xref: /freebsd/sys/kern/kern_thread.c (revision 98e0ffaefb0f241cda3a72395d3be04192ae0d47)
1 /*-
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  */
28 
29 #include "opt_witness.h"
30 #include "opt_hwpmc_hooks.h"
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/rangelock.h>
42 #include <sys/resourcevar.h>
43 #include <sys/sdt.h>
44 #include <sys/smp.h>
45 #include <sys/sched.h>
46 #include <sys/sleepqueue.h>
47 #include <sys/selinfo.h>
48 #include <sys/turnstile.h>
49 #include <sys/ktr.h>
50 #include <sys/rwlock.h>
51 #include <sys/umtx.h>
52 #include <sys/cpuset.h>
53 #ifdef	HWPMC_HOOKS
54 #include <sys/pmckern.h>
55 #endif
56 
57 #include <security/audit/audit.h>
58 
59 #include <vm/vm.h>
60 #include <vm/vm_extern.h>
61 #include <vm/uma.h>
62 #include <sys/eventhandler.h>
63 
64 SDT_PROVIDER_DECLARE(proc);
65 SDT_PROBE_DEFINE(proc, , , lwp__exit);
66 
67 /*
68  * thread related storage.
69  */
70 static uma_zone_t thread_zone;
71 
72 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
73 static struct mtx zombie_lock;
74 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
75 
76 static void thread_zombie(struct thread *);
77 static int thread_unsuspend_one(struct thread *td, struct proc *p,
78     bool boundary);
79 
80 #define TID_BUFFER_SIZE	1024
81 
82 struct mtx tid_lock;
83 static struct unrhdr *tid_unrhdr;
84 static lwpid_t tid_buffer[TID_BUFFER_SIZE];
85 static int tid_head, tid_tail;
86 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
87 
88 struct	tidhashhead *tidhashtbl;
89 u_long	tidhash;
90 struct	rwlock tidhash_lock;
91 
92 static lwpid_t
93 tid_alloc(void)
94 {
95 	lwpid_t	tid;
96 
97 	tid = alloc_unr(tid_unrhdr);
98 	if (tid != -1)
99 		return (tid);
100 	mtx_lock(&tid_lock);
101 	if (tid_head == tid_tail) {
102 		mtx_unlock(&tid_lock);
103 		return (-1);
104 	}
105 	tid = tid_buffer[tid_head];
106 	tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
107 	mtx_unlock(&tid_lock);
108 	return (tid);
109 }
110 
111 static void
112 tid_free(lwpid_t tid)
113 {
114 	lwpid_t tmp_tid = -1;
115 
116 	mtx_lock(&tid_lock);
117 	if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
118 		tmp_tid = tid_buffer[tid_head];
119 		tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
120 	}
121 	tid_buffer[tid_tail] = tid;
122 	tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE;
123 	mtx_unlock(&tid_lock);
124 	if (tmp_tid != -1)
125 		free_unr(tid_unrhdr, tmp_tid);
126 }
127 
128 /*
129  * Prepare a thread for use.
130  */
131 static int
132 thread_ctor(void *mem, int size, void *arg, int flags)
133 {
134 	struct thread	*td;
135 
136 	td = (struct thread *)mem;
137 	td->td_state = TDS_INACTIVE;
138 	td->td_oncpu = NOCPU;
139 
140 	td->td_tid = tid_alloc();
141 
142 	/*
143 	 * Note that td_critnest begins life as 1 because the thread is not
144 	 * running and is thereby implicitly waiting to be on the receiving
145 	 * end of a context switch.
146 	 */
147 	td->td_critnest = 1;
148 	td->td_lend_user_pri = PRI_MAX;
149 	EVENTHANDLER_INVOKE(thread_ctor, td);
150 #ifdef AUDIT
151 	audit_thread_alloc(td);
152 #endif
153 	umtx_thread_alloc(td);
154 	return (0);
155 }
156 
157 /*
158  * Reclaim a thread after use.
159  */
160 static void
161 thread_dtor(void *mem, int size, void *arg)
162 {
163 	struct thread *td;
164 
165 	td = (struct thread *)mem;
166 
167 #ifdef INVARIANTS
168 	/* Verify that this thread is in a safe state to free. */
169 	switch (td->td_state) {
170 	case TDS_INHIBITED:
171 	case TDS_RUNNING:
172 	case TDS_CAN_RUN:
173 	case TDS_RUNQ:
174 		/*
175 		 * We must never unlink a thread that is in one of
176 		 * these states, because it is currently active.
