars; /**< instance variables */ 141 void *softc; /**< current driver's variables */ 142 143 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 144 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 145 }; 146 147 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 148 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 149 150 EVENTHANDLER_LIST_DEFINE(device_attach); 151 EVENTHANDLER_LIST_DEFINE(device_detach); 152 EVENTHANDLER_LIST_DEFINE(device_nomatch); 153 EVENTHANDLER_LIST_DEFINE(dev_lookup); 154 155 static void devctl2_init(void); 156 static bool device_frozen; 157 158 #define DRIVERNAME(d) ((d)? d->name : "no driver") 159 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 160 161 #ifdef BUS_DEBUG 162 163 static int bus_debug = 1; 164 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 165 "Bus debug level"); 166 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 167 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 168 169 /** 170 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 171 * prevent syslog from deleting initial spaces 172 */ 173 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 174 175 static void print_device_short(device_t dev, int indent); 176 static void print_device(device_t dev, int indent); 177 void print_device_tree_short(device_t dev, int indent); 178 void print_device_tree(device_t dev, int indent); 179 static void print_driver_short(driver_t *driver, int indent); 180 static void print_driver(driver_t *driver, int indent); 181 static void print_driver_list(driver_list_t drivers, int indent); 182 static void print_devclass_short(devclass_t dc, int indent); 183 static void print_devclass(devclass_t dc, int indent); 184 void print_devclass_list_short(void); 185 void print_devclass_list(void); 186 187 #else 188 /* Make the compiler ignore the function calls */ 189 #define PDEBUG(a) /* nop */ 190 #define DEVICENAME(d) /* nop */ 191 192 #define print_device_short(d,i) /* nop */ 193 #define print_device(d,i) /* nop */ 194 #define print_device_tree_short(d,i) /* nop */ 195 #define print_device_tree(d,i) /* nop */ 196 #define print_driver_short(d,i) /* nop */ 197 #define print_driver(d,i) /* nop */ 198 #define print_driver_list(d,i) /* nop */ 199 #define print_devclass_short(d,i) /* nop */ 200 #define print_devclass(d,i) /* nop */ 201 #define print_devclass_list_short() /* nop */ 202 #define print_devclass_list() /* nop */ 203 #endif 204 205 /* 206 * dev sysctl tree 207 */ 208 209 enum { 210 DEVCLASS_SYSCTL_PARENT, 211 }; 212 213 static int 214 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 215 { 216 devclass_t dc = (devclass_t)arg1; 217 const char *value; 218 219 switch (arg2) { 220 case DEVCLASS_SYSCTL_PARENT: 221 value = dc->parent ? dc->parent->name : ""; 222 break; 223 default: 224 return (EINVAL); 225 } 226 return (SYSCTL_OUT_STR(req, value)); 227 } 228 229 static void 230 devclass_sysctl_init(devclass_t dc) 231 { 232 if (dc->sysctl_tree != NULL) 233 return; 234 sysctl_ctx_init(&dc->sysctl_ctx); 235 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 236 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 237 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 238 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 239 OID_AUTO, "%parent", 240 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 241 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 242 "parent class"); 243 } 244 245 enum { 246 DEVICE_SYSCTL_DESC, 247 DEVICE_SYSCTL_DRIVER, 248 DEVICE_SYSCTL_LOCATION, 249 DEVICE_SYSCTL_PNPINFO, 250 DEVICE_SYSCTL_PARENT, 251 }; 252 253 static int 254 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 255 { 256 struct sbuf sb; 257 device_t dev = (device_t)arg1; 258 int error; 259 260 sbuf_new_for_sysctl(&sb, NULL, 1024, req); 261 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 262 bus_topo_lock(); 263 switch (arg2) { 264 case DEVICE_SYSCTL_DESC: 265 sbuf_cat(&sb, dev->desc ? dev->desc : ""); 266 break; 267 case DEVICE_SYSCTL_DRIVER: 268 sbuf_cat(&sb, dev->driver ? dev->driver->name : ""); 269 break; 270 case DEVICE_SYSCTL_LOCATION: 271 bus_child_location(dev, &sb); 272 break; 273 case DEVICE_SYSCTL_PNPINFO: 274 bus_child_pnpinfo(dev, &sb); 275 break; 276 case DEVICE_SYSCTL_PARENT: 277 sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : ""); 278 break; 279 default: 280 error = EINVAL; 281 goto out; 282 } 283 error = sbuf_finish(&sb); 284 out: 285 bus_topo_unlock(); 286 sbuf_delete(&sb); 287 return (error); 288 } 289 290 static void 291 device_sysctl_init(device_t dev) 292 { 293 devclass_t dc = dev->devclass; 294 int domain; 295 296 if (dev->sysctl_tree != NULL) 297 return; 298 devclass_sysctl_init(dc); 299 sysctl_ctx_init(&dev->sysctl_ctx); 300 dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx, 301 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 302 dev->nameunit + strlen(dc->name), 303 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index"); 304 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 305 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 306 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 307 "device description"); 308 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 309 OID_AUTO, "%driver", 310 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 311 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 312 "device driver name"); 313 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 314 OID_AUTO, "%location", 315 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 316 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 317 "device location relative to parent"); 318 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 319 OID_AUTO, "%pnpinfo", 320 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 321 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 322 "device identification"); 323 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 324 OID_AUTO, "%parent", 325 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 326 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 327 "parent device"); 328 if (bus_get_domain(dev, &domain) == 0) 329 SYSCTL_ADD_INT(&dev->sysctl_ctx, 330 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", 331 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, domain, "NUMA domain"); 332 } 333 334 static void 335 device_sysctl_update(device_t dev) 336 { 337 devclass_t dc = dev->devclass; 338 339 if (dev->sysctl_tree == NULL) 340 return; 341 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 342 } 343 344 static void 345 device_sysctl_fini(device_t dev) 346 { 347 if (dev->sysctl_tree == NULL) 348 return; 349 sysctl_ctx_free(&dev->sysctl_ctx); 350 dev->sysctl_tree = NULL; 351 } 352 353 static struct device_list bus_data_devices; 354 static int bus_data_generation = 1; 355 356 static kobj_method_t null_methods[] = { 357 KOBJMETHOD_END 358 }; 359 360 DEFINE_CLASS(null, null_methods, 0); 361 362 void 363 bus_topo_assert(void) 364 { 365 366 GIANT_REQUIRED; 367 } 368 369 struct mtx * 370 bus_topo_mtx(void) 371 { 372 373 return (&Giant); 374 } 375 376 void 377 bus_topo_lock(void) 378 { 379 380 mtx_lock(bus_topo_mtx()); 381 } 382 383 void 384 bus_topo_unlock(void) 385 { 386 387 mtx_unlock(bus_topo_mtx()); 388 } 389 390 /* 391 * Bus pass implementation 392 */ 393 394 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 395 int bus_current_pass = BUS_PASS_ROOT; 396 397 /** 398 * @internal 399 * @brief Register the pass level of a new driver attachment 400 * 401 * Register a new driver attachment's pass level. If no driver 402 * attachment with the same pass level has been added, then @p new 403 * will be added to the global passes list. 404 * 405 * @param new the new driver attachment 406 */ 407 static void 408 driver_register_pass(struct driverlink *new) 409 { 410 struct driverlink *dl; 411 412 /* We only consider pass numbers during boot. */ 413 if (bus_current_pass == BUS_PASS_DEFAULT) 414 return; 415 416 /* 417 * Walk the passes list. If we already know about this pass 418 * then there is nothing to do. If we don't, then insert this 419 * driver link into the list. 420 */ 421 TAILQ_FOREACH(dl, &passes, passlink) { 422 if (dl->pass < new->pass) 423 continue; 424 if (dl->pass == new->pass) 425 return; 426 TAILQ_INSERT_BEFORE(dl, new, passlink); 427 return; 428 } 429 TAILQ_INSERT_TAIL(&passes, new, passlink); 430 } 431 432 /** 433 * @brief Raise the current bus pass 434 * 435 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 436 * method on the root bus to kick off a new device tree scan for each 437 * new pass level that has at least one driver. 438 */ 439 void 440 bus_set_pass(int pass) 441 { 442 struct driverlink *dl; 443 444 if (bus_current_pass > pass) 445 panic("Attempt to lower bus pass level"); 446 447 TAILQ_FOREACH(dl, &passes, passlink) { 448 /* Skip pass values below the current pass level. */ 449 if (dl->pass <= bus_current_pass) 450 continue; 451 452 /* 453 * Bail once we hit a driver with a pass level that is 454 * too high. 455 */ 456 if (dl->pass > pass) 457 break; 458 459 /* 460 * Raise the pass level to the next level and rescan 461 * the tree. 462 */ 463 bus_current_pass = dl->pass; 464 BUS_NEW_PASS(root_bus); 465 } 466 467 /* 468 * If there isn't a driver registered for the requested pass, 469 * then bus_current_pass might still be less than 'pass'. Set 470 * it to 'pass' in that case. 471 */ 472 if (bus_current_pass < pass) 473 bus_current_pass = pass; 474 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 475 } 476 477 /* 478 * Devclass implementation 479 */ 480 481 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 482 483 /** 484 * @internal 485 * @brief Find or create a device class 486 * 487 * If a device class with the name @p classname exists, return it, 488 * otherwise if @p create is non-zero create and return a new device 489 * class. 490 * 491 * If @p parentname is non-NULL, the parent of the devclass is set to 492 * the devclass of that name. 493 * 494 * @param classname the devclass name to find or create 495 * @param parentname the parent devclass name or @c NULL 496 * @param create non-zero to create a devclass 497 */ 498 static devclass_t 499 devclass_find_internal(const char *classname, const char *parentname, 500 int create) 501 { 502 devclass_t dc; 503 504 PDEBUG(("looking for %s", classname)); 505 if (!classname) 506 return (NULL); 507 508 TAILQ_FOREACH(dc, &devclasses, link) { 509 if (!strcmp(dc->name, classname)) 510 break; 511 } 512 513 if (create && !dc) { 514 PDEBUG(("creating %s", classname)); 515 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 516 M_BUS, M_NOWAIT | M_ZERO); 517 if (!dc) 518 return (NULL); 519 dc->parent = NULL; 520 dc->name = (char*) (dc + 1); 521 strcpy(dc->name, classname); 522 TAILQ_INIT(&dc->drivers); 523 TAILQ_INSERT_TAIL(&devclasses, dc, link); 524 525 bus_data_generation_update(); 526 } 527 528 /* 529 * If a parent class is specified, then set that as our parent so 530 * that this devclass will support drivers for the parent class as 531 * well. If the parent class has the same name don't do this though 532 * as it creates a cycle that can trigger an infinite loop in 533 * device_probe_child() if a device exists for which there is no 534 * suitable driver. 535 */ 536 if (parentname && dc && !dc->parent && 537 strcmp(classname, parentname) != 0) { 538 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 539 dc->parent->flags |= DC_HAS_CHILDREN; 540 } 541 542 return (dc); 543 } 544 545 /** 546 * @brief Create a device class 547 * 548 * If a device class with the name @p classname exists, return it, 549 * otherwise create and return a new device class. 550 * 551 * @param classname the devclass name to find or create 552 */ 553 devclass_t 554 devclass_create(const char *classname) 555 { 556 return (devclass_find_internal(classname, NULL, TRUE)); 557 } 558 559 /** 560 * @brief Find a device class 561 * 562 * If a device class with the name @p classname exists, return it, 563 * otherwise return @c NULL. 564 * 565 * @param classname the devclass name to find 566 */ 567 devclass_t 568 devclass_find(const char *classname) 569 { 570 return (devclass_find_internal(classname, NULL, FALSE)); 571 } 572 573 /** 574 * @brief Register that a device driver has been added to a devclass 575 * 576 * Register that a device driver has been added to a devclass. This 577 * is called by devclass_add_driver to accomplish the recursive 578 * notification of all the children classes of dc, as well as dc. 579 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 580 * the devclass. 581 * 582 * We do a full search here of the devclass list at each iteration 583 * level to save storing children-lists in the devclass structure. If 584 * we ever move beyond a few dozen devices doing this, we may need to 585 * reevaluate... 586 * 587 * @param dc the devclass to edit 588 * @param driver the driver that was just added 589 */ 590 static void 591 devclass_driver_added(devclass_t dc, driver_t *driver) 592 { 593 devclass_t parent; 594 int i; 595 596 /* 597 * Call BUS_DRIVER_ADDED for any existing buses in this class. 598 */ 599 for (i = 0; i < dc->maxunit; i++) 600 if (dc->devices[i] && device_is_attached(dc->devices[i])) 601 BUS_DRIVER_ADDED(dc->devices[i], driver); 602 603 /* 604 * Walk through the children classes. Since we only keep a 605 * single parent pointer around, we walk the entire list of 606 * devclasses looking for children. We set the 607 * DC_HAS_CHILDREN flag when a child devclass is created on 608 * the parent, so we only walk the list for those devclasses 609 * that have children. 610 */ 611 if (!(dc->flags & DC_HAS_CHILDREN)) 612 return; 613 parent = dc; 614 TAILQ_FOREACH(dc, &devclasses, link) { 615 if (dc->parent == parent) 616 devclass_driver_added(dc, driver); 617 } 618 } 619 620 static void 621 device_handle_nomatch(device_t dev) 622 { 623 BUS_PROBE_NOMATCH(dev->parent, dev); 624 EVENTHANDLER_DIRECT_INVOKE(device_nomatch, dev); 625 dev->flags |= DF_DONENOMATCH; 626 } 627 628 /** 629 * @brief Add a device driver to a device class 630 * 631 * Add a device driver to a devclass. This is normally called 632 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 633 * all devices in the devclass will be called to allow them to attempt 634 * to re-probe any unmatched children. 635 * 636 * @param dc the devclass to edit 637 * @param driver the driver to register 638 */ 639 int 640 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 641 { 642 driverlink_t dl; 643 devclass_t child_dc; 644 const char *parentname; 645 646 PDEBUG(("%s", DRIVERNAME(driver))); 647 648 /* Don't allow invalid pass values. */ 649 if (pass <= BUS_PASS_ROOT) 650 return (EINVAL); 651 652 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 653 if (!dl) 654 return (ENOMEM); 655 656 /* 657 * Compile the driver's methods. Also increase the reference count 658 * so that the class doesn't get freed when the last instance 659 * goes. This means we can safely use static methods and avoids a 660 * double-free in devclass_delete_driver. 661 */ 662 kobj_class_compile((kobj_class_t) driver); 663 664 /* 665 * If the driver has any base classes, make the 666 * devclass inherit from the devclass of the driver's 667 * first base class. This will allow the system to 668 * search for drivers in both devclasses for children 669 * of a device using this driver. 670 */ 671 if (driver->baseclasses) 672 parentname = driver->baseclasses[0]->name; 673 else 674 parentname = NULL; 675 child_dc = devclass_find_internal(driver->name, parentname, TRUE); 676 if (dcp != NULL) 677 *dcp = child_dc; 678 679 dl->driver = driver; 680 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 681 driver->refs++; /* XXX: kobj_mtx */ 682 dl->pass = pass; 683 driver_register_pass(dl); 684 685 if (device_frozen) { 686 dl->flags |= DL_DEFERRED_PROBE; 687 } else { 688 devclass_driver_added(dc, driver); 689 } 690 bus_data_generation_update(); 691 return (0); 692 } 693 694 /** 695 * @brief Register that a device driver has been deleted from a devclass 696 * 697 * Register that a device driver has been removed from a devclass. 698 * This is called by devclass_delete_driver to accomplish the 699 * recursive notification of all the children classes of busclass, as 700 * well as busclass. Each layer will attempt to detach the driver 701 * from any devices that are children of the bus's devclass. The function 702 * will return an error if a device fails to detach. 703 * 704 * We do a full search here of the devclass list at each iteration 705 * level to save storing children-lists in the devclass structure. If 706 * we ever move beyond a few dozen devices doing this, we may need to 707 * reevaluate... 708 * 709 * @param busclass the devclass of the parent bus 710 * @param dc the devclass of the driver being deleted 711 * @param driver the driver being deleted 712 */ 713 static int 714 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 715 { 716 devclass_t parent; 717 device_t dev; 718 int error, i; 719 720 /* 721 * Disassociate from any devices. We iterate through all the 722 * devices in the devclass of the driver and detach any which are 723 * using the driver and which have a parent in the devclass which 724 * we are deleting from. 725 * 726 * Note that since a driver can be in multiple devclasses, we 727 * should not detach devices which are not children of devices in 728 * the affected devclass. 729 * 730 * If we're frozen, we don't generate NOMATCH events. Mark to 731 * generate later. 732 */ 733 for (i = 0; i < dc->maxunit; i++) { 734 if (dc->devices[i]) { 735 dev = dc->devices[i]; 736 if (dev->driver == driver && dev->parent && 737 dev->parent->devclass == busclass) { 738 if ((error = device_detach(dev)) != 0) 739 return (error); 740 if (device_frozen) { 741 dev->flags &= ~DF_DONENOMATCH; 742 dev->flags |= DF_NEEDNOMATCH; 743 } else { 744 device_handle_nomatch(dev); 745 } 746 } 747 } 748 } 749 750 /* 751 * Walk through the children classes. Since we only keep a 752 * single parent pointer around, we walk the entire list of 753 * devclasses looking for children. We set the 754 * DC_HAS_CHILDREN flag when a child devclass is created on 755 * the parent, so we only walk the list for those devclasses 756 * that have children. 757 */ 758 if (!(busclass->flags & DC_HAS_CHILDREN)) 759 return (0); 760 parent = busclass; 761 TAILQ_FOREACH(busclass, &devclasses, link) { 762 if (busclass->parent == parent) { 763 error = devclass_driver_deleted(busclass, dc, driver); 764 if (error) 765 return (error); 766 } 767 } 768 return (0); 769 } 770 771 /** 772 * @brief Delete a device driver from a device class 773 * 774 * Delete a device driver from a devclass. This is normally called 775 * automatically by DRIVER_MODULE(). 776 * 777 * If the driver is currently attached to any devices, 778 * devclass_delete_driver() will first attempt to detach from each 779 * device. If one of the detach calls fails, the driver will not be 780 * deleted. 781 * 782 * @param dc the devclass to edit 783 * @param driver the driver to unregister 784 */ 785 int 786 devclass_delete_driver(devclass_t busclass, driver_t *driver) 787 { 788 devclass_t dc = devclass_find(driver->name); 789 driverlink_t dl; 790 int error; 791 792 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 793 794 if (!dc) 795 return (0); 796 797 /* 798 * Find the link structure in the bus' list of drivers. 