xref: /freebsd/sys/kern/kern_timeout.c (revision 2be1a816b9ff69588e55be0a84cbe2a31efc0f2f)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	From: @(#)kern_clock.c	8.5 (Berkeley) 1/21/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/bus.h>
43 #include <sys/callout.h>
44 #include <sys/condvar.h>
45 #include <sys/interrupt.h>
46 #include <sys/kernel.h>
47 #include <sys/ktr.h>
48 #include <sys/lock.h>
49 #include <sys/malloc.h>
50 #include <sys/mutex.h>
51 #include <sys/proc.h>
52 #include <sys/sleepqueue.h>
53 #include <sys/sysctl.h>
54 #include <sys/smp.h>
55 
56 static int avg_depth;
57 SYSCTL_INT(_debug, OID_AUTO, to_avg_depth, CTLFLAG_RD, &avg_depth, 0,
58     "Average number of items examined per softclock call. Units = 1/1000");
59 static int avg_gcalls;
60 SYSCTL_INT(_debug, OID_AUTO, to_avg_gcalls, CTLFLAG_RD, &avg_gcalls, 0,
61     "Average number of Giant callouts made per softclock call. Units = 1/1000");
62 static int avg_lockcalls;
63 SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls, CTLFLAG_RD, &avg_lockcalls, 0,
64     "Average number of lock callouts made per softclock call. Units = 1/1000");
65 static int avg_mpcalls;
66 SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls, CTLFLAG_RD, &avg_mpcalls, 0,
67     "Average number of MP callouts made per softclock call. Units = 1/1000");
68 /*
69  * TODO:
70  *	allocate more timeout table slots when table overflows.
71  */
72 int callwheelsize, callwheelbits, callwheelmask;
73 
74 struct callout_cpu {
75 	struct mtx		cc_lock;
76 	struct callout		*cc_callout;
77 	struct callout_tailq	*cc_callwheel;
78 	struct callout_list	cc_callfree;
79 	struct callout		*cc_next;
80 	struct callout		*cc_curr;
81 	void			*cc_cookie;
82 	int 			cc_softticks;
83 	int			cc_cancel;
84 	int			cc_waiting;
85 };
86 
87 #ifdef SMP
88 struct callout_cpu cc_cpu[MAXCPU];
89 #define	CC_CPU(cpu)	(&cc_cpu[(cpu)])
90 #define	CC_SELF()	CC_CPU(PCPU_GET(cpuid))
91 #else
92 struct callout_cpu cc_cpu;
93 #define	CC_CPU(cpu)	&cc_cpu
94 #define	CC_SELF()	&cc_cpu
95 #endif
96 #define	CC_LOCK(cc)	mtx_lock_spin(&(cc)->cc_lock)
97 #define	CC_UNLOCK(cc)	mtx_unlock_spin(&(cc)->cc_lock)
98 
99 static int timeout_cpu;
100 
101 MALLOC_DEFINE(M_CALLOUT, "callout", "Callout datastructures");
102 
103 /**
104  * Locked by cc_lock:
105  *   cc_curr         - If a callout is in progress, it is curr_callout.
106  *                     If curr_callout is non-NULL, threads waiting in
107  *                     callout_drain() will be woken up as soon as the
108  *                     relevant callout completes.
109  *   cc_cancel       - Changing to 1 with both callout_lock and c_lock held
110  *                     guarantees that the current callout will not run.
111  *                     The softclock() function sets this to 0 before it
112  *                     drops callout_lock to acquire c_lock, and it calls
113  *                     the handler only if curr_cancelled is still 0 after
114  *                     c_lock is successfully acquired.
115  *   cc_waiting      - If a thread is waiting in callout_drain(), then
116  *                     callout_wait is nonzero.  Set only when
117  *                     curr_callout is non-NULL.