177 		 */
178 		panic("bad state for thread unlinking");
179 		/* NOTREACHED */
180 	case TDS_INACTIVE:
181 		break;
182 	default:
183 		panic("bad thread state");
184 		/* NOTREACHED */
185 	}
186 #endif
187 #ifdef AUDIT
188 	audit_thread_free(td);
189 #endif
190 	/* Free all OSD associated to this thread. */
191 	osd_thread_exit(td);
192 
193 	EVENTHANDLER_INVOKE(thread_dtor, td);
194 	tid_free(td->td_tid);
195 }
196 
197 /*
198  * Initialize type-stable parts of a thread (when newly created).
199  */
200 static int
201 thread_init(void *mem, int size, int flags)
202 {
203 	struct thread *td;
204 
205 	td = (struct thread *)mem;
206 
207 	td->td_sleepqueue = sleepq_alloc();
208 	td->td_turnstile = turnstile_alloc();
209 	td->td_rlqe = NULL;
210 	EVENTHANDLER_INVOKE(thread_init, td);
211 	td->td_sched = (struct td_sched *)&td[1];
212 	umtx_thread_init(td);
213 	td->td_kstack = 0;
214 	td->td_sel = NULL;
215 	return (0);
216 }
217 
218 /*
219  * Tear down type-stable parts of a thread (just before being discarded).
220  */
221 static void
222 thread_fini(void *mem, int size)
223 {
224 	struct thread *td;
225 
226 	td = (struct thread *)mem;
227 	EVENTHANDLER_INVOKE(thread_fini, td);
228 	rlqentry_free(td->td_rlqe);
229 	turnstile_free(td->td_turnstile);
230 	sleepq_free(td->td_sleepqueue);
231 	umtx_thread_fini(td);
232 	seltdfini(td);
233 }
234 
235 /*
236  * For a newly created process,
237  * link up all the structures and its initial threads etc.
238  * called from:
239  * {arch}/{arch}/machdep.c   {arch}_init(), init386() etc.
240  * proc_dtor() (should go away)
241  * proc_init()
242  */
243 void
244 proc_linkup0(struct proc *p, struct thread *td)
245 {
246 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
247 	proc_linkup(p, td);
248 }
249 
250 void
251 proc_linkup(struct proc *p, struct thread *td)
252 {
253 
254 	sigqueue_init(&p->p_sigqueue, p);
255 	p->p_ksi = ksiginfo_alloc(1);
256 	if (p->p_ksi != NULL) {
257 		/* XXX p_ksi may be null if ksiginfo zone is not ready */
258 		p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
259 	}
260 	LIST_INIT(&p->p_mqnotifier);
261 	p->p_numthreads = 0;
262 	thread_link(td, p);
263 }
264 
265 /*
266  * Initialize global thread allocation resources.
267  */
268 void
269 threadinit(void)
270 {
271 
272 	mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
273 
274 	/*
275 	 * pid_max cannot be greater than PID_MAX.
276 	 * leave one number for thread0.
277 	 */
278 	tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
279 
280 	thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
281 	    thread_ctor, thread_dtor, thread_init, thread_fini,
282 	    16 - 1, 0);
283 	tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
284 	rw_init(&tidhash_lock, "tidhash");
285 }
286 
287 /*
288  * Place an unused thread on the zombie list.
289  * Use the slpq as that must be unused by now.
290  */
291 void
292 thread_zombie(struct thread *td)
293 {
294 	mtx_lock_spin(&zombie_lock);
295 	TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
296 	mtx_unlock_spin(&zombie_lock);
297 }
298 
299 /*
300  * Release a thread that has exited after cpu_throw().
301  */
302 void
303 thread_stash(struct thread *td)
304 {
305 	atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
306 	thread_zombie(td);
307 }
308 
309 /*
310  * Reap zombie resources.
311  */
312 void
313 thread_reap(void)
314 {
315 	struct thread *td_first, *td_next;
316 
317 	/*
318 	 * Don't even bother to lock if none at this instant,
319 	 * we really don't care about the next instant..
320 	 */
321 	if (!TAILQ_EMPTY(&zombie_threads)) {
322 		mtx_lock_spin(&zombie_lock);
323 		td_first = TAILQ_FIRST(&zombie_threads);
324 		if (td_first)
325 			TAILQ_INIT(&zombie_threads);
326 		mtx_unlock_spin(&zombie_lock);
327 		while (td_first) {
328 			td_next = TAILQ_NEXT(td_first, td_slpq);
329 			if (td_first->td_ucred)
330 				crfree(td_first->td_ucred);
331 			thread_free(td_first);
332 			td_first = td_next;
333 		}
334 	}
335 }
336 
337 /*
338  * Allocate a thread.
