xref: /freebsd/sys/kern/subr_bus.c (revision 1a498d2e689f9e8220e2ad64b018eb1f0d11127e)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1997,1998,2003 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_bus.h"
33 #include "opt_ddb.h"
34 
35 #include <sys/param.h>
36 #include <sys/conf.h>
37 #include <sys/eventhandler.h>
38 #include <sys/filio.h>
39 #include <sys/lock.h>
40 #include <sys/kernel.h>
41 #include <sys/kobj.h>
42 #include <sys/limits.h>
43 #include <sys/malloc.h>
44 #include <sys/module.h>
45 #include <sys/mutex.h>
46 #include <sys/poll.h>
47 #include <sys/priv.h>
48 #include <sys/proc.h>
49 #include <sys/condvar.h>
50 #include <sys/queue.h>
51 #include <machine/bus.h>
52 #include <sys/random.h>
53 #include <sys/rman.h>
54 #include <sys/sbuf.h>
55 #include <sys/selinfo.h>
56 #include <sys/signalvar.h>
57 #include <sys/smp.h>
58 #include <sys/sysctl.h>
59 #include <sys/systm.h>
60 #include <sys/uio.h>
61 #include <sys/bus.h>
62 #include <sys/cpuset.h>
63 
64 #include <net/vnet.h>
65 
66 #include <machine/cpu.h>
67 #include <machine/stdarg.h>
68 
69 #include <vm/uma.h>
70 #include <vm/vm.h>
71 
72 #include <ddb/ddb.h>
73 
74 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
75 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
76 
77 /*
78  * Used to attach drivers to devclasses.
79  */
80 typedef struct driverlink *driverlink_t;
81 struct driverlink {
82 	kobj_class_t	driver;
83 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
84 	int		pass;
85 	TAILQ_ENTRY(driverlink) passlink;
86 };
87 
88 /*
89  * Forward declarations
90  */
91 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
92 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
93 typedef TAILQ_HEAD(device_list, device) device_list_t;
94 
95 struct devclass {
96 	TAILQ_ENTRY(devclass) link;
97 	devclass_t	parent;		/* parent in devclass hierarchy */
98 	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
99 	char		*name;
100 	device_t	*devices;	/* array of devices indexed by unit */
101 	int		maxunit;	/* size of devices array */
102 	int		flags;
103 #define DC_HAS_CHILDREN		1
104 
105 	struct sysctl_ctx_list sysctl_ctx;
106 	struct sysctl_oid *sysctl_tree;
107 };
108 
109 /**
110  * @brief Implementation of device.
111  */
112 struct device {
113 	/*
114 	 * A device is a kernel object. The first field must be the
115 	 * current ops table for the object.
116 	 */
117 	KOBJ_FIELDS;
118 
119 	/*
120 	 * Device hierarchy.
121 	 */
122 	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
123 	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
124 	device_t	parent;		/**< parent of this device  */
125 	device_list_t	children;	/**< list of child devices */
126 
127 	/*
128 	 * Details of this device.
129 	 */
130 	driver_t	*driver;	/**< current driver */
131 	devclass_t	devclass;	/**< current device class */
132 	int		unit;		/**< current unit number */
133 	char*		nameunit;	/**< name+unit e.g. foodev0 */
134 	char*		desc;		/**< driver specific description */
135 	int		busy;		/**< count of calls to device_busy() */
136 	device_state_t	state;		/**< current device state  */
137 	uint32_t	devflags;	/**< api level flags for device_get_flags() */
138 	u_int		flags;		/**< internal device flags  */
139 	u_int	order;			/**< order from device_add_child_ordered() */
140 	void	*ivars;			/**< instance variables  */
141 	void	*softc;			/**< current driver's variables  */
142 
143 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
144 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
145 };
146 
147 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
148 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
149 
150 EVENTHANDLER_LIST_DEFINE(device_attach);
151 EVENTHANDLER_LIST_DEFINE(device_detach);
152 EVENTHANDLER_LIST_DEFINE(dev_lookup);
153 
154 static void devctl2_init(void);
155 
156 #define DRIVERNAME(d)	((d)? d->name : "no driver")
157 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
158 
159 #ifdef BUS_DEBUG
160 
161 static int bus_debug = 1;
162 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
163     "Bus debug level");
164 
165 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
166 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
167 
168 /**
169  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
170  * prevent syslog from deleting initial spaces
171  */
172 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
173 
174 static void print_device_short(device_t dev, int indent);
175 static void print_device(device_t dev, int indent);
176 void print_device_tree_short(device_t dev, int indent);
177 void print_device_tree(device_t dev, int indent);
178 static void print_driver_short(driver_t *driver, int indent);
179 static void print_driver(driver_t *driver, int indent);
180 static void print_driver_list(driver_list_t drivers, int indent);
181 static void print_devclass_short(devclass_t dc, int indent);
182 static void print_devclass(devclass_t dc, int indent);
183 void print_devclass_list_short(void);
184 void print_devclass_list(void);
185 
186 #else
187 /* Make the compiler ignore the function calls */
188 #define PDEBUG(a)			/* nop */
189 #define DEVICENAME(d)			/* nop */
190 
191 #define print_device_short(d,i)		/* nop */
192 #define print_device(d,i)		/* nop */
193 #define print_device_tree_short(d,i)	/* nop */
194 #define print_device_tree(d,i)		/* nop */
195 #define print_driver_short(d,i)		/* nop */
196 #define print_driver(d,i)		/* nop */
197 #define print_driver_list(d,i)		/* nop */
198 #define print_devclass_short(d,i)	/* nop */
199 #define print_devclass(d,i)		/* nop */
200 #define print_devclass_list_short()	/* nop */
201 #define print_devclass_list()		/* nop */
202 #endif
203 
204 /*
205  * dev sysctl tree
206  */
207 
208 enum {
209 	DEVCLASS_SYSCTL_PARENT,
210 };
211 
212 static int
213 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
214 {
215 	devclass_t dc = (devclass_t)arg1;
216 	const char *value;
217 
218 	switch (arg2) {
219 	case DEVCLASS_SYSCTL_PARENT:
220 		value = dc->parent ? dc->parent->name : "";
221 		break;
222 	default:
223 		return (EINVAL);
224 	}
225 	return (SYSCTL_OUT_STR(req, value));
226 }
227 
228 static void
229 devclass_sysctl_init(devclass_t dc)
230 {
231 
232 	if (dc->sysctl_tree != NULL)
233 		return;
234 	sysctl_ctx_init(&dc->sysctl_ctx);
235 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
236 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
237 	    CTLFLAG_RD, NULL, "");
238 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
239 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
240 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
241 	    "parent class");
242 }
243 
244 enum {
245 	DEVICE_SYSCTL_DESC,
246 	DEVICE_SYSCTL_DRIVER,
247 	DEVICE_SYSCTL_LOCATION,
248 	DEVICE_SYSCTL_PNPINFO,
249 	DEVICE_SYSCTL_PARENT,
250 };
251 
252 static int
253 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
254 {
255 	device_t dev = (device_t)arg1;
256 	const char *value;
257 	char *buf;
258 	int error;
259 
260 	buf = NULL;
261 	switch (arg2) {
262 	case DEVICE_SYSCTL_DESC:
263 		value = dev->desc ? dev->desc : "";
264 		break;
265 	case DEVICE_SYSCTL_DRIVER:
266 		value = dev->driver ? dev->driver->name : "";
267 		break;
268 	case DEVICE_SYSCTL_LOCATION:
269 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
270 		bus_child_location_str(dev, buf, 1024);
271 		break;
272 	case DEVICE_SYSCTL_PNPINFO:
273 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
274 		bus_child_pnpinfo_str(dev, buf, 1024);
275 		break;
276 	case DEVICE_SYSCTL_PARENT:
277 		value = dev->parent ? dev->parent->nameunit : "";
278 		break;
279 	default:
280 		return (EINVAL);
281 	}
282 	error = SYSCTL_OUT_STR(req, value);
283 	if (buf != NULL)
284 		free(buf, M_BUS);
285 	return (error);
286 }
287 
288 static void
289 device_sysctl_init(device_t dev)
290 {
291 	devclass_t dc = dev->devclass;
292 	int domain;
293 
294 	if (dev->sysctl_tree != NULL)
295 		return;
296 	devclass_sysctl_init(dc);
297 	sysctl_ctx_init(&dev->sysctl_ctx);
298 	dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx,
299 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
300 	    dev->nameunit + strlen(dc->name),
301 	    CTLFLAG_RD, NULL, "", "device_index");
302 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
303 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
304 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
305 	    "device description");
306 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
307 	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
308 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
309 	    "device driver name");
310 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
311 	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
312 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
313 	    "device location relative to parent");
314 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
315 	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
316 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
317 	    "device identification");
318 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
319 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
320 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
321 	    "parent device");
322 	if (bus_get_domain(dev, &domain) == 0)
323 		SYSCTL_ADD_INT(&dev->sysctl_ctx,
324 		    SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
325 		    CTLFLAG_RD, NULL, domain, "NUMA domain");
326 }
327 
328 static void
329 device_sysctl_update(device_t dev)
330 {
331 	devclass_t dc = dev->devclass;
332 
333 	if (dev->sysctl_tree == NULL)
334 		return;
335 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
336 }
337 
338 static void
339 device_sysctl_fini(device_t dev)
340 {
341 	if (dev->sysctl_tree == NULL)
342 		return;
343 	sysctl_ctx_free(&dev->sysctl_ctx);
344 	dev->sysctl_tree = NULL;
345 }
346 
347 /*
348  * /dev/devctl implementation
349  */
350 
351 /*
352  * This design allows only one reader for /dev/devctl.  This is not desirable
353  * in the long run, but will get a lot of hair out of this implementation.
354  * Maybe we should make this device a clonable device.
355  *
356  * Also note: we specifically do not attach a device to the device_t tree
357  * to avoid potential chicken and egg problems.  One could argue that all
358  * of this belongs to the root node.  One could also further argue that the
359  * sysctl interface that we have not might more properly be an ioctl
360  * interface, but at this stage of the game, I'm not inclined to rock that
361  * boat.
362  *
363  * I'm also not sure that the SIGIO support is done correctly or not, as
364  * I copied it from a driver that had SIGIO support that likely hasn't been
365  * tested since 3.4 or 2.2.8!
366  */
367 
368 /* Deprecated way to adjust queue length */
369 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
370 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN |
371     CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I",
372     "devctl disable -- deprecated");
373 
374 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
375 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
376 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
377 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN |
378     CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length");
379 
380 static d_open_t		devopen;
381 static d_close_t	devclose;
382 static d_read_t		devread;
383 static d_ioctl_t	devioctl;
384 static d_poll_t		devpoll;
385 static d_kqfilter_t	devkqfilter;
386 
387 static struct cdevsw dev_cdevsw = {
388 	.d_version =	D_VERSION,
389 	.d_open =	devopen,
390 	.d_close =	devclose,
391 	.d_read =	devread,
392 	.d_ioctl =	devioctl,
393 	.d_poll =	devpoll,
394 	.d_kqfilter =	devkqfilter,
395 	.d_name =	"devctl",
396 };
397 
398 struct dev_event_info
399 {
400 	char *dei_data;
401 	TAILQ_ENTRY(dev_event_info) dei_link;
402 };
403 
404 TAILQ_HEAD(devq, dev_event_info);
405 
406 static struct dev_softc
407 {
408 	int	inuse;
409 	int	nonblock;
410 	int	queued;
411 	int	async;
412 	struct mtx mtx;
413 	struct cv cv;
414 	struct selinfo sel;
415 	struct devq devq;
416 	struct sigio *sigio;
417 } devsoftc;
418 
419 static void	filt_devctl_detach(struct knote *kn);
420 static int	filt_devctl_read(struct knote *kn, long hint);
421 
422 struct filterops devctl_rfiltops = {
423 	.f_isfd = 1,
424 	.f_detach = filt_devctl_detach,
425 	.f_event = filt_devctl_read,
426 };
427 
428 static struct cdev *devctl_dev;
429 
430 static void
431 devinit(void)
432 {
433 	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
434 	    UID_ROOT, GID_WHEEL, 0600, "devctl");
435 	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
436 	cv_init(&devsoftc.cv, "dev cv");
437 	TAILQ_INIT(&devsoftc.devq);
438 	knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx);
439 	devctl2_init();
440 }
441 
442 static int
443 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
444 {
445 
446 	mtx_lock(&devsoftc.mtx);
447 	if (devsoftc.inuse) {
448 		mtx_unlock(&devsoftc.mtx);
449 		return (EBUSY);
450 	}
451 	/* move to init */
452 	devsoftc.inuse = 1;
453 	mtx_unlock(&devsoftc.mtx);
454 	return (0);
455 }
456 
457 static int
458 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
459 {
460 
461 	mtx_lock(&devsoftc.mtx);
462 	devsoftc.inuse = 0;
463 	devsoftc.nonblock = 0;
464 	devsoftc.async = 0;
465 	cv_broadcast(&devsoftc.cv);
466 	funsetown(&devsoftc.sigio);
467 	mtx_unlock(&devsoftc.mtx);
468 	return (0);
469 }
470 
471 /*
472  * The read channel for this device is used to report changes to
473  * userland in realtime.  We are required to free the data as well as
474  * the n1 object because we allocate them separately.  Also note that
475  * we return one record at a time.  If you try to read this device a
476  * character at a time, you will lose the rest of the data.  Listening
477  * programs are expected to cope.
478  */
479 static int
480 devread(struct cdev *dev, struct uio *uio, int ioflag)
481 {
482 	struct dev_event_info *n1;
483 	int rv;
484 
485 	mtx_lock(&devsoftc.mtx);
486 	while (TAILQ_EMPTY(&devsoftc.devq)) {
487 		if (devsoftc.nonblock) {
488 			mtx_unlock(&devsoftc.mtx);
489 			return (EAGAIN);
490 		}
491 		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
492 		if (rv) {
493 			/*
494 			 * Need to translate ERESTART to EINTR here? -- jake
495 			 */
496 			mtx_unlock(&devsoftc.mtx);
497 			return (rv);
498 		}
499 	}
500 	n1 = TAILQ_FIRST(&devsoftc.devq);
501 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
502 	devsoftc.queued--;
503 	mtx_unlock(&devsoftc.mtx);
504 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
505 	free(n1->dei_data, M_BUS);
506 	free(n1, M_BUS);
507 	return (rv);
508 }
509 
510 static	int
511 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
512 {
513 	switch (cmd) {
514 
515 	case FIONBIO:
516 		if (*(int*)data)
517 			devsoftc.nonblock = 1;
518 		else
519 			devsoftc.nonblock = 0;
520 		return (0);
521 	case FIOASYNC:
522 		if (*(int*)data)
523 			devsoftc.async = 1;
524 		else
525 			devsoftc.async = 0;
526 		return (0);
527 	case FIOSETOWN:
528 		return fsetown(*(int *)data, &devsoftc.sigio);
529 	case FIOGETOWN:
530 		*(int *)data = fgetown(&devsoftc.sigio);
531 		return (0);
532 
533 		/* (un)Support for other fcntl() calls. */
534 	case FIOCLEX:
535 	case FIONCLEX:
536 	case FIONREAD:
537 	default:
538 		break;
539 	}
540 	return (ENOTTY);
541 }
542 
543 static	int
544 devpoll(struct cdev *dev, int events, struct thread *td)
545 {
546 	int	revents = 0;
547 
548 	mtx_lock(&devsoftc.mtx);
549 	if (events & (POLLIN | POLLRDNORM)) {
550 		if (!TAILQ_EMPTY(&devsoftc.devq))
551 			revents = events & (POLLIN | POLLRDNORM);
552 		else
553 			selrecord(td, &devsoftc.sel);
554 	}
555 	mtx_unlock(&devsoftc.mtx);
556 
557 	return (revents);
558 }
559 
560 static int
561 devkqfilter(struct cdev *dev, struct knote *kn)
562 {
563 	int error;
564 
565 	if (kn->kn_filter == EVFILT_READ) {
566 		kn->kn_fop = &devctl_rfiltops;
567 		knlist_add(&devsoftc.sel.si_note, kn, 0);
568 		error = 0;
569 	} else
570 		error = EINVAL;
571 	return (error);
572 }
573 
574 static void
575 filt_devctl_detach(struct knote *kn)
576 {
577 
578 	knlist_remove(&devsoftc.sel.si_note, kn, 0);
579 }
580 
581 static int
582 filt_devctl_read(struct knote *kn, long hint)
583 {
584 	kn->kn_data = devsoftc.queued;
585 	return (kn->kn_data != 0);
586 }
587 
588 /**
589  * @brief Return whether the userland process is running
590  */
591 boolean_t
592 devctl_process_running(void)
593 {
594 	return (devsoftc.inuse == 1);
595 }
596 
597 /**
598  * @brief Queue data to be read from the devctl device
599  *
600  * Generic interface to queue data to the devctl device.  It is
601  * assumed that @p data is properly formatted.  It is further assumed
602  * that @p data is allocated using the M_BUS malloc type.
603  */
604 void
605 devctl_queue_data_f(char *data, int flags)
606 {
607 	struct dev_event_info *n1 = NULL, *n2 = NULL;
608 
609 	if (strlen(data) == 0)
610 		goto out;
611 	if (devctl_queue_length == 0)
612 		goto out;
613 	n1 = malloc(sizeof(*n1), M_BUS, flags);
614 	if (n1 == NULL)
615 		goto out;
616 	n1->dei_data = data;
617 	mtx_lock(&devsoftc.mtx);
618 	if (devctl_queue_length == 0) {
619 		mtx_unlock(&devsoftc.mtx);
620 		free(n1->dei_data, M_BUS);
621 		free(n1, M_BUS);
622 		return;
623 	}
624 	/* Leave at least one spot in the queue... */
625 	while (devsoftc.queued > devctl_queue_length - 1) {
626 		n2 = TAILQ_FIRST(&devsoftc.devq);
627 		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
628 		free(n2->dei_data, M_BUS);
629 		free(n2, M_BUS);
630 		devsoftc.queued--;
631 	}
632 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
633 	devsoftc.queued++;
634 	cv_broadcast(&devsoftc.cv);
635 	KNOTE_LOCKED(&devsoftc.sel.si_note, 0);
636 	mtx_unlock(&devsoftc.mtx);
637 	selwakeup(&devsoftc.sel);
638 	if (devsoftc.async && devsoftc.sigio != NULL)
639 		pgsigio(&devsoftc.sigio, SIGIO, 0);
640 	return;
641 out:
642 	/*
643 	 * We have to free data on all error paths since the caller
644 	 * assumes it will be free'd when this item is dequeued.
645 	 */
646 	free(data, M_BUS);
647 	return;
648 }
649 
650 void
651 devctl_queue_data(char *data)
652 {
653 
654 	devctl_queue_data_f(data, M_NOWAIT);
655 }
656 
657 /**
658  * @brief Send a 'notification' to userland, using standard ways
659  */
660 void
661 devctl_notify_f(const char *system, const char *subsystem, const char *type,
662     const char *data, int flags)
663 {
664 	int len = 0;
665 	char *msg;
666 
667 	if (system == NULL)
668 		return;		/* BOGUS!  Must specify system. */
669 	if (subsystem == NULL)
670 		return;		/* BOGUS!  Must specify subsystem. */
671 	if (type == NULL)
672 		return;		/* BOGUS!  Must specify type. */
673 	len += strlen(" system=") + strlen(system);
674 	len += strlen(" subsystem=") + strlen(subsystem);
675 	len += strlen(" type=") + strlen(type);
676 	/* add in the data message plus newline. */
677 	if (data != NULL)
678 		len += strlen(data);
679 	len += 3;	/* '!', '\n', and NUL */
680 	msg = malloc(len, M_BUS, flags);
681 	if (msg == NULL)
682 		return;		/* Drop it on the floor */
683 	if (data != NULL)
684 		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
685 		    system, subsystem, type, data);
686 	else
687 		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
688 		    system, subsystem, type);
689 	devctl_queue_data_f(msg, flags);
690 }
691 
692 void
693 devctl_notify(const char *system, const char *subsystem, const char *type,
694     const char *data)
695 {
696 
697 	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
698 }
699 
700 /*
701  * Common routine that tries to make sending messages as easy as possible.
702  * We allocate memory for the data, copy strings into that, but do not
703  * free it unless there's an error.  The dequeue part of the driver should
704  * free the data.  We don't send data when the device is disabled.  We do
705  * send data, even when we have no listeners, because we wish to avoid
706  * races relating to startup and restart of listening applications.
707  *
708  * devaddq is designed to string together the type of event, with the
709  * object of that event, plus the plug and play info and location info
710  * for that event.  This is likely most useful for devices, but less
711  * useful for other consumers of this interface.  Those should use
712  * the devctl_queue_data() interface instead.