118  */
119 
120 /*
121  * kern_timeout_callwheel_alloc() - kernel low level callwheel initialization
122  *
123  *	This code is called very early in the kernel initialization sequence,
124  *	and may be called more then once.
125  */
126 caddr_t
127 kern_timeout_callwheel_alloc(caddr_t v)
128 {
129 	struct callout_cpu *cc;
130 
131 	timeout_cpu = PCPU_GET(cpuid);
132 	cc = CC_CPU(timeout_cpu);
133 	/*
134 	 * Calculate callout wheel size
135 	 */
136 	for (callwheelsize = 1, callwheelbits = 0;
137 	     callwheelsize < ncallout;
138 	     callwheelsize <<= 1, ++callwheelbits)
139 		;
140 	callwheelmask = callwheelsize - 1;
141 
142 	cc->cc_callout = (struct callout *)v;
143 	v = (caddr_t)(cc->cc_callout + ncallout);
144 	cc->cc_callwheel = (struct callout_tailq *)v;
145 	v = (caddr_t)(cc->cc_callwheel + callwheelsize);
146 	return(v);
147 }
148 
149 static void
150 callout_cpu_init(struct callout_cpu *cc)
151 {
152 	struct callout *c;
153 	int i;
154 
155 	mtx_init(&cc->cc_lock, "callout", NULL, MTX_SPIN | MTX_RECURSE);
156 	SLIST_INIT(&cc->cc_callfree);
157 	for (i = 0; i < callwheelsize; i++) {
158 		TAILQ_INIT(&cc->cc_callwheel[i]);
159 	}
160 	if (cc->cc_callout == NULL)
161 		return;
162 	for (i = 0; i < ncallout; i++) {
163 		c = &cc->cc_callout[i];
164 		callout_init(c, 0);
165 		c->c_flags = CALLOUT_LOCAL_ALLOC;
166 		SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
167 	}
168 }
169 
170 /*
171  * kern_timeout_callwheel_init() - initialize previously reserved callwheel
172  *				   space.
173  *
174  *	This code is called just once, after the space reserved for the
175  *	callout wheel has been finalized.
176  */
177 void
178 kern_timeout_callwheel_init(void)
179 {
180 	callout_cpu_init(CC_CPU(timeout_cpu));
181 }
182 
183 /*
184  * Start standard softclock thread.
185  */
186 void    *softclock_ih;
187 
188 static void
189 start_softclock(void *dummy)
190 {
191 	struct callout_cpu *cc;
192 #ifdef SMP
193 	int cpu;
194 #endif
195 
196 	cc = CC_CPU(timeout_cpu);
197 	if (swi_add(&clk_intr_event, "clock", softclock, cc, SWI_CLOCK,
198 	    INTR_MPSAFE, &softclock_ih))
199 		panic("died while creating standard software ithreads");
200 	cc->cc_cookie = softclock_ih;
201 #ifdef SMP
202 	for (cpu = 0; cpu <= mp_maxid; cpu++) {
203 		if (cpu == timeout_cpu)
204 			continue;
205 		if (CPU_ABSENT(cpu))
206 			continue;
207 		cc = CC_CPU(cpu);
208 		if (swi_add(NULL, "clock", softclock, cc, SWI_CLOCK,
209 		    INTR_MPSAFE, &cc->cc_cookie))
210 			panic("died while creating standard software ithreads");
211 		cc->cc_callout = NULL;	/* Only cpu0 handles timeout(). */
212 		cc->cc_callwheel = malloc(
213 		    sizeof(struct callout_tailq) * callwheelsize, M_CALLOUT,
214 		    M_WAITOK);
215 		callout_cpu_init(cc);
216 	}
217 #endif
218 }
219 
220 SYSINIT(start_softclock, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softclock, NULL);
221 
222 void
223 callout_tick(void)
224 {
225 	int need_softclock = 0;
226 	struct callout_cpu *cc;
227 
228 	/*
229 	 * Process callouts at a very low cpu priority, so we don't keep the
230 	 * relatively high clock interrupt priority any longer than necessary.