339  */
340 struct thread *
341 thread_alloc(int pages)
342 {
343 	struct thread *td;
344 
345 	thread_reap(); /* check if any zombies to get */
346 
347 	td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
348 	KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
349 	if (!vm_thread_new(td, pages)) {
350 		uma_zfree(thread_zone, td);
351 		return (NULL);
352 	}
353 	cpu_thread_alloc(td);
354 	return (td);
355 }
356 
357 int
358 thread_alloc_stack(struct thread *td, int pages)
359 {
360 
361 	KASSERT(td->td_kstack == 0,
362 	    ("thread_alloc_stack called on a thread with kstack"));
363 	if (!vm_thread_new(td, pages))
364 		return (0);
365 	cpu_thread_alloc(td);
366 	return (1);
367 }
368 
369 /*
370  * Deallocate a thread.
371  */
372 void
373 thread_free(struct thread *td)
374 {
375 
376 	lock_profile_thread_exit(td);
377 	if (td->td_cpuset)
378 		cpuset_rel(td->td_cpuset);
379 	td->td_cpuset = NULL;
380 	cpu_thread_free(td);
381 	if (td->td_kstack != 0)
382 		vm_thread_dispose(td);
383 	uma_zfree(thread_zone, td);
384 }
385 
386 /*
387  * Discard the current thread and exit from its context.
388  * Always called with scheduler locked.
389  *
390  * Because we can't free a thread while we're operating under its context,
391  * push the current thread into our CPU's deadthread holder. This means
392  * we needn't worry about someone else grabbing our context before we
393  * do a cpu_throw().
394  */
395 void
396 thread_exit(void)
397 {
398 	uint64_t runtime, new_switchtime;
399 	struct thread *td;
400 	struct thread *td2;
401 	struct proc *p;
402 	int wakeup_swapper;
403 
404 	td = curthread;
405 	p = td->td_proc;
406 
407 	PROC_SLOCK_ASSERT(p, MA_OWNED);
408 	mtx_assert(&Giant, MA_NOTOWNED);
409 
410 	PROC_LOCK_ASSERT(p, MA_OWNED);
411 	KASSERT(p != NULL, ("thread exiting without a process"));
412 	CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
413 	    (long)p->p_pid, td->td_name);
414 	KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
415 
416 #ifdef AUDIT
417 	AUDIT_SYSCALL_EXIT(0, td);
418 #endif
419 	/*
420 	 * drop FPU & debug register state storage, or any other
421 	 * architecture specific resources that
422 	 * would not be on a new untouched process.
423 	 */
424 	cpu_thread_exit(td);	/* XXXSMP */
425 
426 	/*
427 	 * The last thread is left attached to the process
428 	 * So that the whole bundle gets recycled. Skip
429 	 * all this stuff if we never had threads.
430 	 * EXIT clears all sign of other threads when
431 	 * it goes to single threading, so the last thread always
432 	 * takes the short path.
433 	 */
434 	if (p->p_flag & P_HADTHREADS) {
435 		if (p->p_numthreads > 1) {
436 			atomic_add_int(&td->td_proc->p_exitthreads, 1);
437 			thread_unlink(td);
438 			td2 = FIRST_THREAD_IN_PROC(p);
439 			sched_exit_thread(td2, td);
440 
441 			/*
442 			 * The test below is NOT true if we are the
443 			 * sole exiting thread. P_STOPPED_SINGLE is unset
444 			 * in exit1() after it is the only survivor.
445 			 */
446 			if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
447 				if (p->p_numthreads == p->p_suspcount) {
448 					thread_lock(p->p_singlethread);
449 					wakeup_swapper = thread_unsuspend_one(
450 						p->p_singlethread, p, false);
451 					thread_unlock(p->p_singlethread);
452 					if (wakeup_swapper)
453 						kick_proc0();
454 				}
455 			}
456 
457 			PCPU_SET(deadthread, td);
458 		} else {
459 			/*
460 			 * The last thread is exiting.. but not through exit()
461 			 */
462 			panic ("thread_exit: Last thread exiting on its own");
463 		}
464 	}
465 #ifdef	HWPMC_HOOKS
466 	/*
467 	 * If this thread is part of a process that is being tracked by hwpmc(4),
468 	 * inform the module of the thread's impending exit.