799 */ 800 TAILQ_FOREACH(dl, &busclass->drivers, link) { 801 if (dl->driver == driver) 802 break; 803 } 804 805 if (!dl) { 806 PDEBUG(("%s not found in %s list", driver->name, 807 busclass->name)); 808 return (ENOENT); 809 } 810 811 error = devclass_driver_deleted(busclass, dc, driver); 812 if (error != 0) 813 return (error); 814 815 TAILQ_REMOVE(&busclass->drivers, dl, link); 816 free(dl, M_BUS); 817 818 /* XXX: kobj_mtx */ 819 driver->refs--; 820 if (driver->refs == 0) 821 kobj_class_free((kobj_class_t) driver); 822 823 bus_data_generation_update(); 824 return (0); 825 } 826 827 /** 828 * @brief Quiesces a set of device drivers from a device class 829 * 830 * Quiesce a device driver from a devclass. This is normally called 831 * automatically by DRIVER_MODULE(). 832 * 833 * If the driver is currently attached to any devices, 834 * devclass_quiesece_driver() will first attempt to quiesce each 835 * device. 836 * 837 * @param dc the devclass to edit 838 * @param driver the driver to unregister 839 */ 840 static int 841 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 842 { 843 devclass_t dc = devclass_find(driver->name); 844 driverlink_t dl; 845 device_t dev; 846 int i; 847 int error; 848 849 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 850 851 if (!dc) 852 return (0); 853 854 /* 855 * Find the link structure in the bus' list of drivers. 856 */ 857 TAILQ_FOREACH(dl, &busclass->drivers, link) { 858 if (dl->driver == driver) 859 break; 860 } 861 862 if (!dl) { 863 PDEBUG(("%s not found in %s list", driver->name, 864 busclass->name)); 865 return (ENOENT); 866 } 867 868 /* 869 * Quiesce all devices. We iterate through all the devices in 870 * the devclass of the driver and quiesce any which are using 871 * the driver and which have a parent in the devclass which we 872 * are quiescing. 873 * 874 * Note that since a driver can be in multiple devclasses, we 875 * should not quiesce devices which are not children of 876 * devices in the affected devclass. 877 */ 878 for (i = 0; i < dc->maxunit; i++) { 879 if (dc->devices[i]) { 880 dev = dc->devices[i]; 881 if (dev->driver == driver && dev->parent && 882 dev->parent->devclass == busclass) { 883 if ((error = device_quiesce(dev)) != 0) 884 return (error); 885 } 886 } 887 } 888 889 return (0); 890 } 891 892 /** 893 * @internal 894 */ 895 static driverlink_t 896 devclass_find_driver_internal(devclass_t dc, const char *classname) 897 { 898 driverlink_t dl; 899 900 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 901 902 TAILQ_FOREACH(dl, &dc->drivers, link) { 903 if (!strcmp(dl->driver->name, classname)) 904 return (dl); 905 } 906 907 PDEBUG(("not found")); 908 return (NULL); 909 } 910 911 /** 912 * @brief Return the name of the devclass 913 */ 914 const char * 915 devclass_get_name(devclass_t dc) 916 { 917 return (dc->name); 918 } 919 920 /** 921 * @brief Find a device given a unit number 922 * 923 * @param dc the devclass to search 924 * @param unit the unit number to search for 925 * 926 * @returns the device with the given unit number or @c 927 * NULL if there is no such device 928 */ 929 device_t 930 devclass_get_device(devclass_t dc, int unit) 931 { 932 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 933 return (NULL); 934 return (dc->devices[unit]); 935 } 936 937 /** 938 * @brief Find the softc field of a device given a unit number 939 * 940 * @param dc the devclass to search 941 * @param unit the unit number to search for 942 * 943 * @returns the softc field of the device with the given 944 * unit number or @c NULL if there is no such 945 * device 946 */ 947 void * 948 devclass_get_softc(devclass_t dc, int unit) 949 { 950 device_t dev; 951 952 dev = devclass_get_device(dc, unit); 953 if (!dev) 954 return (NULL); 955 956 return (device_get_softc(dev)); 957 } 958 959 /** 960 * @brief Get a list of devices in the devclass 961 * 962 * An array containing a list of all the devices in the given devclass 963 * is allocated and returned in @p *devlistp. The number of devices 964 * in the array is returned in @p *devcountp. The caller should free 965 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 966 * 967 * @param dc the devclass to examine 968 * @param devlistp points at location for array pointer return 969 * value 970 * @param devcountp points at location for array size return value 971 * 972 * @retval 0 success 973 * @retval ENOMEM the array allocation failed 974 */ 975 int 976 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 977 { 978 int count, i; 979 device_t *list; 980 981 count = devclass_get_count(dc); 982 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 983 if (!list) 984 return (ENOMEM); 985 986 count = 0; 987 for (i = 0; i < dc->maxunit; i++) { 988 if (dc->devices[i]) { 989 list[count] = dc->devices[i]; 990 count++; 991 } 992 } 993 994 *devlistp = list; 995 *devcountp = count; 996 997 return (0); 998 } 999 1000 /** 1001 * @brief Get a list of drivers in the devclass 1002 * 1003 * An array containing a list of pointers to all the drivers in the 1004 * given devclass is allocated and returned in @p *listp. The number 1005 * of drivers in the array is returned in @p *countp. The caller should 1006 * free the array using @c free(p, M_TEMP). 1007 * 1008 * @param dc the devclass to examine 1009 * @param listp gives location for array pointer return value 1010 * @param countp gives location for number of array elements 1011 * return value 1012 * 1013 * @retval 0 success 1014 * @retval ENOMEM the array allocation failed 1015 */ 1016 int 1017 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1018 { 1019 driverlink_t dl; 1020 driver_t **list; 1021 int count; 1022 1023 count = 0; 1024 TAILQ_FOREACH(dl, &dc->drivers, link) 1025 count++; 1026 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1027 if (list == NULL) 1028 return (ENOMEM); 1029 1030 count = 0; 1031 TAILQ_FOREACH(dl, &dc->drivers, link) { 1032 list[count] = dl->driver; 1033 count++; 1034 } 1035 *listp = list; 1036 *countp = count; 1037 1038 return (0); 1039 } 1040 1041 /** 1042 * @brief Get the number of devices in a devclass 1043 * 1044 * @param dc the devclass to examine 1045 */ 1046 int 1047 devclass_get_count(devclass_t dc) 1048 { 1049 int count, i; 1050 1051 count = 0; 1052 for (i = 0; i < dc->maxunit; i++) 1053 if (dc->devices[i]) 1054 count++; 1055 return (count); 1056 } 1057 1058 /** 1059 * @brief Get the maximum unit number used in a devclass 1060 * 1061 * Note that this is one greater than the highest currently-allocated 1062 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1063 * that not even the devclass has been allocated yet. 1064 * 1065 * @param dc the devclass to examine 1066 */ 1067 int 1068 devclass_get_maxunit(devclass_t dc) 1069 { 1070 if (dc == NULL) 1071 return (-1); 1072 return (dc->maxunit); 1073 } 1074 1075 /** 1076 * @brief Find a free unit number in a devclass 1077 * 1078 * This function searches for the first unused unit number greater 1079 * that or equal to @p unit. 1080 * 1081 * @param dc the devclass to examine 1082 * @param unit the first unit number to check 1083 */ 1084 int 1085 devclass_find_free_unit(devclass_t dc, int unit) 1086 { 1087 if (dc == NULL) 1088 return (unit); 1089 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1090 unit++; 1091 return (unit); 1092 } 1093 1094 /** 1095 * @brief Set the parent of a devclass 1096 * 1097 * The parent class is normally initialised automatically by 1098 * DRIVER_MODULE(). 1099 * 1100 * @param dc the devclass to edit 1101 * @param pdc the new parent devclass 1102 */ 1103 void 1104 devclass_set_parent(devclass_t dc, devclass_t pdc) 1105 { 1106 dc->parent = pdc; 1107 } 1108 1109 /** 1110 * @brief Get the parent of a devclass 1111 * 1112 * @param dc the devclass to examine 1113 */ 1114 devclass_t 1115 devclass_get_parent(devclass_t dc) 1116 { 1117 return (dc->parent); 1118 } 1119 1120 struct sysctl_ctx_list * 1121 devclass_get_sysctl_ctx(devclass_t dc) 1122 { 1123 return (&dc->sysctl_ctx); 1124 } 1125 1126 struct sysctl_oid * 1127 devclass_get_sysctl_tree(devclass_t dc) 1128 { 1129 return (dc->sysctl_tree); 1130 } 1131 1132 /** 1133 * @internal 1134 * @brief Allocate a unit number 1135 * 1136 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1137 * will do). The allocated unit number is returned in @p *unitp. 1138 1139 * @param dc the devclass to allocate from 1140 * @param unitp points at the location for the allocated unit 1141 * number 1142 * 1143 * @retval 0 success 1144 * @retval EEXIST the requested unit number is already allocated 1145 * @retval ENOMEM memory allocation failure 1146 */ 1147 static int 1148 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1149 { 1150 const char *s; 1151 int unit = *unitp; 1152 1153 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1154 1155 /* Ask the parent bus if it wants to wire this device. */ 1156 if (unit == -1) 1157 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1158 &unit); 1159 1160 /* If we were given a wired unit number, check for existing device */ 1161 /* XXX imp XXX */ 1162 if (unit != -1) { 1163 if (unit >= 0 && unit < dc->maxunit && 1164 dc->devices[unit] != NULL) { 1165 if (bootverbose) 1166 printf("%s: %s%d already exists; skipping it\n", 1167 dc->name, dc->name, *unitp); 1168 return (EEXIST); 1169 } 1170 } else { 1171 /* Unwired device, find the next available slot for it */ 1172 unit = 0; 1173 for (unit = 0;; unit++) { 1174 /* If this device slot is already in use, skip it. */ 1175 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1176 continue; 1177 1178 /* If there is an "at" hint for a unit then skip it. */ 1179 if (resource_string_value(dc->name, unit, "at", &s) == 1180 0) 1181 continue; 1182 1183 break; 1184 } 1185 } 1186 1187 /* 1188 * We've selected a unit beyond the length of the table, so let's 1189 * extend the table to make room for all units up to and including 1190 * this one. 1191 */ 1192 if (unit >= dc->maxunit) { 1193 device_t *newlist, *oldlist; 1194 int newsize; 1195 1196 oldlist = dc->devices; 1197 newsize = roundup((unit + 1), 1198 MAX(1, MINALLOCSIZE / sizeof(device_t))); 1199 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1200 if (!newlist) 1201 return (ENOMEM); 1202 if (oldlist != NULL) 1203 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1204 bzero(newlist + dc->maxunit, 1205 sizeof(device_t) * (newsize - dc->maxunit)); 1206 dc->devices = newlist; 1207 dc->maxunit = newsize; 1208 if (oldlist != NULL) 1209 free(oldlist, M_BUS); 1210 } 1211 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1212 1213 *unitp = unit; 1214 return (0); 1215 } 1216 1217 /** 1218 * @internal 1219 * @brief Add a device to a devclass 1220 * 1221 * A unit number is allocated for the device (using the device's 1222 * preferred unit number if any) and the device is registered in the 1223 * devclass. This allows the device to be looked up by its unit 1224 * number, e.g. by decoding a dev_t minor number. 1225 * 1226 * @param dc the devclass to add to 1227 * @param dev the device to add 1228 * 1229 * @retval 0 success 1230 * @retval EEXIST the requested unit number is already allocated 1231 * @retval ENOMEM memory allocation failure 1232 */ 1233 static int 1234 devclass_add_device(devclass_t dc, device_t dev) 1235 { 1236 int buflen, error; 1237 1238 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1239 1240 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1241 if (buflen < 0) 1242 return (ENOMEM); 1243 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1244 if (!dev->nameunit) 1245 return (ENOMEM); 1246 1247 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1248 free(dev->nameunit, M_BUS); 1249 dev->nameunit = NULL; 1250 return (error); 1251 } 1252 dc->devices[dev->unit] = dev; 1253 dev->devclass = dc; 1254 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1255 1256 return (0); 1257 } 1258 1259 /** 1260 * @internal 1261 * @brief Delete a device from a devclass 1262 * 1263 * The device is removed from the devclass's device list and its unit 1264 * number is freed. 1265 1266 * @param dc the devclass to delete from 1267 * @param dev the device to delete 1268 * 1269 * @retval 0 success 1270 */ 1271 static int 1272 devclass_delete_device(devclass_t dc, device_t dev) 1273 { 1274 if (!dc || !dev) 1275 return (0); 1276 1277 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1278 1279 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1280 panic("devclass_delete_device: inconsistent device class"); 1281 dc->devices[dev->unit] = NULL; 1282 if (dev->flags & DF_WILDCARD) 1283 dev->unit = -1; 1284 dev->devclass = NULL; 1285 free(dev->nameunit, M_BUS); 1286 dev->nameunit = NULL; 1287 1288 return (0); 1289 } 1290 1291 /** 1292 * @internal 1293 * @brief Make a new device and add it as a child of @p parent 1294 * 1295 * @param parent the parent of the new device 1296 * @param name the devclass name of the new device or @c NULL 1297 * to leave the devclass unspecified 1298 * @parem unit the unit number of the new device of @c -1 to 1299 * leave the unit number unspecified 1300 * 1301 * @returns the new device 1302 */ 1303 static device_t 1304 make_device(device_t parent, const char *name, int unit) 1305 { 1306 device_t dev; 1307 devclass_t dc; 1308 1309 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1310 1311 if (name) { 1312 dc = devclass_find_internal(name, NULL, TRUE); 1313 if (!dc) { 1314 printf("make_device: can't find device class %s\n", 1315 name); 1316 return (NULL); 1317 } 1318 } else { 1319 dc = NULL; 1320 } 1321 1322 dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO); 1323 if (!dev) 1324 return (NULL); 1325 1326 dev->parent = parent; 1327 TAILQ_INIT(&dev->children); 1328 kobj_init((kobj_t) dev, &null_class); 1329 dev->driver = NULL; 1330 dev->devclass = NULL; 1331 dev->unit = unit; 1332 dev->nameunit = NULL; 1333 dev->desc = NULL; 1334 dev->busy = 0; 1335 dev->devflags = 0; 1336 dev->flags = DF_ENABLED; 1337 dev->order = 0; 1338 if (unit == -1) 1339 dev->flags |= DF_WILDCARD; 1340 if (name) { 1341 dev->flags |= DF_FIXEDCLASS; 1342 if (devclass_add_device(dc, dev)) { 1343 kobj_delete((kobj_t) dev, M_BUS); 1344 return (NULL); 1345 } 1346 } 1347 if (parent != NULL && device_has_quiet_children(parent)) 1348 dev->flags |= DF_QUIET | DF_QUIET_CHILDREN; 1349 dev->ivars = NULL; 1350 dev->softc = NULL; 1351 1352 dev->state = DS_NOTPRESENT; 1353 1354 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1355 bus_data_generation_update(); 1356 1357 return (dev); 1358 } 1359 1360 /** 1361 * @internal 1362 * @brief Print a description of a device. 1363 */ 1364 static int 1365 device_print_child(device_t dev, device_t child) 1366 { 1367 int retval = 0; 1368 1369 if (device_is_alive(child)) 1370 retval += BUS_PRINT_CHILD(dev, child); 1371 else 1372 retval += device_printf(child, " not found\n"); 1373 1374 return (retval); 1375 } 1376 1377 /** 1378 * @brief Create a new device 1379 * 1380 * This creates a new device and adds it as a child of an existing 1381 * parent device. The new device will be added after the last existing 1382 * child with order zero. 1383 * 1384 * @param dev the device which will be the parent of the 1385 * new child device 1386 * @param name devclass name for new device or @c NULL if not 1387 * specified 1388 * @param unit unit number for new device or @c -1 if not 1389 * specified 1390 * 1391 * @returns the new device 1392 */ 1393 device_t 1394 device_add_child(device_t dev, const char *name, int unit) 1395 { 1396 return (device_add_child_ordered(dev, 0, name, unit)); 1397 } 1398 1399 /** 1400 * @brief Create a new device 1401 * 1402 * This creates a new device and adds it as a child of an existing 1403 * parent device. The new device will be added after the last existing 1404 * child with the same order. 1405 * 1406 * @param dev the device which will be the parent of the 1407 * new child device 1408 * @param order a value which is used to partially sort the 1409 * children of @p dev - devices created using 1410 * lower values of @p order appear first in @p 1411 * dev's list of children 1412 * @param name devclass name for new device or @c NULL if not 1413 * specified 1414 * @param unit unit number for new device or @c -1 if not 1415 * specified 1416 * 1417 * @returns the new device 1418 */ 1419 device_t 1420 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1421 { 1422 device_t child; 1423 device_t place; 1424 1425 PDEBUG(("%s at %s with order %u as unit %d", 1426 name, DEVICENAME(dev), order, unit)); 1427 KASSERT(name != NULL || unit == -1, 1428 ("child device with wildcard name and specific unit number")); 1429 1430 child = make_device(dev, name, unit); 1431 if (child == NULL) 1432 return (child); 1433 child->order = order; 1434 1435 TAILQ_FOREACH(place, &dev->children, link) { 1436 if (place->order > order) 1437 break; 1438 } 1439 1440 if (place) { 1441 /* 1442 * The device 'place' is the first device whose order is 1443 * greater than the new child. 1444 */ 1445 TAILQ_INSERT_BEFORE(place, child, link); 1446 } else { 1447 /* 1448 * The new child's order is greater or equal to the order of 1449 * any existing device. Add the child to the tail of the list. 1450 */ 1451 TAILQ_INSERT_TAIL(&dev->children, child, link); 1452 } 1453 1454 bus_data_generation_update(); 1455 return (child); 1456 } 1457 1458 /** 1459 * @brief Delete a device 1460 * 1461 * This function deletes a device along with all of its children. If 1462 * the device currently has a driver attached to it, the device is 1463 * detached first using device_detach(). 1464 * 1465 * @param dev the parent device 1466 * @param child the device to delete 1467 * 1468 * @retval 0 success 1469 * @retval non-zero a unit error code describing the error 1470 */ 1471 int 1472 device_delete_child(device_t dev, device_t child) 1473 { 1474 int error; 1475 device_t grandchild; 1476 1477 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1478 1479 /* detach parent before deleting children, if any */ 1480 if ((error = device_detach(child)) != 0) 1481 return (error); 1482 1483 /* remove children second */ 1484 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1485 error = device_delete_child(child, grandchild); 1486 if (error) 1487 return (error); 1488 } 1489 1490 if (child->devclass) 1491 devclass_delete_device(child->devclass, child); 1492 if (child->parent) 1493 BUS_CHILD_DELETED(dev, child); 1494 TAILQ_REMOVE(&dev->children, child, link); 1495 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1496 kobj_delete((kobj_t) child, M_BUS); 1497 1498 bus_data_generation_update(); 1499 return (0); 1500 } 1501 1502 /** 1503 * @brief Delete all children devices of the given device, if any. 1504 * 1505 * This function deletes all children devices of the given device, if 1506 * any, using the device_delete_child() function for each device it 1507 * finds. If a child device cannot be deleted, this function will 1508 * return an error code. 1509 * 1510 * @param dev the parent device 1511 * 1512 * @retval 0 success 1513 * @retval non-zero a device would not detach 1514 */ 1515 int 1516 device_delete_children(device_t dev) 1517 { 1518 device_t child; 1519 int error; 1520 1521 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 1522 1523 error = 0; 1524 1525 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 1526 error = device_delete_child(dev, child); 1527 if (error) { 1528 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 1529 break; 1530 } 1531 } 1532 return (error); 1533 } 1534 1535 /** 1536 * @brief Find a device given a unit number 1537 * 1538 * This is similar to devclass_get_devices() but only searches for 1539 * devices which have @p dev as a parent. 