713  */
714 static void
715 devaddq(const char *type, const char *what, device_t dev)
716 {
717 	char *data = NULL;
718 	char *loc = NULL;
719 	char *pnp = NULL;
720 	const char *parstr;
721 
722 	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
723 		return;
724 	data = malloc(1024, M_BUS, M_NOWAIT);
725 	if (data == NULL)
726 		goto bad;
727 
728 	/* get the bus specific location of this device */
729 	loc = malloc(1024, M_BUS, M_NOWAIT);
730 	if (loc == NULL)
731 		goto bad;
732 	*loc = '\0';
733 	bus_child_location_str(dev, loc, 1024);
734 
735 	/* Get the bus specific pnp info of this device */
736 	pnp = malloc(1024, M_BUS, M_NOWAIT);
737 	if (pnp == NULL)
738 		goto bad;
739 	*pnp = '\0';
740 	bus_child_pnpinfo_str(dev, pnp, 1024);
741 
742 	/* Get the parent of this device, or / if high enough in the tree. */
743 	if (device_get_parent(dev) == NULL)
744 		parstr = ".";	/* Or '/' ? */
745 	else
746 		parstr = device_get_nameunit(device_get_parent(dev));
747 	/* String it all together. */
748 	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
749 	  parstr);
750 	free(loc, M_BUS);
751 	free(pnp, M_BUS);
752 	devctl_queue_data(data);
753 	return;
754 bad:
755 	free(pnp, M_BUS);
756 	free(loc, M_BUS);
757 	free(data, M_BUS);
758 	return;
759 }
760 
761 /*
762  * A device was added to the tree.  We are called just after it successfully
763  * attaches (that is, probe and attach success for this device).  No call
764  * is made if a device is merely parented into the tree.  See devnomatch
765  * if probe fails.  If attach fails, no notification is sent (but maybe
766  * we should have a different message for this).
767  */
768 static void
769 devadded(device_t dev)
770 {
771 	devaddq("+", device_get_nameunit(dev), dev);
772 }
773 
774 /*
775  * A device was removed from the tree.  We are called just before this
776  * happens.
777  */
778 static void
779 devremoved(device_t dev)
780 {
781 	devaddq("-", device_get_nameunit(dev), dev);
782 }
783 
784 /*
785  * Called when there's no match for this device.  This is only called
786  * the first time that no match happens, so we don't keep getting this
787  * message.  Should that prove to be undesirable, we can change it.
788  * This is called when all drivers that can attach to a given bus
789  * decline to accept this device.  Other errors may not be detected.
790  */
791 static void
792 devnomatch(device_t dev)
793 {
794 	devaddq("?", "", dev);
795 }
796 
797 static int
798 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
799 {
800 	struct dev_event_info *n1;
801 	int dis, error;
802 
803 	dis = (devctl_queue_length == 0);
804 	error = sysctl_handle_int(oidp, &dis, 0, req);
805 	if (error || !req->newptr)
806 		return (error);
807 	if (mtx_initialized(&devsoftc.mtx))
808 		mtx_lock(&devsoftc.mtx);
809 	if (dis) {
810 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
811 			n1 = TAILQ_FIRST(&devsoftc.devq);
812 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
813 			free(n1->dei_data, M_BUS);
814 			free(n1, M_BUS);
815 		}
816 		devsoftc.queued = 0;
817 		devctl_queue_length = 0;
818 	} else {
819 		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
820 	}
821 	if (mtx_initialized(&devsoftc.mtx))
822 		mtx_unlock(&devsoftc.mtx);
823 	return (0);
824 }
825 
826 static int
827 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
828 {
829 	struct dev_event_info *n1;
830 	int q, error;
831 
832 	q = devctl_queue_length;
833 	error = sysctl_handle_int(oidp, &q, 0, req);
834 	if (error || !req->newptr)
835 		return (error);
836 	if (q < 0)
837 		return (EINVAL);
838 	if (mtx_initialized(&devsoftc.mtx))
839 		mtx_lock(&devsoftc.mtx);
840 	devctl_queue_length = q;
841 	while (devsoftc.queued > devctl_queue_length) {
842 		n1 = TAILQ_FIRST(&devsoftc.devq);
843 		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
844 		free(n1->dei_data, M_BUS);
845 		free(n1, M_BUS);
846 		devsoftc.queued--;
847 	}
848 	if (mtx_initialized(&devsoftc.mtx))
849 		mtx_unlock(&devsoftc.mtx);
850 	return (0);
851 }
852 
853 /**
854  * @brief safely quotes strings that might have double quotes in them.
855  *
856  * The devctl protocol relies on quoted strings having matching quotes.
857  * This routine quotes any internal quotes so the resulting string
858  * is safe to pass to snprintf to construct, for example pnp info strings.
859  * Strings are always terminated with a NUL, but may be truncated if longer
860  * than @p len bytes after quotes.
861  *
862  * @param sb	sbuf to place the characters into
863  * @param src	Original buffer.
864  */
865 void
866 devctl_safe_quote_sb(struct sbuf *sb, const char *src)
867 {
868 
869 	while (*src != '\0') {
870 		if (*src == '"' || *src == '\\')
871 			sbuf_putc(sb, '\\');
872 		sbuf_putc(sb, *src++);
873 	}
874 }
875 
876 /* End of /dev/devctl code */
877 
878 static TAILQ_HEAD(,device)	bus_data_devices;
879 static int bus_data_generation = 1;
880 
881 static kobj_method_t null_methods[] = {
882 	KOBJMETHOD_END
883 };
884 
885 DEFINE_CLASS(null, null_methods, 0);
886 
887 /*
888  * Bus pass implementation
889  */
890 
891 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
892 int bus_current_pass = BUS_PASS_ROOT;
893 
894 /**
895  * @internal
896  * @brief Register the pass level of a new driver attachment
897  *
898  * Register a new driver attachment's pass level.  If no driver
899  * attachment with the same pass level has been added, then @p new
900  * will be added to the global passes list.
901  *
902  * @param new		the new driver attachment
903  */
904 static void
905 driver_register_pass(struct driverlink *new)
906 {
907 	struct driverlink *dl;
908 
909 	/* We only consider pass numbers during boot. */
910 	if (bus_current_pass == BUS_PASS_DEFAULT)
911 		return;
912 
913 	/*
914 	 * Walk the passes list.  If we already know about this pass
915 	 * then there is nothing to do.  If we don't, then insert this
916 	 * driver link into the list.
917 	 */
918 	TAILQ_FOREACH(dl, &passes, passlink) {
919 		if (dl->pass < new->pass)
920 			continue;
921 		if (dl->pass == new->pass)
922 			return;
923 		TAILQ_INSERT_BEFORE(dl, new, passlink);
924 		return;
925 	}
926 	TAILQ_INSERT_TAIL(&passes, new, passlink);
927 }
928 
929 /**
930  * @brief Raise the current bus pass
931  *
932  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
933  * method on the root bus to kick off a new device tree scan for each
934  * new pass level that has at least one driver.
935  */
936 void
937 bus_set_pass(int pass)
938 {
939 	struct driverlink *dl;
940 
941 	if (bus_current_pass > pass)
942 		panic("Attempt to lower bus pass level");
943 
944 	TAILQ_FOREACH(dl, &passes, passlink) {
945 		/* Skip pass values below the current pass level. */
946 		if (dl->pass <= bus_current_pass)
947 			continue;
948 
949 		/*
950 		 * Bail once we hit a driver with a pass level that is
951 		 * too high.
952 		 */
953 		if (dl->pass > pass)
954 			break;
955 
956 		/*
957 		 * Raise the pass level to the next level and rescan
958 		 * the tree.
959 		 */
960 		bus_current_pass = dl->pass;
961 		BUS_NEW_PASS(root_bus);
962 	}
963 
964 	/*
965 	 * If there isn't a driver registered for the requested pass,
966 	 * then bus_current_pass might still be less than 'pass'.  Set
967 	 * it to 'pass' in that case.
968 	 */
969 	if (bus_current_pass < pass)
970 		bus_current_pass = pass;
971 	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
972 }
973 
974 /*
975  * Devclass implementation
976  */
977 
978 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
979 
980 /**
981  * @internal
982  * @brief Find or create a device class
983  *
984  * If a device class with the name @p classname exists, return it,
985  * otherwise if @p create is non-zero create and return a new device
986  * class.
987  *
988  * If @p parentname is non-NULL, the parent of the devclass is set to
989  * the devclass of that name.
990  *
991  * @param classname	the devclass name to find or create
992  * @param parentname	the parent devclass name or @c NULL
993  * @param create	non-zero to create a devclass
994  */
995 static devclass_t
996 devclass_find_internal(const char *classname, const char *parentname,
997 		       int create)
998 {
999 	devclass_t dc;
1000 
1001 	PDEBUG(("looking for %s", classname));
1002 	if (!classname)
1003 		return (NULL);
1004 
1005 	TAILQ_FOREACH(dc, &devclasses, link) {
1006 		if (!strcmp(dc->name, classname))
1007 			break;
1008 	}
1009 
1010 	if (create && !dc) {
1011 		PDEBUG(("creating %s", classname));
1012 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
1013 		    M_BUS, M_NOWAIT | M_ZERO);
1014 		if (!dc)
1015 			return (NULL);
1016 		dc->parent = NULL;
1017 		dc->name = (char*) (dc + 1);
1018 		strcpy(dc->name, classname);
1019 		TAILQ_INIT(&dc->drivers);
1020 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
1021 
1022 		bus_data_generation_update();
1023 	}
1024 
1025 	/*
1026 	 * If a parent class is specified, then set that as our parent so
1027 	 * that this devclass will support drivers for the parent class as
1028 	 * well.  If the parent class has the same name don't do this though
1029 	 * as it creates a cycle that can trigger an infinite loop in
1030 	 * device_probe_child() if a device exists for which there is no
1031 	 * suitable driver.
1032 	 */
1033 	if (parentname && dc && !dc->parent &&
1034 	    strcmp(classname, parentname) != 0) {
1035 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
1036 		dc->parent->flags |= DC_HAS_CHILDREN;
1037 	}
1038 
1039 	return (dc);
1040 }
1041 
1042 /**
1043  * @brief Create a device class
1044  *
1045  * If a device class with the name @p classname exists, return it,
1046  * otherwise create and return a new device class.
1047  *
1048  * @param classname	the devclass name to find or create
1049  */
1050 devclass_t
1051 devclass_create(const char *classname)
1052 {
1053 	return (devclass_find_internal(classname, NULL, TRUE));
1054 }
1055 
1056 /**
1057  * @brief Find a device class
1058  *
1059  * If a device class with the name @p classname exists, return it,
1060  * otherwise return @c NULL.
1061  *
1062  * @param classname	the devclass name to find
1063  */
1064 devclass_t
1065 devclass_find(const char *classname)
1066 {
1067 	return (devclass_find_internal(classname, NULL, FALSE));
1068 }
1069 
1070 /**
1071  * @brief Register that a device driver has been added to a devclass
1072  *
1073  * Register that a device driver has been added to a devclass.  This
1074  * is called by devclass_add_driver to accomplish the recursive
1075  * notification of all the children classes of dc, as well as dc.
1076  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1077  * the devclass.
1078  *
1079  * We do a full search here of the devclass list at each iteration
1080  * level to save storing children-lists in the devclass structure.  If
1081  * we ever move beyond a few dozen devices doing this, we may need to
1082  * reevaluate...
1083  *
1084  * @param dc		the devclass to edit
1085  * @param driver	the driver that was just added
1086  */
1087 static void
1088 devclass_driver_added(devclass_t dc, driver_t *driver)
1089 {
1090 	devclass_t parent;
1091 	int i;
1092 
1093 	/*
1094 	 * Call BUS_DRIVER_ADDED for any existing buses in this class.
1095 	 */
1096 	for (i = 0; i < dc->maxunit; i++)
1097 		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1098 			BUS_DRIVER_ADDED(dc->devices[i], driver);
1099 
1100 	/*
1101 	 * Walk through the children classes.  Since we only keep a
1102 	 * single parent pointer around, we walk the entire list of
1103 	 * devclasses looking for children.  We set the
1104 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1105 	 * the parent, so we only walk the list for those devclasses
1106 	 * that have children.
1107 	 */
1108 	if (!(dc->flags & DC_HAS_CHILDREN))
1109 		return;
1110 	parent = dc;
1111 	TAILQ_FOREACH(dc, &devclasses, link) {
1112 		if (dc->parent == parent)
1113 			devclass_driver_added(dc, driver);
1114 	}
1115 }
1116 
1117 /**
1118  * @brief Add a device driver to a device class
1119  *
1120  * Add a device driver to a devclass. This is normally called
1121  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1122  * all devices in the devclass will be called to allow them to attempt
1123  * to re-probe any unmatched children.
1124  *
1125  * @param dc		the devclass to edit
1126  * @param driver	the driver to register
1127  */
1128 int
1129 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1130 {
1131 	driverlink_t dl;
1132 	const char *parentname;
1133 
1134 	PDEBUG(("%s", DRIVERNAME(driver)));
1135 
1136 	/* Don't allow invalid pass values. */
1137 	if (pass <= BUS_PASS_ROOT)
1138 		return (EINVAL);
1139 
1140 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1141 	if (!dl)
1142 		return (ENOMEM);
1143 
1144 	/*
1145 	 * Compile the driver's methods. Also increase the reference count
1146 	 * so that the class doesn't get freed when the last instance
1147 	 * goes. This means we can safely use static methods and avoids a
1148 	 * double-free in devclass_delete_driver.
1149 	 */
1150 	kobj_class_compile((kobj_class_t) driver);
1151 
1152 	/*
1153 	 * If the driver has any base classes, make the
1154 	 * devclass inherit from the devclass of the driver's
1155 	 * first base class. This will allow the system to
1156 	 * search for drivers in both devclasses for children
1157 	 * of a device using this driver.
1158 	 */
1159 	if (driver->baseclasses)
1160 		parentname = driver->baseclasses[0]->name;
1161 	else
1162 		parentname = NULL;
1163 	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1164 
1165 	dl->driver = driver;
1166 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1167 	driver->refs++;		/* XXX: kobj_mtx */
1168 	dl->pass = pass;
1169 	driver_register_pass(dl);
1170 
1171 	devclass_driver_added(dc, driver);
1172 	bus_data_generation_update();
1173 	return (0);
1174 }
1175 
1176 /**
1177  * @brief Register that a device driver has been deleted from a devclass
1178  *
1179  * Register that a device driver has been removed from a devclass.
1180  * This is called by devclass_delete_driver to accomplish the
1181  * recursive notification of all the children classes of busclass, as
1182  * well as busclass.  Each layer will attempt to detach the driver
1183  * from any devices that are children of the bus's devclass.  The function
1184  * will return an error if a device fails to detach.
1185  *
1186  * We do a full search here of the devclass list at each iteration
1187  * level to save storing children-lists in the devclass structure.  If
1188  * we ever move beyond a few dozen devices doing this, we may need to
1189  * reevaluate...
1190  *
1191  * @param busclass	the devclass of the parent bus
1192  * @param dc		the devclass of the driver being deleted
1193  * @param driver	the driver being deleted
1194  */
1195 static int
1196 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1197 {
1198 	devclass_t parent;
1199 	device_t dev;
1200 	int error, i;
1201 
1202 	/*
1203 	 * Disassociate from any devices.  We iterate through all the
1204 	 * devices in the devclass of the driver and detach any which are
1205 	 * using the driver and which have a parent in the devclass which
1206 	 * we are deleting from.
1207 	 *
1208 	 * Note that since a driver can be in multiple devclasses, we
1209 	 * should not detach devices which are not children of devices in
1210 	 * the affected devclass.
1211 	 */
1212 	for (i = 0; i < dc->maxunit; i++) {
1213 		if (dc->devices[i]) {
1214 			dev = dc->devices[i];
1215 			if (dev->driver == driver && dev->parent &&
1216 			    dev->parent->devclass == busclass) {
1217 				if ((error = device_detach(dev)) != 0)
1218 					return (error);
1219 				BUS_PROBE_NOMATCH(dev->parent, dev);
1220 				devnomatch(dev);
1221 				dev->flags |= DF_DONENOMATCH;
1222 			}
1223 		}
1224 	}
1225 
1226 	/*
1227 	 * Walk through the children classes.  Since we only keep a
1228 	 * single parent pointer around, we walk the entire list of
1229 	 * devclasses looking for children.  We set the
1230 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1231 	 * the parent, so we only walk the list for those devclasses
1232 	 * that have children.
1233 	 */
1234 	if (!(busclass->flags & DC_HAS_CHILDREN))
1235 		return (0);
1236 	parent = busclass;
1237 	TAILQ_FOREACH(busclass, &devclasses, link) {
1238 		if (busclass->parent == parent) {
1239 			error = devclass_driver_deleted(busclass, dc, driver);
1240 			if (error)
1241 				return (error);
1242 		}
1243 	}
1244 	return (0);
1245 }
1246 
1247 /**
1248  * @brief Delete a device driver from a device class
1249  *
1250  * Delete a device driver from a devclass. This is normally called
1251  * automatically by DRIVER_MODULE().
1252  *
1253  * If the driver is currently attached to any devices,
1254  * devclass_delete_driver() will first attempt to detach from each
1255  * device. If one of the detach calls fails, the driver will not be
1256  * deleted.
1257  *
1258  * @param dc		the devclass to edit
1259  * @param driver	the driver to unregister
1260  */
1261 int
1262 devclass_delete_driver(devclass_t busclass, driver_t *driver)
1263 {
1264 	devclass_t dc = devclass_find(driver->name);
1265 	driverlink_t dl;
1266 	int error;
1267 
1268 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1269 
1270 	if (!dc)
1271 		return (0);
1272 
1273 	/*
1274 	 * Find the link structure in the bus' list of drivers.
1275 	 */
1276 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1277 		if (dl->driver == driver)
1278 			break;
1279 	}
1280 
1281 	if (!dl) {
1282 		PDEBUG(("%s not found in %s list", driver->name,
1283 		    busclass->name));
1284 		return (ENOENT);
1285 	}
1286 
1287 	error = devclass_driver_deleted(busclass, dc, driver);
1288 	if (error != 0)
1289 		return (error);
1290 
1291 	TAILQ_REMOVE(&busclass->drivers, dl, link);
1292 	free(dl, M_BUS);
1293 
1294 	/* XXX: kobj_mtx */
1295 	driver->refs--;
1296 	if (driver->refs == 0)
1297 		kobj_class_free((kobj_class_t) driver);
1298 
1299 	bus_data_generation_update();
1300 	return (0);
1301 }
1302 
1303 /**
1304  * @brief Quiesces a set of device drivers from a device class
1305  *
1306  * Quiesce a device driver from a devclass. This is normally called
1307  * automatically by DRIVER_MODULE().
1308  *
1309  * If the driver is currently attached to any devices,
1310  * devclass_quiesece_driver() will first attempt to quiesce each
1311  * device.
1312  *
1313  * @param dc		the devclass to edit
1314  * @param driver	the driver to unregister
1315  */
1316 static int
1317 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1318 {
1319 	devclass_t dc = devclass_find(driver->name);
1320 	driverlink_t dl;
1321 	device_t dev;
1322 	int i;
1323 	int error;
1324 
1325 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1326 
1327 	if (!dc)
1328 		return (0);
1329 
1330 	/*
1331 	 * Find the link structure in the bus' list of drivers.
1332 	 */
1333 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1334 		if (dl->driver == driver)
1335 			break;
1336 	}
1337 
1338 	if (!dl) {
1339 		PDEBUG(("%s not found in %s list", driver->name,
1340 		    busclass->name));
1341 		return (ENOENT);
1342 	}
1343 
1344 	/*
1345 	 * Quiesce all devices.  We iterate through all the devices in
1346 	 * the devclass of the driver and quiesce any which are using
1347 	 * the driver and which have a parent in the devclass which we
1348 	 * are quiescing.
1349 	 *
1350 	 * Note that since a driver can be in multiple devclasses, we
1351 	 * should not quiesce devices which are not children of
1352 	 * devices in the affected devclass.
