xref: /freebsd/sys/kern/kern_synch.c (revision b740c88bfb6453416926271c089262e7164dace3)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_ktrace.h"
41 #include "opt_sched.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/condvar.h>
46 #include <sys/kdb.h>
47 #include <sys/kernel.h>
48 #include <sys/ktr.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/proc.h>
52 #include <sys/resourcevar.h>
53 #include <sys/sched.h>
54 #include <sys/sdt.h>
55 #include <sys/signalvar.h>
56 #include <sys/sleepqueue.h>
57 #include <sys/smp.h>
58 #include <sys/sx.h>
59 #include <sys/sysctl.h>
60 #include <sys/sysproto.h>
61 #include <sys/vmmeter.h>
62 #ifdef KTRACE
63 #include <sys/uio.h>
64 #include <sys/ktrace.h>
65 #endif
66 
67 #include <machine/cpu.h>
68 
69 #ifdef XEN
70 #include <vm/vm.h>
71 #include <vm/vm_param.h>
72 #include <vm/pmap.h>
73 #endif
74 
75 #define	KTDSTATE(td)							\
76 	(((td)->td_inhibitors & TDI_SLEEPING) != 0 ? "sleep"  :		\
77 	((td)->td_inhibitors & TDI_SUSPENDED) != 0 ? "suspended" :	\
78 	((td)->td_inhibitors & TDI_SWAPPED) != 0 ? "swapped" :		\
79 	((td)->td_inhibitors & TDI_LOCK) != 0 ? "blocked" :		\
80 	((td)->td_inhibitors & TDI_IWAIT) != 0 ? "iwait" : "yielding")
81 
82 static void synch_setup(void *dummy);
83 SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
84     NULL);
85 
86 int	hogticks;
87 static uint8_t pause_wchan[MAXCPU];
88 
89 static struct callout loadav_callout;
90 
91 struct loadavg averunnable =
92 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
93 /*
94  * Constants for averages over 1, 5, and 15 minutes
95  * when sampling at 5 second intervals.
96  */
97 static fixpt_t cexp[3] = {
98 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
99 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
100 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
101 };
102 
103 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
104 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, SYSCTL_NULL_INT_PTR, FSCALE, "");
105 
106 static void	loadav(void *arg);
107 
108 SDT_PROVIDER_DECLARE(sched);
109 SDT_PROBE_DEFINE(sched, , , preempt);
110 
111 static void
112 sleepinit(void *unused)
113 {
114 
115 	hogticks = (hz / 10) * 2;	/* Default only. */
116 	init_sleepqueues();
117 }
118 
119 /*
120  * vmem tries to lock the sleepq mutexes when free'ing kva, so make sure
121  * it is available.
122  */
123 SYSINIT(sleepinit, SI_SUB_KMEM, SI_ORDER_ANY, sleepinit, 0);
124 
125 /*
126  * General sleep call.  Suspends the current thread until a wakeup is
127  * performed on the specified identifier.  The thread will then be made
128  * runnable with the specified priority.  Sleeps at most sbt units of time
129  * (0 means no timeout).  If pri includes the PCATCH flag, let signals
130  * interrupt the sleep, otherwise ignore them while sleeping.  Returns 0 if
131  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
132  * signal becomes pending, ERESTART is returned if the current system
133  * call should be restarted if possible, and EINTR is returned if the system
134  * call should be interrupted by the signal (return EINTR).
135  *
136  * The lock argument is unlocked before the caller is suspended, and
137  * re-locked before _sleep() returns.  If priority includes the PDROP
138  * flag the lock is not re-locked before returning.
139  */
140 int
141 _sleep(void *ident, struct lock_object *lock, int priority,
142     const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
143 {
144 	struct thread *td;
145 	struct proc *p;
146 	struct lock_class *class;
147 	uintptr_t lock_state;
148 	int catch, pri, rval, sleepq_flags;
149 	WITNESS_SAVE_DECL(lock_witness);
150 
151 	td = curthread;
152 	p = td->td_proc;
153 #ifdef KTRACE
154 	if (KTRPOINT(td, KTR_CSW))
155 		ktrcsw(1, 0, wmesg);
156 #endif
157 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
158 	    "Sleeping on \"%s\"", wmesg);
159 	KASSERT(sbt != 0 || mtx_owned(&Giant) || lock != NULL,
160 	    ("sleeping without a lock"));
161 	KASSERT(p != NULL, ("msleep1"));
162 	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
163 	if (priority & PDROP)
164 		KASSERT(lock != NULL && lock != &Giant.lock_object,
165 		    ("PDROP requires a non-Giant lock"));
166 	if (lock != NULL)
167 		class = LOCK_CLASS(lock);
168 	else
169 		class = NULL;
170 
171 	if (cold || SCHEDULER_STOPPED()) {
172 		/*
173 		 * During autoconfiguration, just return;
174 		 * don't run any other threads or panic below,
175 		 * in case this is the idle thread and already asleep.