1540 * 1541 * @param dev the parent device to search 1542 * @param unit the unit number to search for. If the unit is -1, 1543 * return the first child of @p dev which has name 1544 * @p classname (that is, the one with the lowest unit.) 1545 * 1546 * @returns the device with the given unit number or @c 1547 * NULL if there is no such device 1548 */ 1549 device_t 1550 device_find_child(device_t dev, const char *classname, int unit) 1551 { 1552 devclass_t dc; 1553 device_t child; 1554 1555 dc = devclass_find(classname); 1556 if (!dc) 1557 return (NULL); 1558 1559 if (unit != -1) { 1560 child = devclass_get_device(dc, unit); 1561 if (child && child->parent == dev) 1562 return (child); 1563 } else { 1564 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 1565 child = devclass_get_device(dc, unit); 1566 if (child && child->parent == dev) 1567 return (child); 1568 } 1569 } 1570 return (NULL); 1571 } 1572 1573 /** 1574 * @internal 1575 */ 1576 static driverlink_t 1577 first_matching_driver(devclass_t dc, device_t dev) 1578 { 1579 if (dev->devclass) 1580 return (devclass_find_driver_internal(dc, dev->devclass->name)); 1581 return (TAILQ_FIRST(&dc->drivers)); 1582 } 1583 1584 /** 1585 * @internal 1586 */ 1587 static driverlink_t 1588 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 1589 { 1590 if (dev->devclass) { 1591 driverlink_t dl; 1592 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 1593 if (!strcmp(dev->devclass->name, dl->driver->name)) 1594 return (dl); 1595 return (NULL); 1596 } 1597 return (TAILQ_NEXT(last, link)); 1598 } 1599 1600 /** 1601 * @internal 1602 */ 1603 int 1604 device_probe_child(device_t dev, device_t child) 1605 { 1606 devclass_t dc; 1607 driverlink_t best = NULL; 1608 driverlink_t dl; 1609 int result, pri = 0; 1610 /* We should preserve the devclass (or lack of) set by the bus. */ 1611 int hasclass = (child->devclass != NULL); 1612 1613 bus_topo_assert(); 1614 1615 dc = dev->devclass; 1616 if (!dc) 1617 panic("device_probe_child: parent device has no devclass"); 1618 1619 /* 1620 * If the state is already probed, then return. 1621 */ 1622 if (child->state == DS_ALIVE) 1623 return (0); 1624 1625 for (; dc; dc = dc->parent) { 1626 for (dl = first_matching_driver(dc, child); 1627 dl; 1628 dl = next_matching_driver(dc, child, dl)) { 1629 /* If this driver's pass is too high, then ignore it. */ 1630 if (dl->pass > bus_current_pass) 1631 continue; 1632 1633 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 1634 result = device_set_driver(child, dl->driver); 1635 if (result == ENOMEM) 1636 return (result); 1637 else if (result != 0) 1638 continue; 1639 if (!hasclass) { 1640 if (device_set_devclass(child, 1641 dl->driver->name) != 0) { 1642 char const * devname = 1643 device_get_name(child); 1644 if (devname == NULL) 1645 devname = "(unknown)"; 1646 printf("driver bug: Unable to set " 1647 "devclass (class: %s " 1648 "devname: %s)\n", 1649 dl->driver->name, 1650 devname); 1651 (void)device_set_driver(child, NULL); 1652 continue; 1653 } 1654 } 1655 1656 /* Fetch any flags for the device before probing. */ 1657 resource_int_value(dl->driver->name, child->unit, 1658 "flags", &child->devflags); 1659 1660 result = DEVICE_PROBE(child); 1661 1662 /* 1663 * If the driver returns SUCCESS, there can be 1664 * no higher match for this device. 1665 */ 1666 if (result == 0) { 1667 best = dl; 1668 pri = 0; 1669 break; 1670 } 1671 1672 /* Reset flags and devclass before the next probe. */ 1673 child->devflags = 0; 1674 if (!hasclass) 1675 (void)device_set_devclass(child, NULL); 1676 1677 /* 1678 * Reset DF_QUIET in case this driver doesn't 1679 * end up as the best driver. 1680 */ 1681 device_verbose(child); 1682 1683 /* 1684 * Probes that return BUS_PROBE_NOWILDCARD or lower 1685 * only match on devices whose driver was explicitly 1686 * specified. 1687 */ 1688 if (result <= BUS_PROBE_NOWILDCARD && 1689 !(child->flags & DF_FIXEDCLASS)) { 1690 result = ENXIO; 1691 } 1692 1693 /* 1694 * The driver returned an error so it 1695 * certainly doesn't match. 1696 */ 1697 if (result > 0) { 1698 (void)device_set_driver(child, NULL); 1699 continue; 1700 } 1701 1702 /* 1703 * A priority lower than SUCCESS, remember the 1704 * best matching driver. Initialise the value 1705 * of pri for the first match. 1706 */ 1707 if (best == NULL || result > pri) { 1708 best = dl; 1709 pri = result; 1710 continue; 1711 } 1712 } 1713 /* 1714 * If we have an unambiguous match in this devclass, 1715 * don't look in the parent. 1716 */ 1717 if (best && pri == 0) 1718 break; 1719 } 1720 1721 if (best == NULL) 1722 return (ENXIO); 1723 1724 /* 1725 * If we found a driver, change state and initialise the devclass. 1726 */ 1727 if (pri < 0) { 1728 /* Set the winning driver, devclass, and flags. */ 1729 result = device_set_driver(child, best->driver); 1730 if (result != 0) 1731 return (result); 1732 if (!child->devclass) { 1733 result = device_set_devclass(child, best->driver->name); 1734 if (result != 0) { 1735 (void)device_set_driver(child, NULL); 1736 return (result); 1737 } 1738 } 1739 resource_int_value(best->driver->name, child->unit, 1740 "flags", &child->devflags); 1741 1742 /* 1743 * A bit bogus. Call the probe method again to make sure 1744 * that we have the right description. 1745 */ 1746 result = DEVICE_PROBE(child); 1747 if (result > 0) { 1748 if (!hasclass) 1749 (void)device_set_devclass(child, NULL); 1750 (void)device_set_driver(child, NULL); 1751 return (result); 1752 } 1753 } 1754 1755 child->state = DS_ALIVE; 1756 bus_data_generation_update(); 1757 return (0); 1758 } 1759 1760 /** 1761 * @brief Return the parent of a device 1762 */ 1763 device_t 1764 device_get_parent(device_t dev) 1765 { 1766 return (dev->parent); 1767 } 1768 1769 /** 1770 * @brief Get a list of children of a device 1771 * 1772 * An array containing a list of all the children of the given device 1773 * is allocated and returned in @p *devlistp. The number of devices 1774 * in the array is returned in @p *devcountp. The caller should free 1775 * the array using @c free(p, M_TEMP). 1776 * 1777 * @param dev the device to examine 1778 * @param devlistp points at location for array pointer return 1779 * value 1780 * @param devcountp points at location for array size return value 1781 * 1782 * @retval 0 success 1783 * @retval ENOMEM the array allocation failed 1784 */ 1785 int 1786 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 1787 { 1788 int count; 1789 device_t child; 1790 device_t *list; 1791 1792 count = 0; 1793 TAILQ_FOREACH(child, &dev->children, link) { 1794 count++; 1795 } 1796 if (count == 0) { 1797 *devlistp = NULL; 1798 *devcountp = 0; 1799 return (0); 1800 } 1801 1802 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1803 if (!list) 1804 return (ENOMEM); 1805 1806 count = 0; 1807 TAILQ_FOREACH(child, &dev->children, link) { 1808 list[count] = child; 1809 count++; 1810 } 1811 1812 *devlistp = list; 1813 *devcountp = count; 1814 1815 return (0); 1816 } 1817 1818 /** 1819 * @brief Return the current driver for the device or @c NULL if there 1820 * is no driver currently attached 1821 */ 1822 driver_t * 1823 device_get_driver(device_t dev) 1824 { 1825 return (dev->driver); 1826 } 1827 1828 /** 1829 * @brief Return the current devclass for the device or @c NULL if 1830 * there is none. 1831 */ 1832 devclass_t 1833 device_get_devclass(device_t dev) 1834 { 1835 return (dev->devclass); 1836 } 1837 1838 /** 1839 * @brief Return the name of the device's devclass or @c NULL if there 1840 * is none. 1841 */ 1842 const char * 1843 device_get_name(device_t dev) 1844 { 1845 if (dev != NULL && dev->devclass) 1846 return (devclass_get_name(dev->devclass)); 1847 return (NULL); 1848 } 1849 1850 /** 1851 * @brief Return a string containing the device's devclass name 1852 * followed by an ascii representation of the device's unit number 1853 * (e.g. @c "foo2"). 1854 */ 1855 const char * 1856 device_get_nameunit(device_t dev) 1857 { 1858 return (dev->nameunit); 1859 } 1860 1861 /** 1862 * @brief Return the device's unit number. 1863 */ 1864 int 1865 device_get_unit(device_t dev) 1866 { 1867 return (dev->unit); 1868 } 1869 1870 /** 1871 * @brief Return the device's description string 1872 */ 1873 const char * 1874 device_get_desc(device_t dev) 1875 { 1876 return (dev->desc); 1877 } 1878 1879 /** 1880 * @brief Return the device's flags 1881 */ 1882 uint32_t 1883 device_get_flags(device_t dev) 1884 { 1885 return (dev->devflags); 1886 } 1887 1888 struct sysctl_ctx_list * 1889 device_get_sysctl_ctx(device_t dev) 1890 { 1891 return (&dev->sysctl_ctx); 1892 } 1893 1894 struct sysctl_oid * 1895 device_get_sysctl_tree(device_t dev) 1896 { 1897 return (dev->sysctl_tree); 1898 } 1899 1900 /** 1901 * @brief Print the name of the device followed by a colon and a space 1902 * 1903 * @returns the number of characters printed 1904 */ 1905 int 1906 device_print_prettyname(device_t dev) 1907 { 1908 const char *name = device_get_name(dev); 1909 1910 if (name == NULL) 1911 return (printf("unknown: ")); 1912 return (printf("%s%d: ", name, device_get_unit(dev))); 1913 } 1914 1915 /** 1916 * @brief Print the name of the device followed by a colon, a space 1917 * and the result of calling vprintf() with the value of @p fmt and 1918 * the following arguments. 1919 * 1920 * @returns the number of characters printed 1921 */ 1922 int 1923 device_printf(device_t dev, const char * fmt, ...) 1924 { 1925 char buf[128]; 1926 struct sbuf sb; 1927 const char *name; 1928 va_list ap; 1929 size_t retval; 1930 1931 retval = 0; 1932 1933 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 1934 sbuf_set_drain(&sb, sbuf_printf_drain, &retval); 1935 1936 name = device_get_name(dev); 1937 1938 if (name == NULL) 1939 sbuf_cat(&sb, "unknown: "); 1940 else 1941 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 1942 1943 va_start(ap, fmt); 1944 sbuf_vprintf(&sb, fmt, ap); 1945 va_end(ap); 1946 1947 sbuf_finish(&sb); 1948 sbuf_delete(&sb); 1949 1950 return (retval); 1951 } 1952 1953 /** 1954 * @brief Print the name of the device followed by a colon, a space 1955 * and the result of calling log() with the value of @p fmt and 1956 * the following arguments. 1957 * 1958 * @returns the number of characters printed 1959 */ 1960 int 1961 device_log(device_t dev, int pri, const char * fmt, ...) 1962 { 1963 char buf[128]; 1964 struct sbuf sb; 1965 const char *name; 1966 va_list ap; 1967 size_t retval; 1968 1969 retval = 0; 1970 1971 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 1972 1973 name = device_get_name(dev); 1974 1975 if (name == NULL) 1976 sbuf_cat(&sb, "unknown: "); 1977 else 1978 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 1979 1980 va_start(ap, fmt); 1981 sbuf_vprintf(&sb, fmt, ap); 1982 va_end(ap); 1983 1984 sbuf_finish(&sb); 1985 1986 log(pri, "%.*s", (int) sbuf_len(&sb), sbuf_data(&sb)); 1987 retval = sbuf_len(&sb); 1988 1989 sbuf_delete(&sb); 1990 1991 return (retval); 1992 } 1993 1994 /** 1995 * @internal 1996 */ 1997 static void 1998 device_set_desc_internal(device_t dev, const char* desc, int copy) 1999 { 2000 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2001 free(dev->desc, M_BUS); 2002 dev->flags &= ~DF_DESCMALLOCED; 2003 dev->desc = NULL; 2004 } 2005 2006 if (copy && desc) { 2007 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2008 if (dev->desc) { 2009 strcpy(dev->desc, desc); 2010 dev->flags |= DF_DESCMALLOCED; 2011 } 2012 } else { 2013 /* Avoid a -Wcast-qual warning */ 2014 dev->desc = (char *)(uintptr_t) desc; 2015 } 2016 2017 bus_data_generation_update(); 2018 } 2019 2020 /** 2021 * @brief Set the device's description 2022 * 2023 * The value of @c desc should be a string constant that will not 2024 * change (at least until the description is changed in a subsequent 2025 * call to device_set_desc() or device_set_desc_copy()). 2026 */ 2027 void 2028 device_set_desc(device_t dev, const char* desc) 2029 { 2030 device_set_desc_internal(dev, desc, FALSE); 2031 } 2032 2033 /** 2034 * @brief Set the device's description 2035 * 2036 * The string pointed to by @c desc is copied. Use this function if 2037 * the device description is generated, (e.g. with sprintf()). 2038 */ 2039 void 2040 device_set_desc_copy(device_t dev, const char* desc) 2041 { 2042 device_set_desc_internal(dev, desc, TRUE); 2043 } 2044 2045 /** 2046 * @brief Set the device's flags 2047 */ 2048 void 2049 device_set_flags(device_t dev, uint32_t flags) 2050 { 2051 dev->devflags = flags; 2052 } 2053 2054 /** 2055 * @brief Return the device's softc field 2056 * 2057 * The softc is allocated and zeroed when a driver is attached, based 2058 * on the size field of the driver. 2059 */ 2060 void * 2061 device_get_softc(device_t dev) 2062 { 2063 return (dev->softc); 2064 } 2065 2066 /** 2067 * @brief Set the device's softc field 2068 * 2069 * Most drivers do not need to use this since the softc is allocated 2070 * automatically when the driver is attached. 2071 */ 2072 void 2073 device_set_softc(device_t dev, void *softc) 2074 { 2075 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2076 free(dev->softc, M_BUS_SC); 2077 dev->softc = softc; 2078 if (dev->softc) 2079 dev->flags |= DF_EXTERNALSOFTC; 2080 else 2081 dev->flags &= ~DF_EXTERNALSOFTC; 2082 } 2083 2084 /** 2085 * @brief Free claimed softc 2086 * 2087 * Most drivers do not need to use this since the softc is freed 2088 * automatically when the driver is detached. 2089 */ 2090 void 2091 device_free_softc(void *softc) 2092 { 2093 free(softc, M_BUS_SC); 2094 } 2095 2096 /** 2097 * @brief Claim softc 2098 * 2099 * This function can be used to let the driver free the automatically 2100 * allocated softc using "device_free_softc()". This function is 2101 * useful when the driver is refcounting the softc and the softc 2102 * cannot be freed when the "device_detach" method is called. 2103 */ 2104 void 2105 device_claim_softc(device_t dev) 2106 { 2107 if (dev->softc) 2108 dev->flags |= DF_EXTERNALSOFTC; 2109 else 2110 dev->flags &= ~DF_EXTERNALSOFTC; 2111 } 2112 2113 /** 2114 * @brief Get the device's ivars field 2115 * 2116 * The ivars field is used by the parent device to store per-device 2117 * state (e.g. the physical location of the device or a list of 2118 * resources). 2119 */ 2120 void * 2121 device_get_ivars(device_t dev) 2122 { 2123 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2124 return (dev->ivars); 2125 } 2126 2127 /** 2128 * @brief Set the device's ivars field 2129 */ 2130 void 2131 device_set_ivars(device_t dev, void * ivars) 2132 { 2133 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2134 dev->ivars = ivars; 2135 } 2136 2137 /** 2138 * @brief Return the device's state 2139 */ 2140 device_state_t 2141 device_get_state(device_t dev) 2142 { 2143 return (dev->state); 2144 } 2145 2146 /** 2147 * @brief Set the DF_ENABLED flag for the device 2148 */ 2149 void 2150 device_enable(device_t dev) 2151 { 2152 dev->flags |= DF_ENABLED; 2153 } 2154 2155 /** 2156 * @brief Clear the DF_ENABLED flag for the device 2157 */ 2158 void 2159 device_disable(device_t dev) 2160 { 2161 dev->flags &= ~DF_ENABLED; 2162 } 2163 2164 /** 2165 * @brief Increment the busy counter for the device 2166 */ 2167 void 2168 device_busy(device_t dev) 2169 { 2170 2171 /* 2172 * Mark the device as busy, recursively up the tree if this busy count 2173 * goes 0->1. 2174 */ 2175 if (refcount_acquire(&dev->busy) == 0 && dev->parent != NULL) 2176 device_busy(dev->parent); 2177 } 2178 2179 /** 2180 * @brief Decrement the busy counter for the device 2181 */ 2182 void 2183 device_unbusy(device_t dev) 2184 { 2185 2186 /* 2187 * Mark the device as unbsy, recursively if this is the last busy count. 2188 */ 2189 if (refcount_release(&dev->busy) && dev->parent != NULL) 2190 device_unbusy(dev->parent); 2191 } 2192 2193 /** 2194 * @brief Set the DF_QUIET flag for the device 2195 */ 2196 void 2197 device_quiet(device_t dev) 2198 { 2199 dev->flags |= DF_QUIET; 2200 } 2201 2202 /** 2203 * @brief Set the DF_QUIET_CHILDREN flag for the device 2204 */ 2205 void 2206 device_quiet_children(device_t dev) 2207 { 2208 dev->flags |= DF_QUIET_CHILDREN; 2209 } 2210 2211 /** 2212 * @brief Clear the DF_QUIET flag for the device 2213 */ 2214 void 2215 device_verbose(device_t dev) 2216 { 2217 dev->flags &= ~DF_QUIET; 2218 } 2219 2220 ssize_t 2221 device_get_property(device_t dev, const char *prop, void *val, size_t sz, 2222 device_property_type_t type) 2223 { 2224 device_t bus = device_get_parent(dev); 2225 2226 switch (type) { 2227 case DEVICE_PROP_ANY: 2228 case DEVICE_PROP_BUFFER: 2229 break; 2230 case DEVICE_PROP_UINT32: 2231 if (sz % 4 != 0) 2232 return (-1); 2233 break; 2234 case DEVICE_PROP_UINT64: 2235 if (sz % 8 != 0) 2236 return (-1); 2237 break; 2238 default: 2239 return (-1); 2240 } 2241 2242 return (BUS_GET_PROPERTY(bus, dev, prop, val, sz, type)); 2243 } 2244 2245 bool 2246 device_has_property(device_t dev, const char *prop) 2247 { 2248 return (device_get_property(dev, prop, NULL, 0, DEVICE_PROP_ANY) >= 0); 2249 } 2250 2251 /** 2252 * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device 2253 */ 2254 int 2255 device_has_quiet_children(device_t dev) 2256 { 2257 return ((dev->flags & DF_QUIET_CHILDREN) != 0); 2258 } 2259 2260 /** 2261 * @brief Return non-zero if the DF_QUIET flag is set on the device 2262 */ 2263 int 2264 device_is_quiet(device_t dev) 2265 { 2266 return ((dev->flags & DF_QUIET) != 0); 2267 } 2268 2269 /** 2270 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2271 */ 2272 int 2273 device_is_enabled(device_t dev) 2274 { 2275 return ((dev->flags & DF_ENABLED) != 0); 2276 } 2277 2278 /** 2279 * @brief Return non-zero if the device was successfully probed 2280 */ 2281 int 2282 device_is_alive(device_t dev) 2283 { 2284 return (dev->state >= DS_ALIVE); 2285 } 2286 2287 /** 2288 * @brief Return non-zero if the device currently has a driver 2289 * attached to it 2290 */ 2291 int 2292 device_is_attached(device_t dev) 2293 { 2294 return (dev->state >= DS_ATTACHED); 2295 } 2296 2297 /** 2298 * @brief Return non-zero if the device is currently suspended. 2299 */ 2300 int 2301 device_is_suspended(device_t dev) 2302 { 2303 return ((dev->flags & DF_SUSPENDED) != 0); 2304 } 2305 2306 /** 2307 * @brief Set the devclass of a device 2308 * @see devclass_add_device(). 2309 */ 2310 int 2311 device_set_devclass(device_t dev, const char *classname) 2312 { 2313 devclass_t dc; 2314 int error; 2315 2316 if (!classname) { 2317 if (dev->devclass) 2318 devclass_delete_device(dev->devclass, dev); 2319 return (0); 2320 } 2321 2322 if (dev->devclass) { 2323 printf("device_set_devclass: device class already set\n"); 2324 return (EINVAL); 2325 } 2326 2327 dc = devclass_find_internal(classname, NULL, TRUE); 2328 if (!dc) 2329 return (ENOMEM); 2330 2331 error = devclass_add_device(dc, dev); 2332 2333 bus_data_generation_update(); 2334 return (error); 2335 } 2336 2337 /** 2338 * @brief Set the devclass of a device and mark the devclass fixed. 