231 	 */
232 	cc = CC_SELF();
233 	mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET);
234 	if (!TAILQ_EMPTY(&cc->cc_callwheel[ticks & callwheelmask])) {
235 		need_softclock = 1;
236 	} else if (cc->cc_softticks + 1 == ticks)
237 		++cc->cc_softticks;
238 	mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
239 	/*
240 	 * swi_sched acquires the thread lock, so we don't want to call it
241 	 * with cc_lock held; incorrect locking order.
242 	 */
243 	if (need_softclock)
244 		swi_sched(cc->cc_cookie, 0);
245 }
246 
247 static struct callout_cpu *
248 callout_lock(struct callout *c)
249 {
250 	struct callout_cpu *cc;
251 	int cpu;
252 
253 	for (;;) {
254 		cpu = c->c_cpu;
255 		cc = CC_CPU(cpu);
256 		CC_LOCK(cc);
257 		if (cpu == c->c_cpu)
258 			break;
259 		CC_UNLOCK(cc);
260 	}
261 	return (cc);
262 }
263 
264 /*
265  * The callout mechanism is based on the work of Adam M. Costello and
266  * George Varghese, published in a technical report entitled "Redesigning
267  * the BSD Callout and Timer Facilities" and modified slightly for inclusion
268  * in FreeBSD by Justin T. Gibbs.  The original work on the data structures
269  * used in this implementation was published by G. Varghese and T. Lauck in
270  * the paper "Hashed and Hierarchical Timing Wheels: Data Structures for
271  * the Efficient Implementation of a Timer Facility" in the Proceedings of
272  * the 11th ACM Annual Symposium on Operating Systems Principles,
273  * Austin, Texas Nov 1987.
274  */
275 
276 /*
277  * Software (low priority) clock interrupt.
278  * Run periodic events from timeout queue.
279  */
280 void
281 softclock(void *arg)
282 {
283 	struct callout_cpu *cc;
284 	struct callout *c;
285 	struct callout_tailq *bucket;
286 	int curticks;
287 	int steps;	/* #steps since we last allowed interrupts */
288 	int depth;
289 	int mpcalls;
290 	int lockcalls;
291 	int gcalls;
292 #ifdef DIAGNOSTIC
293 	struct bintime bt1, bt2;
294 	struct timespec ts2;
295 	static uint64_t maxdt = 36893488147419102LL;	/* 2 msec */
296 	static timeout_t *lastfunc;
297 #endif
298 
299 #ifndef MAX_SOFTCLOCK_STEPS
300 #define MAX_SOFTCLOCK_STEPS 100 /* Maximum allowed value of steps. */
301 #endif /* MAX_SOFTCLOCK_STEPS */
302 
303 	mpcalls = 0;
304 	lockcalls = 0;
305 	gcalls = 0;
306 	depth = 0;
307 	steps = 0;
308 	cc = (struct callout_cpu *)arg;
309 	CC_LOCK(cc);
310 	while (cc->cc_softticks != ticks) {
311 		cc->cc_softticks++;
312 		/*
313 		 * cc_softticks may be modified by hard clock, so cache
314 		 * it while we work on a given bucket.
315 		 */
316 		curticks = cc->cc_softticks;
317 		bucket = &cc->cc_callwheel[curticks & callwheelmask];
318 		c = TAILQ_FIRST(bucket);
319 		while (c) {
320 			depth++;
321 			if (c->c_time != curticks) {
322 				c = TAILQ_NEXT(c, c_links.tqe);
323 				++steps;
324 				if (steps >= MAX_SOFTCLOCK_STEPS) {
325 					cc->cc_next = c;
326 					/* Give interrupts a chance. */
327 					CC_UNLOCK(cc);
328 					;	/* nothing */
329 					CC_LOCK(cc);
330 					c = cc->cc_next;
331 					steps = 0;
332 				}
333 			} else {
334 				void (*c_func)(void *);
335 				void *c_arg;
336 				struct lock_class *class;
337 				struct lock_object *c_lock;
338 				int c_flags, sharedlock;
339 
340 				cc->cc_next = TAILQ_NEXT(c, c_links.tqe);
341 				TAILQ_REMOVE(bucket, c, c_links.tqe);
342 				class = (c->c_lock != NULL) ?
