1 /*- 2 * SPDX-License-Identifier: Beerware 3 * 4 * ---------------------------------------------------------------------------- 5 * "THE BEER-WARE LICENSE" (Revision 42): 6 * <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you 7 * can do whatever you want with this stuff. If we meet some day, and you think 8 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp 9 * ---------------------------------------------------------------------------- 10 * 11 * Copyright (c) 2011, 2015, 2016 The FreeBSD Foundation 12 * All rights reserved. 13 * 14 * Portions of this software were developed by Julien Ridoux at the University 15 * of Melbourne under sponsorship from the FreeBSD Foundation. 16 * 17 * Portions of this software were developed by Konstantin Belousov 18 * under sponsorship from the FreeBSD Foundation. 19 */ 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 #include "opt_compat.h" 25 #include "opt_ntp.h" 26 #include "opt_ffclock.h" 27 28 #include <sys/param.h> 29 #include <sys/kernel.h> 30 #include <sys/limits.h> 31 #include <sys/lock.h> 32 #include <sys/mutex.h> 33 #include <sys/proc.h> 34 #include <sys/sbuf.h> 35 #include <sys/sleepqueue.h> 36 #include <sys/sysctl.h> 37 #include <sys/syslog.h> 38 #include <sys/systm.h> 39 #include <sys/timeffc.h> 40 #include <sys/timepps.h> 41 #include <sys/timetc.h> 42 #include <sys/timex.h> 43 #include <sys/vdso.h> 44 45 /* 46 * A large step happens on boot. This constant detects such steps. 47 * It is relatively small so that ntp_update_second gets called enough 48 * in the typical 'missed a couple of seconds' case, but doesn't loop 49 * forever when the time step is large. 50 */ 51 #define LARGE_STEP 200 52 53 /* 54 * Implement a dummy timecounter which we can use until we get a real one 55 * in the air. This allows the console and other early stuff to use 56 * time services. 57 */ 58 59 static u_int 60 dummy_get_timecount(struct timecounter *tc) 61 { 62 static u_int now; 63 64 return (++now); 65 } 66 67 static struct timecounter dummy_timecounter = { 68 dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000 69 }; 70 71 struct timehands { 72 /* These fields must be initialized by the driver. */ 73 struct timecounter *th_counter; 74 int64_t th_adjustment; 75 uint64_t th_scale; 76 u_int th_offset_count; 77 struct bintime th_offset; 78 struct bintime th_bintime; 79 struct timeval th_microtime; 80 struct timespec th_nanotime; 81 struct bintime th_boottime; 82 /* Fields not to be copied in tc_windup start with th_generation. */ 83 u_int th_generation; 84 struct timehands *th_next; 85 }; 86 87 static struct timehands th0; 88 static struct timehands th1 = { 89 .th_next = &th0 90 }; 91 static struct timehands th0 = { 92 .th_counter = &dummy_timecounter, 93 .th_scale = (uint64_t)-1 / 1000000, 94 .th_offset = { .sec = 1 }, 95 .th_generation = 1, 96 .th_next = &th1 97 }; 98 99 static struct timehands *volatile timehands = &th0; 100 struct timecounter *timecounter = &dummy_timecounter; 101 static struct timecounter *timecounters = &dummy_timecounter; 102 103 int tc_min_ticktock_freq = 1; 104 105 volatile time_t time_second = 1; 106 volatile time_t time_uptime = 1; 107 108 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS); 109 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD, 110 NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime"); 111 112 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, ""); 113 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, ""); 114 115 static int timestepwarnings; 116 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW, 117 ×tepwarnings, 0, "Log time steps"); 118 119 struct bintime bt_timethreshold; 120 struct bintime bt_tickthreshold; 121 sbintime_t sbt_timethreshold; 122 sbintime_t sbt_tickthreshold; 123 struct bintime tc_tick_bt; 124 sbintime_t tc_tick_sbt; 125 int tc_precexp; 126 int tc_timepercentage = TC_DEFAULTPERC; 127 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS); 128 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation, 129 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0, 130 sysctl_kern_timecounter_adjprecision, "I", 131 "Allowed time interval deviation in percents"); 132 133 volatile int rtc_generation = 1; 134 135 static int tc_chosen; /* Non-zero if a specific tc was chosen via sysctl. */ 136 137 static void tc_windup(struct bintime *new_boottimebin); 138 static void cpu_tick_calibrate(int); 139 140 void dtrace_getnanotime(struct timespec *tsp); 141 142 static int 143 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS) 144 { 145 struct timeval boottime; 146 147 getboottime(&boottime); 148 149 #ifndef __mips__ 150 #ifdef SCTL_MASK32 151 int tv[2]; 152 153 if (req->flags & SCTL_MASK32) { 154 tv[0] = boottime.tv_sec; 155 tv[1] = boottime.tv_usec; 156 return (SYSCTL_OUT(req, tv, sizeof(tv))); 157 } 158 #endif 159 #endif 160 return (SYSCTL_OUT(req, &boottime, sizeof(boottime))); 161 } 162 163 static int 164 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS) 165 { 166 u_int ncount; 167 struct timecounter *tc = arg1; 168 169 ncount = tc->tc_get_timecount(tc); 170 return (sysctl_handle_int(oidp, &ncount, 0, req)); 171 } 172 173 static int 174 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS) 175 { 176 uint64_t freq; 177 struct timecounter *tc = arg1; 178 179 freq = tc->tc_frequency; 180 return (sysctl_handle_64(oidp, &freq, 0, req)); 181 } 182 183 /* 184 * Return the difference between the timehands' counter value now and what 185 * was when we copied it to the timehands' offset_count. 186 */ 187 static __inline u_int 188 tc_delta(struct timehands *th) 189 { 190 struct timecounter *tc; 191 192 tc = th->th_counter; 193 return ((tc->tc_get_timecount(tc) - th->th_offset_count) & 194 tc->tc_counter_mask); 195 } 196 197 /* 198 * Functions for reading the time. We have to loop until we are sure that 199 * the timehands that we operated on was not updated under our feet. See 200 * the comment in <sys/time.h> for a description of these 12 functions. 201 */ 202 203 #ifdef FFCLOCK 204 void 205 fbclock_binuptime(struct bintime *bt) 206 { 207 struct timehands *th; 208 unsigned int gen; 209 210 do { 211 th = timehands; 212 gen = atomic_load_acq_int(&th->th_generation); 213 *bt = th->th_offset; 214 bintime_addx(bt, th->th_scale * tc_delta(th)); 215 atomic_thread_fence_acq(); 216 } while (gen == 0 || gen != th->th_generation); 217 } 218 219 void 220 fbclock_nanouptime(struct timespec *tsp) 221 { 222 struct bintime bt; 223 224 fbclock_binuptime(&bt); 225 bintime2timespec(&bt, tsp); 226 } 227 228 void 229 fbclock_microuptime(struct timeval *tvp) 230 { 231 struct bintime bt; 232 233 fbclock_binuptime(&bt); 234 bintime2timeval(&bt, tvp); 235 } 236 237 void 238 fbclock_bintime(struct bintime *bt) 239 { 240 struct timehands *th; 241 unsigned int gen; 242 243 do { 244 th = timehands; 245 gen = atomic_load_acq_int(&th->th_generation); 246 *bt = th->th_bintime; 247 bintime_addx(bt, th->th_scale * tc_delta(th)); 248 atomic_thread_fence_acq(); 249 } while (gen == 0 || gen != th->th_generation); 250 } 251 252 void 253 fbclock_nanotime(struct timespec *tsp) 254 { 255 struct bintime bt; 256 257 fbclock_bintime(&bt); 258 bintime2timespec(&bt, tsp); 259 } 260 261 void 262 fbclock_microtime(struct timeval *tvp) 263 { 264 struct bintime bt; 265 266 fbclock_bintime(&bt); 267 bintime2timeval(&bt, tvp); 268 } 269 270 void 271 fbclock_getbinuptime(struct bintime *bt) 272 { 273 struct timehands *th; 274 unsigned int gen; 275 276 do { 277 th = timehands; 278 gen = atomic_load_acq_int(&th->th_generation); 279 *bt = th->th_offset; 280 atomic_thread_fence_acq(); 281 } while (gen == 0 || gen != th->th_generation); 282 } 283 284 void 285 fbclock_getnanouptime(struct timespec *tsp) 286 { 287 struct timehands *th; 288 unsigned int gen; 289 290 do { 291 th = timehands; 292 gen = atomic_load_acq_int(&th->th_generation); 293 bintime2timespec(&th->th_offset, tsp); 294 atomic_thread_fence_acq(); 295 } while (gen == 0 || gen != th->th_generation); 296 } 297 298 void 299 fbclock_getmicrouptime(struct timeval *tvp) 300 { 301 struct timehands *th; 302 unsigned int gen; 303 304 do { 305 th = timehands; 306 gen = atomic_load_acq_int(&th->th_generation); 307 bintime2timeval(&th->th_offset, tvp); 308 atomic_thread_fence_acq(); 309 } while (gen == 0 || gen != th->th_generation); 310 } 311 312 void 313 fbclock_getbintime(struct bintime *bt) 314 { 315 struct timehands *th; 316 unsigned int gen; 317 318 do { 319 th = timehands; 320 gen = atomic_load_acq_int(&th->th_generation); 321 *bt = th->th_bintime; 322 atomic_thread_fence_acq(); 323 } while (gen == 0 || gen != th->th_generation); 324 } 325 326 void 327 fbclock_getnanotime(struct timespec *tsp) 328 { 329 struct timehands *th; 330 unsigned int gen; 331 332 do { 333 th = timehands; 334 gen = atomic_load_acq_int(&th->th_generation); 335 *tsp = th->th_nanotime; 336 atomic_thread_fence_acq(); 337 } while (gen == 0 || gen != th->th_generation); 338 } 339 340 void 341 fbclock_getmicrotime(struct timeval *tvp) 342 { 343 struct timehands *th; 344 unsigned int gen; 345 346 do { 347 th = timehands; 348 gen = atomic_load_acq_int(&th->th_generation); 349 *tvp = th->th_microtime; 350 atomic_thread_fence_acq(); 351 } while (gen == 0 || gen != th->th_generation); 352 } 353 #else /* !FFCLOCK */ 354 void 355 binuptime(struct bintime *bt) 356 { 357 struct timehands *th; 358 u_int gen; 359 360 do { 361 th = timehands; 362 gen = atomic_load_acq_int(&th->th_generation); 363 *bt = th->th_offset; 364 bintime_addx(bt, th->th_scale * tc_delta(th)); 365 atomic_thread_fence_acq(); 366 } while (gen == 0 || gen != th->th_generation); 367 } 368 369 void 370 nanouptime(struct timespec *tsp) 371 { 372 struct bintime bt; 373 374 binuptime(&bt); 375 bintime2timespec(&bt, tsp); 376 } 377 378 void 379 microuptime(struct timeval *tvp) 380 { 381 struct bintime bt; 382 383 binuptime(&bt); 384 bintime2timeval(&bt, tvp); 385 } 386 387 void 388 bintime(struct bintime *bt) 389 { 390 struct timehands *th; 391 u_int gen; 392 393 do { 394 th = timehands; 395 gen = atomic_load_acq_int(&th->th_generation); 396 *bt = th->th_bintime; 397 bintime_addx(bt, th->th_scale * tc_delta(th)); 398 atomic_thread_fence_acq(); 399 } while (gen == 0 || gen != th->th_generation); 400 } 401 402 void 403 nanotime(struct timespec *tsp) 404 { 405 struct bintime bt; 406 407 bintime(&bt); 408 bintime2timespec(&bt, tsp); 409 } 410 411 void 412 microtime(struct timeval *tvp) 413 { 414 struct bintime bt; 415 416 bintime(&bt); 417 bintime2timeval(&bt, tvp); 418 } 419 420 void 421 getbinuptime(struct bintime *bt) 422 { 423 struct timehands *th; 424 u_int gen; 425 426 do { 427 th = timehands; 428 gen = atomic_load_acq_int(&th->th_generation); 429 *bt = th->th_offset; 430 atomic_thread_fence_acq(); 431 } while (gen == 0 || gen != th->th_generation); 432 } 433 434 void 435 getnanouptime(struct timespec *tsp) 436 { 437 struct timehands *th; 438 u_int gen; 439 440 do { 441 th = timehands; 442 gen = atomic_load_acq_int(&th->th_generation); 443 bintime2timespec(&th->th_offset, tsp); 444 atomic_thread_fence_acq(); 445 } while (gen == 0 || gen != th->th_generation); 446 } 447 448 void 449 getmicrouptime(struct timeval *tvp) 450 { 451 struct timehands *th; 452 u_int gen; 453 454 do { 455 th = timehands; 456 gen = atomic_load_acq_int(&th->th_generation); 457 bintime2timeval(&th->th_offset, tvp); 458 atomic_thread_fence_acq(); 459 } while (gen == 0 || gen != th->th_generation); 460 } 461 462 void 463 getbintime(struct bintime *bt) 464 { 465 struct timehands *th; 466 u_int gen; 467 468 do { 469 th = timehands; 470 gen = atomic_load_acq_int(&th->th_generation); 471 *bt = th->th_bintime; 472 atomic_thread_fence_acq(); 473 } while (gen == 0 || gen != th->th_generation); 474 } 475 476 void 477 getnanotime(struct timespec *tsp) 478 { 479 struct timehands *th; 480 u_int gen; 481 482 do { 483 th = timehands; 484 gen = atomic_load_acq_int(&th->th_generation); 485 *tsp = th->th_nanotime; 486 atomic_thread_fence_acq(); 487 } while (gen == 0 || gen != th->th_generation); 488 } 489 490 void 491 getmicrotime(struct timeval *tvp) 492 { 493 struct timehands *th; 494 u_int gen; 495 496 do { 497 th = timehands; 498 gen = atomic_load_acq_int(&th->th_generation); 499 *tvp = th->th_microtime; 500 atomic_thread_fence_acq(); 501 } while (gen == 0 || gen != th->th_generation); 502 } 503 #endif /* FFCLOCK */ 504 505 void 506 getboottime(struct timeval *boottime) 507 { 508 struct bintime boottimebin; 509 510 getboottimebin(&boottimebin); 511 bintime2timeval(&boottimebin, boottime); 512 } 513 514 void 515 getboottimebin(struct bintime *boottimebin) 516 { 517 struct timehands *th; 518 u_int gen; 519 520 do { 521 th = timehands; 522 gen = atomic_load_acq_int(&th->th_generation); 523 *boottimebin = th->th_boottime; 524 atomic_thread_fence_acq(); 525 } while (gen == 0 || gen != th->th_generation); 526 } 527 528 #ifdef FFCLOCK 529 /* 530 * Support for feed-forward synchronization algorithms. This is heavily inspired 531 * by the timehands mechanism but kept independent from it. *_windup() functions 532 * have some connection to avoid accessing the timecounter hardware more than 533 * necessary. 534 */ 535 536 /* Feed-forward clock estimates kept updated by the synchronization daemon. */ 537 struct ffclock_estimate ffclock_estimate; 538 struct bintime ffclock_boottime; /* Feed-forward boot time estimate. */ 539 uint32_t ffclock_status; /* Feed-forward clock status. */ 540 int8_t ffclock_updated; /* New estimates are available. */ 541 struct mtx ffclock_mtx; /* Mutex on ffclock_estimate. */ 542 543 struct fftimehands { 544 struct ffclock_estimate cest; 545 struct bintime tick_time; 546 struct bintime tick_time_lerp; 547 ffcounter tick_ffcount; 548 uint64_t period_lerp; 549 volatile uint8_t gen; 550 struct fftimehands *next; 551 }; 552 553 #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x)) 554 555 static struct fftimehands ffth[10]; 556 static struct fftimehands *volatile fftimehands = ffth; 557 558 static void 559 ffclock_init(void) 560 { 561 struct fftimehands *cur; 562 struct fftimehands *last; 563 564 memset(ffth, 0, sizeof(ffth)); 565 566 last = ffth + NUM_ELEMENTS(ffth) - 1; 567 for (cur = ffth; cur < last; cur++) 568 cur->next = cur + 1; 569 last->next = ffth; 570 571 ffclock_updated = 0; 572 ffclock_status = FFCLOCK_STA_UNSYNC; 573 mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF); 574 } 575 576 /* 577 * Reset the feed-forward clock estimates. Called from inittodr() to get things 578 * kick started and uses the timecounter nominal frequency as a first period 579 * estimate. Note: this function may be called several time just after boot. 580 * Note: this is the only function that sets the value of boot time for the 581 * monotonic (i.e. uptime) version of the feed-forward clock. 582 */ 583 void 584 ffclock_reset_clock(struct timespec *ts) 585 { 586 struct timecounter *tc; 587 struct ffclock_estimate cest; 588 589 tc = timehands->th_counter; 590 memset(&cest, 0, sizeof(struct ffclock_estimate)); 591 592 timespec2bintime(ts, &ffclock_boottime); 593 timespec2bintime(ts, &(cest.update_time)); 594 ffclock_read_counter(&cest.update_ffcount); 595 cest.leapsec_next = 0; 596 cest.period = ((1ULL << 63) / tc->tc_frequency) << 1; 597 cest.errb_abs = 0; 598 cest.errb_rate = 0; 599 cest.status = FFCLOCK_STA_UNSYNC; 600 cest.leapsec_total = 0; 601 cest.leapsec = 0; 602 603 mtx_lock(&ffclock_mtx); 604 bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate)); 605 ffclock_updated = INT8_MAX; 606 mtx_unlock(&ffclock_mtx); 607 608 printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name, 609 (unsigned long long)tc->tc_frequency, (long)ts->tv_sec, 610 (unsigned long)ts->tv_nsec); 611 } 612 613 /* 614 * Sub-routine to convert a time interval measured in RAW counter units to time 615 * in seconds stored in bintime format. 