469 	 */
470 	if (PMC_PROC_IS_USING_PMCS(td->td_proc))
471 		PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
472 #endif
473 	PROC_UNLOCK(p);
474 	PROC_STATLOCK(p);
475 	thread_lock(td);
476 	PROC_SUNLOCK(p);
477 
478 	/* Do the same timestamp bookkeeping that mi_switch() would do. */
479 	new_switchtime = cpu_ticks();
480 	runtime = new_switchtime - PCPU_GET(switchtime);
481 	td->td_runtime += runtime;
482 	td->td_incruntime += runtime;
483 	PCPU_SET(switchtime, new_switchtime);
484 	PCPU_SET(switchticks, ticks);
485 	PCPU_INC(cnt.v_swtch);
486 
487 	/* Save our resource usage in our process. */
488 	td->td_ru.ru_nvcsw++;
489 	ruxagg(p, td);
490 	rucollect(&p->p_ru, &td->td_ru);
491 	PROC_STATUNLOCK(p);
492 
493 	td->td_state = TDS_INACTIVE;
494 #ifdef WITNESS
495 	witness_thread_exit(td);
496 #endif
497 	CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
498 	sched_throw(td);
499 	panic("I'm a teapot!");
500 	/* NOTREACHED */
501 }
502 
503 /*
504  * Do any thread specific cleanups that may be needed in wait()
505  * called with Giant, proc and schedlock not held.
506  */
507 void
508 thread_wait(struct proc *p)
509 {
510 	struct thread *td;
511 
512 	mtx_assert(&Giant, MA_NOTOWNED);
513 	KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
514 	KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
515 	td = FIRST_THREAD_IN_PROC(p);
516 	/* Lock the last thread so we spin until it exits cpu_throw(). */
517 	thread_lock(td);
518 	thread_unlock(td);
519 	lock_profile_thread_exit(td);
520 	cpuset_rel(td->td_cpuset);
521 	td->td_cpuset = NULL;
522 	cpu_thread_clean(td);
523 	crfree(td->td_ucred);
524 	thread_reap();	/* check for zombie threads etc. */
525 }
526 
527 /*
528  * Link a thread to a process.
529  * set up anything that needs to be initialized for it to
530  * be used by the process.
531  */
532 void
533 thread_link(struct thread *td, struct proc *p)
534 {
535 
536 	/*
537 	 * XXX This can't be enabled because it's called for proc0 before
538 	 * its lock has been created.
539 	 * PROC_LOCK_ASSERT(p, MA_OWNED);
540 	 */
541 	td->td_state    = TDS_INACTIVE;
542 	td->td_proc     = p;
543 	td->td_flags    = TDF_INMEM;
544 
545 	LIST_INIT(&td->td_contested);
546 	LIST_INIT(&td->td_lprof[0]);
547 	LIST_INIT(&td->td_lprof[1]);
548 	sigqueue_init(&td->td_sigqueue, p);
549 	callout_init(&td->td_slpcallout, 1);
550 	TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist);
551 	p->p_numthreads++;
552 }
553 
554 /*
555  * Called from:
556  *  thread_exit()
557  */
558 void
559 thread_unlink(struct thread *td)
560 {
561 	struct proc *p = td->td_proc;
562 
563 	PROC_LOCK_ASSERT(p, MA_OWNED);
564 	TAILQ_REMOVE(&p->p_threads, td, td_plist);
565 	p->p_numthreads--;
566 	/* could clear a few other things here */
567 	/* Must  NOT clear links to proc! */
568 }
569 
570 static int
571 calc_remaining(struct proc *p, int mode)
572 {
573 	int remaining;
574 
575 	PROC_LOCK_ASSERT(p, MA_OWNED);
576 	PROC_SLOCK_ASSERT(p, MA_OWNED);
577 	if (mode == SINGLE_EXIT)
578 		remaining = p->p_numthreads;
579 	else if (mode == SINGLE_BOUNDARY)
580 		remaining = p->p_numthreads - p->p_boundary_count;
581 	else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
582 		remaining = p->p_numthreads - p->p_suspcount;
583 	else
584 		panic("calc_remaining: wrong mode %d", mode);
585 	return (remaining);
586 }
587 
588 static int
589 remain_for_mode(int mode)
590 {
591 
592 	return (mode == SINGLE_ALLPROC ? 0 : 1);
593 }
594 
595 static int
596 weed_inhib(int mode, struct thread *td2, struct proc *p)
597 {
598 	int wakeup_swapper;
599 
600 	PROC_LOCK_ASSERT(p, MA_OWNED);
601 	PROC_SLOCK_ASSERT(p, MA_OWNED);
602 	THREAD_LOCK_ASSERT(td2, MA_OWNED);
603 
604 	wakeup_swapper = 0;
605 	switch (mode) {
606 	case SINGLE_EXIT:
607 		if (TD_IS_SUSPENDED(td2))
608 			wakeup_swapper |= thread_unsuspend_one(td2, p, true);
609 		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
610 			wakeup_swapper |= sleepq_abort(td2, EINTR);
611 		break;
612 	case SINGLE_BOUNDARY:
613 		if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0)
614 			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
615 		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
616 			wakeup_swapper |= sleepq_abort(td2, ERESTART);
617 		break;
618 	case SINGLE_NO_EXIT:
619 		if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0)
620 			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
621 		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
622 			wakeup_swapper |= sleepq_abort(td2, ERESTART);
623 		break;
624 	case SINGLE_ALLPROC:
625 		/*
626 		 * ALLPROC suspend tries to avoid spurious EINTR for
627 		 * threads sleeping interruptable, by suspending the
628 		 * thread directly, similarly to sig_suspend_threads().