1353 	 */
1354 	for (i = 0; i < dc->maxunit; i++) {
1355 		if (dc->devices[i]) {
1356 			dev = dc->devices[i];
1357 			if (dev->driver == driver && dev->parent &&
1358 			    dev->parent->devclass == busclass) {
1359 				if ((error = device_quiesce(dev)) != 0)
1360 					return (error);
1361 			}
1362 		}
1363 	}
1364 
1365 	return (0);
1366 }
1367 
1368 /**
1369  * @internal
1370  */
1371 static driverlink_t
1372 devclass_find_driver_internal(devclass_t dc, const char *classname)
1373 {
1374 	driverlink_t dl;
1375 
1376 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1377 
1378 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1379 		if (!strcmp(dl->driver->name, classname))
1380 			return (dl);
1381 	}
1382 
1383 	PDEBUG(("not found"));
1384 	return (NULL);
1385 }
1386 
1387 /**
1388  * @brief Return the name of the devclass
1389  */
1390 const char *
1391 devclass_get_name(devclass_t dc)
1392 {
1393 	return (dc->name);
1394 }
1395 
1396 /**
1397  * @brief Find a device given a unit number
1398  *
1399  * @param dc		the devclass to search
1400  * @param unit		the unit number to search for
1401  *
1402  * @returns		the device with the given unit number or @c
1403  *			NULL if there is no such device
1404  */
1405 device_t
1406 devclass_get_device(devclass_t dc, int unit)
1407 {
1408 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1409 		return (NULL);
1410 	return (dc->devices[unit]);
1411 }
1412 
1413 /**
1414  * @brief Find the softc field of a device given a unit number
1415  *
1416  * @param dc		the devclass to search
1417  * @param unit		the unit number to search for
1418  *
1419  * @returns		the softc field of the device with the given
1420  *			unit number or @c NULL if there is no such
1421  *			device
1422  */
1423 void *
1424 devclass_get_softc(devclass_t dc, int unit)
1425 {
1426 	device_t dev;
1427 
1428 	dev = devclass_get_device(dc, unit);
1429 	if (!dev)
1430 		return (NULL);
1431 
1432 	return (device_get_softc(dev));
1433 }
1434 
1435 /**
1436  * @brief Get a list of devices in the devclass
1437  *
1438  * An array containing a list of all the devices in the given devclass
1439  * is allocated and returned in @p *devlistp. The number of devices
1440  * in the array is returned in @p *devcountp. The caller should free
1441  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1442  *
1443  * @param dc		the devclass to examine
1444  * @param devlistp	points at location for array pointer return
1445  *			value
1446  * @param devcountp	points at location for array size return value
1447  *
1448  * @retval 0		success
1449  * @retval ENOMEM	the array allocation failed
1450  */
1451 int
1452 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1453 {
1454 	int count, i;
1455 	device_t *list;
1456 
1457 	count = devclass_get_count(dc);
1458 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1459 	if (!list)
1460 		return (ENOMEM);
1461 
1462 	count = 0;
1463 	for (i = 0; i < dc->maxunit; i++) {
1464 		if (dc->devices[i]) {
1465 			list[count] = dc->devices[i];
1466 			count++;
1467 		}
1468 	}
1469 
1470 	*devlistp = list;
1471 	*devcountp = count;
1472 
1473 	return (0);
1474 }
1475 
1476 /**
1477  * @brief Get a list of drivers in the devclass
1478  *
1479  * An array containing a list of pointers to all the drivers in the
1480  * given devclass is allocated and returned in @p *listp.  The number
1481  * of drivers in the array is returned in @p *countp. The caller should
1482  * free the array using @c free(p, M_TEMP).
1483  *
1484  * @param dc		the devclass to examine
1485  * @param listp		gives location for array pointer return value
1486  * @param countp	gives location for number of array elements
1487  *			return value
1488  *
1489  * @retval 0		success
1490  * @retval ENOMEM	the array allocation failed
1491  */
1492 int
1493 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1494 {
1495 	driverlink_t dl;
1496 	driver_t **list;
1497 	int count;
1498 
1499 	count = 0;
1500 	TAILQ_FOREACH(dl, &dc->drivers, link)
1501 		count++;
1502 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1503 	if (list == NULL)
1504 		return (ENOMEM);
1505 
1506 	count = 0;
1507 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1508 		list[count] = dl->driver;
1509 		count++;
1510 	}
1511 	*listp = list;
1512 	*countp = count;
1513 
1514 	return (0);
1515 }
1516 
1517 /**
1518  * @brief Get the number of devices in a devclass
1519  *
1520  * @param dc		the devclass to examine
1521  */
1522 int
1523 devclass_get_count(devclass_t dc)
1524 {
1525 	int count, i;
1526 
1527 	count = 0;
1528 	for (i = 0; i < dc->maxunit; i++)
1529 		if (dc->devices[i])
1530 			count++;
1531 	return (count);
1532 }
1533 
1534 /**
1535  * @brief Get the maximum unit number used in a devclass
1536  *
1537  * Note that this is one greater than the highest currently-allocated
1538  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1539  * that not even the devclass has been allocated yet.
1540  *
1541  * @param dc		the devclass to examine
1542  */
1543 int
1544 devclass_get_maxunit(devclass_t dc)
1545 {
1546 	if (dc == NULL)
1547 		return (-1);
1548 	return (dc->maxunit);
1549 }
1550 
1551 /**
1552  * @brief Find a free unit number in a devclass
1553  *
1554  * This function searches for the first unused unit number greater
1555  * that or equal to @p unit.
1556  *
1557  * @param dc		the devclass to examine
1558  * @param unit		the first unit number to check
1559  */
1560 int
1561 devclass_find_free_unit(devclass_t dc, int unit)
1562 {
1563 	if (dc == NULL)
1564 		return (unit);
1565 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1566 		unit++;
1567 	return (unit);
1568 }
1569 
1570 /**
1571  * @brief Set the parent of a devclass
1572  *
1573  * The parent class is normally initialised automatically by
1574  * DRIVER_MODULE().
1575  *
1576  * @param dc		the devclass to edit
1577  * @param pdc		the new parent devclass
1578  */
1579 void
1580 devclass_set_parent(devclass_t dc, devclass_t pdc)
1581 {
1582 	dc->parent = pdc;
1583 }
1584 
1585 /**
1586  * @brief Get the parent of a devclass
1587  *
1588  * @param dc		the devclass to examine
1589  */
1590 devclass_t
1591 devclass_get_parent(devclass_t dc)
1592 {
1593 	return (dc->parent);
1594 }
1595 
1596 struct sysctl_ctx_list *
1597 devclass_get_sysctl_ctx(devclass_t dc)
1598 {
1599 	return (&dc->sysctl_ctx);
1600 }
1601 
1602 struct sysctl_oid *
1603 devclass_get_sysctl_tree(devclass_t dc)
1604 {
1605 	return (dc->sysctl_tree);
1606 }
1607 
1608 /**
1609  * @internal
1610  * @brief Allocate a unit number
1611  *
1612  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1613  * will do). The allocated unit number is returned in @p *unitp.
1614 
1615  * @param dc		the devclass to allocate from
1616  * @param unitp		points at the location for the allocated unit
1617  *			number
1618  *
1619  * @retval 0		success
1620  * @retval EEXIST	the requested unit number is already allocated
1621  * @retval ENOMEM	memory allocation failure
1622  */
1623 static int
1624 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1625 {
1626 	const char *s;
1627 	int unit = *unitp;
1628 
1629 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1630 
1631 	/* Ask the parent bus if it wants to wire this device. */
1632 	if (unit == -1)
1633 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1634 		    &unit);
1635 
1636 	/* If we were given a wired unit number, check for existing device */
1637 	/* XXX imp XXX */
1638 	if (unit != -1) {
1639 		if (unit >= 0 && unit < dc->maxunit &&
1640 		    dc->devices[unit] != NULL) {
1641 			if (bootverbose)
1642 				printf("%s: %s%d already exists; skipping it\n",
1643 				    dc->name, dc->name, *unitp);
1644 			return (EEXIST);
1645 		}
1646 	} else {
1647 		/* Unwired device, find the next available slot for it */
1648 		unit = 0;
1649 		for (unit = 0;; unit++) {
1650 			/* If there is an "at" hint for a unit then skip it. */
1651 			if (resource_string_value(dc->name, unit, "at", &s) ==
1652 			    0)
1653 				continue;
1654 
1655 			/* If this device slot is already in use, skip it. */
1656 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1657 				continue;
1658 
1659 			break;
1660 		}
1661 	}
1662 
1663 	/*
1664 	 * We've selected a unit beyond the length of the table, so let's
1665 	 * extend the table to make room for all units up to and including
1666 	 * this one.
1667 	 */
1668 	if (unit >= dc->maxunit) {
1669 		device_t *newlist, *oldlist;
1670 		int newsize;
1671 
1672 		oldlist = dc->devices;
1673 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1674 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1675 		if (!newlist)
1676 			return (ENOMEM);
1677 		if (oldlist != NULL)
1678 			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1679 		bzero(newlist + dc->maxunit,
1680 		    sizeof(device_t) * (newsize - dc->maxunit));
1681 		dc->devices = newlist;
1682 		dc->maxunit = newsize;
1683 		if (oldlist != NULL)
1684 			free(oldlist, M_BUS);
1685 	}
1686 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1687 
1688 	*unitp = unit;
1689 	return (0);
1690 }
1691 
1692 /**
1693  * @internal
1694  * @brief Add a device to a devclass
1695  *
1696  * A unit number is allocated for the device (using the device's
1697  * preferred unit number if any) and the device is registered in the
1698  * devclass. This allows the device to be looked up by its unit
1699  * number, e.g. by decoding a dev_t minor number.
1700  *
1701  * @param dc		the devclass to add to
1702  * @param dev		the device to add
1703  *
1704  * @retval 0		success
1705  * @retval EEXIST	the requested unit number is already allocated
1706  * @retval ENOMEM	memory allocation failure
1707  */
1708 static int
1709 devclass_add_device(devclass_t dc, device_t dev)
1710 {
1711 	int buflen, error;
1712 
1713 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1714 
1715 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1716 	if (buflen < 0)
1717 		return (ENOMEM);
1718 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1719 	if (!dev->nameunit)
1720 		return (ENOMEM);
1721 
1722 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1723 		free(dev->nameunit, M_BUS);
1724 		dev->nameunit = NULL;
1725 		return (error);
1726 	}
1727 	dc->devices[dev->unit] = dev;
1728 	dev->devclass = dc;
1729 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1730 
1731 	return (0);
1732 }
1733 
1734 /**
1735  * @internal
1736  * @brief Delete a device from a devclass
1737  *
1738  * The device is removed from the devclass's device list and its unit
1739  * number is freed.
1740 
1741  * @param dc		the devclass to delete from
1742  * @param dev		the device to delete
1743  *
1744  * @retval 0		success
1745  */
1746 static int
1747 devclass_delete_device(devclass_t dc, device_t dev)
1748 {
1749 	if (!dc || !dev)
1750 		return (0);
1751 
1752 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1753 
1754 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1755 		panic("devclass_delete_device: inconsistent device class");
1756 	dc->devices[dev->unit] = NULL;
1757 	if (dev->flags & DF_WILDCARD)
1758 		dev->unit = -1;
1759 	dev->devclass = NULL;
1760 	free(dev->nameunit, M_BUS);
1761 	dev->nameunit = NULL;
1762 
1763 	return (0);
1764 }
1765 
1766 /**
1767  * @internal
1768  * @brief Make a new device and add it as a child of @p parent
1769  *
1770  * @param parent	the parent of the new device
1771  * @param name		the devclass name of the new device or @c NULL
1772  *			to leave the devclass unspecified
1773  * @parem unit		the unit number of the new device of @c -1 to
1774  *			leave the unit number unspecified
1775  *
1776  * @returns the new device
1777  */
1778 static device_t
1779 make_device(device_t parent, const char *name, int unit)
1780 {
1781 	device_t dev;
1782 	devclass_t dc;
1783 
1784 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1785 
1786 	if (name) {
1787 		dc = devclass_find_internal(name, NULL, TRUE);
1788 		if (!dc) {
1789 			printf("make_device: can't find device class %s\n",
1790 			    name);
1791 			return (NULL);
1792 		}
1793 	} else {
1794 		dc = NULL;
1795 	}
1796 
1797 	dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO);
1798 	if (!dev)
1799 		return (NULL);
1800 
1801 	dev->parent = parent;
1802 	TAILQ_INIT(&dev->children);
1803 	kobj_init((kobj_t) dev, &null_class);
1804 	dev->driver = NULL;
1805 	dev->devclass = NULL;
1806 	dev->unit = unit;
1807 	dev->nameunit = NULL;
1808 	dev->desc = NULL;
1809 	dev->busy = 0;
1810 	dev->devflags = 0;
1811 	dev->flags = DF_ENABLED;
1812 	dev->order = 0;
1813 	if (unit == -1)
1814 		dev->flags |= DF_WILDCARD;
1815 	if (name) {
1816 		dev->flags |= DF_FIXEDCLASS;
1817 		if (devclass_add_device(dc, dev)) {
1818 			kobj_delete((kobj_t) dev, M_BUS);
1819 			return (NULL);
1820 		}
1821 	}
1822 	if (parent != NULL && device_has_quiet_children(parent))
1823 		dev->flags |= DF_QUIET | DF_QUIET_CHILDREN;
1824 	dev->ivars = NULL;
1825 	dev->softc = NULL;
1826 
1827 	dev->state = DS_NOTPRESENT;
1828 
1829 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1830 	bus_data_generation_update();
1831 
1832 	return (dev);
1833 }
1834 
1835 /**
1836  * @internal
1837  * @brief Print a description of a device.
1838  */
1839 static int
1840 device_print_child(device_t dev, device_t child)
1841 {
1842 	int retval = 0;
1843 
1844 	if (device_is_alive(child))
1845 		retval += BUS_PRINT_CHILD(dev, child);
1846 	else
1847 		retval += device_printf(child, " not found\n");
1848 
1849 	return (retval);
1850 }
1851 
1852 /**
1853  * @brief Create a new device
1854  *
1855  * This creates a new device and adds it as a child of an existing
1856  * parent device. The new device will be added after the last existing
1857  * child with order zero.
1858  *
1859  * @param dev		the device which will be the parent of the
1860  *			new child device
1861  * @param name		devclass name for new device or @c NULL if not
1862  *			specified
1863  * @param unit		unit number for new device or @c -1 if not
1864  *			specified
1865  *
1866  * @returns		the new device
1867  */
1868 device_t
1869 device_add_child(device_t dev, const char *name, int unit)
1870 {
1871 	return (device_add_child_ordered(dev, 0, name, unit));
1872 }
1873 
1874 /**
1875  * @brief Create a new device
1876  *
1877  * This creates a new device and adds it as a child of an existing
1878  * parent device. The new device will be added after the last existing
1879  * child with the same order.
1880  *
1881  * @param dev		the device which will be the parent of the
1882  *			new child device
1883  * @param order		a value which is used to partially sort the
1884  *			children of @p dev - devices created using
1885  *			lower values of @p order appear first in @p
1886  *			dev's list of children
1887  * @param name		devclass name for new device or @c NULL if not
1888  *			specified
1889  * @param unit		unit number for new device or @c -1 if not
1890  *			specified
1891  *
1892  * @returns		the new device
1893  */
1894 device_t
1895 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1896 {
1897 	device_t child;
1898 	device_t place;
1899 
1900 	PDEBUG(("%s at %s with order %u as unit %d",
1901 	    name, DEVICENAME(dev), order, unit));
1902 	KASSERT(name != NULL || unit == -1,
1903 	    ("child device with wildcard name and specific unit number"));
1904 
1905 	child = make_device(dev, name, unit);
1906 	if (child == NULL)
1907 		return (child);
1908 	child->order = order;
1909 
1910 	TAILQ_FOREACH(place, &dev->children, link) {
1911 		if (place->order > order)
1912 			break;
1913 	}
1914 
1915 	if (place) {
1916 		/*
1917 		 * The device 'place' is the first device whose order is
1918 		 * greater than the new child.
1919 		 */
1920 		TAILQ_INSERT_BEFORE(place, child, link);
1921 	} else {
1922 		/*
1923 		 * The new child's order is greater or equal to the order of
1924 		 * any existing device. Add the child to the tail of the list.
1925 		 */
1926 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1927 	}
1928 
1929 	bus_data_generation_update();
1930 	return (child);
1931 }
1932 
1933 /**
1934  * @brief Delete a device
1935  *
1936  * This function deletes a device along with all of its children. If
1937  * the device currently has a driver attached to it, the device is
1938  * detached first using device_detach().
1939  *
1940  * @param dev		the parent device
1941  * @param child		the device to delete
1942  *
1943  * @retval 0		success
1944  * @retval non-zero	a unit error code describing the error
1945  */
1946 int
1947 device_delete_child(device_t dev, device_t child)
1948 {
1949 	int error;
1950 	device_t grandchild;
1951 
1952 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1953 
1954 	/* detach parent before deleting children, if any */
1955 	if ((error = device_detach(child)) != 0)
1956 		return (error);
1957 
1958 	/* remove children second */
1959 	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1960 		error = device_delete_child(child, grandchild);
1961 		if (error)
1962 			return (error);
1963 	}
1964 
1965 	if (child->devclass)
1966 		devclass_delete_device(child->devclass, child);
1967 	if (child->parent)
1968 		BUS_CHILD_DELETED(dev, child);
1969 	TAILQ_REMOVE(&dev->children, child, link);
1970 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1971 	kobj_delete((kobj_t) child, M_BUS);
1972 
1973 	bus_data_generation_update();
1974 	return (0);
1975 }
1976 
1977 /**
1978  * @brief Delete all children devices of the given device, if any.
1979  *
1980  * This function deletes all children devices of the given device, if
1981  * any, using the device_delete_child() function for each device it
1982  * finds. If a child device cannot be deleted, this function will
1983  * return an error code.
1984  *
1985  * @param dev		the parent device
1986  *
1987  * @retval 0		success
1988  * @retval non-zero	a device would not detach
1989  */
1990 int
1991 device_delete_children(device_t dev)
1992 {
1993 	device_t child;
1994 	int error;
1995 
1996 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1997 
1998 	error = 0;
1999 
2000 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
2001 		error = device_delete_child(dev, child);
2002 		if (error) {
2003 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
2004 			break;
2005 		}
2006 	}
2007 	return (error);
2008 }
2009 
2010 /**
2011  * @brief Find a device given a unit number
2012  *
2013  * This is similar to devclass_get_devices() but only searches for
2014  * devices which have @p dev as a parent.
2015  *
2016  * @param dev		the parent device to search
2017  * @param unit		the unit number to search for.  If the unit is -1,
2018  *			return the first child of @p dev which has name
2019  *			@p classname (that is, the one with the lowest unit.)
2020  *
2021  * @returns		the device with the given unit number or @c
2022  *			NULL if there is no such device
2023  */
2024 device_t
2025 device_find_child(device_t dev, const char *classname, int unit)
2026 {
2027 	devclass_t dc;
2028 	device_t child;
2029 
2030 	dc = devclass_find(classname);
2031 	if (!dc)
2032 		return (NULL);
2033 
2034 	if (unit != -1) {
2035 		child = devclass_get_device(dc, unit);
2036 		if (child && child->parent == dev)
2037 			return (child);
2038 	} else {
2039 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
2040 			child = devclass_get_device(dc, unit);
2041 			if (child && child->parent == dev)
2042 				return (child);
2043 		}
2044 	}
2045 	return (NULL);
2046 }
2047 
2048 /**
2049  * @internal
2050  */
2051 static driverlink_t
2052 first_matching_driver(devclass_t dc, device_t dev)
2053 {
2054 	if (dev->devclass)
2055 		return (devclass_find_driver_internal(dc, dev->devclass->name));
2056 	return (TAILQ_FIRST(&dc->drivers));
2057 }
2058 
2059 /**
2060  * @internal
2061  */
2062 static driverlink_t
2063 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
2064 {
2065 	if (dev->devclass) {
2066 		driverlink_t dl;
2067 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
2068 			if (!strcmp(dev->devclass->name, dl->driver->name))
2069 				return (dl);
2070 		return (NULL);
2071 	}
2072 	return (TAILQ_NEXT(last, link));
2073 }
2074 
2075 /**
2076  * @internal
2077  */
2078 int
2079 device_probe_child(device_t dev, device_t child)
2080 {
2081 	devclass_t dc;
2082 	driverlink_t best = NULL;
2083 	driverlink_t dl;
2084 	int result, pri = 0;
2085 	int hasclass = (child->devclass != NULL);
2086 
2087 	GIANT_REQUIRED;
2088 
2089 	dc = dev->devclass;
2090 	if (!dc)
2091 		panic("device_probe_child: parent device has no devclass");
2092 
2093 	/*
2094 	 * If the state is already probed, then return.  However, don't
2095 	 * return if we can rebid this object.
2096 	 */
2097 	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2098 		return (0);
2099 
2100 	for (; dc; dc = dc->parent) {
2101 		for (dl = first_matching_driver(dc, child);
2102 		     dl;
2103 		     dl = next_matching_driver(dc, child, dl)) {
2104 			/* If this driver's pass is too high, then ignore it. */
2105 			if (dl->pass > bus_current_pass)
2106 				continue;
2107 
2108 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2109 			result = device_set_driver(child, dl->driver);
2110 			if (result == ENOMEM)
2111 				return (result);
2112 			else if (result != 0)
2113 				continue;
2114 			if (!hasclass) {
2115 				if (device_set_devclass(child,
2116 				    dl->driver->name) != 0) {
2117 					char const * devname =
2118 					    device_get_name(child);
2119 					if (devname == NULL)
2120 						devname = "(unknown)";
2121 					printf("driver bug: Unable to set "
2122 					    "devclass (class: %s "
2123 					    "devname: %s)\n",
2124 					    dl->driver->name,
2125 					    devname);
2126 					(void)device_set_driver(child, NULL);
2127 					continue;
2128 				}
2129 			}
2130 
2131 			/* Fetch any flags for the device before probing. */
2132 			resource_int_value(dl->driver->name, child->unit,
2133 			    "flags", &child->devflags);
2134 
2135 			result = DEVICE_PROBE(child);
2136 
2137 			/* Reset flags and devclass before the next probe. */
2138 			child->devflags = 0;
2139 			if (!hasclass)
2140 				(void)device_set_devclass(child, NULL);
2141 
2142 			/*
2143 			 * If the driver returns SUCCESS, there can be
2144 			 * no higher match for this device.