616 * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be 617 * larger than the max value of u_int (on 32 bit architecture). Loop to consume 618 * extra cycles. 619 */ 620 static void 621 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt) 622 { 623 struct bintime bt2; 624 ffcounter delta, delta_max; 625 626 delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1; 627 bintime_clear(bt); 628 do { 629 if (ffdelta > delta_max) 630 delta = delta_max; 631 else 632 delta = ffdelta; 633 bt2.sec = 0; 634 bt2.frac = period; 635 bintime_mul(&bt2, (unsigned int)delta); 636 bintime_add(bt, &bt2); 637 ffdelta -= delta; 638 } while (ffdelta > 0); 639 } 640 641 /* 642 * Update the fftimehands. 643 * Push the tick ffcount and time(s) forward based on current clock estimate. 644 * The conversion from ffcounter to bintime relies on the difference clock 645 * principle, whose accuracy relies on computing small time intervals. If a new 646 * clock estimate has been passed by the synchronisation daemon, make it 647 * current, and compute the linear interpolation for monotonic time if needed. 648 */ 649 static void 650 ffclock_windup(unsigned int delta) 651 { 652 struct ffclock_estimate *cest; 653 struct fftimehands *ffth; 654 struct bintime bt, gap_lerp; 655 ffcounter ffdelta; 656 uint64_t frac; 657 unsigned int polling; 658 uint8_t forward_jump, ogen; 659 660 /* 661 * Pick the next timehand, copy current ffclock estimates and move tick 662 * times and counter forward. 663 */ 664 forward_jump = 0; 665 ffth = fftimehands->next; 666 ogen = ffth->gen; 667 ffth->gen = 0; 668 cest = &ffth->cest; 669 bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate)); 670 ffdelta = (ffcounter)delta; 671 ffth->period_lerp = fftimehands->period_lerp; 672 673 ffth->tick_time = fftimehands->tick_time; 674 ffclock_convert_delta(ffdelta, cest->period, &bt); 675 bintime_add(&ffth->tick_time, &bt); 676 677 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 678 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt); 679 bintime_add(&ffth->tick_time_lerp, &bt); 680 681 ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta; 682 683 /* 684 * Assess the status of the clock, if the last update is too old, it is 685 * likely the synchronisation daemon is dead and the clock is free 686 * running. 687 */ 688 if (ffclock_updated == 0) { 689 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 690 ffclock_convert_delta(ffdelta, cest->period, &bt); 691 if (bt.sec > 2 * FFCLOCK_SKM_SCALE) 692 ffclock_status |= FFCLOCK_STA_UNSYNC; 693 } 694 695 /* 696 * If available, grab updated clock estimates and make them current. 697 * Recompute time at this tick using the updated estimates. The clock 698 * estimates passed the feed-forward synchronisation daemon may result 699 * in time conversion that is not monotonically increasing (just after 700 * the update). time_lerp is a particular linear interpolation over the 701 * synchronisation algo polling period that ensures monotonicity for the 702 * clock ids requesting it. 703 */ 704 if (ffclock_updated > 0) { 705 bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate)); 706 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 707 ffth->tick_time = cest->update_time; 708 ffclock_convert_delta(ffdelta, cest->period, &bt); 709 bintime_add(&ffth->tick_time, &bt); 710 711 /* ffclock_reset sets ffclock_updated to INT8_MAX */ 712 if (ffclock_updated == INT8_MAX) 713 ffth->tick_time_lerp = ffth->tick_time; 714 715 if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >)) 716 forward_jump = 1; 717 else 718 forward_jump = 0; 719 720 bintime_clear(&gap_lerp); 721 if (forward_jump) { 722 gap_lerp = ffth->tick_time; 723 bintime_sub(&gap_lerp, &ffth->tick_time_lerp); 724 } else { 725 gap_lerp = ffth->tick_time_lerp; 726 bintime_sub(&gap_lerp, &ffth->tick_time); 727 } 728 729 /* 730 * The reset from the RTC clock may be far from accurate, and 731 * reducing the gap between real time and interpolated time 732 * could take a very long time if the interpolated clock insists 733 * on strict monotonicity. The clock is reset under very strict 734 * conditions (kernel time is known to be wrong and 735 * synchronization daemon has been restarted recently. 736 * ffclock_boottime absorbs the jump to ensure boot time is 737 * correct and uptime functions stay consistent. 738 */ 739 if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) && 740 ((cest->status & FFCLOCK_STA_UNSYNC) == 0) && 741 ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) { 742 if (forward_jump) 743 bintime_add(&ffclock_boottime, &gap_lerp); 744 else 745 bintime_sub(&ffclock_boottime, &gap_lerp); 746 ffth->tick_time_lerp = ffth->tick_time; 747 bintime_clear(&gap_lerp); 748 } 749 750 ffclock_status = cest->status; 751 ffth->period_lerp = cest->period; 752 753 /* 754 * Compute corrected period used for the linear interpolation of 755 * time. The rate of linear interpolation is capped to 5000PPM 756 * (5ms/s). 757 */ 758 if (bintime_isset(&gap_lerp)) { 759 ffdelta = cest->update_ffcount; 760 ffdelta -= fftimehands->cest.update_ffcount; 761 ffclock_convert_delta(ffdelta, cest->period, &bt); 762 polling = bt.sec; 763 bt.sec = 0; 764 bt.frac = 5000000 * (uint64_t)18446744073LL; 765 bintime_mul(&bt, polling); 766 if (bintime_cmp(&gap_lerp, &bt, >)) 767 gap_lerp = bt; 768 769 /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */ 770 frac = 0; 771 if (gap_lerp.sec > 0) { 772 frac -= 1; 773 frac /= ffdelta / gap_lerp.sec; 774 } 775 frac += gap_lerp.frac / ffdelta; 776 777 if (forward_jump) 778 ffth->period_lerp += frac; 779 else 780 ffth->period_lerp -= frac; 781 } 782 783 ffclock_updated = 0; 784 } 785 if (++ogen == 0) 786 ogen = 1; 787 ffth->gen = ogen; 788 fftimehands = ffth; 789 } 790 791 /* 792 * Adjust the fftimehands when the timecounter is changed. Stating the obvious, 793 * the old and new hardware counter cannot be read simultaneously. tc_windup() 794 * does read the two counters 'back to back', but a few cycles are effectively 795 * lost, and not accumulated in tick_ffcount. This is a fairly radical 796 * operation for a feed-forward synchronization daemon, and it is its job to not 797 * pushing irrelevant data to the kernel. Because there is no locking here, 798 * simply force to ignore pending or next update to give daemon a chance to 799 * realize the counter has changed. 800 */ 801 static void 802 ffclock_change_tc(struct timehands *th) 803 { 804 struct fftimehands *ffth; 805 struct ffclock_estimate *cest; 806 struct timecounter *tc; 807 uint8_t ogen; 808 809 tc = th->th_counter; 810 ffth = fftimehands->next; 811 ogen = ffth->gen; 812 ffth->gen = 0; 813 814 cest = &ffth->cest; 815 bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate)); 816 cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1; 817 cest->errb_abs = 0; 818 cest->errb_rate = 0; 819 cest->status |= FFCLOCK_STA_UNSYNC; 820 821 ffth->tick_ffcount = fftimehands->tick_ffcount; 822 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 823 ffth->tick_time = fftimehands->tick_time; 824 ffth->period_lerp = cest->period; 825 826 /* Do not lock but ignore next update from synchronization daemon. */ 827 ffclock_updated--; 828 829 if (++ogen == 0) 830 ogen = 1; 831 ffth->gen = ogen; 832 fftimehands = ffth; 833 } 834 835 /* 836 * Retrieve feed-forward counter and time of last kernel tick. 837 */ 838 void 839 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags) 840 { 841 struct fftimehands *ffth; 842 uint8_t gen; 843 844 /* 845 * No locking but check generation has not changed. Also need to make 846 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 847 */ 848 do { 849 ffth = fftimehands; 850 gen = ffth->gen; 851 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) 852 *bt = ffth->tick_time_lerp; 853 else 854 *bt = ffth->tick_time; 855 *ffcount = ffth->tick_ffcount; 856 } while (gen == 0 || gen != ffth->gen); 857 } 858 859 /* 860 * Absolute clock conversion. Low level function to convert ffcounter to 861 * bintime. The ffcounter is converted using the current ffclock period estimate 862 * or the "interpolated period" to ensure monotonicity. 