629 		 * Since such sleep is not performed at the user
630 		 * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP
631 		 * is used to avoid immediate un-suspend.
632 		 */
633 		if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY |
634 		    TDF_ALLPROCSUSP)) == 0)
635 			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
636 		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) {
637 			if ((td2->td_flags & TDF_SBDRY) == 0) {
638 				thread_suspend_one(td2);
639 				td2->td_flags |= TDF_ALLPROCSUSP;
640 			} else {
641 				wakeup_swapper |= sleepq_abort(td2, ERESTART);
642 			}
643 		}
644 		break;
645 	}
646 	return (wakeup_swapper);
647 }
648 
649 /*
650  * Enforce single-threading.
651  *
652  * Returns 1 if the caller must abort (another thread is waiting to
653  * exit the process or similar). Process is locked!
654  * Returns 0 when you are successfully the only thread running.
655  * A process has successfully single threaded in the suspend mode when
656  * There are no threads in user mode. Threads in the kernel must be
657  * allowed to continue until they get to the user boundary. They may even
658  * copy out their return values and data before suspending. They may however be
659  * accelerated in reaching the user boundary as we will wake up
660  * any sleeping threads that are interruptable. (PCATCH).
661  */
662 int
663 thread_single(struct proc *p, int mode)
664 {
665 	struct thread *td;
666 	struct thread *td2;
667 	int remaining, wakeup_swapper;
668 
669 	td = curthread;
670 	KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
671 	    mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
672 	    ("invalid mode %d", mode));
673 	/*
674 	 * If allowing non-ALLPROC singlethreading for non-curproc
675 	 * callers, calc_remaining() and remain_for_mode() should be
676 	 * adjusted to also account for td->td_proc != p.  For now
677 	 * this is not implemented because it is not used.
678 	 */
679 	KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
680 	    (mode != SINGLE_ALLPROC && td->td_proc == p),
681 	    ("mode %d proc %p curproc %p", mode, p, td->td_proc));
682 	mtx_assert(&Giant, MA_NOTOWNED);
683 	PROC_LOCK_ASSERT(p, MA_OWNED);
684 
685 	if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC)
686 		return (0);
687 
688 	/* Is someone already single threading? */
689 	if (p->p_singlethread != NULL && p->p_singlethread != td)
690 		return (1);
691 
692 	if (mode == SINGLE_EXIT) {
693 		p->p_flag |= P_SINGLE_EXIT;
694 		p->p_flag &= ~P_SINGLE_BOUNDARY;
695 	} else {
696 		p->p_flag &= ~P_SINGLE_EXIT;
697 		if (mode == SINGLE_BOUNDARY)
698 			p->p_flag |= P_SINGLE_BOUNDARY;
699 		else
700 			p->p_flag &= ~P_SINGLE_BOUNDARY;
701 	}
702 	if (mode == SINGLE_ALLPROC)
703 		p->p_flag |= P_TOTAL_STOP;
704 	p->p_flag |= P_STOPPED_SINGLE;
705 	PROC_SLOCK(p);
706 	p->p_singlethread = td;
707 	remaining = calc_remaining(p, mode);
708 	while (remaining != remain_for_mode(mode)) {
709 		if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
710 			goto stopme;
711 		wakeup_swapper = 0;
712 		FOREACH_THREAD_IN_PROC(p, td2) {
713 			if (td2 == td)
714 				continue;
715 			thread_lock(td2);
716 			td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
717 			if (TD_IS_INHIBITED(td2)) {
718 				wakeup_swapper |= weed_inhib(mode, td2, p);
719 #ifdef SMP
720 			} else if (TD_IS_RUNNING(td2) && td != td2) {
721 				forward_signal(td2);
722 #endif
723 			}
724 			thread_unlock(td2);
725 		}
726 		if (wakeup_swapper)
727 			kick_proc0();
728 		remaining = calc_remaining(p, mode);
729 
730 		/*
731 		 * Maybe we suspended some threads.. was it enough?