343 				    LOCK_CLASS(c->c_lock) : NULL;
344 				sharedlock = (c->c_flags & CALLOUT_SHAREDLOCK) ?
345 				    0 : 1;
346 				c_lock = c->c_lock;
347 				c_func = c->c_func;
348 				c_arg = c->c_arg;
349 				c_flags = c->c_flags;
350 				if (c->c_flags & CALLOUT_LOCAL_ALLOC) {
351 					c->c_flags = CALLOUT_LOCAL_ALLOC;
352 				} else {
353 					c->c_flags =
354 					    (c->c_flags & ~CALLOUT_PENDING);
355 				}
356 				cc->cc_curr = c;
357 				cc->cc_cancel = 0;
358 				CC_UNLOCK(cc);
359 				if (c_lock != NULL) {
360 					class->lc_lock(c_lock, sharedlock);
361 					/*
362 					 * The callout may have been cancelled
363 					 * while we switched locks.
364 					 */
365 					if (cc->cc_cancel) {
366 						class->lc_unlock(c_lock);
367 						goto skip;
368 					}
369 					/* The callout cannot be stopped now. */
370 					cc->cc_cancel = 1;
371 
372 					if (c_lock == &Giant.lock_object) {
373 						gcalls++;
374 						CTR3(KTR_CALLOUT,
375 						    "callout %p func %p arg %p",
376 						    c, c_func, c_arg);
377 					} else {
378 						lockcalls++;
379 						CTR3(KTR_CALLOUT, "callout lock"
380 						    " %p func %p arg %p",
381 						    c, c_func, c_arg);
382 					}
383 				} else {
384 					mpcalls++;
385 					CTR3(KTR_CALLOUT,
386 					    "callout mpsafe %p func %p arg %p",
387 					    c, c_func, c_arg);
388 				}
389 #ifdef DIAGNOSTIC
390 				binuptime(&bt1);
391 #endif
392 				THREAD_NO_SLEEPING();
393 				c_func(c_arg);
394 				THREAD_SLEEPING_OK();
395 #ifdef DIAGNOSTIC
396 				binuptime(&bt2);
397 				bintime_sub(&bt2, &bt1);
398 				if (bt2.frac > maxdt) {
399 					if (lastfunc != c_func ||
400 					    bt2.frac > maxdt * 2) {
401 						bintime2timespec(&bt2, &ts2);
402 						printf(
403 			"Expensive timeout(9) function: %p(%p) %jd.%09ld s\n",
404 						    c_func, c_arg,
405 						    (intmax_t)ts2.tv_sec,
406 						    ts2.tv_nsec);
407 					}
408 					maxdt = bt2.frac;
409 					lastfunc = c_func;
410 				}
411 #endif
412 				if ((c_flags & CALLOUT_RETURNUNLOCKED) == 0)
413 					class->lc_unlock(c_lock);
414 			skip:
415 				CC_LOCK(cc);
416 				/*
417 				 * If the current callout is locally
418 				 * allocated (from timeout(9))
419 				 * then put it on the freelist.
420 				 *
421 				 * Note: we need to check the cached
422 				 * copy of c_flags because if it was not
423 				 * local, then it's not safe to deref the
424 				 * callout pointer.