863 * NOTE: this conversion may have been deferred, and the clock updated since the 864 * hardware counter has been read. 865 */ 866 void 867 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags) 868 { 869 struct fftimehands *ffth; 870 struct bintime bt2; 871 ffcounter ffdelta; 872 uint8_t gen; 873 874 /* 875 * No locking but check generation has not changed. Also need to make 876 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 877 */ 878 do { 879 ffth = fftimehands; 880 gen = ffth->gen; 881 if (ffcount > ffth->tick_ffcount) 882 ffdelta = ffcount - ffth->tick_ffcount; 883 else 884 ffdelta = ffth->tick_ffcount - ffcount; 885 886 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) { 887 *bt = ffth->tick_time_lerp; 888 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2); 889 } else { 890 *bt = ffth->tick_time; 891 ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2); 892 } 893 894 if (ffcount > ffth->tick_ffcount) 895 bintime_add(bt, &bt2); 896 else 897 bintime_sub(bt, &bt2); 898 } while (gen == 0 || gen != ffth->gen); 899 } 900 901 /* 902 * Difference clock conversion. 903 * Low level function to Convert a time interval measured in RAW counter units 904 * into bintime. The difference clock allows measuring small intervals much more 905 * reliably than the absolute clock. 906 */ 907 void 908 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt) 909 { 910 struct fftimehands *ffth; 911 uint8_t gen; 912 913 /* No locking but check generation has not changed. */ 914 do { 915 ffth = fftimehands; 916 gen = ffth->gen; 917 ffclock_convert_delta(ffdelta, ffth->cest.period, bt); 918 } while (gen == 0 || gen != ffth->gen); 919 } 920 921 /* 922 * Access to current ffcounter value. 923 */ 924 void 925 ffclock_read_counter(ffcounter *ffcount) 926 { 927 struct timehands *th; 928 struct fftimehands *ffth; 929 unsigned int gen, delta; 930 931 /* 932 * ffclock_windup() called from tc_windup(), safe to rely on 933 * th->th_generation only, for correct delta and ffcounter. 934 */ 935 do { 936 th = timehands; 937 gen = atomic_load_acq_int(&th->th_generation); 938 ffth = fftimehands; 939 delta = tc_delta(th); 940 *ffcount = ffth->tick_ffcount; 941 atomic_thread_fence_acq(); 942 } while (gen == 0 || gen != th->th_generation); 943 944 *ffcount += delta; 945 } 946 947 void 948 binuptime(struct bintime *bt) 949 { 950 951 binuptime_fromclock(bt, sysclock_active); 952 } 953 954 void 955 nanouptime(struct timespec *tsp) 956 { 957 958 nanouptime_fromclock(tsp, sysclock_active); 959 } 960 961 void 962 microuptime(struct timeval *tvp) 963 { 964 965 microuptime_fromclock(tvp, sysclock_active); 966 } 967 968 void 969 bintime(struct bintime *bt) 970 { 971 972 bintime_fromclock(bt, sysclock_active); 973 } 974 975 void 976 nanotime(struct timespec *tsp) 977 { 978 979 nanotime_fromclock(tsp, sysclock_active); 980 } 981 982 void 983 microtime(struct timeval *tvp) 984 { 985 986 microtime_fromclock(tvp, sysclock_active); 987 } 988 989 void 990 getbinuptime(struct bintime *bt) 991 { 992 993 getbinuptime_fromclock(bt, sysclock_active); 994 } 995 996 void 997 getnanouptime(struct timespec *tsp) 998 { 999 1000 getnanouptime_fromclock(tsp, sysclock_active); 1001 } 1002 1003 void 1004 getmicrouptime(struct timeval *tvp) 1005 { 1006 1007 getmicrouptime_fromclock(tvp, sysclock_active); 1008 } 1009 1010 void 1011 getbintime(struct bintime *bt) 1012 { 1013 1014 getbintime_fromclock(bt, sysclock_active); 1015 } 1016 1017 void 1018 getnanotime(struct timespec *tsp) 1019 { 1020 1021 getnanotime_fromclock(tsp, sysclock_active); 1022 } 1023 1024 void 1025 getmicrotime(struct timeval *tvp) 1026 { 1027 1028 getmicrouptime_fromclock(tvp, sysclock_active); 1029 } 1030 1031 #endif /* FFCLOCK */ 1032 1033 /* 1034 * This is a clone of getnanotime and used for walltimestamps. 1035 * The dtrace_ prefix prevents fbt from creating probes for 1036 * it so walltimestamp can be safely used in all fbt probes. 1037 */ 1038 void 1039 dtrace_getnanotime(struct timespec *tsp) 1040 { 1041 struct timehands *th; 1042 u_int gen; 1043 1044 do { 1045 th = timehands; 1046 gen = atomic_load_acq_int(&th->th_generation); 1047 *tsp = th->th_nanotime; 1048 atomic_thread_fence_acq(); 1049 } while (gen == 0 || gen != th->th_generation); 1050 } 1051 1052 /* 1053 * System clock currently providing time to the system. Modifiable via sysctl 1054 * when the FFCLOCK option is defined. 1055 */ 1056 int sysclock_active = SYSCLOCK_FBCK; 1057 1058 /* Internal NTP status and error estimates. */ 1059 extern int time_status; 1060 extern long time_esterror; 1061 1062 /* 1063 * Take a snapshot of sysclock data which can be used to compare system clocks 1064 * and generate timestamps after the fact. 1065 */ 1066 void 1067 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast) 1068 { 1069 struct fbclock_info *fbi; 1070 struct timehands *th; 1071 struct bintime bt; 1072 unsigned int delta, gen; 1073 #ifdef FFCLOCK 1074 ffcounter ffcount; 1075 struct fftimehands *ffth; 1076 struct ffclock_info *ffi; 1077 struct ffclock_estimate cest; 1078 1079 ffi = &clock_snap->ff_info; 1080 #endif 1081 1082 fbi = &clock_snap->fb_info; 1083 delta = 0; 1084 1085 do { 1086 th = timehands; 1087 gen = atomic_load_acq_int(&th->th_generation); 1088 fbi->th_scale = th->th_scale; 1089 fbi->tick_time = th->th_offset; 1090 #ifdef FFCLOCK 1091 ffth = fftimehands; 1092 ffi->tick_time = ffth->tick_time_lerp; 1093 ffi->tick_time_lerp = ffth->tick_time_lerp; 1094 ffi->period = ffth->cest.period; 1095 ffi->period_lerp = ffth->period_lerp; 1096 clock_snap->ffcount = ffth->tick_ffcount; 1097 cest = ffth->cest; 1098 #endif 1099 if (!fast) 1100 delta = tc_delta(th); 1101 atomic_thread_fence_acq(); 1102 } while (gen == 0 || gen != th->th_generation); 1103 1104 clock_snap->delta = delta; 1105 clock_snap->sysclock_active = sysclock_active; 1106 1107 /* Record feedback clock status and error. */ 1108 clock_snap->fb_info.status = time_status; 1109 /* XXX: Very crude estimate of feedback clock error. */ 1110 bt.sec = time_esterror / 1000000; 1111 bt.frac = ((time_esterror - bt.sec) * 1000000) * 1112 (uint64_t)18446744073709ULL; 1113 clock_snap->fb_info.error = bt; 1114 1115 #ifdef FFCLOCK 1116 if (!fast) 1117 clock_snap->ffcount += delta; 1118 1119 /* Record feed-forward clock leap second adjustment. */ 1120 ffi->leapsec_adjustment = cest.leapsec_total; 1121 if (clock_snap->ffcount > cest.leapsec_next) 1122 ffi->leapsec_adjustment -= cest.leapsec; 1123 1124 /* Record feed-forward clock status and error. */ 1125 clock_snap->ff_info.status = cest.status; 1126 ffcount = clock_snap->ffcount - cest.update_ffcount; 1127 ffclock_convert_delta(ffcount, cest.period, &bt); 1128 /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */ 1129 bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL); 1130 /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */ 1131 bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL); 1132 clock_snap->ff_info.error = bt; 1133 #endif 1134 } 1135 1136 /* 1137 * Convert a sysclock snapshot into a struct bintime based on the specified 1138 * clock source and flags. 