2339 * @see device_set_devclass() 2340 */ 2341 int 2342 device_set_devclass_fixed(device_t dev, const char *classname) 2343 { 2344 int error; 2345 2346 if (classname == NULL) 2347 return (EINVAL); 2348 2349 error = device_set_devclass(dev, classname); 2350 if (error) 2351 return (error); 2352 dev->flags |= DF_FIXEDCLASS; 2353 return (0); 2354 } 2355 2356 /** 2357 * @brief Query the device to determine if it's of a fixed devclass 2358 * @see device_set_devclass_fixed() 2359 */ 2360 bool 2361 device_is_devclass_fixed(device_t dev) 2362 { 2363 return ((dev->flags & DF_FIXEDCLASS) != 0); 2364 } 2365 2366 /** 2367 * @brief Set the driver of a device 2368 * 2369 * @retval 0 success 2370 * @retval EBUSY the device already has a driver attached 2371 * @retval ENOMEM a memory allocation failure occurred 2372 */ 2373 int 2374 device_set_driver(device_t dev, driver_t *driver) 2375 { 2376 int domain; 2377 struct domainset *policy; 2378 2379 if (dev->state >= DS_ATTACHED) 2380 return (EBUSY); 2381 2382 if (dev->driver == driver) 2383 return (0); 2384 2385 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2386 free(dev->softc, M_BUS_SC); 2387 dev->softc = NULL; 2388 } 2389 device_set_desc(dev, NULL); 2390 kobj_delete((kobj_t) dev, NULL); 2391 dev->driver = driver; 2392 if (driver) { 2393 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2394 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2395 if (bus_get_domain(dev, &domain) == 0) 2396 policy = DOMAINSET_PREF(domain); 2397 else 2398 policy = DOMAINSET_RR(); 2399 dev->softc = malloc_domainset(driver->size, M_BUS_SC, 2400 policy, M_NOWAIT | M_ZERO); 2401 if (!dev->softc) { 2402 kobj_delete((kobj_t) dev, NULL); 2403 kobj_init((kobj_t) dev, &null_class); 2404 dev->driver = NULL; 2405 return (ENOMEM); 2406 } 2407 } 2408 } else { 2409 kobj_init((kobj_t) dev, &null_class); 2410 } 2411 2412 bus_data_generation_update(); 2413 return (0); 2414 } 2415 2416 /** 2417 * @brief Probe a device, and return this status. 2418 * 2419 * This function is the core of the device autoconfiguration 2420 * system. Its purpose is to select a suitable driver for a device and 2421 * then call that driver to initialise the hardware appropriately. The 2422 * driver is selected by calling the DEVICE_PROBE() method of a set of 2423 * candidate drivers and then choosing the driver which returned the 2424 * best value. This driver is then attached to the device using 2425 * device_attach(). 2426 * 2427 * The set of suitable drivers is taken from the list of drivers in 2428 * the parent device's devclass. If the device was originally created 2429 * with a specific class name (see device_add_child()), only drivers 2430 * with that name are probed, otherwise all drivers in the devclass 2431 * are probed. If no drivers return successful probe values in the 2432 * parent devclass, the search continues in the parent of that 2433 * devclass (see devclass_get_parent()) if any. 2434 * 2435 * @param dev the device to initialise 2436 * 2437 * @retval 0 success 2438 * @retval ENXIO no driver was found 2439 * @retval ENOMEM memory allocation failure 2440 * @retval non-zero some other unix error code 2441 * @retval -1 Device already attached 2442 */ 2443 int 2444 device_probe(device_t dev) 2445 { 2446 int error; 2447 2448 bus_topo_assert(); 2449 2450 if (dev->state >= DS_ALIVE) 2451 return (-1); 2452 2453 if (!(dev->flags & DF_ENABLED)) { 2454 if (bootverbose && device_get_name(dev) != NULL) { 2455 device_print_prettyname(dev); 2456 printf("not probed (disabled)\n"); 2457 } 2458 return (-1); 2459 } 2460 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2461 if (bus_current_pass == BUS_PASS_DEFAULT && 2462 !(dev->flags & DF_DONENOMATCH)) { 2463 device_handle_nomatch(dev); 2464 } 2465 return (error); 2466 } 2467 return (0); 2468 } 2469 2470 /** 2471 * @brief Probe a device and attach a driver if possible 2472 * 2473 * calls device_probe() and attaches if that was successful. 2474 */ 2475 int 2476 device_probe_and_attach(device_t dev) 2477 { 2478 int error; 2479 2480 bus_topo_assert(); 2481 2482 error = device_probe(dev); 2483 if (error == -1) 2484 return (0); 2485 else if (error != 0) 2486 return (error); 2487 2488 CURVNET_SET_QUIET(vnet0); 2489 error = device_attach(dev); 2490 CURVNET_RESTORE(); 2491 return error; 2492 } 2493 2494 /** 2495 * @brief Attach a device driver to a device 2496 * 2497 * This function is a wrapper around the DEVICE_ATTACH() driver 2498 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2499 * device's sysctl tree, optionally prints a description of the device 2500 * and queues a notification event for user-based device management 2501 * services. 2502 * 2503 * Normally this function is only called internally from 2504 * device_probe_and_attach(). 2505 * 2506 * @param dev the device to initialise 2507 * 2508 * @retval 0 success 2509 * @retval ENXIO no driver was found 2510 * @retval ENOMEM memory allocation failure 2511 * @retval non-zero some other unix error code 2512 */ 2513 int 2514 device_attach(device_t dev) 2515 { 2516 uint64_t attachtime; 2517 uint16_t attachentropy; 2518 int error; 2519 2520 if (resource_disabled(dev->driver->name, dev->unit)) { 2521 device_disable(dev); 2522 if (bootverbose) 2523 device_printf(dev, "disabled via hints entry\n"); 2524 return (ENXIO); 2525 } 2526 2527 device_sysctl_init(dev); 2528 if (!device_is_quiet(dev)) 2529 device_print_child(dev->parent, dev); 2530 attachtime = get_cyclecount(); 2531 dev->state = DS_ATTACHING; 2532 if ((error = DEVICE_ATTACH(dev)) != 0) { 2533 printf("device_attach: %s%d attach returned %d\n", 2534 dev->driver->name, dev->unit, error); 2535 if (!(dev->flags & DF_FIXEDCLASS)) 2536 devclass_delete_device(dev->devclass, dev); 2537 (void)device_set_driver(dev, NULL); 2538 device_sysctl_fini(dev); 2539 KASSERT(dev->busy == 0, ("attach failed but busy")); 2540 dev->state = DS_NOTPRESENT; 2541 return (error); 2542 } 2543 dev->flags |= DF_ATTACHED_ONCE; 2544 /* We only need the low bits of this time, but ranges from tens to thousands 2545 * have been seen, so keep 2 bytes' worth. 2546 */ 2547 attachentropy = (uint16_t)(get_cyclecount() - attachtime); 2548 random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH); 2549 device_sysctl_update(dev); 2550 dev->state = DS_ATTACHED; 2551 dev->flags &= ~DF_DONENOMATCH; 2552 EVENTHANDLER_DIRECT_INVOKE(device_attach, dev); 2553 return (0); 2554 } 2555 2556 /** 2557 * @brief Detach a driver from a device 2558 * 2559 * This function is a wrapper around the DEVICE_DETACH() driver 2560 * method. If the call to DEVICE_DETACH() succeeds, it calls 2561 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2562 * notification event for user-based device management services and 2563 * cleans up the device's sysctl tree. 2564 * 2565 * @param dev the device to un-initialise 2566 * 2567 * @retval 0 success 2568 * @retval ENXIO no driver was found 2569 * @retval ENOMEM memory allocation failure 2570 * @retval non-zero some other unix error code 2571 */ 2572 int 2573 device_detach(device_t dev) 2574 { 2575 int error; 2576 2577 bus_topo_assert(); 2578 2579 PDEBUG(("%s", DEVICENAME(dev))); 2580 if (dev->busy > 0) 2581 return (EBUSY); 2582 if (dev->state == DS_ATTACHING) { 2583 device_printf(dev, "device in attaching state! Deferring detach.\n"); 2584 return (EBUSY); 2585 } 2586 if (dev->state != DS_ATTACHED) 2587 return (0); 2588 2589 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN); 2590 if ((error = DEVICE_DETACH(dev)) != 0) { 2591 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 2592 EVHDEV_DETACH_FAILED); 2593 return (error); 2594 } else { 2595 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 2596 EVHDEV_DETACH_COMPLETE); 2597 } 2598 if (!device_is_quiet(dev)) 2599 device_printf(dev, "detached\n"); 2600 if (dev->parent) 2601 BUS_CHILD_DETACHED(dev->parent, dev); 2602 2603 if (!(dev->flags & DF_FIXEDCLASS)) 2604 devclass_delete_device(dev->devclass, dev); 2605 2606 device_verbose(dev); 2607 dev->state = DS_NOTPRESENT; 2608 (void)device_set_driver(dev, NULL); 2609 device_sysctl_fini(dev); 2610 2611 return (0); 2612 } 2613 2614 /** 2615 * @brief Tells a driver to quiesce itself. 2616 * 2617 * This function is a wrapper around the DEVICE_QUIESCE() driver 2618 * method. If the call to DEVICE_QUIESCE() succeeds. 2619 * 2620 * @param dev the device to quiesce 2621 * 2622 * @retval 0 success 2623 * @retval ENXIO no driver was found 2624 * @retval ENOMEM memory allocation failure 2625 * @retval non-zero some other unix error code 2626 */ 2627 int 2628 device_quiesce(device_t dev) 2629 { 2630 PDEBUG(("%s", DEVICENAME(dev))); 2631 if (dev->busy > 0) 2632 return (EBUSY); 2633 if (dev->state != DS_ATTACHED) 2634 return (0); 2635 2636 return (DEVICE_QUIESCE(dev)); 2637 } 2638 2639 /** 2640 * @brief Notify a device of system shutdown 2641 * 2642 * This function calls the DEVICE_SHUTDOWN() driver method if the 2643 * device currently has an attached driver. 2644 * 2645 * @returns the value returned by DEVICE_SHUTDOWN() 2646 */ 2647 int 2648 device_shutdown(device_t dev) 2649 { 2650 if (dev->state < DS_ATTACHED) 2651 return (0); 2652 return (DEVICE_SHUTDOWN(dev)); 2653 } 2654 2655 /** 2656 * @brief Set the unit number of a device 2657 * 2658 * This function can be used to override the unit number used for a 2659 * device (e.g. to wire a device to a pre-configured unit number). 2660 */ 2661 int 2662 device_set_unit(device_t dev, int unit) 2663 { 2664 devclass_t dc; 2665 int err; 2666 2667 if (unit == dev->unit) 2668 return (0); 2669 dc = device_get_devclass(dev); 2670 if (unit < dc->maxunit && dc->devices[unit]) 2671 return (EBUSY); 2672 err = devclass_delete_device(dc, dev); 2673 if (err) 2674 return (err); 2675 dev->unit = unit; 2676 err = devclass_add_device(dc, dev); 2677 if (err) 2678 return (err); 2679 2680 bus_data_generation_update(); 2681 return (0); 2682 } 2683 2684 /*======================================*/ 2685 /* 2686 * Some useful method implementations to make life easier for bus drivers. 2687 */ 2688 2689 void 2690 resource_init_map_request_impl(struct resource_map_request *args, size_t sz) 2691 { 2692 bzero(args, sz); 2693 args->size = sz; 2694 args->memattr = VM_MEMATTR_DEVICE; 2695 } 2696 2697 /** 2698 * @brief Initialise a resource list. 2699 * 2700 * @param rl the resource list to initialise 2701 */ 2702 void 2703 resource_list_init(struct resource_list *rl) 2704 { 2705 STAILQ_INIT(rl); 2706 } 2707 2708 /** 2709 * @brief Reclaim memory used by a resource list. 2710 * 2711 * This function frees the memory for all resource entries on the list 2712 * (if any). 2713 * 2714 * @param rl the resource list to free 2715 */ 2716 void 2717 resource_list_free(struct resource_list *rl) 2718 { 2719 struct resource_list_entry *rle; 2720 2721 while ((rle = STAILQ_FIRST(rl)) != NULL) { 2722 if (rle->res) 2723 panic("resource_list_free: resource entry is busy"); 2724 STAILQ_REMOVE_HEAD(rl, link); 2725 free(rle, M_BUS); 2726 } 2727 } 2728 2729 /** 2730 * @brief Add a resource entry. 2731 * 2732 * This function adds a resource entry using the given @p type, @p 2733 * start, @p end and @p count values. A rid value is chosen by 2734 * searching sequentially for the first unused rid starting at zero. 2735 * 2736 * @param rl the resource list to edit 2737 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2738 * @param start the start address of the resource 2739 * @param end the end address of the resource 2740 * @param count XXX end-start+1 2741 */ 2742 int 2743 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start, 2744 rman_res_t end, rman_res_t count) 2745 { 2746 int rid; 2747 2748 rid = 0; 2749 while (resource_list_find(rl, type, rid) != NULL) 2750 rid++; 2751 resource_list_add(rl, type, rid, start, end, count); 2752 return (rid); 2753 } 2754 2755 /** 2756 * @brief Add or modify a resource entry. 2757 * 2758 * If an existing entry exists with the same type and rid, it will be 2759 * modified using the given values of @p start, @p end and @p 2760 * count. If no entry exists, a new one will be created using the 2761 * given values. The resource list entry that matches is then returned. 2762 * 2763 * @param rl the resource list to edit 2764 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2765 * @param rid the resource identifier 2766 * @param start the start address of the resource 2767 * @param end the end address of the resource 2768 * @param count XXX end-start+1 2769 */ 2770 struct resource_list_entry * 2771 resource_list_add(struct resource_list *rl, int type, int rid, 2772 rman_res_t start, rman_res_t end, rman_res_t count) 2773 { 2774 struct resource_list_entry *rle; 2775 2776 rle = resource_list_find(rl, type, rid); 2777 if (!rle) { 2778 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 2779 M_NOWAIT); 2780 if (!rle) 2781 panic("resource_list_add: can't record entry"); 2782 STAILQ_INSERT_TAIL(rl, rle, link); 2783 rle->type = type; 2784 rle->rid = rid; 2785 rle->res = NULL; 2786 rle->flags = 0; 2787 } 2788 2789 if (rle->res) 2790 panic("resource_list_add: resource entry is busy"); 2791 2792 rle->start = start; 2793 rle->end = end; 2794 rle->count = count; 2795 return (rle); 2796 } 2797 2798 /** 2799 * @brief Determine if a resource entry is busy. 2800 * 2801 * Returns true if a resource entry is busy meaning that it has an 2802 * associated resource that is not an unallocated "reserved" resource. 2803 * 2804 * @param rl the resource list to search 2805 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2806 * @param rid the resource identifier 2807 * 2808 * @returns Non-zero if the entry is busy, zero otherwise. 2809 */ 2810 int 2811 resource_list_busy(struct resource_list *rl, int type, int rid) 2812 { 2813 struct resource_list_entry *rle; 2814 2815 rle = resource_list_find(rl, type, rid); 2816 if (rle == NULL || rle->res == NULL) 2817 return (0); 2818 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 2819 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 2820 ("reserved resource is active")); 2821 return (0); 2822 } 2823 return (1); 2824 } 2825 2826 /** 2827 * @brief Determine if a resource entry is reserved. 2828 * 2829 * Returns true if a resource entry is reserved meaning that it has an 2830 * associated "reserved" resource. The resource can either be 2831 * allocated or unallocated. 2832 * 2833 * @param rl the resource list to search 2834 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2835 * @param rid the resource identifier 2836 * 2837 * @returns Non-zero if the entry is reserved, zero otherwise. 2838 */ 2839 int 2840 resource_list_reserved(struct resource_list *rl, int type, int rid) 2841 { 2842 struct resource_list_entry *rle; 2843 2844 rle = resource_list_find(rl, type, rid); 2845 if (rle != NULL && rle->flags & RLE_RESERVED) 2846 return (1); 2847 return (0); 2848 } 2849 2850 /** 2851 * @brief Find a resource entry by type and rid. 2852 * 2853 * @param rl the resource list to search 2854 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2855 * @param rid the resource identifier 2856 * 2857 * @returns the resource entry pointer or NULL if there is no such 2858 * entry. 2859 */ 2860 struct resource_list_entry * 2861 resource_list_find(struct resource_list *rl, int type, int rid) 2862 { 2863 struct resource_list_entry *rle; 2864 2865 STAILQ_FOREACH(rle, rl, link) { 2866 if (rle->type == type && rle->rid == rid) 2867 return (rle); 2868 } 2869 return (NULL); 2870 } 2871 2872 /** 2873 * @brief Delete a resource entry. 2874 * 2875 * @param rl the resource list to edit 2876 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2877 * @param rid the resource identifier 2878 */ 2879 void 2880 resource_list_delete(struct resource_list *rl, int type, int rid) 2881 { 2882 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 2883 2884 if (rle) { 2885 if (rle->res != NULL) 2886 panic("resource_list_delete: resource has not been released"); 2887 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 2888 free(rle, M_BUS); 2889 } 2890 } 2891 2892 /** 2893 * @brief Allocate a reserved resource 2894 * 2895 * This can be used by buses to force the allocation of resources 2896 * that are always active in the system even if they are not allocated 2897 * by a driver (e.g. PCI BARs). This function is usually called when 2898 * adding a new child to the bus. The resource is allocated from the 2899 * parent bus when it is reserved. The resource list entry is marked 2900 * with RLE_RESERVED to note that it is a reserved resource. 2901 * 2902 * Subsequent attempts to allocate the resource with 2903 * resource_list_alloc() will succeed the first time and will set 2904 * RLE_ALLOCATED to note that it has been allocated. When a reserved 2905 * resource that has been allocated is released with 2906 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 2907 * the actual resource remains allocated. The resource can be released to 2908 * the parent bus by calling resource_list_unreserve(). 2909 * 2910 * @param rl the resource list to allocate from 2911 * @param bus the parent device of @p child 2912 * @param child the device for which the resource is being reserved 2913 * @param type the type of resource to allocate 2914 * @param rid a pointer to the resource identifier 2915 * @param start hint at the start of the resource range - pass 2916 * @c 0 for any start address 2917 * @param end hint at the end of the resource range - pass 2918 * @c ~0 for any end address 2919 * @param count hint at the size of range required - pass @c 1 2920 * for any size 2921 * @param flags any extra flags to control the resource 2922 * allocation - see @c RF_XXX flags in 2923 * <sys/rman.h> for details 2924 * 2925 * @returns the resource which was allocated or @c NULL if no 2926 * resource could be allocated 2927 */ 2928 struct resource * 2929 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 2930 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 2931 { 2932 struct resource_list_entry *rle = NULL; 2933 int passthrough = (device_get_parent(child) != bus); 2934 struct resource *r; 2935 2936 if (passthrough) 2937 panic( 2938 "resource_list_reserve() should only be called for direct children"); 2939 if (flags & RF_ACTIVE) 2940 panic( 2941 "resource_list_reserve() should only reserve inactive resources"); 2942 2943 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 2944 flags); 2945 if (r != NULL) { 2946 rle = resource_list_find(rl, type, *rid); 2947 rle->flags |= RLE_RESERVED; 2948 } 2949 return (r); 2950 } 2951 2952 /** 2953 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 2954 * 2955 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 2956 * and passing the allocation up to the parent of @p bus. This assumes 2957 * that the first entry of @c device_get_ivars(child) is a struct 2958 * resource_list. This also handles 'passthrough' allocations where a 2959 * child is a remote descendant of bus by passing the allocation up to 2960 * the parent of bus. 2961 * 2962 * Typically, a bus driver would store a list of child resources 2963 * somewhere in the child device's ivars (see device_get_ivars()) and 2964 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 2965 * then call resource_list_alloc() to perform the allocation. 