425 				 */
426 				if (c_flags & CALLOUT_LOCAL_ALLOC) {
427 					KASSERT(c->c_flags ==
428 					    CALLOUT_LOCAL_ALLOC,
429 					    ("corrupted callout"));
430 					c->c_func = NULL;
431 					SLIST_INSERT_HEAD(&cc->cc_callfree, c,
432 					    c_links.sle);
433 				}
434 				cc->cc_curr = NULL;
435 				if (cc->cc_waiting) {
436 					/*
437 					 * There is someone waiting
438 					 * for the callout to complete.
439 					 */
440 					cc->cc_waiting = 0;
441 					CC_UNLOCK(cc);
442 					wakeup(&cc->cc_waiting);
443 					CC_LOCK(cc);
444 				}
445 				steps = 0;
446 				c = cc->cc_next;
447 			}
448 		}
449 	}
450 	avg_depth += (depth * 1000 - avg_depth) >> 8;
451 	avg_mpcalls += (mpcalls * 1000 - avg_mpcalls) >> 8;
452 	avg_lockcalls += (lockcalls * 1000 - avg_lockcalls) >> 8;
453 	avg_gcalls += (gcalls * 1000 - avg_gcalls) >> 8;
454 	cc->cc_next = NULL;
455 	CC_UNLOCK(cc);
456 }
457 
458 /*
459  * timeout --
460  *	Execute a function after a specified length of time.
461  *
462  * untimeout --
463  *	Cancel previous timeout function call.
464  *
465  * callout_handle_init --
466  *	Initialize a handle so that using it with untimeout is benign.
467  *
468  *	See AT&T BCI Driver Reference Manual for specification.  This
469  *	implementation differs from that one in that although an
470  *	identification value is returned from timeout, the original
471  *	arguments to timeout as well as the identifier are used to
472  *	identify entries for untimeout.
473  */
474 struct callout_handle
475 timeout(ftn, arg, to_ticks)
476 	timeout_t *ftn;
477 	void *arg;
478 	int to_ticks;
479 {
480 	struct callout_cpu *cc;
481 	struct callout *new;
482 	struct callout_handle handle;
483 
484 	cc = CC_CPU(timeout_cpu);
485 	CC_LOCK(cc);
486 	/* Fill in the next free callout structure. */
487 	new = SLIST_FIRST(&cc->cc_callfree);
488 	if (new == NULL)
489 		/* XXX Attempt to malloc first */
490 		panic("timeout table full");
491 	SLIST_REMOVE_HEAD(&cc->cc_callfree, c_links.sle);
492 	callout_reset(new, to_ticks, ftn, arg);
493 	handle.callout = new;
494 	CC_UNLOCK(cc);
495 
496 	return (handle);
497 }
498 
499 void
500 untimeout(ftn, arg, handle)
501 	timeout_t *ftn;
502 	void *arg;
503 	struct callout_handle handle;
504 {
505 	struct callout_cpu *cc;
506 
507 	/*
508 	 * Check for a handle that was initialized
509 	 * by callout_handle_init, but never used
510 	 * for a real timeout.
511 	 */
512 	if (handle.callout == NULL)
513 		return;
514 
515 	cc = callout_lock(handle.callout);
516 	if (handle.callout->c_func == ftn && handle.callout->c_arg == arg)
517 		callout_stop(handle.callout);
518 	CC_UNLOCK(cc);
519 }
520 
521 void
522 callout_handle_init(struct callout_handle *handle)
523 {
524 	handle->callout = NULL;
525 }
526 
527 /*
528  * New interface; clients allocate their own callout structures.
529  *
530  * callout_reset() - establish or change a timeout
531  * callout_stop() - disestablish a timeout
532  * callout_init() - initialize a callout structure so that it can
533  *	safely be passed to callout_reset() and callout_stop()
534  *
535  * <sys/callout.h> defines three convenience macros:
536  *
537  * callout_active() - returns truth if callout has not been stopped,
538  *	drained, or deactivated since the last time the callout was
539  *	reset.