2145 			 */
2146 			if (result == 0) {
2147 				best = dl;
2148 				pri = 0;
2149 				break;
2150 			}
2151 
2152 			/*
2153 			 * Reset DF_QUIET in case this driver doesn't
2154 			 * end up as the best driver.
2155 			 */
2156 			device_verbose(child);
2157 
2158 			/*
2159 			 * Probes that return BUS_PROBE_NOWILDCARD or lower
2160 			 * only match on devices whose driver was explicitly
2161 			 * specified.
2162 			 */
2163 			if (result <= BUS_PROBE_NOWILDCARD &&
2164 			    !(child->flags & DF_FIXEDCLASS)) {
2165 				result = ENXIO;
2166 			}
2167 
2168 			/*
2169 			 * The driver returned an error so it
2170 			 * certainly doesn't match.
2171 			 */
2172 			if (result > 0) {
2173 				(void)device_set_driver(child, NULL);
2174 				continue;
2175 			}
2176 
2177 			/*
2178 			 * A priority lower than SUCCESS, remember the
2179 			 * best matching driver. Initialise the value
2180 			 * of pri for the first match.
2181 			 */
2182 			if (best == NULL || result > pri) {
2183 				best = dl;
2184 				pri = result;
2185 				continue;
2186 			}
2187 		}
2188 		/*
2189 		 * If we have an unambiguous match in this devclass,
2190 		 * don't look in the parent.
2191 		 */
2192 		if (best && pri == 0)
2193 			break;
2194 	}
2195 
2196 	/*
2197 	 * If we found a driver, change state and initialise the devclass.
2198 	 */
2199 	/* XXX What happens if we rebid and got no best? */
2200 	if (best) {
2201 		/*
2202 		 * If this device was attached, and we were asked to
2203 		 * rescan, and it is a different driver, then we have
2204 		 * to detach the old driver and reattach this new one.
2205 		 * Note, we don't have to check for DF_REBID here
2206 		 * because if the state is > DS_ALIVE, we know it must
2207 		 * be.
2208 		 *
2209 		 * This assumes that all DF_REBID drivers can have
2210 		 * their probe routine called at any time and that
2211 		 * they are idempotent as well as completely benign in
2212 		 * normal operations.
2213 		 *
2214 		 * We also have to make sure that the detach
2215 		 * succeeded, otherwise we fail the operation (or
2216 		 * maybe it should just fail silently?  I'm torn).
2217 		 */
2218 		if (child->state > DS_ALIVE && best->driver != child->driver)
2219 			if ((result = device_detach(dev)) != 0)
2220 				return (result);
2221 
2222 		/* Set the winning driver, devclass, and flags. */
2223 		if (!child->devclass) {
2224 			result = device_set_devclass(child, best->driver->name);
2225 			if (result != 0)
2226 				return (result);
2227 		}
2228 		result = device_set_driver(child, best->driver);
2229 		if (result != 0)
2230 			return (result);
2231 		resource_int_value(best->driver->name, child->unit,
2232 		    "flags", &child->devflags);
2233 
2234 		if (pri < 0) {
2235 			/*
2236 			 * A bit bogus. Call the probe method again to make
2237 			 * sure that we have the right description.
2238 			 */
2239 			DEVICE_PROBE(child);
2240 #if 0
2241 			child->flags |= DF_REBID;
2242 #endif
2243 		} else
2244 			child->flags &= ~DF_REBID;
2245 		child->state = DS_ALIVE;
2246 
2247 		bus_data_generation_update();
2248 		return (0);
2249 	}
2250 
2251 	return (ENXIO);
2252 }
2253 
2254 /**
2255  * @brief Return the parent of a device
2256  */
2257 device_t
2258 device_get_parent(device_t dev)
2259 {
2260 	return (dev->parent);
2261 }
2262 
2263 /**
2264  * @brief Get a list of children of a device
2265  *
2266  * An array containing a list of all the children of the given device
2267  * is allocated and returned in @p *devlistp. The number of devices
2268  * in the array is returned in @p *devcountp. The caller should free
2269  * the array using @c free(p, M_TEMP).
2270  *
2271  * @param dev		the device to examine
2272  * @param devlistp	points at location for array pointer return
2273  *			value
2274  * @param devcountp	points at location for array size return value
2275  *
2276  * @retval 0		success
2277  * @retval ENOMEM	the array allocation failed
2278  */
2279 int
2280 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2281 {
2282 	int count;
2283 	device_t child;
2284 	device_t *list;
2285 
2286 	count = 0;
2287 	TAILQ_FOREACH(child, &dev->children, link) {
2288 		count++;
2289 	}
2290 	if (count == 0) {
2291 		*devlistp = NULL;
2292 		*devcountp = 0;
2293 		return (0);
2294 	}
2295 
2296 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2297 	if (!list)
2298 		return (ENOMEM);
2299 
2300 	count = 0;
2301 	TAILQ_FOREACH(child, &dev->children, link) {
2302 		list[count] = child;
2303 		count++;
2304 	}
2305 
2306 	*devlistp = list;
2307 	*devcountp = count;
2308 
2309 	return (0);
2310 }
2311 
2312 /**
2313  * @brief Return the current driver for the device or @c NULL if there
2314  * is no driver currently attached
2315  */
2316 driver_t *
2317 device_get_driver(device_t dev)
2318 {
2319 	return (dev->driver);
2320 }
2321 
2322 /**
2323  * @brief Return the current devclass for the device or @c NULL if
2324  * there is none.
2325  */
2326 devclass_t
2327 device_get_devclass(device_t dev)
2328 {
2329 	return (dev->devclass);
2330 }
2331 
2332 /**
2333  * @brief Return the name of the device's devclass or @c NULL if there
2334  * is none.
2335  */
2336 const char *
2337 device_get_name(device_t dev)
2338 {
2339 	if (dev != NULL && dev->devclass)
2340 		return (devclass_get_name(dev->devclass));
2341 	return (NULL);
2342 }
2343 
2344 /**
2345  * @brief Return a string containing the device's devclass name
2346  * followed by an ascii representation of the device's unit number
2347  * (e.g. @c "foo2").
2348  */
2349 const char *
2350 device_get_nameunit(device_t dev)
2351 {
2352 	return (dev->nameunit);
2353 }
2354 
2355 /**
2356  * @brief Return the device's unit number.
2357  */
2358 int
2359 device_get_unit(device_t dev)
2360 {
2361 	return (dev->unit);
2362 }
2363 
2364 /**
2365  * @brief Return the device's description string
2366  */
2367 const char *
2368 device_get_desc(device_t dev)
2369 {
2370 	return (dev->desc);
2371 }
2372 
2373 /**
2374  * @brief Return the device's flags
2375  */
2376 uint32_t
2377 device_get_flags(device_t dev)
2378 {
2379 	return (dev->devflags);
2380 }
2381 
2382 struct sysctl_ctx_list *
2383 device_get_sysctl_ctx(device_t dev)
2384 {
2385 	return (&dev->sysctl_ctx);
2386 }
2387 
2388 struct sysctl_oid *
2389 device_get_sysctl_tree(device_t dev)
2390 {
2391 	return (dev->sysctl_tree);
2392 }
2393 
2394 /**
2395  * @brief Print the name of the device followed by a colon and a space
2396  *
2397  * @returns the number of characters printed
2398  */
2399 int
2400 device_print_prettyname(device_t dev)
2401 {
2402 	const char *name = device_get_name(dev);
2403 
2404 	if (name == NULL)
2405 		return (printf("unknown: "));
2406 	return (printf("%s%d: ", name, device_get_unit(dev)));
2407 }
2408 
2409 /**
2410  * @brief Print the name of the device followed by a colon, a space
2411  * and the result of calling vprintf() with the value of @p fmt and
2412  * the following arguments.
2413  *
2414  * @returns the number of characters printed
2415  */
2416 int
2417 device_printf(device_t dev, const char * fmt, ...)
2418 {
2419 	va_list ap;
2420 	int retval;
2421 
2422 	retval = device_print_prettyname(dev);
2423 	va_start(ap, fmt);
2424 	retval += vprintf(fmt, ap);
2425 	va_end(ap);
2426 	return (retval);
2427 }
2428 
2429 /**
2430  * @internal
2431  */
2432 static void
2433 device_set_desc_internal(device_t dev, const char* desc, int copy)
2434 {
2435 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2436 		free(dev->desc, M_BUS);
2437 		dev->flags &= ~DF_DESCMALLOCED;
2438 		dev->desc = NULL;
2439 	}
2440 
2441 	if (copy && desc) {
2442 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2443 		if (dev->desc) {
2444 			strcpy(dev->desc, desc);
2445 			dev->flags |= DF_DESCMALLOCED;
2446 		}
2447 	} else {
2448 		/* Avoid a -Wcast-qual warning */
2449 		dev->desc = (char *)(uintptr_t) desc;
2450 	}
2451 
2452 	bus_data_generation_update();
2453 }
2454 
2455 /**
2456  * @brief Set the device's description
2457  *
2458  * The value of @c desc should be a string constant that will not
2459  * change (at least until the description is changed in a subsequent
2460  * call to device_set_desc() or device_set_desc_copy()).
2461  */
2462 void
2463 device_set_desc(device_t dev, const char* desc)
2464 {
2465 	device_set_desc_internal(dev, desc, FALSE);
2466 }
2467 
2468 /**
2469  * @brief Set the device's description
2470  *
2471  * The string pointed to by @c desc is copied. Use this function if
2472  * the device description is generated, (e.g. with sprintf()).
2473  */
2474 void
2475 device_set_desc_copy(device_t dev, const char* desc)
2476 {
2477 	device_set_desc_internal(dev, desc, TRUE);
2478 }
2479 
2480 /**
2481  * @brief Set the device's flags
2482  */
2483 void
2484 device_set_flags(device_t dev, uint32_t flags)
2485 {
2486 	dev->devflags = flags;
2487 }
2488 
2489 /**
2490  * @brief Return the device's softc field
2491  *
2492  * The softc is allocated and zeroed when a driver is attached, based
2493  * on the size field of the driver.
2494  */
2495 void *
2496 device_get_softc(device_t dev)
2497 {
2498 	return (dev->softc);
2499 }
2500 
2501 /**
2502  * @brief Set the device's softc field
2503  *
2504  * Most drivers do not need to use this since the softc is allocated
2505  * automatically when the driver is attached.
2506  */
2507 void
2508 device_set_softc(device_t dev, void *softc)
2509 {
2510 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2511 		free(dev->softc, M_BUS_SC);
2512 	dev->softc = softc;
2513 	if (dev->softc)
2514 		dev->flags |= DF_EXTERNALSOFTC;
2515 	else
2516 		dev->flags &= ~DF_EXTERNALSOFTC;
2517 }
2518 
2519 /**
2520  * @brief Free claimed softc
2521  *
2522  * Most drivers do not need to use this since the softc is freed
2523  * automatically when the driver is detached.
2524  */
2525 void
2526 device_free_softc(void *softc)
2527 {
2528 	free(softc, M_BUS_SC);
2529 }
2530 
2531 /**
2532  * @brief Claim softc
2533  *
2534  * This function can be used to let the driver free the automatically
2535  * allocated softc using "device_free_softc()". This function is
2536  * useful when the driver is refcounting the softc and the softc
2537  * cannot be freed when the "device_detach" method is called.
2538  */
2539 void
2540 device_claim_softc(device_t dev)
2541 {
2542 	if (dev->softc)
2543 		dev->flags |= DF_EXTERNALSOFTC;
2544 	else
2545 		dev->flags &= ~DF_EXTERNALSOFTC;
2546 }
2547 
2548 /**
2549  * @brief Get the device's ivars field
2550  *
2551  * The ivars field is used by the parent device to store per-device
2552  * state (e.g. the physical location of the device or a list of
2553  * resources).
2554  */
2555 void *
2556 device_get_ivars(device_t dev)
2557 {
2558 
2559 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2560 	return (dev->ivars);
2561 }
2562 
2563 /**
2564  * @brief Set the device's ivars field
2565  */
2566 void
2567 device_set_ivars(device_t dev, void * ivars)
2568 {
2569 
2570 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2571 	dev->ivars = ivars;
2572 }
2573 
2574 /**
2575  * @brief Return the device's state
2576  */
2577 device_state_t
2578 device_get_state(device_t dev)
2579 {
2580 	return (dev->state);
2581 }
2582 
2583 /**
2584  * @brief Set the DF_ENABLED flag for the device
2585  */
2586 void
2587 device_enable(device_t dev)
2588 {
2589 	dev->flags |= DF_ENABLED;
2590 }
2591 
2592 /**
2593  * @brief Clear the DF_ENABLED flag for the device
2594  */
2595 void
2596 device_disable(device_t dev)
2597 {
2598 	dev->flags &= ~DF_ENABLED;
2599 }
2600 
2601 /**
2602  * @brief Increment the busy counter for the device
2603  */
2604 void
2605 device_busy(device_t dev)
2606 {
2607 	if (dev->state < DS_ATTACHING)
2608 		panic("device_busy: called for unattached device");
2609 	if (dev->busy == 0 && dev->parent)
2610 		device_busy(dev->parent);
2611 	dev->busy++;
2612 	if (dev->state == DS_ATTACHED)
2613 		dev->state = DS_BUSY;
2614 }
2615 
2616 /**
2617  * @brief Decrement the busy counter for the device
2618  */
2619 void
2620 device_unbusy(device_t dev)
2621 {
2622 	if (dev->busy != 0 && dev->state != DS_BUSY &&
2623 	    dev->state != DS_ATTACHING)
2624 		panic("device_unbusy: called for non-busy device %s",
2625 		    device_get_nameunit(dev));
2626 	dev->busy--;
2627 	if (dev->busy == 0) {
2628 		if (dev->parent)
2629 			device_unbusy(dev->parent);
2630 		if (dev->state == DS_BUSY)
2631 			dev->state = DS_ATTACHED;
2632 	}
2633 }
2634 
2635 /**
2636  * @brief Set the DF_QUIET flag for the device
2637  */
2638 void
2639 device_quiet(device_t dev)
2640 {
2641 	dev->flags |= DF_QUIET;
2642 }
2643 
2644 /**
2645  * @brief Set the DF_QUIET_CHILDREN flag for the device
2646  */
2647 void
2648 device_quiet_children(device_t dev)
2649 {
2650 	dev->flags |= DF_QUIET_CHILDREN;
2651 }
2652 
2653 /**
2654  * @brief Clear the DF_QUIET flag for the device
2655  */
2656 void
2657 device_verbose(device_t dev)
2658 {
2659 	dev->flags &= ~DF_QUIET;
2660 }
2661 
2662 /**
2663  * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device
2664  */
2665 int
2666 device_has_quiet_children(device_t dev)
2667 {
2668 	return ((dev->flags & DF_QUIET_CHILDREN) != 0);
2669 }
2670 
2671 /**
2672  * @brief Return non-zero if the DF_QUIET flag is set on the device
2673  */
2674 int
2675 device_is_quiet(device_t dev)
2676 {
2677 	return ((dev->flags & DF_QUIET) != 0);
2678 }
2679 
2680 /**
2681  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2682  */
2683 int
2684 device_is_enabled(device_t dev)
2685 {
2686 	return ((dev->flags & DF_ENABLED) != 0);
2687 }
2688 
2689 /**
2690  * @brief Return non-zero if the device was successfully probed
2691  */
2692 int
2693 device_is_alive(device_t dev)
2694 {
2695 	return (dev->state >= DS_ALIVE);
2696 }
2697 
2698 /**
2699  * @brief Return non-zero if the device currently has a driver
2700  * attached to it
2701  */
2702 int
2703 device_is_attached(device_t dev)
2704 {
2705 	return (dev->state >= DS_ATTACHED);
2706 }
2707 
2708 /**
2709  * @brief Return non-zero if the device is currently suspended.
2710  */
2711 int
2712 device_is_suspended(device_t dev)
2713 {
2714 	return ((dev->flags & DF_SUSPENDED) != 0);
2715 }
2716 
2717 /**
2718  * @brief Set the devclass of a device
2719  * @see devclass_add_device().
2720  */
2721 int
2722 device_set_devclass(device_t dev, const char *classname)
2723 {
2724 	devclass_t dc;
2725 	int error;
2726 
2727 	if (!classname) {
2728 		if (dev->devclass)
2729 			devclass_delete_device(dev->devclass, dev);
2730 		return (0);
2731 	}
2732 
2733 	if (dev->devclass) {
2734 		printf("device_set_devclass: device class already set\n");
2735 		return (EINVAL);
2736 	}
2737 
2738 	dc = devclass_find_internal(classname, NULL, TRUE);
2739 	if (!dc)
2740 		return (ENOMEM);
2741 
2742 	error = devclass_add_device(dc, dev);
2743 
2744 	bus_data_generation_update();
2745 	return (error);
2746 }
2747 
2748 /**
2749  * @brief Set the devclass of a device and mark the devclass fixed.
2750  * @see device_set_devclass()
2751  */
2752 int
2753 device_set_devclass_fixed(device_t dev, const char *classname)
2754 {
2755 	int error;
2756 
2757 	if (classname == NULL)
2758 		return (EINVAL);
2759 
2760 	error = device_set_devclass(dev, classname);
2761 	if (error)
2762 		return (error);
2763 	dev->flags |= DF_FIXEDCLASS;
2764 	return (0);
2765 }
2766 
2767 /**
2768  * @brief Set the driver of a device
2769  *
2770  * @retval 0		success
2771  * @retval EBUSY	the device already has a driver attached
2772  * @retval ENOMEM	a memory allocation failure occurred
2773  */
2774 int
2775 device_set_driver(device_t dev, driver_t *driver)
2776 {
2777 	if (dev->state >= DS_ATTACHED)
2778 		return (EBUSY);
2779 
2780 	if (dev->driver == driver)
2781 		return (0);
2782 
2783 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2784 		free(dev->softc, M_BUS_SC);
2785 		dev->softc = NULL;
2786 	}
2787 	device_set_desc(dev, NULL);
2788 	kobj_delete((kobj_t) dev, NULL);
2789 	dev->driver = driver;
2790 	if (driver) {
2791 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2792 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2793 			dev->softc = malloc(driver->size, M_BUS_SC,
2794 			    M_NOWAIT | M_ZERO);
2795 			if (!dev->softc) {
2796 				kobj_delete((kobj_t) dev, NULL);
2797 				kobj_init((kobj_t) dev, &null_class);
2798 				dev->driver = NULL;
2799 				return (ENOMEM);
2800 			}
2801 		}
2802 	} else {
2803 		kobj_init((kobj_t) dev, &null_class);
2804 	}
2805 
2806 	bus_data_generation_update();
2807 	return (0);
2808 }
2809 
2810 /**
2811  * @brief Probe a device, and return this status.
2812  *
2813  * This function is the core of the device autoconfiguration
2814  * system. Its purpose is to select a suitable driver for a device and
2815  * then call that driver to initialise the hardware appropriately. The
2816  * driver is selected by calling the DEVICE_PROBE() method of a set of
2817  * candidate drivers and then choosing the driver which returned the
2818  * best value. This driver is then attached to the device using
2819  * device_attach().
2820  *
2821  * The set of suitable drivers is taken from the list of drivers in
2822  * the parent device's devclass. If the device was originally created
2823  * with a specific class name (see device_add_child()), only drivers
2824  * with that name are probed, otherwise all drivers in the devclass
2825  * are probed. If no drivers return successful probe values in the
2826  * parent devclass, the search continues in the parent of that
2827  * devclass (see devclass_get_parent()) if any.
2828  *
2829  * @param dev		the device to initialise
2830  *
2831  * @retval 0		success
2832  * @retval ENXIO	no driver was found
2833  * @retval ENOMEM	memory allocation failure
2834  * @retval non-zero	some other unix error code
2835  * @retval -1		Device already attached
2836  */
2837 int
2838 device_probe(device_t dev)
2839 {
2840 	int error;
2841 
2842 	GIANT_REQUIRED;
2843 
2844 	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2845 		return (-1);
2846 
2847 	if (!(dev->flags & DF_ENABLED)) {
2848 		if (bootverbose && device_get_name(dev) != NULL) {
2849 			device_print_prettyname(dev);
2850 			printf("not probed (disabled)\n");
2851 		}
2852 		return (-1);
2853 	}
2854 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2855 		if (bus_current_pass == BUS_PASS_DEFAULT &&
2856 		    !(dev->flags & DF_DONENOMATCH)) {
2857 			BUS_PROBE_NOMATCH(dev->parent, dev);
2858 			devnomatch(dev);
2859 			dev->flags |= DF_DONENOMATCH;
2860 		}
2861 		return (error);
2862 	}
2863 	return (0);
2864 }
2865 
2866 /**
2867  * @brief Probe a device and attach a driver if possible
2868  *
2869  * calls device_probe() and attaches if that was successful.