2966 * 2967 * @param rl the resource list to allocate from 2968 * @param bus the parent device of @p child 2969 * @param child the device which is requesting an allocation 2970 * @param type the type of resource to allocate 2971 * @param rid a pointer to the resource identifier 2972 * @param start hint at the start of the resource range - pass 2973 * @c 0 for any start address 2974 * @param end hint at the end of the resource range - pass 2975 * @c ~0 for any end address 2976 * @param count hint at the size of range required - pass @c 1 2977 * for any size 2978 * @param flags any extra flags to control the resource 2979 * allocation - see @c RF_XXX flags in 2980 * <sys/rman.h> for details 2981 * 2982 * @returns the resource which was allocated or @c NULL if no 2983 * resource could be allocated 2984 */ 2985 struct resource * 2986 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 2987 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 2988 { 2989 struct resource_list_entry *rle = NULL; 2990 int passthrough = (device_get_parent(child) != bus); 2991 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 2992 2993 if (passthrough) { 2994 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 2995 type, rid, start, end, count, flags)); 2996 } 2997 2998 rle = resource_list_find(rl, type, *rid); 2999 3000 if (!rle) 3001 return (NULL); /* no resource of that type/rid */ 3002 3003 if (rle->res) { 3004 if (rle->flags & RLE_RESERVED) { 3005 if (rle->flags & RLE_ALLOCATED) 3006 return (NULL); 3007 if ((flags & RF_ACTIVE) && 3008 bus_activate_resource(child, type, *rid, 3009 rle->res) != 0) 3010 return (NULL); 3011 rle->flags |= RLE_ALLOCATED; 3012 return (rle->res); 3013 } 3014 device_printf(bus, 3015 "resource entry %#x type %d for child %s is busy\n", *rid, 3016 type, device_get_nameunit(child)); 3017 return (NULL); 3018 } 3019 3020 if (isdefault) { 3021 start = rle->start; 3022 count = ulmax(count, rle->count); 3023 end = ulmax(rle->end, start + count - 1); 3024 } 3025 3026 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3027 type, rid, start, end, count, flags); 3028 3029 /* 3030 * Record the new range. 3031 */ 3032 if (rle->res) { 3033 rle->start = rman_get_start(rle->res); 3034 rle->end = rman_get_end(rle->res); 3035 rle->count = count; 3036 } 3037 3038 return (rle->res); 3039 } 3040 3041 /** 3042 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3043 * 3044 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3045 * used with resource_list_alloc(). 3046 * 3047 * @param rl the resource list which was allocated from 3048 * @param bus the parent device of @p child 3049 * @param child the device which is requesting a release 3050 * @param type the type of resource to release 3051 * @param rid the resource identifier 3052 * @param res the resource to release 3053 * 3054 * @retval 0 success 3055 * @retval non-zero a standard unix error code indicating what 3056 * error condition prevented the operation 3057 */ 3058 int 3059 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3060 int type, int rid, struct resource *res) 3061 { 3062 struct resource_list_entry *rle = NULL; 3063 int passthrough = (device_get_parent(child) != bus); 3064 int error; 3065 3066 if (passthrough) { 3067 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3068 type, rid, res)); 3069 } 3070 3071 rle = resource_list_find(rl, type, rid); 3072 3073 if (!rle) 3074 panic("resource_list_release: can't find resource"); 3075 if (!rle->res) 3076 panic("resource_list_release: resource entry is not busy"); 3077 if (rle->flags & RLE_RESERVED) { 3078 if (rle->flags & RLE_ALLOCATED) { 3079 if (rman_get_flags(res) & RF_ACTIVE) { 3080 error = bus_deactivate_resource(child, type, 3081 rid, res); 3082 if (error) 3083 return (error); 3084 } 3085 rle->flags &= ~RLE_ALLOCATED; 3086 return (0); 3087 } 3088 return (EINVAL); 3089 } 3090 3091 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3092 type, rid, res); 3093 if (error) 3094 return (error); 3095 3096 rle->res = NULL; 3097 return (0); 3098 } 3099 3100 /** 3101 * @brief Release all active resources of a given type 3102 * 3103 * Release all active resources of a specified type. This is intended 3104 * to be used to cleanup resources leaked by a driver after detach or 3105 * a failed attach. 3106 * 3107 * @param rl the resource list which was allocated from 3108 * @param bus the parent device of @p child 3109 * @param child the device whose active resources are being released 3110 * @param type the type of resources to release 3111 * 3112 * @retval 0 success 3113 * @retval EBUSY at least one resource was active 3114 */ 3115 int 3116 resource_list_release_active(struct resource_list *rl, device_t bus, 3117 device_t child, int type) 3118 { 3119 struct resource_list_entry *rle; 3120 int error, retval; 3121 3122 retval = 0; 3123 STAILQ_FOREACH(rle, rl, link) { 3124 if (rle->type != type) 3125 continue; 3126 if (rle->res == NULL) 3127 continue; 3128 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3129 RLE_RESERVED) 3130 continue; 3131 retval = EBUSY; 3132 error = resource_list_release(rl, bus, child, type, 3133 rman_get_rid(rle->res), rle->res); 3134 if (error != 0) 3135 device_printf(bus, 3136 "Failed to release active resource: %d\n", error); 3137 } 3138 return (retval); 3139 } 3140 3141 /** 3142 * @brief Fully release a reserved resource 3143 * 3144 * Fully releases a resource reserved via resource_list_reserve(). 3145 * 3146 * @param rl the resource list which was allocated from 3147 * @param bus the parent device of @p child 3148 * @param child the device whose reserved resource is being released 3149 * @param type the type of resource to release 3150 * @param rid the resource identifier 3151 * @param res the resource to release 3152 * 3153 * @retval 0 success 3154 * @retval non-zero a standard unix error code indicating what 3155 * error condition prevented the operation 3156 */ 3157 int 3158 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3159 int type, int rid) 3160 { 3161 struct resource_list_entry *rle = NULL; 3162 int passthrough = (device_get_parent(child) != bus); 3163 3164 if (passthrough) 3165 panic( 3166 "resource_list_unreserve() should only be called for direct children"); 3167 3168 rle = resource_list_find(rl, type, rid); 3169 3170 if (!rle) 3171 panic("resource_list_unreserve: can't find resource"); 3172 if (!(rle->flags & RLE_RESERVED)) 3173 return (EINVAL); 3174 if (rle->flags & RLE_ALLOCATED) 3175 return (EBUSY); 3176 rle->flags &= ~RLE_RESERVED; 3177 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3178 } 3179 3180 /** 3181 * @brief Print a description of resources in a resource list 3182 * 3183 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3184 * The name is printed if at least one resource of the given type is available. 3185 * The format is used to print resource start and end. 3186 * 3187 * @param rl the resource list to print 3188 * @param name the name of @p type, e.g. @c "memory" 3189 * @param type type type of resource entry to print 3190 * @param format printf(9) format string to print resource 3191 * start and end values 3192 * 3193 * @returns the number of characters printed 3194 */ 3195 int 3196 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3197 const char *format) 3198 { 3199 struct resource_list_entry *rle; 3200 int printed, retval; 3201 3202 printed = 0; 3203 retval = 0; 3204 /* Yes, this is kinda cheating */ 3205 STAILQ_FOREACH(rle, rl, link) { 3206 if (rle->type == type) { 3207 if (printed == 0) 3208 retval += printf(" %s ", name); 3209 else 3210 retval += printf(","); 3211 printed++; 3212 retval += printf(format, rle->start); 3213 if (rle->count > 1) { 3214 retval += printf("-"); 3215 retval += printf(format, rle->start + 3216 rle->count - 1); 3217 } 3218 } 3219 } 3220 return (retval); 3221 } 3222 3223 /** 3224 * @brief Releases all the resources in a list. 3225 * 3226 * @param rl The resource list to purge. 3227 * 3228 * @returns nothing 3229 */ 3230 void 3231 resource_list_purge(struct resource_list *rl) 3232 { 3233 struct resource_list_entry *rle; 3234 3235 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3236 if (rle->res) 3237 bus_release_resource(rman_get_device(rle->res), 3238 rle->type, rle->rid, rle->res); 3239 STAILQ_REMOVE_HEAD(rl, link); 3240 free(rle, M_BUS); 3241 } 3242 } 3243 3244 device_t 3245 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3246 { 3247 return (device_add_child_ordered(dev, order, name, unit)); 3248 } 3249 3250 /** 3251 * @brief Helper function for implementing DEVICE_PROBE() 3252 * 3253 * This function can be used to help implement the DEVICE_PROBE() for 3254 * a bus (i.e. a device which has other devices attached to it). It 3255 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3256 * devclass. 3257 */ 3258 int 3259 bus_generic_probe(device_t dev) 3260 { 3261 devclass_t dc = dev->devclass; 3262 driverlink_t dl; 3263 3264 TAILQ_FOREACH(dl, &dc->drivers, link) { 3265 /* 3266 * If this driver's pass is too high, then ignore it. 3267 * For most drivers in the default pass, this will 3268 * never be true. For early-pass drivers they will 3269 * only call the identify routines of eligible drivers 3270 * when this routine is called. Drivers for later 3271 * passes should have their identify routines called 3272 * on early-pass buses during BUS_NEW_PASS(). 3273 */ 3274 if (dl->pass > bus_current_pass) 3275 continue; 3276 DEVICE_IDENTIFY(dl->driver, dev); 3277 } 3278 3279 return (0); 3280 } 3281 3282 /** 3283 * @brief Helper function for implementing DEVICE_ATTACH() 3284 * 3285 * This function can be used to help implement the DEVICE_ATTACH() for 3286 * a bus. It calls device_probe_and_attach() for each of the device's 3287 * children. 3288 */ 3289 int 3290 bus_generic_attach(device_t dev) 3291 { 3292 device_t child; 3293 3294 TAILQ_FOREACH(child, &dev->children, link) { 3295 device_probe_and_attach(child); 3296 } 3297 3298 return (0); 3299 } 3300 3301 /** 3302 * @brief Helper function for delaying attaching children 3303 * 3304 * Many buses can't run transactions on the bus which children need to probe and 3305 * attach until after interrupts and/or timers are running. This function 3306 * delays their attach until interrupts and timers are enabled. 3307 */ 3308 int 3309 bus_delayed_attach_children(device_t dev) 3310 { 3311 /* Probe and attach the bus children when interrupts are available */ 3312 config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev); 3313 3314 return (0); 3315 } 3316 3317 /** 3318 * @brief Helper function for implementing DEVICE_DETACH() 3319 * 3320 * This function can be used to help implement the DEVICE_DETACH() for 3321 * a bus. It calls device_detach() for each of the device's 3322 * children. 3323 */ 3324 int 3325 bus_generic_detach(device_t dev) 3326 { 3327 device_t child; 3328 int error; 3329 3330 if (dev->state != DS_ATTACHED) 3331 return (EBUSY); 3332 3333 /* 3334 * Detach children in the reverse order. 3335 * See bus_generic_suspend for details. 3336 */ 3337 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3338 if ((error = device_detach(child)) != 0) 3339 return (error); 3340 } 3341 3342 return (0); 3343 } 3344 3345 /** 3346 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3347 * 3348 * This function can be used to help implement the DEVICE_SHUTDOWN() 3349 * for a bus. It calls device_shutdown() for each of the device's 3350 * children. 3351 */ 3352 int 3353 bus_generic_shutdown(device_t dev) 3354 { 3355 device_t child; 3356 3357 /* 3358 * Shut down children in the reverse order. 3359 * See bus_generic_suspend for details. 3360 */ 3361 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3362 device_shutdown(child); 3363 } 3364 3365 return (0); 3366 } 3367 3368 /** 3369 * @brief Default function for suspending a child device. 3370 * 3371 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). 3372 */ 3373 int 3374 bus_generic_suspend_child(device_t dev, device_t child) 3375 { 3376 int error; 3377 3378 error = DEVICE_SUSPEND(child); 3379 3380 if (error == 0) 3381 child->flags |= DF_SUSPENDED; 3382 3383 return (error); 3384 } 3385 3386 /** 3387 * @brief Default function for resuming a child device. 3388 * 3389 * This function is to be used by a bus's DEVICE_RESUME_CHILD(). 3390 */ 3391 int 3392 bus_generic_resume_child(device_t dev, device_t child) 3393 { 3394 DEVICE_RESUME(child); 3395 child->flags &= ~DF_SUSPENDED; 3396 3397 return (0); 3398 } 3399 3400 /** 3401 * @brief Helper function for implementing DEVICE_SUSPEND() 3402 * 3403 * This function can be used to help implement the DEVICE_SUSPEND() 3404 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3405 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3406 * operation is aborted and any devices which were suspended are 3407 * resumed immediately by calling their DEVICE_RESUME() methods. 3408 */ 3409 int 3410 bus_generic_suspend(device_t dev) 3411 { 3412 int error; 3413 device_t child; 3414 3415 /* 3416 * Suspend children in the reverse order. 3417 * For most buses all children are equal, so the order does not matter. 3418 * Other buses, such as acpi, carefully order their child devices to 3419 * express implicit dependencies between them. For such buses it is 3420 * safer to bring down devices in the reverse order. 3421 */ 3422 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3423 error = BUS_SUSPEND_CHILD(dev, child); 3424 if (error != 0) { 3425 child = TAILQ_NEXT(child, link); 3426 if (child != NULL) { 3427 TAILQ_FOREACH_FROM(child, &dev->children, link) 3428 BUS_RESUME_CHILD(dev, child); 3429 } 3430 return (error); 3431 } 3432 } 3433 return (0); 3434 } 3435 3436 /** 3437 * @brief Helper function for implementing DEVICE_RESUME() 3438 * 3439 * This function can be used to help implement the DEVICE_RESUME() for 3440 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3441 */ 3442 int 3443 bus_generic_resume(device_t dev) 3444 { 3445 device_t child; 3446 3447 TAILQ_FOREACH(child, &dev->children, link) { 3448 BUS_RESUME_CHILD(dev, child); 3449 /* if resume fails, there's nothing we can usefully do... */ 3450 } 3451 return (0); 3452 } 3453 3454 /** 3455 * @brief Helper function for implementing BUS_RESET_POST 3456 * 3457 * Bus can use this function to implement common operations of 3458 * re-attaching or resuming the children after the bus itself was 3459 * reset, and after restoring bus-unique state of children. 3460 * 3461 * @param dev The bus 3462 * #param flags DEVF_RESET_* 3463 */ 3464 int 3465 bus_helper_reset_post(device_t dev, int flags) 3466 { 3467 device_t child; 3468 int error, error1; 3469 3470 error = 0; 3471 TAILQ_FOREACH(child, &dev->children,link) { 3472 BUS_RESET_POST(dev, child); 3473 error1 = (flags & DEVF_RESET_DETACH) != 0 ? 3474 device_probe_and_attach(child) : 3475 BUS_RESUME_CHILD(dev, child); 3476 if (error == 0 && error1 != 0) 3477 error = error1; 3478 } 3479 return (error); 3480 } 3481 3482 static void 3483 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags) 3484 { 3485 child = TAILQ_NEXT(child, link); 3486 if (child == NULL) 3487 return; 3488 TAILQ_FOREACH_FROM(child, &dev->children,link) { 3489 BUS_RESET_POST(dev, child); 3490 if ((flags & DEVF_RESET_DETACH) != 0) 3491 device_probe_and_attach(child); 3492 else 3493 BUS_RESUME_CHILD(dev, child); 3494 } 3495 } 3496 3497 /** 3498 * @brief Helper function for implementing BUS_RESET_PREPARE 3499 * 3500 * Bus can use this function to implement common operations of 3501 * detaching or suspending the children before the bus itself is 3502 * reset, and then save bus-unique state of children that must 3503 * persists around reset. 3504 * 3505 * @param dev The bus 3506 * #param flags DEVF_RESET_* 3507 */ 3508 int 3509 bus_helper_reset_prepare(device_t dev, int flags) 3510 { 3511 device_t child; 3512 int error; 3513 3514 if (dev->state != DS_ATTACHED) 3515 return (EBUSY); 3516 3517 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3518 if ((flags & DEVF_RESET_DETACH) != 0) { 3519 error = device_get_state(child) == DS_ATTACHED ? 3520 device_detach(child) : 0; 3521 } else { 3522 error = BUS_SUSPEND_CHILD(dev, child); 3523 } 3524 if (error == 0) { 3525 error = BUS_RESET_PREPARE(dev, child); 3526 if (error != 0) { 3527 if ((flags & DEVF_RESET_DETACH) != 0) 3528 device_probe_and_attach(child); 3529 else 3530 BUS_RESUME_CHILD(dev, child); 3531 } 3532 } 3533 if (error != 0) { 3534 bus_helper_reset_prepare_rollback(dev, child, flags); 3535 return (error); 3536 } 3537 } 3538 return (0); 3539 } 3540 3541 /** 3542 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3543 * 3544 * This function prints the first part of the ascii representation of 3545 * @p child, including its name, unit and description (if any - see 3546 * device_set_desc()). 3547 * 3548 * @returns the number of characters printed 3549 */ 3550 int 3551 bus_print_child_header(device_t dev, device_t child) 3552 { 3553 int retval = 0; 3554 3555 if (device_get_desc(child)) { 3556 retval += device_printf(child, "<%s>", device_get_desc(child)); 3557 } else { 3558 retval += printf("%s", device_get_nameunit(child)); 3559 } 3560 3561 return (retval); 3562 } 3563 3564 /** 3565 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3566 * 3567 * This function prints the last part of the ascii representation of 3568 * @p child, which consists of the string @c " on " followed by the 3569 * name and unit of the @p dev. 3570 * 3571 * @returns the number of characters printed 3572 */ 3573 int 3574 bus_print_child_footer(device_t dev, device_t child) 3575 { 3576 return (printf(" on %s\n", device_get_nameunit(dev))); 3577 } 3578 3579 /** 3580 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3581 * 3582 * This function prints out the VM domain for the given device. 3583 * 3584 * @returns the number of characters printed 3585 */ 3586 int 3587 bus_print_child_domain(device_t dev, device_t child) 3588 { 3589 int domain; 3590 3591 /* No domain? Don't print anything */ 3592 if (BUS_GET_DOMAIN(dev, child, &domain) != 0) 3593 return (0); 3594 3595 return (printf(" numa-domain %d", domain)); 3596 } 3597 3598 /** 3599 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3600 * 3601 * This function simply calls bus_print_child_header() followed by 3602 * bus_print_child_footer(). 3603 * 3604 * @returns the number of characters printed 3605 */ 3606 int 3607 bus_generic_print_child(device_t dev, device_t child) 3608 { 3609 int retval = 0; 3610 3611 retval += bus_print_child_header(dev, child); 3612 retval += bus_print_child_domain(dev, child); 3613 retval += bus_print_child_footer(dev, child); 3614 3615 return (retval); 3616 } 3617 3618 /** 3619 * @brief Stub function for implementing BUS_READ_IVAR(). 3620 * 3621 * @returns ENOENT 3622 */ 3623 int 3624 bus_generic_read_ivar(device_t dev, device_t child, int index, 3625 uintptr_t * result) 3626 { 3627 return (ENOENT); 3628 } 3629 3630 /** 3631 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3632 * 3633 * @returns ENOENT 3634 */ 3635 int 3636 bus_generic_write_ivar(device_t dev, device_t child, int index, 3637 uintptr_t value) 3638 { 3639 return (ENOENT); 3640 } 3641 3642 /** 3643 * @brief Helper function for implementing BUS_GET_PROPERTY(). 3644 * 3645 * This simply calls the BUS_GET_PROPERTY of the parent of dev, 3646 * until a non-default implementation is found. 