540  * callout_pending() - returns truth if callout is still waiting for timeout
541  * callout_deactivate() - marks the callout as having been serviced
542  */
543 int
544 callout_reset_on(struct callout *c, int to_ticks, void (*ftn)(void *),
545     void *arg, int cpu)
546 {
547 	struct callout_cpu *cc;
548 	int cancelled = 0;
549 
550 	/*
551 	 * Don't allow migration of pre-allocated callouts lest they
552 	 * become unbalanced.
553 	 */
554 	if (c->c_flags & CALLOUT_LOCAL_ALLOC)
555 		cpu = c->c_cpu;
556 retry:
557 	cc = callout_lock(c);
558 	if (cc->cc_curr == c) {
559 		/*
560 		 * We're being asked to reschedule a callout which is
561 		 * currently in progress.  If there is a lock then we
562 		 * can cancel the callout if it has not really started.
563 		 */
564 		if (c->c_lock != NULL && !cc->cc_cancel)
565 			cancelled = cc->cc_cancel = 1;
566 		if (cc->cc_waiting) {
567 			/*
568 			 * Someone has called callout_drain to kill this
569 			 * callout.  Don't reschedule.
570 			 */
571 			CTR4(KTR_CALLOUT, "%s %p func %p arg %p",
572 			    cancelled ? "cancelled" : "failed to cancel",
573 			    c, c->c_func, c->c_arg);
574 			CC_UNLOCK(cc);
575 			return (cancelled);
576 		}
577 	}
578 	if (c->c_flags & CALLOUT_PENDING) {
579 		if (cc->cc_next == c) {
580 			cc->cc_next = TAILQ_NEXT(c, c_links.tqe);
581 		}
582 		TAILQ_REMOVE(&cc->cc_callwheel[c->c_time & callwheelmask], c,
583 		    c_links.tqe);
584 
585 		cancelled = 1;
586 		c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
587 	}
588 	/*
589 	 * If the lock must migrate we have to check the state again as
590 	 * we can't hold both the new and old locks simultaneously.
591 	 */
592 	if (c->c_cpu != cpu) {
593 		c->c_cpu = cpu;
594 		CC_UNLOCK(cc);
595 		goto retry;
596 	}
597 
598 	if (to_ticks <= 0)
599 		to_ticks = 1;
600 
601 	c->c_arg = arg;
602 	c->c_flags |= (CALLOUT_ACTIVE | CALLOUT_PENDING);
603 	c->c_func = ftn;
604 	c->c_time = ticks + to_ticks;
605 	TAILQ_INSERT_TAIL(&cc->cc_callwheel[c->c_time & callwheelmask],
606 			  c, c_links.tqe);
607 	CTR5(KTR_CALLOUT, "%sscheduled %p func %p arg %p in %d",
608 	    cancelled ? "re" : "", c, c->c_func, c->c_arg, to_ticks);
609 	CC_UNLOCK(cc);
610 
611 	return (cancelled);
612 }
613 
614 int
615 _callout_stop_safe(c, safe)
616 	struct	callout *c;
617 	int	safe;
618 {
619 	struct callout_cpu *cc;
620 	struct lock_class *class;
621 	int use_lock, sq_locked;
622 
623 	/*
624 	 * Some old subsystems don't hold Giant while running a callout_stop(),
625 	 * so just discard this check for the moment.
626 	 */
627 	if (!safe && c->c_lock != NULL) {
628 		if (c->c_lock == &Giant.lock_object)
629 			use_lock = mtx_owned(&Giant);
630 		else {
631 			use_lock = 1;
632 			class = LOCK_CLASS(c->c_lock);
633 			class->lc_assert(c->c_lock, LA_XLOCKED);
634 		}
635 	} else
636 		use_lock = 0;
637 
638 	sq_locked = 0;
639 again:
640 	cc = callout_lock(c);
641 	/*
642 	 * If the callout isn't pending, it's not on the queue, so
643 	 * don't attempt to remove it from the queue.  We can try to
644 	 * stop it by other means however.