732 		 */
733 		if (remaining == remain_for_mode(mode))
734 			break;
735 
736 stopme:
737 		/*
738 		 * Wake us up when everyone else has suspended.
739 		 * In the mean time we suspend as well.
740 		 */
741 		thread_suspend_switch(td, p);
742 		remaining = calc_remaining(p, mode);
743 	}
744 	if (mode == SINGLE_EXIT) {
745 		/*
746 		 * Convert the process to an unthreaded process.  The
747 		 * SINGLE_EXIT is called by exit1() or execve(), in
748 		 * both cases other threads must be retired.
749 		 */
750 		KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
751 		p->p_singlethread = NULL;
752 		p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
753 
754 		/*
755 		 * Wait for any remaining threads to exit cpu_throw().
756 		 */
757 		while (p->p_exitthreads != 0) {
758 			PROC_SUNLOCK(p);
759 			PROC_UNLOCK(p);
760 			sched_relinquish(td);
761 			PROC_LOCK(p);
762 			PROC_SLOCK(p);
763 		}
764 	} else if (mode == SINGLE_BOUNDARY) {
765 		/*
766 		 * Wait until all suspended threads are removed from
767 		 * the processors.  The thread_suspend_check()
768 		 * increments p_boundary_count while it is still
769 		 * running, which makes it possible for the execve()
770 		 * to destroy vmspace while our other threads are
771 		 * still using the address space.
772 		 *
773 		 * We lock the thread, which is only allowed to
774 		 * succeed after context switch code finished using
775 		 * the address space.
776 		 */
777 		FOREACH_THREAD_IN_PROC(p, td2) {
778 			if (td2 == td)
779 				continue;
780 			thread_lock(td2);
781 			KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
782 			    ("td %p not on boundary", td2));
783 			KASSERT(TD_IS_SUSPENDED(td2),
784 			    ("td %p is not suspended", td2));
785 			thread_unlock(td2);
786 		}
787 	}
788 	PROC_SUNLOCK(p);
789 	return (0);
790 }
791 
792 bool
793 thread_suspend_check_needed(void)
794 {
795 	struct proc *p;
796 	struct thread *td;
797 
798 	td = curthread;
799 	p = td->td_proc;
800 	PROC_LOCK_ASSERT(p, MA_OWNED);
801 	return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
802 	    (td->td_dbgflags & TDB_SUSPEND) != 0));
803 }
804 
805 /*
806  * Called in from locations that can safely check to see
807  * whether we have to suspend or at least throttle for a
808  * single-thread event (e.g. fork).
809  *
810  * Such locations include userret().
811  * If the "return_instead" argument is non zero, the thread must be able to
812  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
813  *
814  * The 'return_instead' argument tells the function if it may do a
815  * thread_exit() or suspend, or whether the caller must abort and back
816  * out instead.
817  *
818  * If the thread that set the single_threading request has set the
819  * P_SINGLE_EXIT bit in the process flags then this call will never return
820  * if 'return_instead' is false, but will exit.
821  *
822  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
823  *---------------+--------------------+---------------------
824  *       0       | returns 0          |   returns 0 or 1
825  *               | when ST ends       |   immediately
826  *---------------+--------------------+---------------------
827  *       1       | thread exits       |   returns 1
828  *               |                    |  immediately
829  * 0 = thread_exit() or suspension ok,
830  * other = return error instead of stopping the thread.
831  *
832  * While a full suspension is under effect, even a single threading
833  * thread would be suspended if it made this call (but it shouldn't).
834  * This call should only be made from places where
835  * thread_exit() would be safe as that may be the outcome unless
836  * return_instead is set.
837  */
838 int
839 thread_suspend_check(int return_instead)
840 {
841 	struct thread *td;
842 	struct proc *p;
843 	int wakeup_swapper;
844 
845 	td = curthread;
846 	p = td->td_proc;
847 	mtx_assert(&Giant, MA_NOTOWNED);
848 	PROC_LOCK_ASSERT(p, MA_OWNED);
849 	while (thread_suspend_check_needed()) {
850 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
851 			KASSERT(p->p_singlethread != NULL,
852 			    ("singlethread not set"));
853 			/*
854 			 * The only suspension in action is a
855 			 * single-threading. Single threader need not stop.
856 			 * XXX Should be safe to access unlocked
857 			 * as it can only be set to be true by us.
858 			 */
859 			if (p->p_singlethread == td)
860 				return (0);	/* Exempt from stopping. */
861 		}
862 		if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
863 			return (EINTR);
864 
865 		/* Should we goto user boundary if we didn't come from there? */
866 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
867 		    (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
868 			return (ERESTART);
869 
870 		/*
871 		 * Ignore suspend requests if they are deferred.