1139 */ 1140 int 1141 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt, 1142 int whichclock, uint32_t flags) 1143 { 1144 struct bintime boottimebin; 1145 #ifdef FFCLOCK 1146 struct bintime bt2; 1147 uint64_t period; 1148 #endif 1149 1150 switch (whichclock) { 1151 case SYSCLOCK_FBCK: 1152 *bt = cs->fb_info.tick_time; 1153 1154 /* If snapshot was created with !fast, delta will be >0. */ 1155 if (cs->delta > 0) 1156 bintime_addx(bt, cs->fb_info.th_scale * cs->delta); 1157 1158 if ((flags & FBCLOCK_UPTIME) == 0) { 1159 getboottimebin(&boottimebin); 1160 bintime_add(bt, &boottimebin); 1161 } 1162 break; 1163 #ifdef FFCLOCK 1164 case SYSCLOCK_FFWD: 1165 if (flags & FFCLOCK_LERP) { 1166 *bt = cs->ff_info.tick_time_lerp; 1167 period = cs->ff_info.period_lerp; 1168 } else { 1169 *bt = cs->ff_info.tick_time; 1170 period = cs->ff_info.period; 1171 } 1172 1173 /* If snapshot was created with !fast, delta will be >0. */ 1174 if (cs->delta > 0) { 1175 ffclock_convert_delta(cs->delta, period, &bt2); 1176 bintime_add(bt, &bt2); 1177 } 1178 1179 /* Leap second adjustment. */ 1180 if (flags & FFCLOCK_LEAPSEC) 1181 bt->sec -= cs->ff_info.leapsec_adjustment; 1182 1183 /* Boot time adjustment, for uptime/monotonic clocks. */ 1184 if (flags & FFCLOCK_UPTIME) 1185 bintime_sub(bt, &ffclock_boottime); 1186 break; 1187 #endif 1188 default: 1189 return (EINVAL); 1190 break; 1191 } 1192 1193 return (0); 1194 } 1195 1196 /* 1197 * Initialize a new timecounter and possibly use it. 1198 */ 1199 void 1200 tc_init(struct timecounter *tc) 1201 { 1202 u_int u; 1203 struct sysctl_oid *tc_root; 1204 1205 u = tc->tc_frequency / tc->tc_counter_mask; 1206 /* XXX: We need some margin here, 10% is a guess */ 1207 u *= 11; 1208 u /= 10; 1209 if (u > hz && tc->tc_quality >= 0) { 1210 tc->tc_quality = -2000; 1211 if (bootverbose) { 1212 printf("Timecounter \"%s\" frequency %ju Hz", 1213 tc->tc_name, (uintmax_t)tc->tc_frequency); 1214 printf(" -- Insufficient hz, needs at least %u\n", u); 1215 } 1216 } else if (tc->tc_quality >= 0 || bootverbose) { 1217 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n", 1218 tc->tc_name, (uintmax_t)tc->tc_frequency, 1219 tc->tc_quality); 1220 } 1221 1222 tc->tc_next = timecounters; 1223 timecounters = tc; 1224 /* 1225 * Set up sysctl tree for this counter. 1226 */ 1227 tc_root = SYSCTL_ADD_NODE_WITH_LABEL(NULL, 1228 SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name, 1229 CTLFLAG_RW, 0, "timecounter description", "timecounter"); 1230 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1231 "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0, 1232 "mask for implemented bits"); 1233 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1234 "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc), 1235 sysctl_kern_timecounter_get, "IU", "current timecounter value"); 1236 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1237 "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc), 1238 sysctl_kern_timecounter_freq, "QU", "timecounter frequency"); 1239 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1240 "quality", CTLFLAG_RD, &(tc->tc_quality), 0, 1241 "goodness of time counter"); 1242 /* 1243 * Do not automatically switch if the current tc was specifically 1244 * chosen. Never automatically use a timecounter with negative quality. 1245 * Even though we run on the dummy counter, switching here may be 1246 * worse since this timecounter may not be monotonic. 1247 */ 1248 if (tc_chosen) 1249 return; 1250 if (tc->tc_quality < 0) 1251 return; 1252 if (tc->tc_quality < timecounter->tc_quality) 1253 return; 1254 if (tc->tc_quality == timecounter->tc_quality && 1255 tc->tc_frequency < timecounter->tc_frequency) 1256 return; 1257 (void)tc->tc_get_timecount(tc); 1258 (void)tc->tc_get_timecount(tc); 1259 timecounter = tc; 1260 } 1261 1262 /* Report the frequency of the current timecounter. */ 1263 uint64_t 1264 tc_getfrequency(void) 1265 { 1266 1267 return (timehands->th_counter->tc_frequency); 1268 } 1269 1270 static bool 1271 sleeping_on_old_rtc(struct thread *td) 1272 { 1273 1274 /* 1275 * td_rtcgen is modified by curthread when it is running, 1276 * and by other threads in this function. By finding the thread 1277 * on a sleepqueue and holding the lock on the sleepqueue 1278 * chain, we guarantee that the thread is not running and that 1279 * modifying td_rtcgen is safe. Setting td_rtcgen to zero informs 1280 * the thread that it was woken due to a real-time clock adjustment. 1281 * (The declaration of td_rtcgen refers to this comment.) 1282 */ 1283 if (td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation) { 1284 td->td_rtcgen = 0; 1285 return (true); 1286 } 1287 return (false); 1288 } 1289 1290 static struct mtx tc_setclock_mtx; 1291 MTX_SYSINIT(tc_setclock_init, &tc_setclock_mtx, "tcsetc", MTX_SPIN); 1292 1293 /* 1294 * Step our concept of UTC. This is done by modifying our estimate of 1295 * when we booted. 1296 */ 1297 void 1298 tc_setclock(struct timespec *ts) 1299 { 1300 struct timespec tbef, taft; 1301 struct bintime bt, bt2; 1302 1303 timespec2bintime(ts, &bt); 1304 nanotime(&tbef); 1305 mtx_lock_spin(&tc_setclock_mtx); 1306 cpu_tick_calibrate(1); 1307 binuptime(&bt2); 1308 bintime_sub(&bt, &bt2); 1309 1310 /* XXX fiddle all the little crinkly bits around the fiords... */ 1311 tc_windup(&bt); 1312 mtx_unlock_spin(&tc_setclock_mtx); 1313 1314 /* Avoid rtc_generation == 0, since td_rtcgen == 0 is special. */ 1315 atomic_add_rel_int(&rtc_generation, 2); 1316 sleepq_chains_remove_matching(sleeping_on_old_rtc); 1317 if (timestepwarnings) { 1318 nanotime(&taft); 1319 log(LOG_INFO, 1320 "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n", 1321 (intmax_t)tbef.tv_sec, tbef.tv_nsec, 1322 (intmax_t)taft.tv_sec, taft.tv_nsec, 1323 (intmax_t)ts->tv_sec, ts->tv_nsec); 1324 } 1325 } 1326 1327 /* 1328 * Initialize the next struct timehands in the ring and make 1329 * it the active timehands. Along the way we might switch to a different 1330 * timecounter and/or do seconds processing in NTP. Slightly magic. 1331 */ 1332 static void 1333 tc_windup(struct bintime *new_boottimebin) 1334 { 1335 struct bintime bt; 1336 struct timehands *th, *tho; 1337 uint64_t scale; 1338 u_int delta, ncount, ogen; 1339 int i; 1340 time_t t; 1341 1342 /* 1343 * Make the next timehands a copy of the current one, but do 1344 * not overwrite the generation or next pointer. While we 1345 * update the contents, the generation must be zero. We need 1346 * to ensure that the zero generation is visible before the 1347 * data updates become visible, which requires release fence. 1348 * For similar reasons, re-reading of the generation after the 1349 * data is read should use acquire fence. 1350 */ 1351 tho = timehands; 1352 th = tho->th_next; 1353 ogen = th->th_generation; 1354 th->th_generation = 0; 1355 atomic_thread_fence_rel(); 1356 bcopy(tho, th, offsetof(struct timehands, th_generation)); 1357 if (new_boottimebin != NULL) 1358 th->th_boottime = *new_boottimebin; 1359 1360 /* 1361 * Capture a timecounter delta on the current timecounter and if 1362 * changing timecounters, a counter value from the new timecounter. 1363 * Update the offset fields accordingly. 1364 */ 1365 delta = tc_delta(th); 1366 if (th->th_counter != timecounter) 1367 ncount = timecounter->tc_get_timecount(timecounter); 1368 else 1369 ncount = 0; 1370 #ifdef FFCLOCK 1371 ffclock_windup(delta); 1372 #endif 1373 th->th_offset_count += delta; 1374 th->th_offset_count &= th->th_counter->tc_counter_mask; 1375 while (delta > th->th_counter->tc_frequency) { 1376 /* Eat complete unadjusted seconds. */ 1377 delta -= th->th_counter->tc_frequency; 1378 th->th_offset.sec++; 1379 } 1380 if ((delta > th->th_counter->tc_frequency / 2) && 1381 (th->th_scale * delta < ((uint64_t)1 << 63))) { 1382 /* The product th_scale * delta just barely overflows. */ 1383 th->th_offset.sec++; 1384 } 1385 bintime_addx(&th->th_offset, th->th_scale * delta); 1386 1387 /* 1388 * Hardware latching timecounters may not generate interrupts on 1389 * PPS events, so instead we poll them. There is a finite risk that 1390 * the hardware might capture a count which is later than the one we 1391 * got above, and therefore possibly in the next NTP second which might 1392 * have a different rate than the current NTP second. It doesn't 1393 * matter in practice. 1394 */ 1395 if (tho->th_counter->tc_poll_pps) 1396 tho->th_counter->tc_poll_pps(tho->th_counter); 1397 1398 /* 1399 * Deal with NTP second processing. The for loop normally 1400 * iterates at most once, but in extreme situations it might 1401 * keep NTP sane if timeouts are not run for several seconds. 