3647 */ 3648 ssize_t 3649 bus_generic_get_property(device_t dev, device_t child, const char *propname, 3650 void *propvalue, size_t size, device_property_type_t type) 3651 { 3652 if (device_get_parent(dev) != NULL) 3653 return (BUS_GET_PROPERTY(device_get_parent(dev), child, 3654 propname, propvalue, size, type)); 3655 3656 return (-1); 3657 } 3658 3659 /** 3660 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3661 * 3662 * @returns NULL 3663 */ 3664 struct resource_list * 3665 bus_generic_get_resource_list(device_t dev, device_t child) 3666 { 3667 return (NULL); 3668 } 3669 3670 /** 3671 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3672 * 3673 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3674 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3675 * and then calls device_probe_and_attach() for each unattached child. 3676 */ 3677 void 3678 bus_generic_driver_added(device_t dev, driver_t *driver) 3679 { 3680 device_t child; 3681 3682 DEVICE_IDENTIFY(driver, dev); 3683 TAILQ_FOREACH(child, &dev->children, link) { 3684 if (child->state == DS_NOTPRESENT) 3685 device_probe_and_attach(child); 3686 } 3687 } 3688 3689 /** 3690 * @brief Helper function for implementing BUS_NEW_PASS(). 3691 * 3692 * This implementing of BUS_NEW_PASS() first calls the identify 3693 * routines for any drivers that probe at the current pass. Then it 3694 * walks the list of devices for this bus. If a device is already 3695 * attached, then it calls BUS_NEW_PASS() on that device. If the 3696 * device is not already attached, it attempts to attach a driver to 3697 * it. 3698 */ 3699 void 3700 bus_generic_new_pass(device_t dev) 3701 { 3702 driverlink_t dl; 3703 devclass_t dc; 3704 device_t child; 3705 3706 dc = dev->devclass; 3707 TAILQ_FOREACH(dl, &dc->drivers, link) { 3708 if (dl->pass == bus_current_pass) 3709 DEVICE_IDENTIFY(dl->driver, dev); 3710 } 3711 TAILQ_FOREACH(child, &dev->children, link) { 3712 if (child->state >= DS_ATTACHED) 3713 BUS_NEW_PASS(child); 3714 else if (child->state == DS_NOTPRESENT) 3715 device_probe_and_attach(child); 3716 } 3717 } 3718 3719 /** 3720 * @brief Helper function for implementing BUS_SETUP_INTR(). 3721 * 3722 * This simple implementation of BUS_SETUP_INTR() simply calls the 3723 * BUS_SETUP_INTR() method of the parent of @p dev. 3724 */ 3725 int 3726 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3727 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3728 void **cookiep) 3729 { 3730 /* Propagate up the bus hierarchy until someone handles it. */ 3731 if (dev->parent) 3732 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3733 filter, intr, arg, cookiep)); 3734 return (EINVAL); 3735 } 3736 3737 /** 3738 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3739 * 3740 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3741 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3742 */ 3743 int 3744 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3745 void *cookie) 3746 { 3747 /* Propagate up the bus hierarchy until someone handles it. */ 3748 if (dev->parent) 3749 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3750 return (EINVAL); 3751 } 3752 3753 /** 3754 * @brief Helper function for implementing BUS_SUSPEND_INTR(). 3755 * 3756 * This simple implementation of BUS_SUSPEND_INTR() simply calls the 3757 * BUS_SUSPEND_INTR() method of the parent of @p dev. 3758 */ 3759 int 3760 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq) 3761 { 3762 /* Propagate up the bus hierarchy until someone handles it. */ 3763 if (dev->parent) 3764 return (BUS_SUSPEND_INTR(dev->parent, child, irq)); 3765 return (EINVAL); 3766 } 3767 3768 /** 3769 * @brief Helper function for implementing BUS_RESUME_INTR(). 3770 * 3771 * This simple implementation of BUS_RESUME_INTR() simply calls the 3772 * BUS_RESUME_INTR() method of the parent of @p dev. 3773 */ 3774 int 3775 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq) 3776 { 3777 /* Propagate up the bus hierarchy until someone handles it. */ 3778 if (dev->parent) 3779 return (BUS_RESUME_INTR(dev->parent, child, irq)); 3780 return (EINVAL); 3781 } 3782 3783 /** 3784 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 3785 * 3786 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 3787 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 3788 */ 3789 int 3790 bus_generic_adjust_resource(device_t dev, device_t child, int type, 3791 struct resource *r, rman_res_t start, rman_res_t end) 3792 { 3793 /* Propagate up the bus hierarchy until someone handles it. */ 3794 if (dev->parent) 3795 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, 3796 end)); 3797 return (EINVAL); 3798 } 3799 3800 /* 3801 * @brief Helper function for implementing BUS_TRANSLATE_RESOURCE(). 3802 * 3803 * This simple implementation of BUS_TRANSLATE_RESOURCE() simply calls the 3804 * BUS_TRANSLATE_RESOURCE() method of the parent of @p dev. If there is no 3805 * parent, no translation happens. 3806 */ 3807 int 3808 bus_generic_translate_resource(device_t dev, int type, rman_res_t start, 3809 rman_res_t *newstart) 3810 { 3811 if (dev->parent) 3812 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, 3813 newstart)); 3814 *newstart = start; 3815 return (0); 3816 } 3817 3818 /** 3819 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3820 * 3821 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 3822 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 3823 */ 3824 struct resource * 3825 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 3826 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3827 { 3828 /* Propagate up the bus hierarchy until someone handles it. */ 3829 if (dev->parent) 3830 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 3831 start, end, count, flags)); 3832 return (NULL); 3833 } 3834 3835 /** 3836 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3837 * 3838 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 3839 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 3840 */ 3841 int 3842 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 3843 struct resource *r) 3844 { 3845 /* Propagate up the bus hierarchy until someone handles it. */ 3846 if (dev->parent) 3847 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 3848 r)); 3849 return (EINVAL); 3850 } 3851 3852 /** 3853 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 3854 * 3855 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 3856 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 3857 */ 3858 int 3859 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 3860 struct resource *r) 3861 { 3862 /* Propagate up the bus hierarchy until someone handles it. */ 3863 if (dev->parent) 3864 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 3865 r)); 3866 return (EINVAL); 3867 } 3868 3869 /** 3870 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 3871 * 3872 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 3873 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 3874 */ 3875 int 3876 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 3877 int rid, struct resource *r) 3878 { 3879 /* Propagate up the bus hierarchy until someone handles it. */ 3880 if (dev->parent) 3881 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 3882 r)); 3883 return (EINVAL); 3884 } 3885 3886 /** 3887 * @brief Helper function for implementing BUS_MAP_RESOURCE(). 3888 * 3889 * This simple implementation of BUS_MAP_RESOURCE() simply calls the 3890 * BUS_MAP_RESOURCE() method of the parent of @p dev. 3891 */ 3892 int 3893 bus_generic_map_resource(device_t dev, device_t child, int type, 3894 struct resource *r, struct resource_map_request *args, 3895 struct resource_map *map) 3896 { 3897 /* Propagate up the bus hierarchy until someone handles it. */ 3898 if (dev->parent) 3899 return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args, 3900 map)); 3901 return (EINVAL); 3902 } 3903 3904 /** 3905 * @brief Helper function for implementing BUS_UNMAP_RESOURCE(). 3906 * 3907 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the 3908 * BUS_UNMAP_RESOURCE() method of the parent of @p dev. 3909 */ 3910 int 3911 bus_generic_unmap_resource(device_t dev, device_t child, int type, 3912 struct resource *r, struct resource_map *map) 3913 { 3914 /* Propagate up the bus hierarchy until someone handles it. */ 3915 if (dev->parent) 3916 return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map)); 3917 return (EINVAL); 3918 } 3919 3920 /** 3921 * @brief Helper function for implementing BUS_BIND_INTR(). 3922 * 3923 * This simple implementation of BUS_BIND_INTR() simply calls the 3924 * BUS_BIND_INTR() method of the parent of @p dev. 3925 */ 3926 int 3927 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 3928 int cpu) 3929 { 3930 /* Propagate up the bus hierarchy until someone handles it. */ 3931 if (dev->parent) 3932 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 3933 return (EINVAL); 3934 } 3935 3936 /** 3937 * @brief Helper function for implementing BUS_CONFIG_INTR(). 3938 * 3939 * This simple implementation of BUS_CONFIG_INTR() simply calls the 3940 * BUS_CONFIG_INTR() method of the parent of @p dev. 3941 */ 3942 int 3943 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 3944 enum intr_polarity pol) 3945 { 3946 /* Propagate up the bus hierarchy until someone handles it. */ 3947 if (dev->parent) 3948 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 3949 return (EINVAL); 3950 } 3951 3952 /** 3953 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 3954 * 3955 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 3956 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 3957 */ 3958 int 3959 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 3960 void *cookie, const char *descr) 3961 { 3962 /* Propagate up the bus hierarchy until someone handles it. */ 3963 if (dev->parent) 3964 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 3965 descr)); 3966 return (EINVAL); 3967 } 3968 3969 /** 3970 * @brief Helper function for implementing BUS_GET_CPUS(). 3971 * 3972 * This simple implementation of BUS_GET_CPUS() simply calls the 3973 * BUS_GET_CPUS() method of the parent of @p dev. 3974 */ 3975 int 3976 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op, 3977 size_t setsize, cpuset_t *cpuset) 3978 { 3979 /* Propagate up the bus hierarchy until someone handles it. */ 3980 if (dev->parent != NULL) 3981 return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset)); 3982 return (EINVAL); 3983 } 3984 3985 /** 3986 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 3987 * 3988 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 3989 * BUS_GET_DMA_TAG() method of the parent of @p dev. 3990 */ 3991 bus_dma_tag_t 3992 bus_generic_get_dma_tag(device_t dev, device_t child) 3993 { 3994 /* Propagate up the bus hierarchy until someone handles it. */ 3995 if (dev->parent != NULL) 3996 return (BUS_GET_DMA_TAG(dev->parent, child)); 3997 return (NULL); 3998 } 3999 4000 /** 4001 * @brief Helper function for implementing BUS_GET_BUS_TAG(). 4002 * 4003 * This simple implementation of BUS_GET_BUS_TAG() simply calls the 4004 * BUS_GET_BUS_TAG() method of the parent of @p dev. 4005 */ 4006 bus_space_tag_t 4007 bus_generic_get_bus_tag(device_t dev, device_t child) 4008 { 4009 /* Propagate up the bus hierarchy until someone handles it. */ 4010 if (dev->parent != NULL) 4011 return (BUS_GET_BUS_TAG(dev->parent, child)); 4012 return ((bus_space_tag_t)0); 4013 } 4014 4015 /** 4016 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4017 * 4018 * This implementation of BUS_GET_RESOURCE() uses the 4019 * resource_list_find() function to do most of the work. It calls 4020 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4021 * search. 4022 */ 4023 int 4024 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4025 rman_res_t *startp, rman_res_t *countp) 4026 { 4027 struct resource_list * rl = NULL; 4028 struct resource_list_entry * rle = NULL; 4029 4030 rl = BUS_GET_RESOURCE_LIST(dev, child); 4031 if (!rl) 4032 return (EINVAL); 4033 4034 rle = resource_list_find(rl, type, rid); 4035 if (!rle) 4036 return (ENOENT); 4037 4038 if (startp) 4039 *startp = rle->start; 4040 if (countp) 4041 *countp = rle->count; 4042 4043 return (0); 4044 } 4045 4046 /** 4047 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4048 * 4049 * This implementation of BUS_SET_RESOURCE() uses the 4050 * resource_list_add() function to do most of the work. It calls 4051 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4052 * edit. 4053 */ 4054 int 4055 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4056 rman_res_t start, rman_res_t count) 4057 { 4058 struct resource_list * rl = NULL; 4059 4060 rl = BUS_GET_RESOURCE_LIST(dev, child); 4061 if (!rl) 4062 return (EINVAL); 4063 4064 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4065 4066 return (0); 4067 } 4068 4069 /** 4070 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4071 * 4072 * This implementation of BUS_DELETE_RESOURCE() uses the 4073 * resource_list_delete() function to do most of the work. It calls 4074 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4075 * edit. 4076 */ 4077 void 4078 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4079 { 4080 struct resource_list * rl = NULL; 4081 4082 rl = BUS_GET_RESOURCE_LIST(dev, child); 4083 if (!rl) 4084 return; 4085 4086 resource_list_delete(rl, type, rid); 4087 4088 return; 4089 } 4090 4091 /** 4092 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4093 * 4094 * This implementation of BUS_RELEASE_RESOURCE() uses the 4095 * resource_list_release() function to do most of the work. It calls 4096 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4097 */ 4098 int 4099 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 4100 int rid, struct resource *r) 4101 { 4102 struct resource_list * rl = NULL; 4103 4104 if (device_get_parent(child) != dev) 4105 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 4106 type, rid, r)); 4107 4108 rl = BUS_GET_RESOURCE_LIST(dev, child); 4109 if (!rl) 4110 return (EINVAL); 4111 4112 return (resource_list_release(rl, dev, child, type, rid, r)); 4113 } 4114 4115 /** 4116 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4117 * 4118 * This implementation of BUS_ALLOC_RESOURCE() uses the 4119 * resource_list_alloc() function to do most of the work. It calls 4120 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4121 */ 4122 struct resource * 4123 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4124 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4125 { 4126 struct resource_list * rl = NULL; 4127 4128 if (device_get_parent(child) != dev) 4129 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4130 type, rid, start, end, count, flags)); 4131 4132 rl = BUS_GET_RESOURCE_LIST(dev, child); 4133 if (!rl) 4134 return (NULL); 4135 4136 return (resource_list_alloc(rl, dev, child, type, rid, 4137 start, end, count, flags)); 4138 } 4139 4140 /** 4141 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4142 * 4143 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4144 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4145 */ 4146 int 4147 bus_generic_child_present(device_t dev, device_t child) 4148 { 4149 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4150 } 4151 4152 int 4153 bus_generic_get_domain(device_t dev, device_t child, int *domain) 4154 { 4155 if (dev->parent) 4156 return (BUS_GET_DOMAIN(dev->parent, dev, domain)); 4157 4158 return (ENOENT); 4159 } 4160 4161 /** 4162 * @brief Helper function to implement normal BUS_GET_DEVICE_PATH() 4163 * 4164 * This function knows how to (a) pass the request up the tree if there's 4165 * a parent and (b) Knows how to supply a FreeBSD locator. 4166 * 4167 * @param bus bus in the walk up the tree 4168 * @param child leaf node to print information about 4169 * @param locator BUS_LOCATOR_xxx string for locator 4170 * @param sb Buffer to print information into 4171 */ 4172 int 4173 bus_generic_get_device_path(device_t bus, device_t child, const char *locator, 4174 struct sbuf *sb) 4175 { 4176 int rv = 0; 4177 device_t parent; 4178 4179 /* 4180 * We don't recurse on ACPI since either we know the handle for the 4181 * device or we don't. And if we're in the generic routine, we don't 4182 * have a ACPI override. All other locators build up a path by having 4183 * their parents create a path and then adding the path element for this 4184 * node. That's why we recurse with parent, bus rather than the typical 4185 * parent, child: each spot in the tree is independent of what our child 4186 * will do with this path. 4187 */ 4188 parent = device_get_parent(bus); 4189 if (parent != NULL && strcmp(locator, BUS_LOCATOR_ACPI) != 0) { 4190 rv = BUS_GET_DEVICE_PATH(parent, bus, locator, sb); 4191 } 4192 if (strcmp(locator, BUS_LOCATOR_FREEBSD) == 0) { 4193 if (rv == 0) { 4194 sbuf_printf(sb, "/%s", device_get_nameunit(child)); 4195 } 4196 return (rv); 4197 } 4198 /* 4199 * Don't know what to do. So assume we do nothing. Not sure that's 4200 * the right thing, but keeps us from having a big list here. 4201 */ 4202 return (0); 4203 } 4204 4205 4206 /** 4207 * @brief Helper function for implementing BUS_RESCAN(). 4208 * 4209 * This null implementation of BUS_RESCAN() always fails to indicate 4210 * the bus does not support rescanning. 4211 */ 4212 int 4213 bus_null_rescan(device_t dev) 4214 { 4215 return (ENODEV); 4216 } 4217 4218 /* 4219 * Some convenience functions to make it easier for drivers to use the 4220 * resource-management functions. All these really do is hide the 4221 * indirection through the parent's method table, making for slightly 4222 * less-wordy code. In the future, it might make sense for this code 4223 * to maintain some sort of a list of resources allocated by each device. 4224 */ 4225 4226 int 4227 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4228 struct resource **res) 4229 { 4230 int i; 4231 4232 for (i = 0; rs[i].type != -1; i++) 4233 res[i] = NULL; 4234 for (i = 0; rs[i].type != -1; i++) { 4235 res[i] = bus_alloc_resource_any(dev, 4236 rs[i].type, &rs[i].rid, rs[i].flags); 4237 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4238 bus_release_resources(dev, rs, res); 4239 return (ENXIO); 4240 } 4241 } 4242 return (0); 4243 } 4244 4245 void 4246 bus_release_resources(device_t dev, const struct resource_spec *rs, 4247 struct resource **res) 4248 { 4249 int i; 4250 4251 for (i = 0; rs[i].type != -1; i++) 4252 if (res[i] != NULL) { 4253 bus_release_resource( 4254 dev, rs[i].type, rs[i].rid, res[i]); 4255 res[i] = NULL; 4256 } 4257 } 4258 4259 /** 4260 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4261 * 4262 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4263 * parent of @p dev. 4264 */ 4265 struct resource * 4266 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, 4267 rman_res_t end, rman_res_t count, u_int flags) 4268 { 4269 struct resource *res; 4270 4271 if (dev->parent == NULL) 4272 return (NULL); 4273 res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4274 count, flags); 4275 return (res); 4276 } 4277 4278 /** 4279 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4280 * 4281 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4282 * parent of @p dev. 4283 */ 4284 int 4285 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start, 4286 rman_res_t end) 4287 { 4288 if (dev->parent == NULL) 4289 return (EINVAL); 4290 return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); 4291 } 4292 4293 /** 4294 * @brief Wrapper function for BUS_TRANSLATE_RESOURCE(). 