872 		 */
873 		if ((td->td_flags & TDF_SBDRY) != 0) {
874 			KASSERT(return_instead,
875 			    ("TDF_SBDRY set for unsafe thread_suspend_check"));
876 			return (0);
877 		}
878 
879 		/*
880 		 * If the process is waiting for us to exit,
881 		 * this thread should just suicide.
882 		 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
883 		 */
884 		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
885 			PROC_UNLOCK(p);
886 			tidhash_remove(td);
887 			PROC_LOCK(p);
888 			tdsigcleanup(td);
889 			umtx_thread_exit(td);
890 			PROC_SLOCK(p);
891 			thread_stopped(p);
892 			thread_exit();
893 		}
894 
895 		PROC_SLOCK(p);
896 		thread_stopped(p);
897 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
898 			if (p->p_numthreads == p->p_suspcount + 1) {
899 				thread_lock(p->p_singlethread);
900 				wakeup_swapper = thread_unsuspend_one(
901 				    p->p_singlethread, p, false);
902 				thread_unlock(p->p_singlethread);
903 				if (wakeup_swapper)
904 					kick_proc0();
905 			}
906 		}
907 		PROC_UNLOCK(p);
908 		thread_lock(td);
909 		/*
910 		 * When a thread suspends, it just
911 		 * gets taken off all queues.
912 		 */
913 		thread_suspend_one(td);
914 		if (return_instead == 0) {
915 			p->p_boundary_count++;
916 			td->td_flags |= TDF_BOUNDARY;
917 		}
918 		PROC_SUNLOCK(p);
919 		mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
920 		thread_unlock(td);
921 		PROC_LOCK(p);
922 	}
923 	return (0);
924 }
925 
926 void
927 thread_suspend_switch(struct thread *td, struct proc *p)
928 {
929 
930 	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
931 	PROC_LOCK_ASSERT(p, MA_OWNED);
932 	PROC_SLOCK_ASSERT(p, MA_OWNED);
933 	/*
934 	 * We implement thread_suspend_one in stages here to avoid
935 	 * dropping the proc lock while the thread lock is owned.
936 	 */
937 	if (p == td->td_proc) {
938 		thread_stopped(p);
939 		p->p_suspcount++;
940 	}
941 	PROC_UNLOCK(p);
942 	thread_lock(td);
943 	td->td_flags &= ~TDF_NEEDSUSPCHK;
944 	TD_SET_SUSPENDED(td);
945 	sched_sleep(td, 0);
946 	PROC_SUNLOCK(p);
947 	DROP_GIANT();
948 	mi_switch(SW_VOL | SWT_SUSPEND, NULL);
949 	thread_unlock(td);
950 	PICKUP_GIANT();
951 	PROC_LOCK(p);
952 	PROC_SLOCK(p);
953 }
954 
955 void
956 thread_suspend_one(struct thread *td)
957 {
958 	struct proc *p;
959 
960 	p = td->td_proc;
961 	PROC_SLOCK_ASSERT(p, MA_OWNED);
962 	THREAD_LOCK_ASSERT(td, MA_OWNED);
963 	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
964 	p->p_suspcount++;
965 	td->td_flags &= ~TDF_NEEDSUSPCHK;
966 	TD_SET_SUSPENDED(td);
967 	sched_sleep(td, 0);
968 }
969 
970 static int
971 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
972 {
973 
974 	THREAD_LOCK_ASSERT(td, MA_OWNED);
975 	KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
976 	TD_CLR_SUSPENDED(td);
977 	td->td_flags &= ~TDF_ALLPROCSUSP;
978 	if (td->td_proc == p) {
979 		PROC_SLOCK_ASSERT(p, MA_OWNED);
980 		p->p_suspcount--;
981 		if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
982 			td->td_flags &= ~TDF_BOUNDARY;
983 			p->p_boundary_count--;
984 		}
985 	}
986 	return (setrunnable(td));
987 }
988 
989 /*
990  * Allow all threads blocked by single threading to continue running.
991  */
992 void
993 thread_unsuspend(struct proc *p)
994 {
995 	struct thread *td;
996 	int wakeup_swapper;
997 
998 	PROC_LOCK_ASSERT(p, MA_OWNED);
999 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1000 	wakeup_swapper = 0;
1001 	if (!P_SHOULDSTOP(p)) {
1002                 FOREACH_THREAD_IN_PROC(p, td) {
1003 			thread_lock(td);
1004 			if (TD_IS_SUSPENDED(td)) {
1005 				wakeup_swapper |= thread_unsuspend_one(td, p,
1006 				    true);
1007 			}
1008 			thread_unlock(td);
1009 		}
1010 	} else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1011 	    p->p_numthreads == p->p_suspcount) {
1012 		/*
1013 		 * Stopping everything also did the job for the single
1014 		 * threading request. Now we've downgraded to single-threaded,
1015 		 * let it continue.