2870  */
2871 int
2872 device_probe_and_attach(device_t dev)
2873 {
2874 	int error;
2875 
2876 	GIANT_REQUIRED;
2877 
2878 	error = device_probe(dev);
2879 	if (error == -1)
2880 		return (0);
2881 	else if (error != 0)
2882 		return (error);
2883 
2884 	CURVNET_SET_QUIET(vnet0);
2885 	error = device_attach(dev);
2886 	CURVNET_RESTORE();
2887 	return error;
2888 }
2889 
2890 /**
2891  * @brief Attach a device driver to a device
2892  *
2893  * This function is a wrapper around the DEVICE_ATTACH() driver
2894  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2895  * device's sysctl tree, optionally prints a description of the device
2896  * and queues a notification event for user-based device management
2897  * services.
2898  *
2899  * Normally this function is only called internally from
2900  * device_probe_and_attach().
2901  *
2902  * @param dev		the device to initialise
2903  *
2904  * @retval 0		success
2905  * @retval ENXIO	no driver was found
2906  * @retval ENOMEM	memory allocation failure
2907  * @retval non-zero	some other unix error code
2908  */
2909 int
2910 device_attach(device_t dev)
2911 {
2912 	uint64_t attachtime;
2913 	int error;
2914 
2915 	if (resource_disabled(dev->driver->name, dev->unit)) {
2916 		device_disable(dev);
2917 		if (bootverbose)
2918 			 device_printf(dev, "disabled via hints entry\n");
2919 		return (ENXIO);
2920 	}
2921 
2922 	device_sysctl_init(dev);
2923 	if (!device_is_quiet(dev))
2924 		device_print_child(dev->parent, dev);
2925 	attachtime = get_cyclecount();
2926 	dev->state = DS_ATTACHING;
2927 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2928 		printf("device_attach: %s%d attach returned %d\n",
2929 		    dev->driver->name, dev->unit, error);
2930 		if (!(dev->flags & DF_FIXEDCLASS))
2931 			devclass_delete_device(dev->devclass, dev);
2932 		(void)device_set_driver(dev, NULL);
2933 		device_sysctl_fini(dev);
2934 		KASSERT(dev->busy == 0, ("attach failed but busy"));
2935 		dev->state = DS_NOTPRESENT;
2936 		return (error);
2937 	}
2938 	attachtime = get_cyclecount() - attachtime;
2939 	/*
2940 	 * 4 bits per device is a reasonable value for desktop and server
2941 	 * hardware with good get_cyclecount() implementations, but WILL
2942 	 * need to be adjusted on other platforms.
2943 	 */
2944 #define	RANDOM_PROBE_BIT_GUESS	4
2945 	if (bootverbose)
2946 		printf("random: harvesting attach, %zu bytes (%d bits) from %s%d\n",
2947 		    sizeof(attachtime), RANDOM_PROBE_BIT_GUESS,
2948 		    dev->driver->name, dev->unit);
2949 	random_harvest_direct(&attachtime, sizeof(attachtime),
2950 	    RANDOM_PROBE_BIT_GUESS, RANDOM_ATTACH);
2951 	device_sysctl_update(dev);
2952 	if (dev->busy)
2953 		dev->state = DS_BUSY;
2954 	else
2955 		dev->state = DS_ATTACHED;
2956 	dev->flags &= ~DF_DONENOMATCH;
2957 	EVENTHANDLER_DIRECT_INVOKE(device_attach, dev);
2958 	devadded(dev);
2959 	return (0);
2960 }
2961 
2962 /**
2963  * @brief Detach a driver from a device
2964  *
2965  * This function is a wrapper around the DEVICE_DETACH() driver
2966  * method. If the call to DEVICE_DETACH() succeeds, it calls
2967  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2968  * notification event for user-based device management services and
2969  * cleans up the device's sysctl tree.
2970  *
2971  * @param dev		the device to un-initialise
2972  *
2973  * @retval 0		success
2974  * @retval ENXIO	no driver was found
2975  * @retval ENOMEM	memory allocation failure
2976  * @retval non-zero	some other unix error code
2977  */
2978 int
2979 device_detach(device_t dev)
2980 {
2981 	int error;
2982 
2983 	GIANT_REQUIRED;
2984 
2985 	PDEBUG(("%s", DEVICENAME(dev)));
2986 	if (dev->state == DS_BUSY)
2987 		return (EBUSY);
2988 	if (dev->state != DS_ATTACHED)
2989 		return (0);
2990 
2991 	EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN);
2992 	if ((error = DEVICE_DETACH(dev)) != 0) {
2993 		EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
2994 		    EVHDEV_DETACH_FAILED);
2995 		return (error);
2996 	} else {
2997 		EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
2998 		    EVHDEV_DETACH_COMPLETE);
2999 	}
3000 	devremoved(dev);
3001 	if (!device_is_quiet(dev))
3002 		device_printf(dev, "detached\n");
3003 	if (dev->parent)
3004 		BUS_CHILD_DETACHED(dev->parent, dev);
3005 
3006 	if (!(dev->flags & DF_FIXEDCLASS))
3007 		devclass_delete_device(dev->devclass, dev);
3008 
3009 	device_verbose(dev);
3010 	dev->state = DS_NOTPRESENT;
3011 	(void)device_set_driver(dev, NULL);
3012 	device_sysctl_fini(dev);
3013 
3014 	return (0);
3015 }
3016 
3017 /**
3018  * @brief Tells a driver to quiesce itself.
3019  *
3020  * This function is a wrapper around the DEVICE_QUIESCE() driver
3021  * method. If the call to DEVICE_QUIESCE() succeeds.
3022  *
3023  * @param dev		the device to quiesce
3024  *
3025  * @retval 0		success
3026  * @retval ENXIO	no driver was found
3027  * @retval ENOMEM	memory allocation failure
3028  * @retval non-zero	some other unix error code
3029  */
3030 int
3031 device_quiesce(device_t dev)
3032 {
3033 
3034 	PDEBUG(("%s", DEVICENAME(dev)));
3035 	if (dev->state == DS_BUSY)
3036 		return (EBUSY);
3037 	if (dev->state != DS_ATTACHED)
3038 		return (0);
3039 
3040 	return (DEVICE_QUIESCE(dev));
3041 }
3042 
3043 /**
3044  * @brief Notify a device of system shutdown
3045  *
3046  * This function calls the DEVICE_SHUTDOWN() driver method if the
3047  * device currently has an attached driver.
3048  *
3049  * @returns the value returned by DEVICE_SHUTDOWN()
3050  */
3051 int
3052 device_shutdown(device_t dev)
3053 {
3054 	if (dev->state < DS_ATTACHED)
3055 		return (0);
3056 	return (DEVICE_SHUTDOWN(dev));
3057 }
3058 
3059 /**
3060  * @brief Set the unit number of a device
3061  *
3062  * This function can be used to override the unit number used for a
3063  * device (e.g. to wire a device to a pre-configured unit number).
3064  */
3065 int
3066 device_set_unit(device_t dev, int unit)
3067 {
3068 	devclass_t dc;
3069 	int err;
3070 
3071 	dc = device_get_devclass(dev);
3072 	if (unit < dc->maxunit && dc->devices[unit])
3073 		return (EBUSY);
3074 	err = devclass_delete_device(dc, dev);
3075 	if (err)
3076 		return (err);
3077 	dev->unit = unit;
3078 	err = devclass_add_device(dc, dev);
3079 	if (err)
3080 		return (err);
3081 
3082 	bus_data_generation_update();
3083 	return (0);
3084 }
3085 
3086 /*======================================*/
3087 /*
3088  * Some useful method implementations to make life easier for bus drivers.
3089  */
3090 
3091 void
3092 resource_init_map_request_impl(struct resource_map_request *args, size_t sz)
3093 {
3094 
3095 	bzero(args, sz);
3096 	args->size = sz;
3097 	args->memattr = VM_MEMATTR_UNCACHEABLE;
3098 }
3099 
3100 /**
3101  * @brief Initialise a resource list.
3102  *
3103  * @param rl		the resource list to initialise
3104  */
3105 void
3106 resource_list_init(struct resource_list *rl)
3107 {
3108 	STAILQ_INIT(rl);
3109 }
3110 
3111 /**
3112  * @brief Reclaim memory used by a resource list.
3113  *
3114  * This function frees the memory for all resource entries on the list
3115  * (if any).
3116  *
3117  * @param rl		the resource list to free
3118  */
3119 void
3120 resource_list_free(struct resource_list *rl)
3121 {
3122 	struct resource_list_entry *rle;
3123 
3124 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3125 		if (rle->res)
3126 			panic("resource_list_free: resource entry is busy");
3127 		STAILQ_REMOVE_HEAD(rl, link);
3128 		free(rle, M_BUS);
3129 	}
3130 }
3131 
3132 /**
3133  * @brief Add a resource entry.
3134  *
3135  * This function adds a resource entry using the given @p type, @p
3136  * start, @p end and @p count values. A rid value is chosen by
3137  * searching sequentially for the first unused rid starting at zero.
3138  *
3139  * @param rl		the resource list to edit
3140  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3141  * @param start		the start address of the resource
3142  * @param end		the end address of the resource
3143  * @param count		XXX end-start+1
3144  */
3145 int
3146 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start,
3147     rman_res_t end, rman_res_t count)
3148 {
3149 	int rid;
3150 
3151 	rid = 0;
3152 	while (resource_list_find(rl, type, rid) != NULL)
3153 		rid++;
3154 	resource_list_add(rl, type, rid, start, end, count);
3155 	return (rid);
3156 }
3157 
3158 /**
3159  * @brief Add or modify a resource entry.
3160  *
3161  * If an existing entry exists with the same type and rid, it will be
3162  * modified using the given values of @p start, @p end and @p
3163  * count. If no entry exists, a new one will be created using the
3164  * given values.  The resource list entry that matches is then returned.
3165  *
3166  * @param rl		the resource list to edit
3167  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3168  * @param rid		the resource identifier
3169  * @param start		the start address of the resource
3170  * @param end		the end address of the resource
3171  * @param count		XXX end-start+1
3172  */
3173 struct resource_list_entry *
3174 resource_list_add(struct resource_list *rl, int type, int rid,
3175     rman_res_t start, rman_res_t end, rman_res_t count)
3176 {
3177 	struct resource_list_entry *rle;
3178 
3179 	rle = resource_list_find(rl, type, rid);
3180 	if (!rle) {
3181 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
3182 		    M_NOWAIT);
3183 		if (!rle)
3184 			panic("resource_list_add: can't record entry");
3185 		STAILQ_INSERT_TAIL(rl, rle, link);
3186 		rle->type = type;
3187 		rle->rid = rid;
3188 		rle->res = NULL;
3189 		rle->flags = 0;
3190 	}
3191 
3192 	if (rle->res)
3193 		panic("resource_list_add: resource entry is busy");
3194 
3195 	rle->start = start;
3196 	rle->end = end;
3197 	rle->count = count;
3198 	return (rle);
3199 }
3200 
3201 /**
3202  * @brief Determine if a resource entry is busy.
3203  *
3204  * Returns true if a resource entry is busy meaning that it has an
3205  * associated resource that is not an unallocated "reserved" resource.
3206  *
3207  * @param rl		the resource list to search
3208  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3209  * @param rid		the resource identifier
3210  *
3211  * @returns Non-zero if the entry is busy, zero otherwise.
3212  */
3213 int
3214 resource_list_busy(struct resource_list *rl, int type, int rid)
3215 {
3216 	struct resource_list_entry *rle;
3217 
3218 	rle = resource_list_find(rl, type, rid);
3219 	if (rle == NULL || rle->res == NULL)
3220 		return (0);
3221 	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3222 		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3223 		    ("reserved resource is active"));
3224 		return (0);
3225 	}
3226 	return (1);
3227 }
3228 
3229 /**
3230  * @brief Determine if a resource entry is reserved.
3231  *
3232  * Returns true if a resource entry is reserved meaning that it has an
3233  * associated "reserved" resource.  The resource can either be
3234  * allocated or unallocated.
3235  *
3236  * @param rl		the resource list to search
3237  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3238  * @param rid		the resource identifier
3239  *
3240  * @returns Non-zero if the entry is reserved, zero otherwise.
3241  */
3242 int
3243 resource_list_reserved(struct resource_list *rl, int type, int rid)
3244 {
3245 	struct resource_list_entry *rle;
3246 
3247 	rle = resource_list_find(rl, type, rid);
3248 	if (rle != NULL && rle->flags & RLE_RESERVED)
3249 		return (1);
3250 	return (0);
3251 }
3252 
3253 /**
3254  * @brief Find a resource entry by type and rid.
3255  *
3256  * @param rl		the resource list to search
3257  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3258  * @param rid		the resource identifier
3259  *
3260  * @returns the resource entry pointer or NULL if there is no such
3261  * entry.
3262  */
3263 struct resource_list_entry *
3264 resource_list_find(struct resource_list *rl, int type, int rid)
3265 {
3266 	struct resource_list_entry *rle;
3267 
3268 	STAILQ_FOREACH(rle, rl, link) {
3269 		if (rle->type == type && rle->rid == rid)
3270 			return (rle);
3271 	}
3272 	return (NULL);
3273 }
3274 
3275 /**
3276  * @brief Delete a resource entry.
3277  *
3278  * @param rl		the resource list to edit
3279  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3280  * @param rid		the resource identifier
3281  */
3282 void
3283 resource_list_delete(struct resource_list *rl, int type, int rid)
3284 {
3285 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3286 
3287 	if (rle) {
3288 		if (rle->res != NULL)
3289 			panic("resource_list_delete: resource has not been released");
3290 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3291 		free(rle, M_BUS);
3292 	}
3293 }
3294 
3295 /**
3296  * @brief Allocate a reserved resource
3297  *
3298  * This can be used by buses to force the allocation of resources
3299  * that are always active in the system even if they are not allocated
3300  * by a driver (e.g. PCI BARs).  This function is usually called when
3301  * adding a new child to the bus.  The resource is allocated from the
3302  * parent bus when it is reserved.  The resource list entry is marked
3303  * with RLE_RESERVED to note that it is a reserved resource.
3304  *
3305  * Subsequent attempts to allocate the resource with
3306  * resource_list_alloc() will succeed the first time and will set
3307  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3308  * resource that has been allocated is released with
3309  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3310  * the actual resource remains allocated.  The resource can be released to
3311  * the parent bus by calling resource_list_unreserve().
3312  *
3313  * @param rl		the resource list to allocate from
3314  * @param bus		the parent device of @p child
3315  * @param child		the device for which the resource is being reserved
3316  * @param type		the type of resource to allocate
3317  * @param rid		a pointer to the resource identifier
3318  * @param start		hint at the start of the resource range - pass
3319  *			@c 0 for any start address
3320  * @param end		hint at the end of the resource range - pass
3321  *			@c ~0 for any end address
3322  * @param count		hint at the size of range required - pass @c 1
3323  *			for any size
3324  * @param flags		any extra flags to control the resource
3325  *			allocation - see @c RF_XXX flags in
3326  *			<sys/rman.h> for details
3327  *
3328  * @returns		the resource which was allocated or @c NULL if no
3329  *			resource could be allocated
3330  */
3331 struct resource *
3332 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3333     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3334 {
3335 	struct resource_list_entry *rle = NULL;
3336 	int passthrough = (device_get_parent(child) != bus);
3337 	struct resource *r;
3338 
3339 	if (passthrough)
3340 		panic(
3341     "resource_list_reserve() should only be called for direct children");
3342 	if (flags & RF_ACTIVE)
3343 		panic(
3344     "resource_list_reserve() should only reserve inactive resources");
3345 
3346 	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3347 	    flags);
3348 	if (r != NULL) {
3349 		rle = resource_list_find(rl, type, *rid);
3350 		rle->flags |= RLE_RESERVED;
3351 	}
3352 	return (r);
3353 }
3354 
3355 /**
3356  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3357  *
3358  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3359  * and passing the allocation up to the parent of @p bus. This assumes
3360  * that the first entry of @c device_get_ivars(child) is a struct
3361  * resource_list. This also handles 'passthrough' allocations where a
3362  * child is a remote descendant of bus by passing the allocation up to
3363  * the parent of bus.
3364  *
3365  * Typically, a bus driver would store a list of child resources
3366  * somewhere in the child device's ivars (see device_get_ivars()) and
3367  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3368  * then call resource_list_alloc() to perform the allocation.
3369  *
3370  * @param rl		the resource list to allocate from
3371  * @param bus		the parent device of @p child
3372  * @param child		the device which is requesting an allocation
3373  * @param type		the type of resource to allocate
3374  * @param rid		a pointer to the resource identifier
3375  * @param start		hint at the start of the resource range - pass
3376  *			@c 0 for any start address
3377  * @param end		hint at the end of the resource range - pass
3378  *			@c ~0 for any end address
3379  * @param count		hint at the size of range required - pass @c 1
3380  *			for any size
3381  * @param flags		any extra flags to control the resource
3382  *			allocation - see @c RF_XXX flags in
3383  *			<sys/rman.h> for details
3384  *
3385  * @returns		the resource which was allocated or @c NULL if no
3386  *			resource could be allocated
3387  */
3388 struct resource *
3389 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3390     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3391 {
3392 	struct resource_list_entry *rle = NULL;
3393 	int passthrough = (device_get_parent(child) != bus);
3394 	int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
3395 
3396 	if (passthrough) {
3397 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3398 		    type, rid, start, end, count, flags));
3399 	}
3400 
3401 	rle = resource_list_find(rl, type, *rid);
3402 
3403 	if (!rle)
3404 		return (NULL);		/* no resource of that type/rid */
3405 
3406 	if (rle->res) {
3407 		if (rle->flags & RLE_RESERVED) {
3408 			if (rle->flags & RLE_ALLOCATED)
3409 				return (NULL);
3410 			if ((flags & RF_ACTIVE) &&
3411 			    bus_activate_resource(child, type, *rid,
3412 			    rle->res) != 0)
3413 				return (NULL);
3414 			rle->flags |= RLE_ALLOCATED;
3415 			return (rle->res);
3416 		}
3417 		device_printf(bus,
3418 		    "resource entry %#x type %d for child %s is busy\n", *rid,
3419 		    type, device_get_nameunit(child));
3420 		return (NULL);
3421 	}
3422 
3423 	if (isdefault) {
3424 		start = rle->start;
3425 		count = ulmax(count, rle->count);
3426 		end = ulmax(rle->end, start + count - 1);
3427 	}
3428 
3429 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3430 	    type, rid, start, end, count, flags);
3431 
3432 	/*
3433 	 * Record the new range.
3434 	 */
3435 	if (rle->res) {
3436 		rle->start = rman_get_start(rle->res);
3437 		rle->end = rman_get_end(rle->res);
3438 		rle->count = count;
3439 	}
3440 
3441 	return (rle->res);
3442 }
3443 
3444 /**
3445  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3446  *
3447  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3448  * used with resource_list_alloc().
3449  *
3450  * @param rl		the resource list which was allocated from
3451  * @param bus		the parent device of @p child
3452  * @param child		the device which is requesting a release
3453  * @param type		the type of resource to release
3454  * @param rid		the resource identifier
3455  * @param res		the resource to release
3456  *
3457  * @retval 0		success
3458  * @retval non-zero	a standard unix error code indicating what
3459  *			error condition prevented the operation
3460  */
3461 int
3462 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3463     int type, int rid, struct resource *res)
3464 {
3465 	struct resource_list_entry *rle = NULL;
3466 	int passthrough = (device_get_parent(child) != bus);
3467 	int error;
3468 
3469 	if (passthrough) {
3470 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3471 		    type, rid, res));
3472 	}
3473 
3474 	rle = resource_list_find(rl, type, rid);
3475 
3476 	if (!rle)
3477 		panic("resource_list_release: can't find resource");
3478 	if (!rle->res)
3479 		panic("resource_list_release: resource entry is not busy");
3480 	if (rle->flags & RLE_RESERVED) {
3481 		if (rle->flags & RLE_ALLOCATED) {
3482 			if (rman_get_flags(res) & RF_ACTIVE) {
3483 				error = bus_deactivate_resource(child, type,
3484 				    rid, res);
3485 				if (error)
3486 					return (error);
3487 			}
3488 			rle->flags &= ~RLE_ALLOCATED;
3489 			return (0);
3490 		}
3491 		return (EINVAL);
3492 	}
3493 
3494 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3495 	    type, rid, res);
3496 	if (error)
3497 		return (error);
3498 
3499 	rle->res = NULL;
3500 	return (0);
3501 }
3502 
3503 /**
3504  * @brief Release all active resources of a given type
3505  *
3506  * Release all active resources of a specified type.  This is intended
3507  * to be used to cleanup resources leaked by a driver after detach or
3508  * a failed attach.