645 	 */
646 	if (!(c->c_flags & CALLOUT_PENDING)) {
647 		c->c_flags &= ~CALLOUT_ACTIVE;
648 
649 		/*
650 		 * If it wasn't on the queue and it isn't the current
651 		 * callout, then we can't stop it, so just bail.
652 		 */
653 		if (cc->cc_curr != c) {
654 			CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
655 			    c, c->c_func, c->c_arg);
656 			CC_UNLOCK(cc);
657 			if (sq_locked)
658 				sleepq_release(&cc->cc_waiting);
659 			return (0);
660 		}
661 
662 		if (safe) {
663 			/*
664 			 * The current callout is running (or just
665 			 * about to run) and blocking is allowed, so
666 			 * just wait for the current invocation to
667 			 * finish.
668 			 */
669 			while (cc->cc_curr == c) {
670 
671 				/*
672 				 * Use direct calls to sleepqueue interface
673 				 * instead of cv/msleep in order to avoid
674 				 * a LOR between cc_lock and sleepqueue
675 				 * chain spinlocks.  This piece of code
676 				 * emulates a msleep_spin() call actually.
677 				 *
678 				 * If we already have the sleepqueue chain
679 				 * locked, then we can safely block.  If we
680 				 * don't already have it locked, however,
681 				 * we have to drop the cc_lock to lock
682 				 * it.  This opens several races, so we
683 				 * restart at the beginning once we have
684 				 * both locks.  If nothing has changed, then
685 				 * we will end up back here with sq_locked
686 				 * set.
687 				 */
688 				if (!sq_locked) {
689 					CC_UNLOCK(cc);
690 					sleepq_lock(&cc->cc_waiting);
691 					sq_locked = 1;
692 					goto again;
693 				}
694 				cc->cc_waiting = 1;
695 				DROP_GIANT();
696 				CC_UNLOCK(cc);
697 				sleepq_add(&cc->cc_waiting,
698 				    &cc->cc_lock.lock_object, "codrain",
699 				    SLEEPQ_SLEEP, 0);
700 				sleepq_wait(&cc->cc_waiting, 0);
701 				sq_locked = 0;
702 
703 				/* Reacquire locks previously released. */
704 				PICKUP_GIANT();
705 				CC_LOCK(cc);
706 			}
707 		} else if (use_lock && !cc->cc_cancel) {
708 			/*
709 			 * The current callout is waiting for its
710 			 * lock which we hold.  Cancel the callout
711 			 * and return.  After our caller drops the
712 			 * lock, the callout will be skipped in
713 			 * softclock().
714 			 */
715 			cc->cc_cancel = 1;
716 			CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
717 			    c, c->c_func, c->c_arg);
718 			CC_UNLOCK(cc);
719 			KASSERT(!sq_locked, ("sleepqueue chain locked"));
720 			return (1);
721 		}
722 		CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
723 		    c, c->c_func, c->c_arg);
724 		CC_UNLOCK(cc);
725 		KASSERT(!sq_locked, ("sleepqueue chain still locked"));
726 		return (0);
727 	}
728 	if (sq_locked)
729 		sleepq_release(&cc->cc_waiting);
730 
731 	c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
732 
733 	if (cc->cc_next == c) {
734 		cc->cc_next = TAILQ_NEXT(c, c_links.tqe);
735 	}
736 	TAILQ_REMOVE(&cc->cc_callwheel[c->c_time & callwheelmask], c,
737 	    c_links.tqe);
738 
739 	CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
740 	    c, c->c_func, c->c_arg);
741 
742 	if (c->c_flags & CALLOUT_LOCAL_ALLOC) {
743 		c->c_func = NULL;
744 		SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
745 	}
746 	CC_UNLOCK(cc);
747 	return (1);
748 }
749 
750 void
751 callout_init(c, mpsafe)
752 	struct	callout *c;