1016 		 */
1017 		if (p->p_singlethread->td_proc == p) {
1018 			thread_lock(p->p_singlethread);
1019 			wakeup_swapper = thread_unsuspend_one(
1020 			    p->p_singlethread, p, false);
1021 			thread_unlock(p->p_singlethread);
1022 		}
1023 	}
1024 	if (wakeup_swapper)
1025 		kick_proc0();
1026 }
1027 
1028 /*
1029  * End the single threading mode..
1030  */
1031 void
1032 thread_single_end(struct proc *p, int mode)
1033 {
1034 	struct thread *td;
1035 	int wakeup_swapper;
1036 
1037 	KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1038 	    mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1039 	    ("invalid mode %d", mode));
1040 	PROC_LOCK_ASSERT(p, MA_OWNED);
1041 	KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
1042 	    (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
1043 	    ("mode %d does not match P_TOTAL_STOP", mode));
1044 	KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
1045 	    ("thread_single_end from other thread %p %p",
1046 	    curthread, p->p_singlethread));
1047 	KASSERT(mode != SINGLE_BOUNDARY ||
1048 	    (p->p_flag & P_SINGLE_BOUNDARY) != 0,
1049 	    ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
1050 	p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
1051 	    P_TOTAL_STOP);
1052 	PROC_SLOCK(p);
1053 	p->p_singlethread = NULL;
1054 	wakeup_swapper = 0;
1055 	/*
1056 	 * If there are other threads they may now run,
1057 	 * unless of course there is a blanket 'stop order'
1058 	 * on the process. The single threader must be allowed
1059 	 * to continue however as this is a bad place to stop.
1060 	 */
1061 	if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
1062                 FOREACH_THREAD_IN_PROC(p, td) {
1063 			thread_lock(td);
1064 			if (TD_IS_SUSPENDED(td)) {
1065 				wakeup_swapper |= thread_unsuspend_one(td, p,
1066 				    mode == SINGLE_BOUNDARY);
1067 			}
1068 			thread_unlock(td);
1069 		}
1070 	}
1071 	KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
1072 	    ("inconsistent boundary count %d", p->p_boundary_count));
1073 	PROC_SUNLOCK(p);
1074 	if (wakeup_swapper)
1075 		kick_proc0();
1076 }
1077 
1078 struct thread *
1079 thread_find(struct proc *p, lwpid_t tid)
1080 {
1081 	struct thread *td;
1082 
1083 	PROC_LOCK_ASSERT(p, MA_OWNED);
1084 	FOREACH_THREAD_IN_PROC(p, td) {
1085 		if (td->td_tid == tid)
1086 			break;
1087 	}
1088 	return (td);
1089 }
1090 
1091 /* Locate a thread by number; return with proc lock held. */
1092 struct thread *
1093 tdfind(lwpid_t tid, pid_t pid)
1094 {
1095 #define RUN_THRESH	16
1096 	struct thread *td;
1097 	int run = 0;
1098 
1099 	rw_rlock(&tidhash_lock);
1100 	LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1101 		if (td->td_tid == tid) {
1102 			if (pid != -1 && td->td_proc->p_pid != pid) {
1103 				td = NULL;
1104 				break;
1105 			}
1106 			PROC_LOCK(td->td_proc);
1107 			if (td->td_proc->p_state == PRS_NEW) {
1108 				PROC_UNLOCK(td->td_proc);
1109 				td = NULL;
1110 				break;
1111 			}
1112 			if (run > RUN_THRESH) {
1113 				if (rw_try_upgrade(&tidhash_lock)) {
1114 					LIST_REMOVE(td, td_hash);
1115 					LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1116 						td, td_hash);
1117 					rw_wunlock(&tidhash_lock);
1118 					return (td);
1119 				}
1120 			}
1121 			break;
1122 		}
1123 		run++;
1124 	}
1125 	rw_runlock(&tidhash_lock);
1126 	return (td);
1127 }
1128 
1129 void
1130 tidhash_add(struct thread *td)
1131 {
1132 	rw_wlock(&tidhash_lock);
1133 	LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1134 	rw_wunlock(&tidhash_lock);
1135 }
1136 
1137 void
1138 tidhash_remove(struct thread *td)
1139 {
1140 	rw_wlock(&tidhash_lock);
1141 	LIST_REMOVE(td, td_hash);
1142 	rw_wunlock(&tidhash_lock);
1143 }
1144