3509  *
3510  * @param rl		the resource list which was allocated from
3511  * @param bus		the parent device of @p child
3512  * @param child		the device whose active resources are being released
3513  * @param type		the type of resources to release
3514  *
3515  * @retval 0		success
3516  * @retval EBUSY	at least one resource was active
3517  */
3518 int
3519 resource_list_release_active(struct resource_list *rl, device_t bus,
3520     device_t child, int type)
3521 {
3522 	struct resource_list_entry *rle;
3523 	int error, retval;
3524 
3525 	retval = 0;
3526 	STAILQ_FOREACH(rle, rl, link) {
3527 		if (rle->type != type)
3528 			continue;
3529 		if (rle->res == NULL)
3530 			continue;
3531 		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3532 		    RLE_RESERVED)
3533 			continue;
3534 		retval = EBUSY;
3535 		error = resource_list_release(rl, bus, child, type,
3536 		    rman_get_rid(rle->res), rle->res);
3537 		if (error != 0)
3538 			device_printf(bus,
3539 			    "Failed to release active resource: %d\n", error);
3540 	}
3541 	return (retval);
3542 }
3543 
3544 
3545 /**
3546  * @brief Fully release a reserved resource
3547  *
3548  * Fully releases a resource reserved via resource_list_reserve().
3549  *
3550  * @param rl		the resource list which was allocated from
3551  * @param bus		the parent device of @p child
3552  * @param child		the device whose reserved resource is being released
3553  * @param type		the type of resource to release
3554  * @param rid		the resource identifier
3555  * @param res		the resource to release
3556  *
3557  * @retval 0		success
3558  * @retval non-zero	a standard unix error code indicating what
3559  *			error condition prevented the operation
3560  */
3561 int
3562 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3563     int type, int rid)
3564 {
3565 	struct resource_list_entry *rle = NULL;
3566 	int passthrough = (device_get_parent(child) != bus);
3567 
3568 	if (passthrough)
3569 		panic(
3570     "resource_list_unreserve() should only be called for direct children");
3571 
3572 	rle = resource_list_find(rl, type, rid);
3573 
3574 	if (!rle)
3575 		panic("resource_list_unreserve: can't find resource");
3576 	if (!(rle->flags & RLE_RESERVED))
3577 		return (EINVAL);
3578 	if (rle->flags & RLE_ALLOCATED)
3579 		return (EBUSY);
3580 	rle->flags &= ~RLE_RESERVED;
3581 	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3582 }
3583 
3584 /**
3585  * @brief Print a description of resources in a resource list
3586  *
3587  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3588  * The name is printed if at least one resource of the given type is available.
3589  * The format is used to print resource start and end.
3590  *
3591  * @param rl		the resource list to print
3592  * @param name		the name of @p type, e.g. @c "memory"
3593  * @param type		type type of resource entry to print
3594  * @param format	printf(9) format string to print resource
3595  *			start and end values
3596  *
3597  * @returns		the number of characters printed
3598  */
3599 int
3600 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3601     const char *format)
3602 {
3603 	struct resource_list_entry *rle;
3604 	int printed, retval;
3605 
3606 	printed = 0;
3607 	retval = 0;
3608 	/* Yes, this is kinda cheating */
3609 	STAILQ_FOREACH(rle, rl, link) {
3610 		if (rle->type == type) {
3611 			if (printed == 0)
3612 				retval += printf(" %s ", name);
3613 			else
3614 				retval += printf(",");
3615 			printed++;
3616 			retval += printf(format, rle->start);
3617 			if (rle->count > 1) {
3618 				retval += printf("-");
3619 				retval += printf(format, rle->start +
3620 						 rle->count - 1);
3621 			}
3622 		}
3623 	}
3624 	return (retval);
3625 }
3626 
3627 /**
3628  * @brief Releases all the resources in a list.
3629  *
3630  * @param rl		The resource list to purge.
3631  *
3632  * @returns		nothing
3633  */
3634 void
3635 resource_list_purge(struct resource_list *rl)
3636 {
3637 	struct resource_list_entry *rle;
3638 
3639 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3640 		if (rle->res)
3641 			bus_release_resource(rman_get_device(rle->res),
3642 			    rle->type, rle->rid, rle->res);
3643 		STAILQ_REMOVE_HEAD(rl, link);
3644 		free(rle, M_BUS);
3645 	}
3646 }
3647 
3648 device_t
3649 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3650 {
3651 
3652 	return (device_add_child_ordered(dev, order, name, unit));
3653 }
3654 
3655 /**
3656  * @brief Helper function for implementing DEVICE_PROBE()
3657  *
3658  * This function can be used to help implement the DEVICE_PROBE() for
3659  * a bus (i.e. a device which has other devices attached to it). It
3660  * calls the DEVICE_IDENTIFY() method of each driver in the device's
3661  * devclass.
3662  */
3663 int
3664 bus_generic_probe(device_t dev)
3665 {
3666 	devclass_t dc = dev->devclass;
3667 	driverlink_t dl;
3668 
3669 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3670 		/*
3671 		 * If this driver's pass is too high, then ignore it.
3672 		 * For most drivers in the default pass, this will
3673 		 * never be true.  For early-pass drivers they will
3674 		 * only call the identify routines of eligible drivers
3675 		 * when this routine is called.  Drivers for later
3676 		 * passes should have their identify routines called
3677 		 * on early-pass buses during BUS_NEW_PASS().
3678 		 */
3679 		if (dl->pass > bus_current_pass)
3680 			continue;
3681 		DEVICE_IDENTIFY(dl->driver, dev);
3682 	}
3683 
3684 	return (0);
3685 }
3686 
3687 /**
3688  * @brief Helper function for implementing DEVICE_ATTACH()
3689  *
3690  * This function can be used to help implement the DEVICE_ATTACH() for
3691  * a bus. It calls device_probe_and_attach() for each of the device's
3692  * children.
3693  */
3694 int
3695 bus_generic_attach(device_t dev)
3696 {
3697 	device_t child;
3698 
3699 	TAILQ_FOREACH(child, &dev->children, link) {
3700 		device_probe_and_attach(child);
3701 	}
3702 
3703 	return (0);
3704 }
3705 
3706 /**
3707  * @brief Helper function for implementing DEVICE_DETACH()
3708  *
3709  * This function can be used to help implement the DEVICE_DETACH() for
3710  * a bus. It calls device_detach() for each of the device's
3711  * children.
3712  */
3713 int
3714 bus_generic_detach(device_t dev)
3715 {
3716 	device_t child;
3717 	int error;
3718 
3719 	if (dev->state != DS_ATTACHED)
3720 		return (EBUSY);
3721 
3722 	/*
3723 	 * Detach children in the reverse order.
3724 	 * See bus_generic_suspend for details.
3725 	 */
3726 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3727 		if ((error = device_detach(child)) != 0)
3728 			return (error);
3729 	}
3730 
3731 	return (0);
3732 }
3733 
3734 /**
3735  * @brief Helper function for implementing DEVICE_SHUTDOWN()
3736  *
3737  * This function can be used to help implement the DEVICE_SHUTDOWN()
3738  * for a bus. It calls device_shutdown() for each of the device's
3739  * children.
3740  */
3741 int
3742 bus_generic_shutdown(device_t dev)
3743 {
3744 	device_t child;
3745 
3746 	/*
3747 	 * Shut down children in the reverse order.
3748 	 * See bus_generic_suspend for details.
3749 	 */
3750 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3751 		device_shutdown(child);
3752 	}
3753 
3754 	return (0);
3755 }
3756 
3757 /**
3758  * @brief Default function for suspending a child device.
3759  *
3760  * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
3761  */
3762 int
3763 bus_generic_suspend_child(device_t dev, device_t child)
3764 {
3765 	int	error;
3766 
3767 	error = DEVICE_SUSPEND(child);
3768 
3769 	if (error == 0)
3770 		child->flags |= DF_SUSPENDED;
3771 
3772 	return (error);
3773 }
3774 
3775 /**
3776  * @brief Default function for resuming a child device.
3777  *
3778  * This function is to be used by a bus's DEVICE_RESUME_CHILD().
3779  */
3780 int
3781 bus_generic_resume_child(device_t dev, device_t child)
3782 {
3783 
3784 	DEVICE_RESUME(child);
3785 	child->flags &= ~DF_SUSPENDED;
3786 
3787 	return (0);
3788 }
3789 
3790 /**
3791  * @brief Helper function for implementing DEVICE_SUSPEND()
3792  *
3793  * This function can be used to help implement the DEVICE_SUSPEND()
3794  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3795  * children. If any call to DEVICE_SUSPEND() fails, the suspend
3796  * operation is aborted and any devices which were suspended are
3797  * resumed immediately by calling their DEVICE_RESUME() methods.
3798  */
3799 int
3800 bus_generic_suspend(device_t dev)
3801 {
3802 	int		error;
3803 	device_t	child;
3804 
3805 	/*
3806 	 * Suspend children in the reverse order.
3807 	 * For most buses all children are equal, so the order does not matter.
3808 	 * Other buses, such as acpi, carefully order their child devices to
3809 	 * express implicit dependencies between them.  For such buses it is
3810 	 * safer to bring down devices in the reverse order.
3811 	 */
3812 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3813 		error = BUS_SUSPEND_CHILD(dev, child);
3814 		if (error != 0) {
3815 			child = TAILQ_NEXT(child, link);
3816 			if (child != NULL) {
3817 				TAILQ_FOREACH_FROM(child, &dev->children, link)
3818 					BUS_RESUME_CHILD(dev, child);
3819 			}
3820 			return (error);
3821 		}
3822 	}
3823 	return (0);
3824 }
3825 
3826 /**
3827  * @brief Helper function for implementing DEVICE_RESUME()
3828  *
3829  * This function can be used to help implement the DEVICE_RESUME() for
3830  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3831  */
3832 int
3833 bus_generic_resume(device_t dev)
3834 {
3835 	device_t	child;
3836 
3837 	TAILQ_FOREACH(child, &dev->children, link) {
3838 		BUS_RESUME_CHILD(dev, child);
3839 		/* if resume fails, there's nothing we can usefully do... */
3840 	}
3841 	return (0);
3842 }
3843 
3844 /**
3845  * @brief Helper function for implementing BUS_PRINT_CHILD().
3846  *
3847  * This function prints the first part of the ascii representation of
3848  * @p child, including its name, unit and description (if any - see
3849  * device_set_desc()).
3850  *
3851  * @returns the number of characters printed
3852  */
3853 int
3854 bus_print_child_header(device_t dev, device_t child)
3855 {
3856 	int	retval = 0;
3857 
3858 	if (device_get_desc(child)) {
3859 		retval += device_printf(child, "<%s>", device_get_desc(child));
3860 	} else {
3861 		retval += printf("%s", device_get_nameunit(child));
3862 	}
3863 
3864 	return (retval);
3865 }
3866 
3867 /**
3868  * @brief Helper function for implementing BUS_PRINT_CHILD().
3869  *
3870  * This function prints the last part of the ascii representation of
3871  * @p child, which consists of the string @c " on " followed by the
3872  * name and unit of the @p dev.
3873  *
3874  * @returns the number of characters printed
3875  */
3876 int
3877 bus_print_child_footer(device_t dev, device_t child)
3878 {
3879 	return (printf(" on %s\n", device_get_nameunit(dev)));
3880 }
3881 
3882 /**
3883  * @brief Helper function for implementing BUS_PRINT_CHILD().
3884  *
3885  * This function prints out the VM domain for the given device.
3886  *
3887  * @returns the number of characters printed
3888  */
3889 int
3890 bus_print_child_domain(device_t dev, device_t child)
3891 {
3892 	int domain;
3893 
3894 	/* No domain? Don't print anything */
3895 	if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
3896 		return (0);
3897 
3898 	return (printf(" numa-domain %d", domain));
3899 }
3900 
3901 /**
3902  * @brief Helper function for implementing BUS_PRINT_CHILD().
3903  *
3904  * This function simply calls bus_print_child_header() followed by
3905  * bus_print_child_footer().
3906  *
3907  * @returns the number of characters printed
3908  */
3909 int
3910 bus_generic_print_child(device_t dev, device_t child)
3911 {
3912 	int	retval = 0;
3913 
3914 	retval += bus_print_child_header(dev, child);
3915 	retval += bus_print_child_domain(dev, child);
3916 	retval += bus_print_child_footer(dev, child);
3917 
3918 	return (retval);
3919 }
3920 
3921 /**
3922  * @brief Stub function for implementing BUS_READ_IVAR().
3923  *
3924  * @returns ENOENT
3925  */
3926 int
3927 bus_generic_read_ivar(device_t dev, device_t child, int index,
3928     uintptr_t * result)
3929 {
3930 	return (ENOENT);
3931 }
3932 
3933 /**
3934  * @brief Stub function for implementing BUS_WRITE_IVAR().
3935  *
3936  * @returns ENOENT
3937  */
3938 int
3939 bus_generic_write_ivar(device_t dev, device_t child, int index,
3940     uintptr_t value)
3941 {
3942 	return (ENOENT);
3943 }
3944 
3945 /**
3946  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3947  *
3948  * @returns NULL
3949  */
3950 struct resource_list *
3951 bus_generic_get_resource_list(device_t dev, device_t child)
3952 {
3953 	return (NULL);
3954 }
3955 
3956 /**
3957  * @brief Helper function for implementing BUS_DRIVER_ADDED().
3958  *
3959  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3960  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3961  * and then calls device_probe_and_attach() for each unattached child.
3962  */
3963 void
3964 bus_generic_driver_added(device_t dev, driver_t *driver)
3965 {
3966 	device_t child;
3967 
3968 	DEVICE_IDENTIFY(driver, dev);
3969 	TAILQ_FOREACH(child, &dev->children, link) {
3970 		if (child->state == DS_NOTPRESENT ||
3971 		    (child->flags & DF_REBID))
3972 			device_probe_and_attach(child);
3973 	}
3974 }
3975 
3976 /**
3977  * @brief Helper function for implementing BUS_NEW_PASS().
3978  *
3979  * This implementing of BUS_NEW_PASS() first calls the identify
3980  * routines for any drivers that probe at the current pass.  Then it
3981  * walks the list of devices for this bus.  If a device is already
3982  * attached, then it calls BUS_NEW_PASS() on that device.  If the
3983  * device is not already attached, it attempts to attach a driver to
3984  * it.
3985  */
3986 void
3987 bus_generic_new_pass(device_t dev)
3988 {
3989 	driverlink_t dl;
3990 	devclass_t dc;
3991 	device_t child;
3992 
3993 	dc = dev->devclass;
3994 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3995 		if (dl->pass == bus_current_pass)
3996 			DEVICE_IDENTIFY(dl->driver, dev);
3997 	}
3998 	TAILQ_FOREACH(child, &dev->children, link) {
3999 		if (child->state >= DS_ATTACHED)
4000 			BUS_NEW_PASS(child);
4001 		else if (child->state == DS_NOTPRESENT)
4002 			device_probe_and_attach(child);
4003 	}
4004 }
4005 
4006 /**
4007  * @brief Helper function for implementing BUS_SETUP_INTR().
4008  *
4009  * This simple implementation of BUS_SETUP_INTR() simply calls the
4010  * BUS_SETUP_INTR() method of the parent of @p dev.
4011  */
4012 int
4013 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
4014     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
4015     void **cookiep)
4016 {
4017 	/* Propagate up the bus hierarchy until someone handles it. */
4018 	if (dev->parent)
4019 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
4020 		    filter, intr, arg, cookiep));
4021 	return (EINVAL);
4022 }
4023 
4024 /**
4025  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
4026  *
4027  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
4028  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
4029  */
4030 int
4031 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
4032     void *cookie)
4033 {
4034 	/* Propagate up the bus hierarchy until someone handles it. */
4035 	if (dev->parent)
4036 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
4037 	return (EINVAL);
4038 }
4039 
4040 /**
4041  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
4042  *
4043  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
4044  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
4045  */
4046 int
4047 bus_generic_adjust_resource(device_t dev, device_t child, int type,
4048     struct resource *r, rman_res_t start, rman_res_t end)
4049 {
4050 	/* Propagate up the bus hierarchy until someone handles it. */
4051 	if (dev->parent)
4052 		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
4053 		    end));
4054 	return (EINVAL);
4055 }
4056 
4057 /**
4058  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4059  *
4060  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
4061  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
4062  */
4063 struct resource *
4064 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
4065     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4066 {
4067 	/* Propagate up the bus hierarchy until someone handles it. */
4068 	if (dev->parent)
4069 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
4070 		    start, end, count, flags));
4071 	return (NULL);
4072 }
4073 
4074 /**
4075  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4076  *
4077  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
4078  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
4079  */
4080 int
4081 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
4082     struct resource *r)
4083 {
4084 	/* Propagate up the bus hierarchy until someone handles it. */
4085 	if (dev->parent)
4086 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
4087 		    r));
4088 	return (EINVAL);
4089 }
4090 
4091 /**
4092  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4093  *
4094  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
4095  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
4096  */
4097 int
4098 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
4099     struct resource *r)
4100 {
4101 	/* Propagate up the bus hierarchy until someone handles it. */
4102 	if (dev->parent)
4103 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
4104 		    r));
4105 	return (EINVAL);
4106 }
4107 
4108 /**
4109  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4110  *
4111  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
4112  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
4113  */
4114 int
4115 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
4116     int rid, struct resource *r)
4117 {
4118 	/* Propagate up the bus hierarchy until someone handles it. */
4119 	if (dev->parent)
4120 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
4121 		    r));
4122 	return (EINVAL);
4123 }
4124 
4125 /**
4126  * @brief Helper function for implementing BUS_MAP_RESOURCE().
4127  *
4128  * This simple implementation of BUS_MAP_RESOURCE() simply calls the
4129  * BUS_MAP_RESOURCE() method of the parent of @p dev.
4130  */
4131 int
4132 bus_generic_map_resource(device_t dev, device_t child, int type,
4133     struct resource *r, struct resource_map_request *args,
4134     struct resource_map *map)
4135 {
4136 	/* Propagate up the bus hierarchy until someone handles it. */
4137 	if (dev->parent)
4138 		return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args,
4139 		    map));
4140 	return (EINVAL);
4141 }
4142 
4143 /**
4144  * @brief Helper function for implementing BUS_UNMAP_RESOURCE().
4145  *
4146  * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the
4147  * BUS_UNMAP_RESOURCE() method of the parent of @p dev.
4148  */
4149 int
4150 bus_generic_unmap_resource(device_t dev, device_t child, int type,
4151     struct resource *r, struct resource_map *map)
4152 {
4153 	/* Propagate up the bus hierarchy until someone handles it. */
4154 	if (dev->parent)
4155 		return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map));
4156 	return (EINVAL);
4157 }
4158 
4159 /**
4160  * @brief Helper function for implementing BUS_BIND_INTR().
4161  *
4162  * This simple implementation of BUS_BIND_INTR() simply calls the
4163  * BUS_BIND_INTR() method of the parent of @p dev.
4164  */
4165 int
4166 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
4167     int cpu)
4168 {
4169 
4170 	/* Propagate up the bus hierarchy until someone handles it. */
4171 	if (dev->parent)
4172 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
4173 	return (EINVAL);
4174 }
4175 
4176 /**
4177  * @brief Helper function for implementing BUS_CONFIG_INTR().
4178  *
4179  * This simple implementation of BUS_CONFIG_INTR() simply calls the
4180  * BUS_CONFIG_INTR() method of the parent of @p dev.
4181  */
4182 int
4183 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
4184     enum intr_polarity pol)
4185 {
4186 
4187 	/* Propagate up the bus hierarchy until someone handles it. */
4188 	if (dev->parent)
4189 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
4190 	return (EINVAL);
4191 }
4192 
4193 /**
4194  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4195  *
4196  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4197  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4198  */
4199 int
4200 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4201     void *cookie, const char *descr)
4202 {
4203 
4204 	/* Propagate up the bus hierarchy until someone handles it. */
4205 	if (dev->parent)
4206 		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4207 		    descr));
4208 	return (EINVAL);
4209 }
4210 
4211 /**
4212  * @brief Helper function for implementing BUS_GET_CPUS().
4213  *
4214  * This simple implementation of BUS_GET_CPUS() simply calls the
4215  * BUS_GET_CPUS() method of the parent of @p dev.
4216  */
4217 int
4218 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op,
4219     size_t setsize, cpuset_t *cpuset)
4220 {
4221 
4222 	/* Propagate up the bus hierarchy until someone handles it. */
4223 	if (dev->parent != NULL)
4224 		return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset));
4225 	return (EINVAL);
4226 }
4227 
4228 /**
4229  * @brief Helper function for implementing BUS_GET_DMA_TAG().
4230  *
4231  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4232  * BUS_GET_DMA_TAG() method of the parent of @p dev.
4233  */
4234 bus_dma_tag_t
4235 bus_generic_get_dma_tag(device_t dev, device_t child)
4236 {
4237 
4238 	/* Propagate up the bus hierarchy until someone handles it. */
4239 	if (dev->parent != NULL)
4240 		return (BUS_GET_DMA_TAG(dev->parent, child));
4241 	return (NULL);
4242 }
4243 
4244 /**
4245  * @brief Helper function for implementing BUS_GET_BUS_TAG().