1402 * At boot, the time step can be large when the TOD hardware 1403 * has been read, so on really large steps, we call 1404 * ntp_update_second only twice. We need to call it twice in 1405 * case we missed a leap second. 1406 */ 1407 bt = th->th_offset; 1408 bintime_add(&bt, &th->th_boottime); 1409 i = bt.sec - tho->th_microtime.tv_sec; 1410 if (i > LARGE_STEP) 1411 i = 2; 1412 for (; i > 0; i--) { 1413 t = bt.sec; 1414 ntp_update_second(&th->th_adjustment, &bt.sec); 1415 if (bt.sec != t) 1416 th->th_boottime.sec += bt.sec - t; 1417 } 1418 /* Update the UTC timestamps used by the get*() functions. */ 1419 th->th_bintime = bt; 1420 bintime2timeval(&bt, &th->th_microtime); 1421 bintime2timespec(&bt, &th->th_nanotime); 1422 1423 /* Now is a good time to change timecounters. */ 1424 if (th->th_counter != timecounter) { 1425 #ifndef __arm__ 1426 if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0) 1427 cpu_disable_c2_sleep++; 1428 if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0) 1429 cpu_disable_c2_sleep--; 1430 #endif 1431 th->th_counter = timecounter; 1432 th->th_offset_count = ncount; 1433 tc_min_ticktock_freq = max(1, timecounter->tc_frequency / 1434 (((uint64_t)timecounter->tc_counter_mask + 1) / 3)); 1435 #ifdef FFCLOCK 1436 ffclock_change_tc(th); 1437 #endif 1438 } 1439 1440 /*- 1441 * Recalculate the scaling factor. We want the number of 1/2^64 1442 * fractions of a second per period of the hardware counter, taking 1443 * into account the th_adjustment factor which the NTP PLL/adjtime(2) 1444 * processing provides us with. 1445 * 1446 * The th_adjustment is nanoseconds per second with 32 bit binary 1447 * fraction and we want 64 bit binary fraction of second: 1448 * 1449 * x = a * 2^32 / 10^9 = a * 4.294967296 1450 * 1451 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int 1452 * we can only multiply by about 850 without overflowing, that 1453 * leaves no suitably precise fractions for multiply before divide. 1454 * 1455 * Divide before multiply with a fraction of 2199/512 results in a 1456 * systematic undercompensation of 10PPM of th_adjustment. On a 1457 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable. 1458 * 1459 * We happily sacrifice the lowest of the 64 bits of our result 1460 * to the goddess of code clarity. 1461 * 1462 */ 1463 scale = (uint64_t)1 << 63; 1464 scale += (th->th_adjustment / 1024) * 2199; 1465 scale /= th->th_counter->tc_frequency; 1466 th->th_scale = scale * 2; 1467 1468 /* 1469 * Now that the struct timehands is again consistent, set the new 1470 * generation number, making sure to not make it zero. 1471 */ 1472 if (++ogen == 0) 1473 ogen = 1; 1474 atomic_store_rel_int(&th->th_generation, ogen); 1475 1476 /* Go live with the new struct timehands. */ 1477 #ifdef FFCLOCK 1478 switch (sysclock_active) { 1479 case SYSCLOCK_FBCK: 1480 #endif 1481 time_second = th->th_microtime.tv_sec; 1482 time_uptime = th->th_offset.sec; 1483 #ifdef FFCLOCK 1484 break; 1485 case SYSCLOCK_FFWD: 1486 time_second = fftimehands->tick_time_lerp.sec; 1487 time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec; 1488 break; 1489 } 1490 #endif 1491 1492 timehands = th; 1493 timekeep_push_vdso(); 1494 } 1495 1496 /* Report or change the active timecounter hardware. */ 1497 static int 1498 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS) 1499 { 1500 char newname[32]; 1501 struct timecounter *newtc, *tc; 1502 int error; 1503 1504 tc = timecounter; 1505 strlcpy(newname, tc->tc_name, sizeof(newname)); 1506 1507 error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req); 1508 if (error != 0 || req->newptr == NULL) 1509 return (error); 1510 /* Record that the tc in use now was specifically chosen. */ 1511 tc_chosen = 1; 1512 if (strcmp(newname, tc->tc_name) == 0) 1513 return (0); 1514 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) { 1515 if (strcmp(newname, newtc->tc_name) != 0) 1516 continue; 1517 1518 /* Warm up new timecounter. */ 1519 (void)newtc->tc_get_timecount(newtc); 1520 (void)newtc->tc_get_timecount(newtc); 1521 1522 timecounter = newtc; 1523 1524 /* 1525 * The vdso timehands update is deferred until the next 1526 * 'tc_windup()'. 1527 * 1528 * This is prudent given that 'timekeep_push_vdso()' does not 1529 * use any locking and that it can be called in hard interrupt 1530 * context via 'tc_windup()'. 1531 */ 1532 return (0); 1533 } 1534 return (EINVAL); 1535 } 1536 1537 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW, 1538 0, 0, sysctl_kern_timecounter_hardware, "A", 1539 "Timecounter hardware selected"); 1540 1541 1542 /* Report the available timecounter hardware. */ 1543 static int 1544 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS) 1545 { 1546 struct sbuf sb; 1547 struct timecounter *tc; 1548 int error; 1549 1550 sbuf_new_for_sysctl(&sb, NULL, 0, req); 1551 for (tc = timecounters; tc != NULL; tc = tc->tc_next) { 1552 if (tc != timecounters) 1553 sbuf_putc(&sb, ' '); 1554 sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality); 1555 } 1556 error = sbuf_finish(&sb); 1557 sbuf_delete(&sb); 1558 return (error); 1559 } 1560 1561 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD, 1562 0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected"); 1563 1564 /* 1565 * RFC 2783 PPS-API implementation. 1566 */ 1567 1568 /* 1569 * Return true if the driver is aware of the abi version extensions in the 1570 * pps_state structure, and it supports at least the given abi version number. 1571 */ 1572 static inline int 1573 abi_aware(struct pps_state *pps, int vers) 1574 { 1575 1576 return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers); 1577 } 1578 1579 static int 1580 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps) 1581 { 1582 int err, timo; 1583 pps_seq_t aseq, cseq; 1584 struct timeval tv; 1585 1586 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1587 return (EINVAL); 1588 1589 /* 1590 * If no timeout is requested, immediately return whatever values were 1591 * most recently captured. If timeout seconds is -1, that's a request 1592 * to block without a timeout. WITNESS won't let us sleep forever 1593 * without a lock (we really don't need a lock), so just repeatedly 1594 * sleep a long time. 1595 */ 1596 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) { 1597 if (fapi->timeout.tv_sec == -1) 1598 timo = 0x7fffffff; 1599 else { 1600 tv.tv_sec = fapi->timeout.tv_sec; 1601 tv.tv_usec = fapi->timeout.tv_nsec / 1000; 1602 timo = tvtohz(&tv); 1603 } 1604 aseq = atomic_load_int(&pps->ppsinfo.assert_sequence); 1605 cseq = atomic_load_int(&pps->ppsinfo.clear_sequence); 1606 while (aseq == atomic_load_int(&pps->ppsinfo.assert_sequence) && 1607 cseq == atomic_load_int(&pps->ppsinfo.clear_sequence)) { 1608 if (abi_aware(pps, 1) && pps->driver_mtx != NULL) { 1609 if (pps->flags & PPSFLAG_MTX_SPIN) { 1610 err = msleep_spin(pps, pps->driver_mtx, 1611 "ppsfch", timo); 1612 } else { 1613 err = msleep(pps, pps->driver_mtx, PCATCH, 1614 "ppsfch", timo); 1615 } 1616 } else { 1617 err = tsleep(pps, PCATCH, "ppsfch", timo); 1618 } 1619 if (err == EWOULDBLOCK) { 1620 if (fapi->timeout.tv_sec == -1) { 1621 continue; 1622 } else { 1623 return (ETIMEDOUT); 1624 } 1625 } else if (err != 0) { 1626 return (err); 1627 } 1628 } 1629 } 1630 1631 pps->ppsinfo.current_mode = pps->ppsparam.mode; 1632 fapi->pps_info_buf = pps->ppsinfo; 1633 1634 return (0); 1635 } 1636 1637 int 1638 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 1639 { 1640 pps_params_t *app; 1641 struct pps_fetch_args *fapi; 1642 #ifdef FFCLOCK 1643 struct pps_fetch_ffc_args *fapi_ffc; 1644 #endif 1645 #ifdef PPS_SYNC 1646 struct pps_kcbind_args *kapi; 1647 #endif 1648 1649 KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl")); 1650 switch (cmd) { 1651 case PPS_IOC_CREATE: 1652 return (0); 1653 case PPS_IOC_DESTROY: 1654 return (0); 1655 case PPS_IOC_SETPARAMS: 1656 app = (pps_params_t *)data; 1657 if (app->mode & ~pps->ppscap) 1658 return (EINVAL); 1659 #ifdef FFCLOCK 1660 /* Ensure only a single clock is selected for ffc timestamp. */ 1661 if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK) 1662 return (EINVAL); 1663 #endif 1664 pps->ppsparam = *app; 1665 return (0); 1666 case PPS_IOC_GETPARAMS: 1667 app = (pps_params_t *)data; 1668 *app = pps->ppsparam; 1669 app->api_version = PPS_API_VERS_1; 1670 return (0); 1671 case PPS_IOC_GETCAP: 1672 *(int*)data = pps->ppscap; 1673 return (0); 1674 case PPS_IOC_FETCH: 1675 fapi = (struct pps_fetch_args *)data; 1676 return (pps_fetch(fapi, pps)); 1677 #ifdef FFCLOCK 1678 case PPS_IOC_FETCH_FFCOUNTER: 1679 fapi_ffc = (struct pps_fetch_ffc_args *)data; 1680 if (fapi_ffc->tsformat && fapi_ffc->tsformat != 1681 PPS_TSFMT_TSPEC) 1682 return (EINVAL); 1683 if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec) 1684 return (EOPNOTSUPP); 1685 pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode; 1686 fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc; 1687 /* Overwrite timestamps if feedback clock selected. */ 1688 switch (pps->ppsparam.mode & PPS_TSCLK_MASK) { 1689 case PPS_TSCLK_FBCK: 1690 fapi_ffc->pps_info_buf_ffc.assert_timestamp = 1691 pps->ppsinfo.assert_timestamp; 1692 fapi_ffc->pps_info_buf_ffc.clear_timestamp = 1693 pps->ppsinfo.clear_timestamp; 1694 break; 1695 case PPS_TSCLK_FFWD: 1696 break; 1697 default: 1698 break; 1699 } 1700 return (0); 1701 #endif /* FFCLOCK */ 1702 case PPS_IOC_KCBIND: 1703 #ifdef PPS_SYNC 1704 kapi = (struct pps_kcbind_args *)data; 1705 /* XXX Only root should be able to do this */ 1706 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1707 return (EINVAL); 1708 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1709 return (EINVAL); 1710 if (kapi->edge & ~pps->ppscap) 1711 return (EINVAL); 1712 pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) | 1713 (pps->kcmode & KCMODE_ABIFLAG); 1714 return (0); 1715 #else 1716 return (EOPNOTSUPP); 1717 #endif 1718 default: 1719 return (ENOIOCTL); 1720 } 1721 } 1722 1723 void 1724 pps_init(struct pps_state *pps) 1725 { 1726 pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT; 1727 if (pps->ppscap & PPS_CAPTUREASSERT) 1728 pps->ppscap |= PPS_OFFSETASSERT; 1729 if (pps->ppscap & PPS_CAPTURECLEAR) 1730 pps->ppscap |= PPS_OFFSETCLEAR; 1731 #ifdef FFCLOCK 1732 pps->ppscap |= PPS_TSCLK_MASK; 1733 #endif 1734 pps->kcmode &= ~KCMODE_ABIFLAG; 1735 } 1736 1737 void 1738 pps_init_abi(struct pps_state *pps) 1739 { 1740 1741 pps_init(pps); 1742 if (pps->driver_abi > 0) { 1743 pps->kcmode |= KCMODE_ABIFLAG; 1744 pps->kernel_abi = PPS_ABI_VERSION; 1745 } 1746 } 1747 1748 void 1749 pps_capture(struct pps_state *pps) 1750 { 1751 struct timehands *th; 1752 1753 KASSERT(pps != NULL, ("NULL pps pointer in pps_capture")); 1754 th = timehands; 1755 pps->capgen = atomic_load_acq_int(&th->th_generation); 1756 pps->capth = th; 1757 #ifdef FFCLOCK 1758 pps->capffth = fftimehands; 1759 #endif 1760 pps->capcount = th->th_counter->tc_get_timecount(th->th_counter); 1761 atomic_thread_fence_acq(); 1762 if (pps->capgen != th->th_generation) 1763 pps->capgen = 0; 1764 } 1765 1766 void 1767 pps_event(struct pps_state *pps, int event) 1768 { 1769 struct bintime bt; 1770 struct timespec ts, *tsp, *osp; 1771 u_int tcount, *pcount; 1772 int foff; 1773 pps_seq_t *pseq; 1774 #ifdef FFCLOCK 1775 struct timespec *tsp_ffc; 1776 pps_seq_t *pseq_ffc; 1777 ffcounter *ffcount; 1778 #endif 1779 #ifdef PPS_SYNC 1780 int fhard; 1781 #endif 1782 1783 KASSERT(pps != NULL, ("NULL pps pointer in pps_event")); 1784 /* Nothing to do if not currently set to capture this event type. */ 1785 if ((event & pps->ppsparam.mode) == 0) 1786 return; 1787 /* If the timecounter was wound up underneath us, bail out. */ 1788 if (pps->capgen == 0 || pps->capgen != 1789 atomic_load_acq_int(&pps->capth->th_generation)) 1790 return; 1791 1792 /* Things would be easier with arrays. */ 1793 if (event == PPS_CAPTUREASSERT) { 1794 tsp = &pps->ppsinfo.assert_timestamp; 1795 osp = &pps->ppsparam.assert_offset; 1796 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1797 #ifdef PPS_SYNC 1798 fhard = pps->kcmode & PPS_CAPTUREASSERT; 1799 #endif 1800 pcount = &pps->ppscount[0]; 1801 pseq = &pps->ppsinfo.assert_sequence; 1802 #ifdef FFCLOCK 1803 ffcount = &pps->ppsinfo_ffc.assert_ffcount; 1804 tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp; 1805 pseq_ffc = &pps->ppsinfo_ffc.assert_sequence; 1806 #endif 1807 } else { 1808 tsp = &pps->ppsinfo.clear_timestamp; 1809 osp = &pps->ppsparam.clear_offset; 1810 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1811 #ifdef PPS_SYNC 1812 fhard = pps->kcmode & PPS_CAPTURECLEAR; 1813 #endif 1814 pcount = &pps->ppscount[1]; 1815 pseq = &pps->ppsinfo.clear_sequence; 1816 #ifdef FFCLOCK 1817 ffcount = &pps->ppsinfo_ffc.clear_ffcount; 1818 tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp; 1819 pseq_ffc = &pps->ppsinfo_ffc.clear_sequence; 1820 #endif 1821 } 1822 1823 /* 1824 * If the timecounter changed, we cannot compare the count values, so 1825 * we have to drop the rest of the PPS-stuff until the next event. 1826 */ 1827 if (pps->ppstc != pps->capth->th_counter) { 1828 pps->ppstc = pps->capth->th_counter; 1829 *pcount = pps->capcount; 1830 pps->ppscount[2] = pps->capcount; 1831 return; 1832 } 1833 1834 /* Convert the count to a timespec. */ 1835 tcount = pps->capcount - pps->capth->th_offset_count; 1836 tcount &= pps->capth->th_counter->tc_counter_mask; 1837 bt = pps->capth->th_bintime; 1838 bintime_addx(&bt, pps->capth->th_scale * tcount); 1839 bintime2timespec(&bt, &ts); 1840 1841 /* If the timecounter was wound up underneath us, bail out. */ 1842 atomic_thread_fence_acq(); 1843 if (pps->capgen != pps->capth->th_generation) 1844 return; 1845 1846 *pcount = pps->capcount; 1847 (*pseq)++; 1848 *tsp = ts; 1849 1850 if (foff) { 1851 timespecadd(tsp, osp); 1852 if (tsp->tv_nsec < 0) { 1853 tsp->tv_nsec += 1000000000; 1854 tsp->tv_sec -= 1; 1855 } 1856 } 1857 1858 #ifdef FFCLOCK 1859 *ffcount = pps->capffth->tick_ffcount + tcount; 1860 bt = pps->capffth->tick_time; 1861 ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt); 1862 bintime_add(&bt, &pps->capffth->tick_time); 1863 bintime2timespec(&bt, &ts); 1864 (*pseq_ffc)++; 1865 *tsp_ffc = ts; 1866 #endif 1867 1868 #ifdef PPS_SYNC 1869 if (fhard) { 1870 uint64_t scale; 1871 1872 /* 1873 * Feed the NTP PLL/FLL. 1874 * The FLL wants to know how many (hardware) nanoseconds 1875 * elapsed since the previous event. 1876 */ 1877 tcount = pps->capcount - pps->ppscount[2]; 1878 pps->ppscount[2] = pps->capcount; 1879 tcount &= pps->capth->th_counter->tc_counter_mask; 1880 scale = (uint64_t)1 << 63; 1881 scale /= pps->capth->th_counter->tc_frequency; 1882 scale *= 2; 1883 bt.sec = 0; 1884 bt.frac = 0; 1885 bintime_addx(&bt, scale * tcount); 1886 bintime2timespec(&bt, &ts); 1887 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec); 1888 } 1889 #endif 1890 1891 /* Wakeup anyone sleeping in pps_fetch(). */ 1892 wakeup(pps); 1893 } 1894 1895 /* 1896 * Timecounters need to be updated every so often to prevent the hardware 1897 * counter from overflowing. Updating also recalculates the cached values 1898 * used by the get*() family of functions, so their precision depends on 1899 * the update frequency. 