4295 * 4296 * This function simply calls the BUS_TRANSLATE_RESOURCE() method of the 4297 * parent of @p dev. 4298 */ 4299 int 4300 bus_translate_resource(device_t dev, int type, rman_res_t start, 4301 rman_res_t *newstart) 4302 { 4303 if (dev->parent == NULL) 4304 return (EINVAL); 4305 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, newstart)); 4306 } 4307 4308 /** 4309 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4310 * 4311 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4312 * parent of @p dev. 4313 */ 4314 int 4315 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 4316 { 4317 if (dev->parent == NULL) 4318 return (EINVAL); 4319 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4320 } 4321 4322 /** 4323 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4324 * 4325 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4326 * parent of @p dev. 4327 */ 4328 int 4329 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 4330 { 4331 if (dev->parent == NULL) 4332 return (EINVAL); 4333 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4334 } 4335 4336 /** 4337 * @brief Wrapper function for BUS_MAP_RESOURCE(). 4338 * 4339 * This function simply calls the BUS_MAP_RESOURCE() method of the 4340 * parent of @p dev. 4341 */ 4342 int 4343 bus_map_resource(device_t dev, int type, struct resource *r, 4344 struct resource_map_request *args, struct resource_map *map) 4345 { 4346 if (dev->parent == NULL) 4347 return (EINVAL); 4348 return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map)); 4349 } 4350 4351 /** 4352 * @brief Wrapper function for BUS_UNMAP_RESOURCE(). 4353 * 4354 * This function simply calls the BUS_UNMAP_RESOURCE() method of the 4355 * parent of @p dev. 4356 */ 4357 int 4358 bus_unmap_resource(device_t dev, int type, struct resource *r, 4359 struct resource_map *map) 4360 { 4361 if (dev->parent == NULL) 4362 return (EINVAL); 4363 return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map)); 4364 } 4365 4366 /** 4367 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4368 * 4369 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4370 * parent of @p dev. 4371 */ 4372 int 4373 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 4374 { 4375 int rv; 4376 4377 if (dev->parent == NULL) 4378 return (EINVAL); 4379 rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r); 4380 return (rv); 4381 } 4382 4383 /** 4384 * @brief Wrapper function for BUS_SETUP_INTR(). 4385 * 4386 * This function simply calls the BUS_SETUP_INTR() method of the 4387 * parent of @p dev. 4388 */ 4389 int 4390 bus_setup_intr(device_t dev, struct resource *r, int flags, 4391 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4392 { 4393 int error; 4394 4395 if (dev->parent == NULL) 4396 return (EINVAL); 4397 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4398 arg, cookiep); 4399 if (error != 0) 4400 return (error); 4401 if (handler != NULL && !(flags & INTR_MPSAFE)) 4402 device_printf(dev, "[GIANT-LOCKED]\n"); 4403 return (0); 4404 } 4405 4406 /** 4407 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4408 * 4409 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4410 * parent of @p dev. 4411 */ 4412 int 4413 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4414 { 4415 if (dev->parent == NULL) 4416 return (EINVAL); 4417 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4418 } 4419 4420 /** 4421 * @brief Wrapper function for BUS_SUSPEND_INTR(). 4422 * 4423 * This function simply calls the BUS_SUSPEND_INTR() method of the 4424 * parent of @p dev. 4425 */ 4426 int 4427 bus_suspend_intr(device_t dev, struct resource *r) 4428 { 4429 if (dev->parent == NULL) 4430 return (EINVAL); 4431 return (BUS_SUSPEND_INTR(dev->parent, dev, r)); 4432 } 4433 4434 /** 4435 * @brief Wrapper function for BUS_RESUME_INTR(). 4436 * 4437 * This function simply calls the BUS_RESUME_INTR() method of the 4438 * parent of @p dev. 4439 */ 4440 int 4441 bus_resume_intr(device_t dev, struct resource *r) 4442 { 4443 if (dev->parent == NULL) 4444 return (EINVAL); 4445 return (BUS_RESUME_INTR(dev->parent, dev, r)); 4446 } 4447 4448 /** 4449 * @brief Wrapper function for BUS_BIND_INTR(). 4450 * 4451 * This function simply calls the BUS_BIND_INTR() method of the 4452 * parent of @p dev. 4453 */ 4454 int 4455 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4456 { 4457 if (dev->parent == NULL) 4458 return (EINVAL); 4459 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4460 } 4461 4462 /** 4463 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4464 * 4465 * This function first formats the requested description into a 4466 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4467 * the parent of @p dev. 4468 */ 4469 int 4470 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4471 const char *fmt, ...) 4472 { 4473 va_list ap; 4474 char descr[MAXCOMLEN + 1]; 4475 4476 if (dev->parent == NULL) 4477 return (EINVAL); 4478 va_start(ap, fmt); 4479 vsnprintf(descr, sizeof(descr), fmt, ap); 4480 va_end(ap); 4481 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4482 } 4483 4484 /** 4485 * @brief Wrapper function for BUS_SET_RESOURCE(). 4486 * 4487 * This function simply calls the BUS_SET_RESOURCE() method of the 4488 * parent of @p dev. 4489 */ 4490 int 4491 bus_set_resource(device_t dev, int type, int rid, 4492 rman_res_t start, rman_res_t count) 4493 { 4494 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4495 start, count)); 4496 } 4497 4498 /** 4499 * @brief Wrapper function for BUS_GET_RESOURCE(). 4500 * 4501 * This function simply calls the BUS_GET_RESOURCE() method of the 4502 * parent of @p dev. 4503 */ 4504 int 4505 bus_get_resource(device_t dev, int type, int rid, 4506 rman_res_t *startp, rman_res_t *countp) 4507 { 4508 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4509 startp, countp)); 4510 } 4511 4512 /** 4513 * @brief Wrapper function for BUS_GET_RESOURCE(). 4514 * 4515 * This function simply calls the BUS_GET_RESOURCE() method of the 4516 * parent of @p dev and returns the start value. 4517 */ 4518 rman_res_t 4519 bus_get_resource_start(device_t dev, int type, int rid) 4520 { 4521 rman_res_t start; 4522 rman_res_t count; 4523 int error; 4524 4525 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4526 &start, &count); 4527 if (error) 4528 return (0); 4529 return (start); 4530 } 4531 4532 /** 4533 * @brief Wrapper function for BUS_GET_RESOURCE(). 4534 * 4535 * This function simply calls the BUS_GET_RESOURCE() method of the 4536 * parent of @p dev and returns the count value. 4537 */ 4538 rman_res_t 4539 bus_get_resource_count(device_t dev, int type, int rid) 4540 { 4541 rman_res_t start; 4542 rman_res_t count; 4543 int error; 4544 4545 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4546 &start, &count); 4547 if (error) 4548 return (0); 4549 return (count); 4550 } 4551 4552 /** 4553 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4554 * 4555 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4556 * parent of @p dev. 4557 */ 4558 void 4559 bus_delete_resource(device_t dev, int type, int rid) 4560 { 4561 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4562 } 4563 4564 /** 4565 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4566 * 4567 * This function simply calls the BUS_CHILD_PRESENT() method of the 4568 * parent of @p dev. 4569 */ 4570 int 4571 bus_child_present(device_t child) 4572 { 4573 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4574 } 4575 4576 /** 4577 * @brief Wrapper function for BUS_CHILD_PNPINFO(). 4578 * 4579 * This function simply calls the BUS_CHILD_PNPINFO() method of the parent of @p 4580 * dev. 4581 */ 4582 int 4583 bus_child_pnpinfo(device_t child, struct sbuf *sb) 4584 { 4585 device_t parent; 4586 4587 parent = device_get_parent(child); 4588 if (parent == NULL) 4589 return (0); 4590 return (BUS_CHILD_PNPINFO(parent, child, sb)); 4591 } 4592 4593 /** 4594 * @brief Generic implementation that does nothing for bus_child_pnpinfo 4595 * 4596 * This function has the right signature and returns 0 since the sbuf is passed 4597 * to us to append to. 4598 */ 4599 int 4600 bus_generic_child_pnpinfo(device_t dev, device_t child, struct sbuf *sb) 4601 { 4602 return (0); 4603 } 4604 4605 /** 4606 * @brief Wrapper function for BUS_CHILD_LOCATION(). 4607 * 4608 * This function simply calls the BUS_CHILD_LOCATION() method of the parent of 4609 * @p dev. 4610 */ 4611 int 4612 bus_child_location(device_t child, struct sbuf *sb) 4613 { 4614 device_t parent; 4615 4616 parent = device_get_parent(child); 4617 if (parent == NULL) 4618 return (0); 4619 return (BUS_CHILD_LOCATION(parent, child, sb)); 4620 } 4621 4622 /** 4623 * @brief Generic implementation that does nothing for bus_child_location 4624 * 4625 * This function has the right signature and returns 0 since the sbuf is passed 4626 * to us to append to. 4627 */ 4628 int 4629 bus_generic_child_location(device_t dev, device_t child, struct sbuf *sb) 4630 { 4631 return (0); 4632 } 4633 4634 /** 4635 * @brief Wrapper function for BUS_GET_CPUS(). 4636 * 4637 * This function simply calls the BUS_GET_CPUS() method of the 4638 * parent of @p dev. 4639 */ 4640 int 4641 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) 4642 { 4643 device_t parent; 4644 4645 parent = device_get_parent(dev); 4646 if (parent == NULL) 4647 return (EINVAL); 4648 return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset)); 4649 } 4650 4651 /** 4652 * @brief Wrapper function for BUS_GET_DMA_TAG(). 4653 * 4654 * This function simply calls the BUS_GET_DMA_TAG() method of the 4655 * parent of @p dev. 4656 */ 4657 bus_dma_tag_t 4658 bus_get_dma_tag(device_t dev) 4659 { 4660 device_t parent; 4661 4662 parent = device_get_parent(dev); 4663 if (parent == NULL) 4664 return (NULL); 4665 return (BUS_GET_DMA_TAG(parent, dev)); 4666 } 4667 4668 /** 4669 * @brief Wrapper function for BUS_GET_BUS_TAG(). 4670 * 4671 * This function simply calls the BUS_GET_BUS_TAG() method of the 4672 * parent of @p dev. 4673 */ 4674 bus_space_tag_t 4675 bus_get_bus_tag(device_t dev) 4676 { 4677 device_t parent; 4678 4679 parent = device_get_parent(dev); 4680 if (parent == NULL) 4681 return ((bus_space_tag_t)0); 4682 return (BUS_GET_BUS_TAG(parent, dev)); 4683 } 4684 4685 /** 4686 * @brief Wrapper function for BUS_GET_DOMAIN(). 4687 * 4688 * This function simply calls the BUS_GET_DOMAIN() method of the 4689 * parent of @p dev. 4690 */ 4691 int 4692 bus_get_domain(device_t dev, int *domain) 4693 { 4694 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); 4695 } 4696 4697 /* Resume all devices and then notify userland that we're up again. */ 4698 static int 4699 root_resume(device_t dev) 4700 { 4701 int error; 4702 4703 error = bus_generic_resume(dev); 4704 if (error == 0) { 4705 devctl_notify("kern", "power", "resume", NULL); /* Deprecated gone in 14 */ 4706 devctl_notify("kernel", "power", "resume", NULL); 4707 } 4708 return (error); 4709 } 4710 4711 static int 4712 root_print_child(device_t dev, device_t child) 4713 { 4714 int retval = 0; 4715 4716 retval += bus_print_child_header(dev, child); 4717 retval += printf("\n"); 4718 4719 return (retval); 4720 } 4721 4722 static int 4723 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 4724 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 4725 { 4726 /* 4727 * If an interrupt mapping gets to here something bad has happened. 4728 */ 4729 panic("root_setup_intr"); 4730 } 4731 4732 /* 4733 * If we get here, assume that the device is permanent and really is 4734 * present in the system. Removable bus drivers are expected to intercept 4735 * this call long before it gets here. We return -1 so that drivers that 4736 * really care can check vs -1 or some ERRNO returned higher in the food 4737 * chain. 4738 */ 4739 static int 4740 root_child_present(device_t dev, device_t child) 4741 { 4742 return (-1); 4743 } 4744 4745 static int 4746 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 4747 cpuset_t *cpuset) 4748 { 4749 switch (op) { 4750 case INTR_CPUS: 4751 /* Default to returning the set of all CPUs. */ 4752 if (setsize != sizeof(cpuset_t)) 4753 return (EINVAL); 4754 *cpuset = all_cpus; 4755 return (0); 4756 default: 4757 return (EINVAL); 4758 } 4759 } 4760 4761 static kobj_method_t root_methods[] = { 4762 /* Device interface */ 4763 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 4764 KOBJMETHOD(device_suspend, bus_generic_suspend), 4765 KOBJMETHOD(device_resume, root_resume), 4766 4767 /* Bus interface */ 4768 KOBJMETHOD(bus_print_child, root_print_child), 4769 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 4770 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 4771 KOBJMETHOD(bus_setup_intr, root_setup_intr), 4772 KOBJMETHOD(bus_child_present, root_child_present), 4773 KOBJMETHOD(bus_get_cpus, root_get_cpus), 4774 4775 KOBJMETHOD_END 4776 }; 4777 4778 static driver_t root_driver = { 4779 "root", 4780 root_methods, 4781 1, /* no softc */ 4782 }; 4783 4784 device_t root_bus; 4785 devclass_t root_devclass; 4786 4787 static int 4788 root_bus_module_handler(module_t mod, int what, void* arg) 4789 { 4790 switch (what) { 4791 case MOD_LOAD: 4792 TAILQ_INIT(&bus_data_devices); 4793 kobj_class_compile((kobj_class_t) &root_driver); 4794 root_bus = make_device(NULL, "root", 0); 4795 root_bus->desc = "System root bus"; 4796 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 4797 root_bus->driver = &root_driver; 4798 root_bus->state = DS_ATTACHED; 4799 root_devclass = devclass_find_internal("root", NULL, FALSE); 4800 devctl2_init(); 4801 return (0); 4802 4803 case MOD_SHUTDOWN: 4804 device_shutdown(root_bus); 4805 return (0); 4806 default: 4807 return (EOPNOTSUPP); 4808 } 4809 4810 return (0); 4811 } 4812 4813 static moduledata_t root_bus_mod = { 4814 "rootbus", 4815 root_bus_module_handler, 4816 NULL 4817 }; 4818 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 4819 4820 /** 4821 * @brief Automatically configure devices 4822 * 4823 * This function begins the autoconfiguration process by calling 4824 * device_probe_and_attach() for each child of the @c root0 device. 4825 */ 4826 void 4827 root_bus_configure(void) 4828 { 4829 PDEBUG((".")); 4830 4831 /* Eventually this will be split up, but this is sufficient for now. */ 4832 bus_set_pass(BUS_PASS_DEFAULT); 4833 } 4834 4835 /** 4836 * @brief Module handler for registering device drivers 4837 * 4838 * This module handler is used to automatically register device 4839 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 4840 * devclass_add_driver() for the driver described by the 4841 * driver_module_data structure pointed to by @p arg 4842 */ 4843 int 4844 driver_module_handler(module_t mod, int what, void *arg) 4845 { 4846 struct driver_module_data *dmd; 4847 devclass_t bus_devclass; 4848 kobj_class_t driver; 4849 int error, pass; 4850 4851 dmd = (struct driver_module_data *)arg; 4852 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 4853 error = 0; 4854 4855 switch (what) { 4856 case MOD_LOAD: 4857 if (dmd->dmd_chainevh) 4858 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4859 4860 pass = dmd->dmd_pass; 4861 driver = dmd->dmd_driver; 4862 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 4863 DRIVERNAME(driver), dmd->dmd_busname, pass)); 4864 error = devclass_add_driver(bus_devclass, driver, pass, 4865 dmd->dmd_devclass); 4866 break; 4867 4868 case MOD_UNLOAD: 4869 PDEBUG(("Unloading module: driver %s from bus %s", 4870 DRIVERNAME(dmd->dmd_driver), 4871 dmd->dmd_busname)); 4872 error = devclass_delete_driver(bus_devclass, 4873 dmd->dmd_driver); 4874 4875 if (!error && dmd->dmd_chainevh) 4876 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4877 break; 4878 case MOD_QUIESCE: 4879 PDEBUG(("Quiesce module: driver %s from bus %s", 4880 DRIVERNAME(dmd->dmd_driver), 4881 dmd->dmd_busname)); 4882 error = devclass_quiesce_driver(bus_devclass, 4883 dmd->dmd_driver); 4884 4885 if (!error && dmd->dmd_chainevh) 4886 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4887 break; 4888 default: 4889 error = EOPNOTSUPP; 4890 break; 4891 } 4892 4893 return (error); 4894 } 4895 4896 /** 4897 * @brief Enumerate all hinted devices for this bus. 4898 * 4899 * Walks through the hints for this bus and calls the bus_hinted_child 4900 * routine for each one it fines. It searches first for the specific 4901 * bus that's being probed for hinted children (eg isa0), and then for 4902 * generic children (eg isa). 4903 * 4904 * @param dev bus device to enumerate 4905 */ 4906 void 4907 bus_enumerate_hinted_children(device_t bus) 4908 { 4909 int i; 4910 const char *dname, *busname; 4911 int dunit; 4912 4913 /* 4914 * enumerate all devices on the specific bus 4915 */ 4916 busname = device_get_nameunit(bus); 4917 i = 0; 4918 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4919 BUS_HINTED_CHILD(bus, dname, dunit); 4920 4921 /* 4922 * and all the generic ones. 4923 */ 4924 busname = device_get_name(bus); 4925 i = 0; 4926 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4927 BUS_HINTED_CHILD(bus, dname, dunit); 4928 } 4929 4930 #ifdef BUS_DEBUG 4931 4932 /* the _short versions avoid iteration by not calling anything that prints 4933 * more than oneliners. I love oneliners. 4934 */ 4935 4936 static void 4937 print_device_short(device_t dev, int indent) 4938 { 4939 if (!dev) 4940 return; 4941 4942 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 4943 dev->unit, dev->desc, 4944 (dev->parent? "":"no "), 4945 (TAILQ_EMPTY(&dev->children)? "no ":""), 4946 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 4947 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 4948 (dev->flags&DF_WILDCARD? "wildcard,":""), 4949 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 4950 (dev->flags&DF_SUSPENDED? "suspended,":""), 4951 (dev->ivars? "":"no "), 4952 (dev->softc? "":"no "), 4953 dev->busy)); 4954 } 4955 4956 static void 4957 print_device(device_t dev, int indent) 4958 { 4959 if (!dev) 4960 return; 4961 4962 print_device_short(dev, indent); 4963 4964 indentprintf(("Parent:\n")); 4965 print_device_short(dev->parent, indent+1); 4966 indentprintf(("Driver:\n")); 4967 print_driver_short(dev->driver, indent+1); 4968 indentprintf(("Devclass:\n")); 4969 print_devclass_short(dev->devclass, indent+1); 4970 } 4971 4972 void 4973 print_device_tree_short(device_t dev, int indent) 4974 /* print the device and all its children (indented) */ 4975 { 4976 device_t child; 4977 4978 if (!dev) 4979 return; 4980 4981 print_device_short(dev, indent); 4982 4983 TAILQ_FOREACH(child, &dev->children, link) { 4984 print_device_tree_short(child, indent+1); 4985 } 4986 } 4987 4988 void 4989 print_device_tree(device_t dev, int indent) 4990 /* print the device and all its children (indented) */ 4991 { 4992 device_t child; 4993 4994 if (!dev) 4995 return; 4996 4997 print_device(dev, indent); 4998 4999 TAILQ_FOREACH(child, &dev->children, link) { 5000 print_device_tree(child, indent+1); 5001 } 5002 } 5003 5004 static void 5005 print_driver_short(driver_t *driver, int indent) 5006 { 5007 if (!driver) 5008 return; 5009 5010 indentprintf(("driver %s: softc size = %zd\n", 5011 driver->name, driver->size)); 5012 } 5013 5014 static void 5015 print_driver(driver_t *driver, int indent) 5016 { 5017 if (!driver) 5018 return; 5019 5020 print_driver_short(driver, indent); 5021 } 5022 5023 static void 5024 print_driver_list(driver_list_t drivers, int indent) 5025 { 5026 driverlink_t driver; 5027 5028 TAILQ_FOREACH(driver, &drivers, link) { 5029 print_driver(driver->driver, indent); 5030 } 5031 } 5032 5033 static void 5034 print_devclass_short(devclass_t dc, int indent) 5035 { 5036 if ( !dc ) 5037 return; 5038 5039 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 5040 } 5041 5042 static void 5043 print_devclass(devclass_t dc, int indent) 5044 { 5045 int i; 5046 5047 if ( !dc ) 5048 return; 5049 5050 print_devclass_short(dc, indent); 5051 indentprintf(("Drivers:\n")); 5052 print_driver_list(dc->drivers, indent+1); 5053 5054 indentprintf(("Devices:\n")); 5055 for (i = 0; i < dc->maxunit; i++) 5056 if (dc->devices[i]) 5057 print_device(dc->devices[i], indent+1); 5058 } 5059 5060 void 5061 print_devclass_list_short(void) 5062 { 5063 devclass_t dc; 5064 5065 printf("Short listing of devclasses, drivers & devices:\n"); 5066 TAILQ_FOREACH(dc, &devclasses, link) { 5067 print_devclass_short(dc, 0); 5068 } 5069 } 5070 5071 void 5072 print_devclass_list(void) 5073 { 5074 devclass_t dc; 5075 5076 printf("Full listing of devclasses, drivers & devices:\n"); 5077 TAILQ_FOREACH(dc, &devclasses, link) { 5078 print_devclass(dc, 0); 5079 } 5080 } 5081 5082 #endif 5083 5084 /* 5085 * User-space access to the device tree. 5086 * 5087 * We implement a small set of nodes: 5088 * 5089 * hw.bus Single integer read method to obtain the 5090 * current generation count. 