4246  *
4247  * This simple implementation of BUS_GET_BUS_TAG() simply calls the
4248  * BUS_GET_BUS_TAG() method of the parent of @p dev.
4249  */
4250 bus_space_tag_t
4251 bus_generic_get_bus_tag(device_t dev, device_t child)
4252 {
4253 
4254 	/* Propagate up the bus hierarchy until someone handles it. */
4255 	if (dev->parent != NULL)
4256 		return (BUS_GET_BUS_TAG(dev->parent, child));
4257 	return ((bus_space_tag_t)0);
4258 }
4259 
4260 /**
4261  * @brief Helper function for implementing BUS_GET_RESOURCE().
4262  *
4263  * This implementation of BUS_GET_RESOURCE() uses the
4264  * resource_list_find() function to do most of the work. It calls
4265  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4266  * search.
4267  */
4268 int
4269 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4270     rman_res_t *startp, rman_res_t *countp)
4271 {
4272 	struct resource_list *		rl = NULL;
4273 	struct resource_list_entry *	rle = NULL;
4274 
4275 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4276 	if (!rl)
4277 		return (EINVAL);
4278 
4279 	rle = resource_list_find(rl, type, rid);
4280 	if (!rle)
4281 		return (ENOENT);
4282 
4283 	if (startp)
4284 		*startp = rle->start;
4285 	if (countp)
4286 		*countp = rle->count;
4287 
4288 	return (0);
4289 }
4290 
4291 /**
4292  * @brief Helper function for implementing BUS_SET_RESOURCE().
4293  *
4294  * This implementation of BUS_SET_RESOURCE() uses the
4295  * resource_list_add() function to do most of the work. It calls
4296  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4297  * edit.
4298  */
4299 int
4300 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4301     rman_res_t start, rman_res_t count)
4302 {
4303 	struct resource_list *		rl = NULL;
4304 
4305 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4306 	if (!rl)
4307 		return (EINVAL);
4308 
4309 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4310 
4311 	return (0);
4312 }
4313 
4314 /**
4315  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4316  *
4317  * This implementation of BUS_DELETE_RESOURCE() uses the
4318  * resource_list_delete() function to do most of the work. It calls
4319  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4320  * edit.
4321  */
4322 void
4323 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4324 {
4325 	struct resource_list *		rl = NULL;
4326 
4327 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4328 	if (!rl)
4329 		return;
4330 
4331 	resource_list_delete(rl, type, rid);
4332 
4333 	return;
4334 }
4335 
4336 /**
4337  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4338  *
4339  * This implementation of BUS_RELEASE_RESOURCE() uses the
4340  * resource_list_release() function to do most of the work. It calls
4341  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4342  */
4343 int
4344 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
4345     int rid, struct resource *r)
4346 {
4347 	struct resource_list *		rl = NULL;
4348 
4349 	if (device_get_parent(child) != dev)
4350 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
4351 		    type, rid, r));
4352 
4353 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4354 	if (!rl)
4355 		return (EINVAL);
4356 
4357 	return (resource_list_release(rl, dev, child, type, rid, r));
4358 }
4359 
4360 /**
4361  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4362  *
4363  * This implementation of BUS_ALLOC_RESOURCE() uses the
4364  * resource_list_alloc() function to do most of the work. It calls
4365  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4366  */
4367 struct resource *
4368 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4369     int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4370 {
4371 	struct resource_list *		rl = NULL;
4372 
4373 	if (device_get_parent(child) != dev)
4374 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4375 		    type, rid, start, end, count, flags));
4376 
4377 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4378 	if (!rl)
4379 		return (NULL);
4380 
4381 	return (resource_list_alloc(rl, dev, child, type, rid,
4382 	    start, end, count, flags));
4383 }
4384 
4385 /**
4386  * @brief Helper function for implementing BUS_CHILD_PRESENT().
4387  *
4388  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4389  * BUS_CHILD_PRESENT() method of the parent of @p dev.
4390  */
4391 int
4392 bus_generic_child_present(device_t dev, device_t child)
4393 {
4394 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4395 }
4396 
4397 int
4398 bus_generic_get_domain(device_t dev, device_t child, int *domain)
4399 {
4400 
4401 	if (dev->parent)
4402 		return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4403 
4404 	return (ENOENT);
4405 }
4406 
4407 /**
4408  * @brief Helper function for implementing BUS_RESCAN().
4409  *
4410  * This null implementation of BUS_RESCAN() always fails to indicate
4411  * the bus does not support rescanning.
4412  */
4413 int
4414 bus_null_rescan(device_t dev)
4415 {
4416 
4417 	return (ENXIO);
4418 }
4419 
4420 /*
4421  * Some convenience functions to make it easier for drivers to use the
4422  * resource-management functions.  All these really do is hide the
4423  * indirection through the parent's method table, making for slightly
4424  * less-wordy code.  In the future, it might make sense for this code
4425  * to maintain some sort of a list of resources allocated by each device.
4426  */
4427 
4428 int
4429 bus_alloc_resources(device_t dev, struct resource_spec *rs,
4430     struct resource **res)
4431 {
4432 	int i;
4433 
4434 	for (i = 0; rs[i].type != -1; i++)
4435 		res[i] = NULL;
4436 	for (i = 0; rs[i].type != -1; i++) {
4437 		res[i] = bus_alloc_resource_any(dev,
4438 		    rs[i].type, &rs[i].rid, rs[i].flags);
4439 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4440 			bus_release_resources(dev, rs, res);
4441 			return (ENXIO);
4442 		}
4443 	}
4444 	return (0);
4445 }
4446 
4447 void
4448 bus_release_resources(device_t dev, const struct resource_spec *rs,
4449     struct resource **res)
4450 {
4451 	int i;
4452 
4453 	for (i = 0; rs[i].type != -1; i++)
4454 		if (res[i] != NULL) {
4455 			bus_release_resource(
4456 			    dev, rs[i].type, rs[i].rid, res[i]);
4457 			res[i] = NULL;
4458 		}
4459 }
4460 
4461 /**
4462  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4463  *
4464  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4465  * parent of @p dev.
4466  */
4467 struct resource *
4468 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start,
4469     rman_res_t end, rman_res_t count, u_int flags)
4470 {
4471 	struct resource *res;
4472 
4473 	if (dev->parent == NULL)
4474 		return (NULL);
4475 	res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4476 	    count, flags);
4477 	return (res);
4478 }
4479 
4480 /**
4481  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4482  *
4483  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4484  * parent of @p dev.
4485  */
4486 int
4487 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start,
4488     rman_res_t end)
4489 {
4490 	if (dev->parent == NULL)
4491 		return (EINVAL);
4492 	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4493 }
4494 
4495 /**
4496  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4497  *
4498  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4499  * parent of @p dev.
4500  */
4501 int
4502 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4503 {
4504 	if (dev->parent == NULL)
4505 		return (EINVAL);
4506 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4507 }
4508 
4509 /**
4510  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4511  *
4512  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4513  * parent of @p dev.
4514  */
4515 int
4516 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4517 {
4518 	if (dev->parent == NULL)
4519 		return (EINVAL);
4520 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4521 }
4522 
4523 /**
4524  * @brief Wrapper function for BUS_MAP_RESOURCE().
4525  *
4526  * This function simply calls the BUS_MAP_RESOURCE() method of the
4527  * parent of @p dev.
4528  */
4529 int
4530 bus_map_resource(device_t dev, int type, struct resource *r,
4531     struct resource_map_request *args, struct resource_map *map)
4532 {
4533 	if (dev->parent == NULL)
4534 		return (EINVAL);
4535 	return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map));
4536 }
4537 
4538 /**
4539  * @brief Wrapper function for BUS_UNMAP_RESOURCE().
4540  *
4541  * This function simply calls the BUS_UNMAP_RESOURCE() method of the
4542  * parent of @p dev.
4543  */
4544 int
4545 bus_unmap_resource(device_t dev, int type, struct resource *r,
4546     struct resource_map *map)
4547 {
4548 	if (dev->parent == NULL)
4549 		return (EINVAL);
4550 	return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map));
4551 }
4552 
4553 /**
4554  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4555  *
4556  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4557  * parent of @p dev.
4558  */
4559 int
4560 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4561 {
4562 	int rv;
4563 
4564 	if (dev->parent == NULL)
4565 		return (EINVAL);
4566 	rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r);
4567 	return (rv);
4568 }
4569 
4570 /**
4571  * @brief Wrapper function for BUS_SETUP_INTR().
4572  *
4573  * This function simply calls the BUS_SETUP_INTR() method of the
4574  * parent of @p dev.
4575  */
4576 int
4577 bus_setup_intr(device_t dev, struct resource *r, int flags,
4578     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4579 {
4580 	int error;
4581 
4582 	if (dev->parent == NULL)
4583 		return (EINVAL);
4584 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4585 	    arg, cookiep);
4586 	if (error != 0)
4587 		return (error);
4588 	if (handler != NULL && !(flags & INTR_MPSAFE))
4589 		device_printf(dev, "[GIANT-LOCKED]\n");
4590 	return (0);
4591 }
4592 
4593 /**
4594  * @brief Wrapper function for BUS_TEARDOWN_INTR().
4595  *
4596  * This function simply calls the BUS_TEARDOWN_INTR() method of the
4597  * parent of @p dev.
4598  */
4599 int
4600 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4601 {
4602 	if (dev->parent == NULL)
4603 		return (EINVAL);
4604 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4605 }
4606 
4607 /**
4608  * @brief Wrapper function for BUS_BIND_INTR().
4609  *
4610  * This function simply calls the BUS_BIND_INTR() method of the
4611  * parent of @p dev.
4612  */
4613 int
4614 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4615 {
4616 	if (dev->parent == NULL)
4617 		return (EINVAL);
4618 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4619 }
4620 
4621 /**
4622  * @brief Wrapper function for BUS_DESCRIBE_INTR().
4623  *
4624  * This function first formats the requested description into a
4625  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4626  * the parent of @p dev.
4627  */
4628 int
4629 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4630     const char *fmt, ...)
4631 {
4632 	va_list ap;
4633 	char descr[MAXCOMLEN + 1];
4634 
4635 	if (dev->parent == NULL)
4636 		return (EINVAL);
4637 	va_start(ap, fmt);
4638 	vsnprintf(descr, sizeof(descr), fmt, ap);
4639 	va_end(ap);
4640 	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4641 }
4642 
4643 /**
4644  * @brief Wrapper function for BUS_SET_RESOURCE().
4645  *
4646  * This function simply calls the BUS_SET_RESOURCE() method of the
4647  * parent of @p dev.
4648  */
4649 int
4650 bus_set_resource(device_t dev, int type, int rid,
4651     rman_res_t start, rman_res_t count)
4652 {
4653 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4654 	    start, count));
4655 }
4656 
4657 /**
4658  * @brief Wrapper function for BUS_GET_RESOURCE().
4659  *
4660  * This function simply calls the BUS_GET_RESOURCE() method of the
4661  * parent of @p dev.
4662  */
4663 int
4664 bus_get_resource(device_t dev, int type, int rid,
4665     rman_res_t *startp, rman_res_t *countp)
4666 {
4667 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4668 	    startp, countp));
4669 }
4670 
4671 /**
4672  * @brief Wrapper function for BUS_GET_RESOURCE().
4673  *
4674  * This function simply calls the BUS_GET_RESOURCE() method of the
4675  * parent of @p dev and returns the start value.
4676  */
4677 rman_res_t
4678 bus_get_resource_start(device_t dev, int type, int rid)
4679 {
4680 	rman_res_t start;
4681 	rman_res_t count;
4682 	int error;
4683 
4684 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4685 	    &start, &count);
4686 	if (error)
4687 		return (0);
4688 	return (start);
4689 }
4690 
4691 /**
4692  * @brief Wrapper function for BUS_GET_RESOURCE().
4693  *
4694  * This function simply calls the BUS_GET_RESOURCE() method of the
4695  * parent of @p dev and returns the count value.
4696  */
4697 rman_res_t
4698 bus_get_resource_count(device_t dev, int type, int rid)
4699 {
4700 	rman_res_t start;
4701 	rman_res_t count;
4702 	int error;
4703 
4704 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4705 	    &start, &count);
4706 	if (error)
4707 		return (0);
4708 	return (count);
4709 }
4710 
4711 /**
4712  * @brief Wrapper function for BUS_DELETE_RESOURCE().
4713  *
4714  * This function simply calls the BUS_DELETE_RESOURCE() method of the
4715  * parent of @p dev.
4716  */
4717 void
4718 bus_delete_resource(device_t dev, int type, int rid)
4719 {
4720 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4721 }
4722 
4723 /**
4724  * @brief Wrapper function for BUS_CHILD_PRESENT().
4725  *
4726  * This function simply calls the BUS_CHILD_PRESENT() method of the
4727  * parent of @p dev.
4728  */
4729 int
4730 bus_child_present(device_t child)
4731 {
4732 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4733 }
4734 
4735 /**
4736  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4737  *
4738  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4739  * parent of @p dev.
4740  */
4741 int
4742 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4743 {
4744 	device_t parent;
4745 
4746 	parent = device_get_parent(child);
4747 	if (parent == NULL) {
4748 		*buf = '\0';
4749 		return (0);
4750 	}
4751 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4752 }
4753 
4754 /**
4755  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4756  *
4757  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4758  * parent of @p dev.
4759  */
4760 int
4761 bus_child_location_str(device_t child, char *buf, size_t buflen)
4762 {
4763 	device_t parent;
4764 
4765 	parent = device_get_parent(child);
4766 	if (parent == NULL) {
4767 		*buf = '\0';
4768 		return (0);
4769 	}
4770 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4771 }
4772 
4773 /**
4774  * @brief Wrapper function for BUS_GET_CPUS().
4775  *
4776  * This function simply calls the BUS_GET_CPUS() method of the
4777  * parent of @p dev.
4778  */
4779 int
4780 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset)
4781 {
4782 	device_t parent;
4783 
4784 	parent = device_get_parent(dev);
4785 	if (parent == NULL)
4786 		return (EINVAL);
4787 	return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset));
4788 }
4789 
4790 /**
4791  * @brief Wrapper function for BUS_GET_DMA_TAG().
4792  *
4793  * This function simply calls the BUS_GET_DMA_TAG() method of the
4794  * parent of @p dev.
4795  */
4796 bus_dma_tag_t
4797 bus_get_dma_tag(device_t dev)
4798 {
4799 	device_t parent;
4800 
4801 	parent = device_get_parent(dev);
4802 	if (parent == NULL)
4803 		return (NULL);
4804 	return (BUS_GET_DMA_TAG(parent, dev));
4805 }
4806 
4807 /**
4808  * @brief Wrapper function for BUS_GET_BUS_TAG().
4809  *
4810  * This function simply calls the BUS_GET_BUS_TAG() method of the
4811  * parent of @p dev.
4812  */
4813 bus_space_tag_t
4814 bus_get_bus_tag(device_t dev)
4815 {
4816 	device_t parent;
4817 
4818 	parent = device_get_parent(dev);
4819 	if (parent == NULL)
4820 		return ((bus_space_tag_t)0);
4821 	return (BUS_GET_BUS_TAG(parent, dev));
4822 }
4823 
4824 /**
4825  * @brief Wrapper function for BUS_GET_DOMAIN().
4826  *
4827  * This function simply calls the BUS_GET_DOMAIN() method of the
4828  * parent of @p dev.
4829  */
4830 int
4831 bus_get_domain(device_t dev, int *domain)
4832 {
4833 	return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
4834 }
4835 
4836 /* Resume all devices and then notify userland that we're up again. */
4837 static int
4838 root_resume(device_t dev)
4839 {
4840 	int error;
4841 
4842 	error = bus_generic_resume(dev);
4843 	if (error == 0)
4844 		devctl_notify("kern", "power", "resume", NULL);
4845 	return (error);
4846 }
4847 
4848 static int
4849 root_print_child(device_t dev, device_t child)
4850 {
4851 	int	retval = 0;
4852 
4853 	retval += bus_print_child_header(dev, child);
4854 	retval += printf("\n");
4855 
4856 	return (retval);
4857 }
4858 
4859 static int
4860 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4861     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4862 {
4863 	/*
4864 	 * If an interrupt mapping gets to here something bad has happened.
4865 	 */
4866 	panic("root_setup_intr");
4867 }
4868 
4869 /*
4870  * If we get here, assume that the device is permanent and really is
4871  * present in the system.  Removable bus drivers are expected to intercept
4872  * this call long before it gets here.  We return -1 so that drivers that
4873  * really care can check vs -1 or some ERRNO returned higher in the food
4874  * chain.
4875  */
4876 static int
4877 root_child_present(device_t dev, device_t child)
4878 {
4879 	return (-1);
4880 }
4881 
4882 static int
4883 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
4884     cpuset_t *cpuset)
4885 {
4886 
4887 	switch (op) {
4888 	case INTR_CPUS:
4889 		/* Default to returning the set of all CPUs. */
4890 		if (setsize != sizeof(cpuset_t))
4891 			return (EINVAL);
4892 		*cpuset = all_cpus;
4893 		return (0);
4894 	default:
4895 		return (EINVAL);
4896 	}
4897 }
4898 
4899 static kobj_method_t root_methods[] = {
4900 	/* Device interface */
4901 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4902 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4903 	KOBJMETHOD(device_resume,	root_resume),
4904 
4905 	/* Bus interface */
4906 	KOBJMETHOD(bus_print_child,	root_print_child),
4907 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4908 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4909 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4910 	KOBJMETHOD(bus_child_present,	root_child_present),
4911 	KOBJMETHOD(bus_get_cpus,	root_get_cpus),
4912 
4913 	KOBJMETHOD_END
4914 };
4915 
4916 static driver_t root_driver = {
4917 	"root",
4918 	root_methods,
4919 	1,			/* no softc */
4920 };
4921 
4922 device_t	root_bus;
4923 devclass_t	root_devclass;
4924 
4925 static int
4926 root_bus_module_handler(module_t mod, int what, void* arg)
4927 {
4928 	switch (what) {
4929 	case MOD_LOAD:
4930 		TAILQ_INIT(&bus_data_devices);
4931 		kobj_class_compile((kobj_class_t) &root_driver);
4932 		root_bus = make_device(NULL, "root", 0);
4933 		root_bus->desc = "System root bus";
4934 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4935 		root_bus->driver = &root_driver;
4936 		root_bus->state = DS_ATTACHED;
4937 		root_devclass = devclass_find_internal("root", NULL, FALSE);
4938 		devinit();
4939 		return (0);
4940 
4941 	case MOD_SHUTDOWN:
4942 		device_shutdown(root_bus);
4943 		return (0);
4944 	default:
4945 		return (EOPNOTSUPP);
4946 	}
4947 
4948 	return (0);
4949 }
4950 
4951 static moduledata_t root_bus_mod = {
4952 	"rootbus",
4953 	root_bus_module_handler,
4954 	NULL
4955 };
4956 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4957 
4958 /**
4959  * @brief Automatically configure devices
4960  *
4961  * This function begins the autoconfiguration process by calling
4962  * device_probe_and_attach() for each child of the @c root0 device.
4963  */
4964 void
4965 root_bus_configure(void)
4966 {
4967 
4968 	PDEBUG(("."));
4969 
4970 	/* Eventually this will be split up, but this is sufficient for now. */
4971 	bus_set_pass(BUS_PASS_DEFAULT);
4972 }
4973 
4974 /**
4975  * @brief Module handler for registering device drivers
4976  *
4977  * This module handler is used to automatically register device
4978  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4979  * devclass_add_driver() for the driver described by the
4980  * driver_module_data structure pointed to by @p arg
4981  */
4982 int
4983 driver_module_handler(module_t mod, int what, void *arg)
4984 {
4985 	struct driver_module_data *dmd;
4986 	devclass_t bus_devclass;
4987 	kobj_class_t driver;
4988 	int error, pass;
4989 
4990 	dmd = (struct driver_module_data *)arg;
4991 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4992 	error = 0;
4993 
4994 	switch (what) {
4995 	case MOD_LOAD:
4996 		if (dmd->dmd_chainevh)
4997 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4998 
4999 		pass = dmd->dmd_pass;
5000 		driver = dmd->dmd_driver;
5001 		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
5002 		    DRIVERNAME(driver), dmd->dmd_busname, pass));
5003 		error = devclass_add_driver(bus_devclass, driver, pass,
5004 		    dmd->dmd_devclass);
5005 		break;
5006 
5007 	case MOD_UNLOAD:
5008 		PDEBUG(("Unloading module: driver %s from bus %s",
5009 		    DRIVERNAME(dmd->dmd_driver),
5010 		    dmd->dmd_busname));
5011 		error = devclass_delete_driver(bus_devclass,
5012 		    dmd->dmd_driver);
5013 
5014 		if (!error && dmd->dmd_chainevh)
5015 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5016 		break;
5017 	case MOD_QUIESCE:
5018 		PDEBUG(("Quiesce module: driver %s from bus %s",
5019 		    DRIVERNAME(dmd->dmd_driver),
5020 		    dmd->dmd_busname));
5021 		error = devclass_quiesce_driver(bus_devclass,
5022 		    dmd->dmd_driver);
5023 
5024 		if (!error && dmd->dmd_chainevh)
5025 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5026 		break;
5027 	default:
5028 		error = EOPNOTSUPP;
5029 		break;
5030 	}
5031 
5032 	return (error);
5033 }
5034 
5035 /**
5036  * @brief Enumerate all hinted devices for this bus.