1900 */ 1901 1902 static int tc_tick; 1903 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, 1904 "Approximate number of hardclock ticks in a millisecond"); 1905 1906 void 1907 tc_ticktock(int cnt) 1908 { 1909 static int count; 1910 1911 if (mtx_trylock_spin(&tc_setclock_mtx)) { 1912 count += cnt; 1913 if (count >= tc_tick) { 1914 count = 0; 1915 tc_windup(NULL); 1916 } 1917 mtx_unlock_spin(&tc_setclock_mtx); 1918 } 1919 } 1920 1921 static void __inline 1922 tc_adjprecision(void) 1923 { 1924 int t; 1925 1926 if (tc_timepercentage > 0) { 1927 t = (99 + tc_timepercentage) / tc_timepercentage; 1928 tc_precexp = fls(t + (t >> 1)) - 1; 1929 FREQ2BT(hz / tc_tick, &bt_timethreshold); 1930 FREQ2BT(hz, &bt_tickthreshold); 1931 bintime_shift(&bt_timethreshold, tc_precexp); 1932 bintime_shift(&bt_tickthreshold, tc_precexp); 1933 } else { 1934 tc_precexp = 31; 1935 bt_timethreshold.sec = INT_MAX; 1936 bt_timethreshold.frac = ~(uint64_t)0; 1937 bt_tickthreshold = bt_timethreshold; 1938 } 1939 sbt_timethreshold = bttosbt(bt_timethreshold); 1940 sbt_tickthreshold = bttosbt(bt_tickthreshold); 1941 } 1942 1943 static int 1944 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS) 1945 { 1946 int error, val; 1947 1948 val = tc_timepercentage; 1949 error = sysctl_handle_int(oidp, &val, 0, req); 1950 if (error != 0 || req->newptr == NULL) 1951 return (error); 1952 tc_timepercentage = val; 1953 if (cold) 1954 goto done; 1955 tc_adjprecision(); 1956 done: 1957 return (0); 1958 } 1959 1960 static void 1961 inittimecounter(void *dummy) 1962 { 1963 u_int p; 1964 int tick_rate; 1965 1966 /* 1967 * Set the initial timeout to 1968 * max(1, <approx. number of hardclock ticks in a millisecond>). 1969 * People should probably not use the sysctl to set the timeout 1970 * to smaller than its initial value, since that value is the 1971 * smallest reasonable one. If they want better timestamps they 1972 * should use the non-"get"* functions. 1973 */ 1974 if (hz > 1000) 1975 tc_tick = (hz + 500) / 1000; 1976 else 1977 tc_tick = 1; 1978 tc_adjprecision(); 1979 FREQ2BT(hz, &tick_bt); 1980 tick_sbt = bttosbt(tick_bt); 1981 tick_rate = hz / tc_tick; 1982 FREQ2BT(tick_rate, &tc_tick_bt); 1983 tc_tick_sbt = bttosbt(tc_tick_bt); 1984 p = (tc_tick * 1000000) / hz; 1985 printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000); 1986 1987 #ifdef FFCLOCK 1988 ffclock_init(); 1989 #endif 1990 /* warm up new timecounter (again) and get rolling. */ 1991 (void)timecounter->tc_get_timecount(timecounter); 1992 (void)timecounter->tc_get_timecount(timecounter); 1993 mtx_lock_spin(&tc_setclock_mtx); 1994 tc_windup(NULL); 1995 mtx_unlock_spin(&tc_setclock_mtx); 1996 } 1997 1998 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL); 1999 2000 /* Cpu tick handling -------------------------------------------------*/ 2001 2002 static int cpu_tick_variable; 2003 static uint64_t cpu_tick_frequency; 2004 2005 static DPCPU_DEFINE(uint64_t, tc_cpu_ticks_base); 2006 static DPCPU_DEFINE(unsigned, tc_cpu_ticks_last); 2007 2008 static uint64_t 2009 tc_cpu_ticks(void) 2010 { 2011 struct timecounter *tc; 2012 uint64_t res, *base; 2013 unsigned u, *last; 2014 2015 critical_enter(); 2016 base = DPCPU_PTR(tc_cpu_ticks_base); 2017 last = DPCPU_PTR(tc_cpu_ticks_last); 2018 tc = timehands->th_counter; 2019 u = tc->tc_get_timecount(tc) & tc->tc_counter_mask; 2020 if (u < *last) 2021 *base += (uint64_t)tc->tc_counter_mask + 1; 2022 *last = u; 2023 res = u + *base; 2024 critical_exit(); 2025 return (res); 2026 } 2027 2028 void 2029 cpu_tick_calibration(void) 2030 { 2031 static time_t last_calib; 2032 2033 if (time_uptime != last_calib && !(time_uptime & 0xf)) { 2034 cpu_tick_calibrate(0); 2035 last_calib = time_uptime; 2036 } 2037 } 2038 2039 /* 2040 * This function gets called every 16 seconds on only one designated 2041 * CPU in the system from hardclock() via cpu_tick_calibration()(). 2042 * 2043 * Whenever the real time clock is stepped we get called with reset=1 2044 * to make sure we handle suspend/resume and similar events correctly. 2045 */ 2046 2047 static void 2048 cpu_tick_calibrate(int reset) 2049 { 2050 static uint64_t c_last; 2051 uint64_t c_this, c_delta; 2052 static struct bintime t_last; 2053 struct bintime t_this, t_delta; 2054 uint32_t divi; 2055 2056 if (reset) { 2057 /* The clock was stepped, abort & reset */ 2058 t_last.sec = 0; 2059 return; 2060 } 2061 2062 /* we don't calibrate fixed rate cputicks */ 2063 if (!cpu_tick_variable) 2064 return; 2065 2066 getbinuptime(&t_this); 2067 c_this = cpu_ticks(); 2068 if (t_last.sec != 0) { 2069 c_delta = c_this - c_last; 2070 t_delta = t_this; 2071 bintime_sub(&t_delta, &t_last); 2072 /* 2073 * Headroom: 2074 * 2^(64-20) / 16[s] = 2075 * 2^(44) / 16[s] = 2076 * 17.592.186.044.416 / 16 = 2077 * 1.099.511.627.776 [Hz] 2078 */ 2079 divi = t_delta.sec << 20; 2080 divi |= t_delta.frac >> (64 - 20); 2081 c_delta <<= 20; 2082 c_delta /= divi; 2083 if (c_delta > cpu_tick_frequency) { 2084 if (0 && bootverbose) 2085 printf("cpu_tick increased to %ju Hz\n", 2086 c_delta); 2087 cpu_tick_frequency = c_delta; 2088 } 2089 } 2090 c_last = c_this; 2091 t_last = t_this; 2092 } 2093 2094 void 2095 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var) 2096 { 2097 2098 if (func == NULL) { 2099 cpu_ticks = tc_cpu_ticks; 2100 } else { 2101 cpu_tick_frequency = freq; 2102 cpu_tick_variable = var; 2103 cpu_ticks = func; 2104 } 2105 } 2106 2107 uint64_t 2108 cpu_tickrate(void) 2109 { 2110 2111 if (cpu_ticks == tc_cpu_ticks) 2112 return (tc_getfrequency()); 2113 return (cpu_tick_frequency); 2114 } 2115 2116 /* 2117 * We need to be slightly careful converting cputicks to microseconds. 2118 * There is plenty of margin in 64 bits of microseconds (half a million 2119 * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply 2120 * before divide conversion (to retain precision) we find that the 2121 * margin shrinks to 1.5 hours (one millionth of 146y). 2122 * With a three prong approach we never lose significant bits, no 2123 * matter what the cputick rate and length of timeinterval is. 2124 */ 2125 2126 uint64_t 2127 cputick2usec(uint64_t tick) 2128 { 2129 2130 if (tick > 18446744073709551LL) /* floor(2^64 / 1000) */ 2131 return (tick / (cpu_tickrate() / 1000000LL)); 2132 else if (tick > 18446744073709LL) /* floor(2^64 / 1000000) */ 2133 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL)); 2134 else 2135 return ((tick * 1000000LL) / cpu_tickrate()); 2136 } 2137 2138 cpu_tick_f *cpu_ticks = tc_cpu_ticks; 2139 2140 static int vdso_th_enable = 1; 2141 static int 2142 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS) 2143 { 2144 int old_vdso_th_enable, error; 2145 2146 old_vdso_th_enable = vdso_th_enable; 2147 error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req); 2148 if (error != 0) 2149 return (error); 2150 vdso_th_enable = old_vdso_th_enable; 2151 return (0); 2152 } 2153 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime, 2154 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 2155 NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day"); 2156 2157 uint32_t 2158 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th) 2159 { 2160 struct timehands *th; 2161 uint32_t enabled; 2162 2163 th = timehands; 2164 vdso_th->th_scale = th->th_scale; 2165 vdso_th->th_offset_count = th->th_offset_count; 2166 vdso_th->th_counter_mask = th->th_counter->tc_counter_mask; 2167 vdso_th->th_offset = th->th_offset; 2168 vdso_th->th_boottime = th->th_boottime; 2169 if (th->th_counter->tc_fill_vdso_timehands != NULL) { 2170 enabled = th->th_counter->tc_fill_vdso_timehands(vdso_th, 2171 th->th_counter); 2172 } else 2173 enabled = 0; 2174 if (!vdso_th_enable) 2175 enabled = 0; 2176 return (enabled); 2177 } 2178 2179 #ifdef COMPAT_FREEBSD32 2180 uint32_t 2181 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32) 2182 { 2183 struct timehands *th; 2184 uint32_t enabled; 2185 2186 th = timehands; 2187 *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale; 2188 vdso_th32->th_offset_count = th->th_offset_count; 2189 vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask; 2190 vdso_th32->th_offset.sec = th->th_offset.sec; 2191 *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac; 2192 vdso_th32->th_boottime.sec = th->th_boottime.sec; 2193 *(uint64_t *)&vdso_th32->th_boottime.frac[0] = th->th_boottime.frac; 2194 if (th->th_counter->tc_fill_vdso_timehands32 != NULL) { 2195 enabled = th->th_counter->tc_fill_vdso_timehands32(vdso_th32, 2196 th->th_counter); 2197 } else 2198 enabled = 0; 2199 if (!vdso_th_enable) 2200 enabled = 0; 2201 return (enabled); 2202 } 2203 #endif 2204