753 	int mpsafe;
754 {
755 	bzero(c, sizeof *c);
756 	if (mpsafe) {
757 		c->c_lock = NULL;
758 		c->c_flags = CALLOUT_RETURNUNLOCKED;
759 	} else {
760 		c->c_lock = &Giant.lock_object;
761 		c->c_flags = 0;
762 	}
763 	c->c_cpu = timeout_cpu;
764 }
765 
766 void
767 _callout_init_lock(c, lock, flags)
768 	struct	callout *c;
769 	struct	lock_object *lock;
770 	int flags;
771 {
772 	bzero(c, sizeof *c);
773 	c->c_lock = lock;
774 	KASSERT((flags & ~(CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK)) == 0,
775 	    ("callout_init_lock: bad flags %d", flags));
776 	KASSERT(lock != NULL || (flags & CALLOUT_RETURNUNLOCKED) == 0,
777 	    ("callout_init_lock: CALLOUT_RETURNUNLOCKED with no lock"));
778 	KASSERT(lock == NULL || !(LOCK_CLASS(lock)->lc_flags &
779 	    (LC_SPINLOCK | LC_SLEEPABLE)), ("%s: invalid lock class",
780 	    __func__));
781 	c->c_flags = flags & (CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK);
782 	c->c_cpu = timeout_cpu;
783 }
784 
785 #ifdef APM_FIXUP_CALLTODO
786 /*
787  * Adjust the kernel calltodo timeout list.  This routine is used after
788  * an APM resume to recalculate the calltodo timer list values with the
789  * number of hz's we have been sleeping.  The next hardclock() will detect
790  * that there are fired timers and run softclock() to execute them.
791  *
792  * Please note, I have not done an exhaustive analysis of what code this
793  * might break.  I am motivated to have my select()'s and alarm()'s that
794  * have expired during suspend firing upon resume so that the applications
795  * which set the timer can do the maintanence the timer was for as close
796  * as possible to the originally intended time.  Testing this code for a
797  * week showed that resuming from a suspend resulted in 22 to 25 timers
798  * firing, which seemed independant on whether the suspend was 2 hours or
799  * 2 days.  Your milage may vary.   - Ken Key <key@cs.utk.edu>
800  */
801 void
802 adjust_timeout_calltodo(time_change)
803     struct timeval *time_change;
804 {
805 	register struct callout *p;
806 	unsigned long delta_ticks;
807 
808 	/*
809 	 * How many ticks were we asleep?
810 	 * (stolen from tvtohz()).
811 	 */
812 
813 	/* Don't do anything */
814 	if (time_change->tv_sec < 0)
815 		return;
816 	else if (time_change->tv_sec <= LONG_MAX / 1000000)
817 		delta_ticks = (time_change->tv_sec * 1000000 +
818 			       time_change->tv_usec + (tick - 1)) / tick + 1;
819 	else if (time_change->tv_sec <= LONG_MAX / hz)
820 		delta_ticks = time_change->tv_sec * hz +
821 			      (time_change->tv_usec + (tick - 1)) / tick + 1;
822 	else
823 		delta_ticks = LONG_MAX;
824 
825 	if (delta_ticks > INT_MAX)
826 		delta_ticks = INT_MAX;
827 
828 	/*
829 	 * Now rip through the timer calltodo list looking for timers
830 	 * to expire.
831 	 */
832 
833 	/* don't collide with softclock() */
834 	CC_LOCK(cc);
835 	for (p = calltodo.c_next; p != NULL; p = p->c_next) {
836 		p->c_time -= delta_ticks;
837 
838 		/* Break if the timer had more time on it than delta_ticks */
839 		if (p->c_time > 0)
840 			break;
841 
842 		/* take back the ticks the timer didn't use (p->c_time <= 0) */
843 		delta_ticks = -p->c_time;
844 	}
845 	CC_UNLOCK(cc);
846 
847 	return;
848 }
849 #endif /* APM_FIXUP_CALLTODO */
850