5037  *
5038  * Walks through the hints for this bus and calls the bus_hinted_child
5039  * routine for each one it fines.  It searches first for the specific
5040  * bus that's being probed for hinted children (eg isa0), and then for
5041  * generic children (eg isa).
5042  *
5043  * @param	dev	bus device to enumerate
5044  */
5045 void
5046 bus_enumerate_hinted_children(device_t bus)
5047 {
5048 	int i;
5049 	const char *dname, *busname;
5050 	int dunit;
5051 
5052 	/*
5053 	 * enumerate all devices on the specific bus
5054 	 */
5055 	busname = device_get_nameunit(bus);
5056 	i = 0;
5057 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5058 		BUS_HINTED_CHILD(bus, dname, dunit);
5059 
5060 	/*
5061 	 * and all the generic ones.
5062 	 */
5063 	busname = device_get_name(bus);
5064 	i = 0;
5065 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5066 		BUS_HINTED_CHILD(bus, dname, dunit);
5067 }
5068 
5069 #ifdef BUS_DEBUG
5070 
5071 /* the _short versions avoid iteration by not calling anything that prints
5072  * more than oneliners. I love oneliners.
5073  */
5074 
5075 static void
5076 print_device_short(device_t dev, int indent)
5077 {
5078 	if (!dev)
5079 		return;
5080 
5081 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
5082 	    dev->unit, dev->desc,
5083 	    (dev->parent? "":"no "),
5084 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
5085 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
5086 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
5087 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
5088 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
5089 	    (dev->flags&DF_REBID? "rebiddable,":""),
5090 	    (dev->flags&DF_SUSPENDED? "suspended,":""),
5091 	    (dev->ivars? "":"no "),
5092 	    (dev->softc? "":"no "),
5093 	    dev->busy));
5094 }
5095 
5096 static void
5097 print_device(device_t dev, int indent)
5098 {
5099 	if (!dev)
5100 		return;
5101 
5102 	print_device_short(dev, indent);
5103 
5104 	indentprintf(("Parent:\n"));
5105 	print_device_short(dev->parent, indent+1);
5106 	indentprintf(("Driver:\n"));
5107 	print_driver_short(dev->driver, indent+1);
5108 	indentprintf(("Devclass:\n"));
5109 	print_devclass_short(dev->devclass, indent+1);
5110 }
5111 
5112 void
5113 print_device_tree_short(device_t dev, int indent)
5114 /* print the device and all its children (indented) */
5115 {
5116 	device_t child;
5117 
5118 	if (!dev)
5119 		return;
5120 
5121 	print_device_short(dev, indent);
5122 
5123 	TAILQ_FOREACH(child, &dev->children, link) {
5124 		print_device_tree_short(child, indent+1);
5125 	}
5126 }
5127 
5128 void
5129 print_device_tree(device_t dev, int indent)
5130 /* print the device and all its children (indented) */
5131 {
5132 	device_t child;
5133 
5134 	if (!dev)
5135 		return;
5136 
5137 	print_device(dev, indent);
5138 
5139 	TAILQ_FOREACH(child, &dev->children, link) {
5140 		print_device_tree(child, indent+1);
5141 	}
5142 }
5143 
5144 static void
5145 print_driver_short(driver_t *driver, int indent)
5146 {
5147 	if (!driver)
5148 		return;
5149 
5150 	indentprintf(("driver %s: softc size = %zd\n",
5151 	    driver->name, driver->size));
5152 }
5153 
5154 static void
5155 print_driver(driver_t *driver, int indent)
5156 {
5157 	if (!driver)
5158 		return;
5159 
5160 	print_driver_short(driver, indent);
5161 }
5162 
5163 static void
5164 print_driver_list(driver_list_t drivers, int indent)
5165 {
5166 	driverlink_t driver;
5167 
5168 	TAILQ_FOREACH(driver, &drivers, link) {
5169 		print_driver(driver->driver, indent);
5170 	}
5171 }
5172 
5173 static void
5174 print_devclass_short(devclass_t dc, int indent)
5175 {
5176 	if ( !dc )
5177 		return;
5178 
5179 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
5180 }
5181 
5182 static void
5183 print_devclass(devclass_t dc, int indent)
5184 {
5185 	int i;
5186 
5187 	if ( !dc )
5188 		return;
5189 
5190 	print_devclass_short(dc, indent);
5191 	indentprintf(("Drivers:\n"));
5192 	print_driver_list(dc->drivers, indent+1);
5193 
5194 	indentprintf(("Devices:\n"));
5195 	for (i = 0; i < dc->maxunit; i++)
5196 		if (dc->devices[i])
5197 			print_device(dc->devices[i], indent+1);
5198 }
5199 
5200 void
5201 print_devclass_list_short(void)
5202 {
5203 	devclass_t dc;
5204 
5205 	printf("Short listing of devclasses, drivers & devices:\n");
5206 	TAILQ_FOREACH(dc, &devclasses, link) {
5207 		print_devclass_short(dc, 0);
5208 	}
5209 }
5210 
5211 void
5212 print_devclass_list(void)
5213 {
5214 	devclass_t dc;
5215 
5216 	printf("Full listing of devclasses, drivers & devices:\n");
5217 	TAILQ_FOREACH(dc, &devclasses, link) {
5218 		print_devclass(dc, 0);
5219 	}
5220 }
5221 
5222 #endif
5223 
5224 /*
5225  * User-space access to the device tree.
5226  *
5227  * We implement a small set of nodes:
5228  *
5229  * hw.bus			Single integer read method to obtain the
5230  *				current generation count.
5231  * hw.bus.devices		Reads the entire device tree in flat space.
5232  * hw.bus.rman			Resource manager interface
5233  *
5234  * We might like to add the ability to scan devclasses and/or drivers to
5235  * determine what else is currently loaded/available.
5236  */
5237 
5238 static int
5239 sysctl_bus(SYSCTL_HANDLER_ARGS)
5240 {
5241 	struct u_businfo	ubus;
5242 
5243 	ubus.ub_version = BUS_USER_VERSION;
5244 	ubus.ub_generation = bus_data_generation;
5245 
5246 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
5247 }
5248 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
5249     "bus-related data");
5250 
5251 static int
5252 sysctl_devices(SYSCTL_HANDLER_ARGS)
5253 {
5254 	int			*name = (int *)arg1;
5255 	u_int			namelen = arg2;
5256 	int			index;
5257 	device_t		dev;
5258 	struct u_device		*udev;
5259 	int			error;
5260 	char			*walker, *ep;
5261 
5262 	if (namelen != 2)
5263 		return (EINVAL);
5264 
5265 	if (bus_data_generation_check(name[0]))
5266 		return (EINVAL);
5267 
5268 	index = name[1];
5269 
5270 	/*
5271 	 * Scan the list of devices, looking for the requested index.
5272 	 */
5273 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5274 		if (index-- == 0)
5275 			break;
5276 	}
5277 	if (dev == NULL)
5278 		return (ENOENT);
5279 
5280 	/*
5281 	 * Populate the return item, careful not to overflow the buffer.
5282 	 */
5283 	udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO);
5284 	if (udev == NULL)
5285 		return (ENOMEM);
5286 	udev->dv_handle = (uintptr_t)dev;
5287 	udev->dv_parent = (uintptr_t)dev->parent;
5288 	udev->dv_devflags = dev->devflags;
5289 	udev->dv_flags = dev->flags;
5290 	udev->dv_state = dev->state;
5291 	walker = udev->dv_fields;
5292 	ep = walker + sizeof(udev->dv_fields);
5293 #define CP(src)						\
5294 	if ((src) == NULL)				\
5295 		*walker++ = '\0';			\
5296 	else {						\
5297 		strlcpy(walker, (src), ep - walker);	\
5298 		walker += strlen(walker) + 1;		\
5299 	}						\
5300 	if (walker >= ep)				\
5301 		break;
5302 
5303 	do {
5304 		CP(dev->nameunit);
5305 		CP(dev->desc);
5306 		CP(dev->driver != NULL ? dev->driver->name : NULL);
5307 		bus_child_pnpinfo_str(dev, walker, ep - walker);
5308 		walker += strlen(walker) + 1;
5309 		if (walker >= ep)
5310 			break;
5311 		bus_child_location_str(dev, walker, ep - walker);
5312 		walker += strlen(walker) + 1;
5313 		if (walker >= ep)
5314 			break;
5315 		*walker++ = '\0';
5316 	} while (0);
5317 #undef CP
5318 	error = SYSCTL_OUT(req, udev, sizeof(*udev));
5319 	free(udev, M_BUS);
5320 	return (error);
5321 }
5322 
5323 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
5324     "system device tree");
5325 
5326 int
5327 bus_data_generation_check(int generation)
5328 {
5329 	if (generation != bus_data_generation)
5330 		return (1);
5331 
5332 	/* XXX generate optimised lists here? */
5333 	return (0);
5334 }
5335 
5336 void
5337 bus_data_generation_update(void)
5338 {
5339 	bus_data_generation++;
5340 }
5341 
5342 int
5343 bus_free_resource(device_t dev, int type, struct resource *r)
5344 {
5345 	if (r == NULL)
5346 		return (0);
5347 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
5348 }
5349 
5350 device_t
5351 device_lookup_by_name(const char *name)
5352 {
5353 	device_t dev;
5354 
5355 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5356 		if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0)
5357 			return (dev);
5358 	}
5359 	return (NULL);
5360 }
5361 
5362 /*
5363  * /dev/devctl2 implementation.  The existing /dev/devctl device has
5364  * implicit semantics on open, so it could not be reused for this.
5365  * Another option would be to call this /dev/bus?
5366  */
5367 static int
5368 find_device(struct devreq *req, device_t *devp)
5369 {
5370 	device_t dev;
5371 
5372 	/*
5373 	 * First, ensure that the name is nul terminated.
5374 	 */
5375 	if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
5376 		return (EINVAL);
5377 
5378 	/*
5379 	 * Second, try to find an attached device whose name matches
5380 	 * 'name'.
5381 	 */
5382 	dev = device_lookup_by_name(req->dr_name);
5383 	if (dev != NULL) {
5384 		*devp = dev;
5385 		return (0);
5386 	}
5387 
5388 	/* Finally, give device enumerators a chance. */
5389 	dev = NULL;
5390 	EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev);
5391 	if (dev == NULL)
5392 		return (ENOENT);
5393 	*devp = dev;
5394 	return (0);
5395 }
5396 
5397 static bool
5398 driver_exists(device_t bus, const char *driver)
5399 {
5400 	devclass_t dc;
5401 
5402 	for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
5403 		if (devclass_find_driver_internal(dc, driver) != NULL)
5404 			return (true);
5405 	}
5406 	return (false);
5407 }
5408 
5409 static int
5410 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
5411     struct thread *td)
5412 {
5413 	struct devreq *req;
5414 	device_t dev;
5415 	int error, old;
5416 
5417 	/* Locate the device to control. */
5418 	mtx_lock(&Giant);
5419 	req = (struct devreq *)data;
5420 	switch (cmd) {
5421 	case DEV_ATTACH:
5422 	case DEV_DETACH:
5423 	case DEV_ENABLE:
5424 	case DEV_DISABLE:
5425 	case DEV_SUSPEND:
5426 	case DEV_RESUME:
5427 	case DEV_SET_DRIVER:
5428 	case DEV_CLEAR_DRIVER:
5429 	case DEV_RESCAN:
5430 	case DEV_DELETE:
5431 		error = priv_check(td, PRIV_DRIVER);
5432 		if (error == 0)
5433 			error = find_device(req, &dev);
5434 		break;
5435 	default:
5436 		error = ENOTTY;
5437 		break;
5438 	}
5439 	if (error) {
5440 		mtx_unlock(&Giant);
5441 		return (error);
5442 	}
5443 
5444 	/* Perform the requested operation. */
5445 	switch (cmd) {
5446 	case DEV_ATTACH:
5447 		if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0)
5448 			error = EBUSY;
5449 		else if (!device_is_enabled(dev))
5450 			error = ENXIO;
5451 		else
5452 			error = device_probe_and_attach(dev);
5453 		break;
5454 	case DEV_DETACH:
5455 		if (!device_is_attached(dev)) {
5456 			error = ENXIO;
5457 			break;
5458 		}
5459 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5460 			error = device_quiesce(dev);
5461 			if (error)
5462 				break;
5463 		}
5464 		error = device_detach(dev);
5465 		break;
5466 	case DEV_ENABLE:
5467 		if (device_is_enabled(dev)) {
5468 			error = EBUSY;
5469 			break;
5470 		}
5471 
5472 		/*
5473 		 * If the device has been probed but not attached (e.g.
5474 		 * when it has been disabled by a loader hint), just
5475 		 * attach the device rather than doing a full probe.
5476 		 */
5477 		device_enable(dev);
5478 		if (device_is_alive(dev)) {
5479 			/*
5480 			 * If the device was disabled via a hint, clear
5481 			 * the hint.
5482 			 */
5483 			if (resource_disabled(dev->driver->name, dev->unit))
5484 				resource_unset_value(dev->driver->name,
5485 				    dev->unit, "disabled");
5486 			error = device_attach(dev);
5487 		} else
5488 			error = device_probe_and_attach(dev);
5489 		break;
5490 	case DEV_DISABLE:
5491 		if (!device_is_enabled(dev)) {
5492 			error = ENXIO;
5493 			break;
5494 		}
5495 
5496 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5497 			error = device_quiesce(dev);
5498 			if (error)
5499 				break;
5500 		}
5501 
5502 		/*
5503 		 * Force DF_FIXEDCLASS on around detach to preserve
5504 		 * the existing name.
5505 		 */
5506 		old = dev->flags;
5507 		dev->flags |= DF_FIXEDCLASS;
5508 		error = device_detach(dev);
5509 		if (!(old & DF_FIXEDCLASS))
5510 			dev->flags &= ~DF_FIXEDCLASS;
5511 		if (error == 0)
5512 			device_disable(dev);
5513 		break;
5514 	case DEV_SUSPEND:
5515 		if (device_is_suspended(dev)) {
5516 			error = EBUSY;
5517 			break;
5518 		}
5519 		if (device_get_parent(dev) == NULL) {
5520 			error = EINVAL;
5521 			break;
5522 		}
5523 		error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
5524 		break;
5525 	case DEV_RESUME:
5526 		if (!device_is_suspended(dev)) {
5527 			error = EINVAL;
5528 			break;
5529 		}
5530 		if (device_get_parent(dev) == NULL) {
5531 			error = EINVAL;
5532 			break;
5533 		}
5534 		error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
5535 		break;
5536 	case DEV_SET_DRIVER: {
5537 		devclass_t dc;
5538 		char driver[128];
5539 
5540 		error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
5541 		if (error)
5542 			break;
5543 		if (driver[0] == '\0') {
5544 			error = EINVAL;
5545 			break;
5546 		}
5547 		if (dev->devclass != NULL &&
5548 		    strcmp(driver, dev->devclass->name) == 0)
5549 			/* XXX: Could possibly force DF_FIXEDCLASS on? */
5550 			break;
5551 
5552 		/*
5553 		 * Scan drivers for this device's bus looking for at
5554 		 * least one matching driver.
5555 		 */
5556 		if (dev->parent == NULL) {
5557 			error = EINVAL;
5558 			break;
5559 		}
5560 		if (!driver_exists(dev->parent, driver)) {
5561 			error = ENOENT;
5562 			break;
5563 		}
5564 		dc = devclass_create(driver);
5565 		if (dc == NULL) {
5566 			error = ENOMEM;
5567 			break;
5568 		}
5569 
5570 		/* Detach device if necessary. */
5571 		if (device_is_attached(dev)) {
5572 			if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
5573 				error = device_detach(dev);
5574 			else
5575 				error = EBUSY;
5576 			if (error)
5577 				break;
5578 		}
5579 
5580 		/* Clear any previously-fixed device class and unit. */
5581 		if (dev->flags & DF_FIXEDCLASS)
5582 			devclass_delete_device(dev->devclass, dev);
5583 		dev->flags |= DF_WILDCARD;
5584 		dev->unit = -1;
5585 
5586 		/* Force the new device class. */
5587 		error = devclass_add_device(dc, dev);
5588 		if (error)
5589 			break;
5590 		dev->flags |= DF_FIXEDCLASS;
5591 		error = device_probe_and_attach(dev);
5592 		break;
5593 	}
5594 	case DEV_CLEAR_DRIVER:
5595 		if (!(dev->flags & DF_FIXEDCLASS)) {
5596 			error = 0;
5597 			break;
5598 		}
5599 		if (device_is_attached(dev)) {
5600 			if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH)
5601 				error = device_detach(dev);
5602 			else
5603 				error = EBUSY;
5604 			if (error)
5605 				break;
5606 		}
5607 
5608 		dev->flags &= ~DF_FIXEDCLASS;
5609 		dev->flags |= DF_WILDCARD;
5610 		devclass_delete_device(dev->devclass, dev);
5611 		error = device_probe_and_attach(dev);
5612 		break;
5613 	case DEV_RESCAN:
5614 		if (!device_is_attached(dev)) {
5615 			error = ENXIO;
5616 			break;
5617 		}
5618 		error = BUS_RESCAN(dev);
5619 		break;
5620 	case DEV_DELETE: {
5621 		device_t parent;
5622 
5623 		parent = device_get_parent(dev);
5624 		if (parent == NULL) {
5625 			error = EINVAL;
5626 			break;
5627 		}
5628 		if (!(req->dr_flags & DEVF_FORCE_DELETE)) {
5629 			if (bus_child_present(dev) != 0) {
5630 				error = EBUSY;
5631 				break;
5632 			}
5633 		}
5634 
5635 		error = device_delete_child(parent, dev);
5636 		break;
5637 	}
5638 	}
5639 	mtx_unlock(&Giant);
5640 	return (error);
5641 }
5642 
5643 static struct cdevsw devctl2_cdevsw = {
5644 	.d_version =	D_VERSION,
5645 	.d_ioctl =	devctl2_ioctl,
5646 	.d_name =	"devctl2",
5647 };
5648 
5649 static void
5650 devctl2_init(void)
5651 {
5652 
5653 	make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
5654 	    UID_ROOT, GID_WHEEL, 0600, "devctl2");
5655 }
5656 
5657 /*
5658  * APIs to manage deprecation and obsolescence.
5659  */
5660 static int obsolete_panic = 0;
5661 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0,
5662     "Bus debug level");
5663 /* 0 - don't panic, 1 - panic if already obsolete, 2 - panic if deprecated */
5664 static void
5665 gone_panic(int major, int running, const char *msg)
5666 {
5667 
5668 	switch (obsolete_panic)
5669 	{
5670 	case 0:
5671 		return;
5672 	case 1:
5673 		if (running < major)
5674 			return;
5675 		/* FALLTHROUGH */
5676 	default:
5677 		panic("%s", msg);
5678 	}
5679 }
5680 
5681 void
5682 _gone_in(int major, const char *msg)
5683 {
5684 
5685 	gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
5686 	if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
5687 		printf("Obsolete code will removed soon: %s\n", msg);
5688 	else if (P_OSREL_MAJOR(__FreeBSD_version) + 1 == major)
5689 		printf("Deprecated code (to be removed in FreeBSD %d): %s\n",
5690 		    major, msg);
5691 }
5692 
5693 void
5694 _gone_in_dev(device_t dev, int major, const char *msg)
5695 {
5696 
5697 	gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
5698 	if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
5699 		device_printf(dev,
5700 		    "Obsolete code will removed soon: %s\n", msg);
5701 	else if (P_OSREL_MAJOR(__FreeBSD_version) + 1 == major)
5702 		device_printf(dev,
5703 		    "Deprecated code (to be removed in FreeBSD %d): %s\n",
5704 		    major, msg);
5705 }
5706 
5707 #ifdef DDB
5708 DB_SHOW_COMMAND(device, db_show_device)
5709 {
5710 	device_t dev;
5711 
5712 	if (!have_addr)
5713 		return;
5714 
5715 	dev = (device_t)addr;
5716 
5717 	db_printf("name:    %s\n", device_get_nameunit(dev));
5718 	db_printf("  driver:  %s\n", DRIVERNAME(dev->driver));
5719 	db_printf("  class:   %s\n", DEVCLANAME(dev->devclass));
5720 	db_printf("  addr:    %p\n", dev);
5721 	db_printf("  parent:  %p\n", dev->parent);
5722 	db_printf("  softc:   %p\n", dev->softc);
5723 	db_printf("  ivars:   %p\n", dev->ivars);
5724 }
5725 
5726 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices)
5727 {
5728 	device_t dev;
5729 
5730 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5731 		db_show_device((db_expr_t)dev, true, count, modif);
5732 	}
5733 }
5734 #endif
5735