5091 * hw.bus.devices Reads the entire device tree in flat space. 5092 * hw.bus.rman Resource manager interface 5093 * 5094 * We might like to add the ability to scan devclasses and/or drivers to 5095 * determine what else is currently loaded/available. 5096 */ 5097 5098 static int 5099 sysctl_bus_info(SYSCTL_HANDLER_ARGS) 5100 { 5101 struct u_businfo ubus; 5102 5103 ubus.ub_version = BUS_USER_VERSION; 5104 ubus.ub_generation = bus_data_generation; 5105 5106 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 5107 } 5108 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD | 5109 CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo", 5110 "bus-related data"); 5111 5112 static int 5113 sysctl_devices(SYSCTL_HANDLER_ARGS) 5114 { 5115 struct sbuf sb; 5116 int *name = (int *)arg1; 5117 u_int namelen = arg2; 5118 int index; 5119 device_t dev; 5120 struct u_device *udev; 5121 int error; 5122 5123 if (namelen != 2) 5124 return (EINVAL); 5125 5126 if (bus_data_generation_check(name[0])) 5127 return (EINVAL); 5128 5129 index = name[1]; 5130 5131 /* 5132 * Scan the list of devices, looking for the requested index. 5133 */ 5134 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5135 if (index-- == 0) 5136 break; 5137 } 5138 if (dev == NULL) 5139 return (ENOENT); 5140 5141 /* 5142 * Populate the return item, careful not to overflow the buffer. 5143 */ 5144 udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO); 5145 if (udev == NULL) 5146 return (ENOMEM); 5147 udev->dv_handle = (uintptr_t)dev; 5148 udev->dv_parent = (uintptr_t)dev->parent; 5149 udev->dv_devflags = dev->devflags; 5150 udev->dv_flags = dev->flags; 5151 udev->dv_state = dev->state; 5152 sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN); 5153 if (dev->nameunit != NULL) 5154 sbuf_cat(&sb, dev->nameunit); 5155 sbuf_putc(&sb, '\0'); 5156 if (dev->desc != NULL) 5157 sbuf_cat(&sb, dev->desc); 5158 sbuf_putc(&sb, '\0'); 5159 if (dev->driver != NULL) 5160 sbuf_cat(&sb, dev->driver->name); 5161 sbuf_putc(&sb, '\0'); 5162 bus_child_pnpinfo(dev, &sb); 5163 sbuf_putc(&sb, '\0'); 5164 bus_child_location(dev, &sb); 5165 sbuf_putc(&sb, '\0'); 5166 error = sbuf_finish(&sb); 5167 if (error == 0) 5168 error = SYSCTL_OUT(req, udev, sizeof(*udev)); 5169 sbuf_delete(&sb); 5170 free(udev, M_BUS); 5171 return (error); 5172 } 5173 5174 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, 5175 CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices, 5176 "system device tree"); 5177 5178 int 5179 bus_data_generation_check(int generation) 5180 { 5181 if (generation != bus_data_generation) 5182 return (1); 5183 5184 /* XXX generate optimised lists here? */ 5185 return (0); 5186 } 5187 5188 void 5189 bus_data_generation_update(void) 5190 { 5191 atomic_add_int(&bus_data_generation, 1); 5192 } 5193 5194 int 5195 bus_free_resource(device_t dev, int type, struct resource *r) 5196 { 5197 if (r == NULL) 5198 return (0); 5199 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 5200 } 5201 5202 device_t 5203 device_lookup_by_name(const char *name) 5204 { 5205 device_t dev; 5206 5207 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5208 if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0) 5209 return (dev); 5210 } 5211 return (NULL); 5212 } 5213 5214 /* 5215 * /dev/devctl2 implementation. The existing /dev/devctl device has 5216 * implicit semantics on open, so it could not be reused for this. 5217 * Another option would be to call this /dev/bus? 5218 */ 5219 static int 5220 find_device(struct devreq *req, device_t *devp) 5221 { 5222 device_t dev; 5223 5224 /* 5225 * First, ensure that the name is nul terminated. 5226 */ 5227 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL) 5228 return (EINVAL); 5229 5230 /* 5231 * Second, try to find an attached device whose name matches 5232 * 'name'. 5233 */ 5234 dev = device_lookup_by_name(req->dr_name); 5235 if (dev != NULL) { 5236 *devp = dev; 5237 return (0); 5238 } 5239 5240 /* Finally, give device enumerators a chance. */ 5241 dev = NULL; 5242 EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev); 5243 if (dev == NULL) 5244 return (ENOENT); 5245 *devp = dev; 5246 return (0); 5247 } 5248 5249 static bool 5250 driver_exists(device_t bus, const char *driver) 5251 { 5252 devclass_t dc; 5253 5254 for (dc = bus->devclass; dc != NULL; dc = dc->parent) { 5255 if (devclass_find_driver_internal(dc, driver) != NULL) 5256 return (true); 5257 } 5258 return (false); 5259 } 5260 5261 static void 5262 device_gen_nomatch(device_t dev) 5263 { 5264 device_t child; 5265 5266 if (dev->flags & DF_NEEDNOMATCH && 5267 dev->state == DS_NOTPRESENT) { 5268 device_handle_nomatch(dev); 5269 } 5270 dev->flags &= ~DF_NEEDNOMATCH; 5271 TAILQ_FOREACH(child, &dev->children, link) { 5272 device_gen_nomatch(child); 5273 } 5274 } 5275 5276 static void 5277 device_do_deferred_actions(void) 5278 { 5279 devclass_t dc; 5280 driverlink_t dl; 5281 5282 /* 5283 * Walk through the devclasses to find all the drivers we've tagged as 5284 * deferred during the freeze and call the driver added routines. They 5285 * have already been added to the lists in the background, so the driver 5286 * added routines that trigger a probe will have all the right bidders 5287 * for the probe auction. 5288 */ 5289 TAILQ_FOREACH(dc, &devclasses, link) { 5290 TAILQ_FOREACH(dl, &dc->drivers, link) { 5291 if (dl->flags & DL_DEFERRED_PROBE) { 5292 devclass_driver_added(dc, dl->driver); 5293 dl->flags &= ~DL_DEFERRED_PROBE; 5294 } 5295 } 5296 } 5297 5298 /* 5299 * We also defer no-match events during a freeze. Walk the tree and 5300 * generate all the pent-up events that are still relevant. 5301 */ 5302 device_gen_nomatch(root_bus); 5303 bus_data_generation_update(); 5304 } 5305 5306 static char * 5307 device_get_path(device_t dev, const char *locator) 5308 { 5309 struct sbuf *sb; 5310 ssize_t len; 5311 char *rv = NULL; 5312 int error; 5313 5314 sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND | SBUF_INCLUDENUL); 5315 error = BUS_GET_DEVICE_PATH(device_get_parent(dev), dev, locator, sb); 5316 sbuf_finish(sb); /* Note: errors checked with sbuf_len() below */ 5317 if (error != 0) 5318 goto out; 5319 len = sbuf_len(sb); 5320 if (len <= 1) 5321 goto out; 5322 rv = malloc(len, M_BUS, M_NOWAIT); 5323 memcpy(rv, sbuf_data(sb), len); 5324 out: 5325 sbuf_delete(sb); 5326 return (rv); 5327 } 5328 5329 static int 5330 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag, 5331 struct thread *td) 5332 { 5333 struct devreq *req; 5334 device_t dev; 5335 int error, old; 5336 5337 /* Locate the device to control. */ 5338 bus_topo_lock(); 5339 req = (struct devreq *)data; 5340 switch (cmd) { 5341 case DEV_ATTACH: 5342 case DEV_DETACH: 5343 case DEV_ENABLE: 5344 case DEV_DISABLE: 5345 case DEV_SUSPEND: 5346 case DEV_RESUME: 5347 case DEV_SET_DRIVER: 5348 case DEV_CLEAR_DRIVER: 5349 case DEV_RESCAN: 5350 case DEV_DELETE: 5351 case DEV_RESET: 5352 error = priv_check(td, PRIV_DRIVER); 5353 if (error == 0) 5354 error = find_device(req, &dev); 5355 break; 5356 case DEV_FREEZE: 5357 case DEV_THAW: 5358 error = priv_check(td, PRIV_DRIVER); 5359 break; 5360 case DEV_GET_PATH: 5361 error = find_device(req, &dev); 5362 break; 5363 default: 5364 error = ENOTTY; 5365 break; 5366 } 5367 if (error) { 5368 bus_topo_unlock(); 5369 return (error); 5370 } 5371 5372 /* Perform the requested operation. */ 5373 switch (cmd) { 5374 case DEV_ATTACH: 5375 if (device_is_attached(dev)) 5376 error = EBUSY; 5377 else if (!device_is_enabled(dev)) 5378 error = ENXIO; 5379 else 5380 error = device_probe_and_attach(dev); 5381 break; 5382 case DEV_DETACH: 5383 if (!device_is_attached(dev)) { 5384 error = ENXIO; 5385 break; 5386 } 5387 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5388 error = device_quiesce(dev); 5389 if (error) 5390 break; 5391 } 5392 error = device_detach(dev); 5393 break; 5394 case DEV_ENABLE: 5395 if (device_is_enabled(dev)) { 5396 error = EBUSY; 5397 break; 5398 } 5399 5400 /* 5401 * If the device has been probed but not attached (e.g. 5402 * when it has been disabled by a loader hint), just 5403 * attach the device rather than doing a full probe. 5404 */ 5405 device_enable(dev); 5406 if (device_is_alive(dev)) { 5407 /* 5408 * If the device was disabled via a hint, clear 5409 * the hint. 5410 */ 5411 if (resource_disabled(dev->driver->name, dev->unit)) 5412 resource_unset_value(dev->driver->name, 5413 dev->unit, "disabled"); 5414 error = device_attach(dev); 5415 } else 5416 error = device_probe_and_attach(dev); 5417 break; 5418 case DEV_DISABLE: 5419 if (!device_is_enabled(dev)) { 5420 error = ENXIO; 5421 break; 5422 } 5423 5424 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5425 error = device_quiesce(dev); 5426 if (error) 5427 break; 5428 } 5429 5430 /* 5431 * Force DF_FIXEDCLASS on around detach to preserve 5432 * the existing name. 5433 */ 5434 old = dev->flags; 5435 dev->flags |= DF_FIXEDCLASS; 5436 error = device_detach(dev); 5437 if (!(old & DF_FIXEDCLASS)) 5438 dev->flags &= ~DF_FIXEDCLASS; 5439 if (error == 0) 5440 device_disable(dev); 5441 break; 5442 case DEV_SUSPEND: 5443 if (device_is_suspended(dev)) { 5444 error = EBUSY; 5445 break; 5446 } 5447 if (device_get_parent(dev) == NULL) { 5448 error = EINVAL; 5449 break; 5450 } 5451 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev); 5452 break; 5453 case DEV_RESUME: 5454 if (!device_is_suspended(dev)) { 5455 error = EINVAL; 5456 break; 5457 } 5458 if (device_get_parent(dev) == NULL) { 5459 error = EINVAL; 5460 break; 5461 } 5462 error = BUS_RESUME_CHILD(device_get_parent(dev), dev); 5463 break; 5464 case DEV_SET_DRIVER: { 5465 devclass_t dc; 5466 char driver[128]; 5467 5468 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL); 5469 if (error) 5470 break; 5471 if (driver[0] == '\0') { 5472 error = EINVAL; 5473 break; 5474 } 5475 if (dev->devclass != NULL && 5476 strcmp(driver, dev->devclass->name) == 0) 5477 /* XXX: Could possibly force DF_FIXEDCLASS on? */ 5478 break; 5479 5480 /* 5481 * Scan drivers for this device's bus looking for at 5482 * least one matching driver. 5483 */ 5484 if (dev->parent == NULL) { 5485 error = EINVAL; 5486 break; 5487 } 5488 if (!driver_exists(dev->parent, driver)) { 5489 error = ENOENT; 5490 break; 5491 } 5492 dc = devclass_create(driver); 5493 if (dc == NULL) { 5494 error = ENOMEM; 5495 break; 5496 } 5497 5498 /* Detach device if necessary. */ 5499 if (device_is_attached(dev)) { 5500 if (req->dr_flags & DEVF_SET_DRIVER_DETACH) 5501 error = device_detach(dev); 5502 else 5503 error = EBUSY; 5504 if (error) 5505 break; 5506 } 5507 5508 /* Clear any previously-fixed device class and unit. */ 5509 if (dev->flags & DF_FIXEDCLASS) 5510 devclass_delete_device(dev->devclass, dev); 5511 dev->flags |= DF_WILDCARD; 5512 dev->unit = -1; 5513 5514 /* Force the new device class. */ 5515 error = devclass_add_device(dc, dev); 5516 if (error) 5517 break; 5518 dev->flags |= DF_FIXEDCLASS; 5519 error = device_probe_and_attach(dev); 5520 break; 5521 } 5522 case DEV_CLEAR_DRIVER: 5523 if (!(dev->flags & DF_FIXEDCLASS)) { 5524 error = 0; 5525 break; 5526 } 5527 if (device_is_attached(dev)) { 5528 if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH) 5529 error = device_detach(dev); 5530 else 5531 error = EBUSY; 5532 if (error) 5533 break; 5534 } 5535 5536 dev->flags &= ~DF_FIXEDCLASS; 5537 dev->flags |= DF_WILDCARD; 5538 devclass_delete_device(dev->devclass, dev); 5539 error = device_probe_and_attach(dev); 5540 break; 5541 case DEV_RESCAN: 5542 if (!device_is_attached(dev)) { 5543 error = ENXIO; 5544 break; 5545 } 5546 error = BUS_RESCAN(dev); 5547 break; 5548 case DEV_DELETE: { 5549 device_t parent; 5550 5551 parent = device_get_parent(dev); 5552 if (parent == NULL) { 5553 error = EINVAL; 5554 break; 5555 } 5556 if (!(req->dr_flags & DEVF_FORCE_DELETE)) { 5557 if (bus_child_present(dev) != 0) { 5558 error = EBUSY; 5559 break; 5560 } 5561 } 5562 5563 error = device_delete_child(parent, dev); 5564 break; 5565 } 5566 case DEV_FREEZE: 5567 if (device_frozen) 5568 error = EBUSY; 5569 else 5570 device_frozen = true; 5571 break; 5572 case DEV_THAW: 5573 if (!device_frozen) 5574 error = EBUSY; 5575 else { 5576 device_do_deferred_actions(); 5577 device_frozen = false; 5578 } 5579 break; 5580 case DEV_RESET: 5581 if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) { 5582 error = EINVAL; 5583 break; 5584 } 5585 error = BUS_RESET_CHILD(device_get_parent(dev), dev, 5586 req->dr_flags); 5587 break; 5588 case DEV_GET_PATH: { 5589 char locator[64]; 5590 char *path; 5591 ssize_t len; 5592 5593 error = copyinstr(req->dr_buffer.buffer, locator, sizeof(locator), NULL); 5594 if (error) 5595 break; 5596 path = device_get_path(dev, locator); 5597 if (path == NULL) { 5598 error = ENOMEM; 5599 break; 5600 } 5601 len = strlen(path) + 1; 5602 if (req->dr_buffer.length < len) { 5603 error = ENAMETOOLONG; 5604 } else { 5605 error = copyout(path, req->dr_buffer.buffer, len); 5606 } 5607 req->dr_buffer.length = len; 5608 free(path, M_BUS); 5609 break; 5610 } 5611 } 5612 bus_topo_unlock(); 5613 return (error); 5614 } 5615 5616 static struct cdevsw devctl2_cdevsw = { 5617 .d_version = D_VERSION, 5618 .d_ioctl = devctl2_ioctl, 5619 .d_name = "devctl2", 5620 }; 5621 5622 static void 5623 devctl2_init(void) 5624 { 5625 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL, 5626 UID_ROOT, GID_WHEEL, 0644, "devctl2"); 5627 } 5628 5629 /* 5630 * For maintaining device 'at' location info to avoid recomputing it 5631 */ 5632 struct device_location_node { 5633 const char *dln_locator; 5634 const char *dln_path; 5635 TAILQ_ENTRY(device_location_node) dln_link; 5636 }; 5637 typedef TAILQ_HEAD(device_location_list, device_location_node) device_location_list_t; 5638 5639 struct device_location_cache { 5640 device_location_list_t dlc_list; 5641 }; 5642 5643 5644 /* 5645 * Location cache for wired devices. 5646 */ 5647 device_location_cache_t * 5648 dev_wired_cache_init(void) 5649 { 5650 device_location_cache_t *dcp; 5651 5652 dcp = malloc(sizeof(*dcp), M_BUS, M_WAITOK | M_ZERO); 5653 TAILQ_INIT(&dcp->dlc_list); 5654 5655 return (dcp); 5656 } 5657 5658 void 5659 dev_wired_cache_fini(device_location_cache_t *dcp) 5660 { 5661 struct device_location_node *dln, *tdln; 5662 5663 TAILQ_FOREACH_SAFE(dln, &dcp->dlc_list, dln_link, tdln) { 5664 /* Note: one allocation for both node and locator, but not path */ 5665 free(__DECONST(void *, dln->dln_path), M_BUS); 5666 free(dln, M_BUS); 5667 } 5668 free(dcp, M_BUS); 5669 } 5670 5671 static struct device_location_node * 5672 dev_wired_cache_lookup(device_location_cache_t *dcp, const char *locator) 5673 { 5674 struct device_location_node *dln; 5675 5676 TAILQ_FOREACH(dln, &dcp->dlc_list, dln_link) { 5677 if (strcmp(locator, dln->dln_locator) == 0) 5678 return (dln); 5679 } 5680 5681 return (NULL); 5682 } 5683 5684 static struct device_location_node * 5685 dev_wired_cache_add(device_location_cache_t *dcp, const char *locator, const char *path) 5686 { 5687 struct device_location_node *dln; 5688 char *l; 5689 5690 dln = malloc(sizeof(*dln) + strlen(locator) + 1, M_BUS, M_WAITOK | M_ZERO); 5691 dln->dln_locator = l = (char *)(dln + 1); 5692 memcpy(l, locator, strlen(locator) + 1); 5693 dln->dln_path = path; 5694 TAILQ_INSERT_HEAD(&dcp->dlc_list, dln, dln_link); 5695 5696 return (dln); 5697 } 5698 5699 bool 5700 dev_wired_cache_match(device_location_cache_t *dcp, device_t dev, const char *at) 5701 { 5702 const char *cp, *path; 5703 char locator[32]; 5704 int len; 5705 struct device_location_node *res; 5706 5707 cp = strchr(at, ':'); 5708 if (cp == NULL) 5709 return (false); 5710 len = cp - at; 5711 if (len > sizeof(locator) - 1) /* Skip too long locator */ 5712 return (false); 5713 memcpy(locator, at, len); 5714 locator[len] = '\0'; 5715 cp++; 5716 5717 /* maybe cache this inside device_t and look that up, but not yet */ 5718 res = dev_wired_cache_lookup(dcp, locator); 5719 if (res == NULL) { 5720 path = device_get_path(dev, locator); 5721 res = dev_wired_cache_add(dcp, locator, path); 5722 } 5723 if (res == NULL || res->dln_path == NULL) 5724 return (false); 5725 5726 return (strcmp(res->dln_path, cp) == 0); 5727 } 5728 5729 /* 5730 * APIs to manage deprecation and obsolescence. 5731 */ 5732 static int obsolete_panic = 0; 5733 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0, 5734 "Panic when obsolete features are used (0 = never, 1 = if obsolete, " 5735 "2 = if deprecated)"); 5736 5737 static void 5738 gone_panic(int major, int running, const char *msg) 5739 { 5740 switch (obsolete_panic) 5741 { 5742 case 0: 5743 return; 5744 case 1: 5745 if (running < major) 5746 return; 5747 /* FALLTHROUGH */ 5748 default: 5749 panic("%s", msg); 5750 } 5751 } 5752 5753 void 5754 _gone_in(int major, const char *msg) 5755 { 5756 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 5757 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 5758 printf("Obsolete code will be removed soon: %s\n", msg); 5759 else 5760 printf("Deprecated code (to be removed in FreeBSD %d): %s\n", 5761 major, msg); 5762 } 5763 5764 void 5765 _gone_in_dev(device_t dev, int major, const char *msg) 5766 { 5767 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 5768 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 5769 device_printf(dev, 5770 "Obsolete code will be removed soon: %s\n", msg); 5771 else 5772 device_printf(dev, 5773 "Deprecated code (to be removed in FreeBSD %d): %s\n", 5774 major, msg); 5775 } 5776 5777 #ifdef DDB 5778 DB_SHOW_COMMAND(device, db_show_device) 5779 { 5780 device_t dev; 5781 5782 if (!have_addr) 5783 return; 5784 5785 dev = (device_t)addr; 5786 5787 db_printf("name: %s\n", device_get_nameunit(dev)); 5788 db_printf(" driver: %s\n", DRIVERNAME(dev->driver)); 5789 db_printf(" class: %s\n", DEVCLANAME(dev->devclass)); 5790 db_printf(" addr: %p\n", dev); 5791 db_printf(" parent: %p\n", dev->parent); 5792 db_printf(" softc: %p\n", dev->softc); 5793 db_printf(" ivars: %p\n", dev->ivars); 5794 } 5795 5796 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices) 5797 { 5798 device_t dev; 5799 5800 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5801 db_show_device((db_expr_t)dev, true, count, modif); 5802 } 5803 } 5804 #endif 5805