176 		 * XXX: this used to do "s = splhigh(); splx(safepri);
177 		 * splx(s);" to give interrupts a chance, but there is
178 		 * no way to give interrupts a chance now.
179 		 */
180 		if (lock != NULL && priority & PDROP)
181 			class->lc_unlock(lock);
182 		return (0);
183 	}
184 	catch = priority & PCATCH;
185 	pri = priority & PRIMASK;
186 
187 	/*
188 	 * If we are already on a sleep queue, then remove us from that
189 	 * sleep queue first.  We have to do this to handle recursive
190 	 * sleeps.
191 	 */
192 	if (TD_ON_SLEEPQ(td))
193 		sleepq_remove(td, td->td_wchan);
194 
195 	if ((uint8_t *)ident >= &pause_wchan[0] &&
196 	    (uint8_t *)ident <= &pause_wchan[MAXCPU - 1])
197 		sleepq_flags = SLEEPQ_PAUSE;
198 	else
199 		sleepq_flags = SLEEPQ_SLEEP;
200 	if (catch)
201 		sleepq_flags |= SLEEPQ_INTERRUPTIBLE;
202 
203 	sleepq_lock(ident);
204 	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
205 	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
206 
207 	if (lock == &Giant.lock_object)
208 		mtx_assert(&Giant, MA_OWNED);
209 	DROP_GIANT();
210 	if (lock != NULL && lock != &Giant.lock_object &&
211 	    !(class->lc_flags & LC_SLEEPABLE)) {
212 		WITNESS_SAVE(lock, lock_witness);
213 		lock_state = class->lc_unlock(lock);
214 	} else
215 		/* GCC needs to follow the Yellow Brick Road */
216 		lock_state = -1;
217 
218 	/*
219 	 * We put ourselves on the sleep queue and start our timeout
220 	 * before calling thread_suspend_check, as we could stop there,
221 	 * and a wakeup or a SIGCONT (or both) could occur while we were
222 	 * stopped without resuming us.  Thus, we must be ready for sleep
223 	 * when cursig() is called.  If the wakeup happens while we're
224 	 * stopped, then td will no longer be on a sleep queue upon
225 	 * return from cursig().
226 	 */
227 	sleepq_add(ident, lock, wmesg, sleepq_flags, 0);
228 	if (sbt != 0)
229 		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
230 	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
231 		sleepq_release(ident);
232 		WITNESS_SAVE(lock, lock_witness);
233 		lock_state = class->lc_unlock(lock);
234 		sleepq_lock(ident);
235 	}
236 	if (sbt != 0 && catch)
237 		rval = sleepq_timedwait_sig(ident, pri);
238 	else if (sbt != 0)
239 		rval = sleepq_timedwait(ident, pri);
240 	else if (catch)
241 		rval = sleepq_wait_sig(ident, pri);
242 	else {
243 		sleepq_wait(ident, pri);
244 		rval = 0;
245 	}
246 #ifdef KTRACE
247 	if (KTRPOINT(td, KTR_CSW))
248 		ktrcsw(0, 0, wmesg);
249 #endif
250 	PICKUP_GIANT();
251 	if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
252 		class->lc_lock(lock, lock_state);
253 		WITNESS_RESTORE(lock, lock_witness);
254 	}
255 	return (rval);
256 }
257 
258 int
259 msleep_spin_sbt(void *ident, struct mtx *mtx, const char *wmesg,
260     sbintime_t sbt, sbintime_t pr, int flags)
261 {
262 	struct thread *td;
263 	struct proc *p;
264 	int rval;
265 	WITNESS_SAVE_DECL(mtx);
266 
267 	td = curthread;
268 	p = td->td_proc;
269 	KASSERT(mtx != NULL, ("sleeping without a mutex"));
270 	KASSERT(p != NULL, ("msleep1"));
271 	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
272 
273 	if (cold || SCHEDULER_STOPPED()) {
274 		/*
275 		 * During autoconfiguration, just return;
276 		 * don't run any other threads or panic below,
277 		 * in case this is the idle thread and already asleep.
278 		 * XXX: this used to do "s = splhigh(); splx(safepri);
279 		 * splx(s);" to give interrupts a chance, but there is
280 		 * no way to give interrupts a chance now.
281 		 */
282 		return (0);
283 	}
284 
285 	sleepq_lock(ident);
286 	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
287 	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
288 
289 	DROP_GIANT();
290 	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
291 	WITNESS_SAVE(&mtx->lock_object, mtx);
292 	mtx_unlock_spin(mtx);
293 
294 	/*
295 	 * We put ourselves on the sleep queue and start our timeout.
296 	 */
297 	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
298 	if (sbt != 0)
299 		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
300 
301 	/*
302 	 * Can't call ktrace with any spin locks held so it can lock the
303 	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
304 	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
305 	 * we handle those requests.  This is safe since we have placed our
306 	 * thread on the sleep queue already.
307 	 */
308 #ifdef KTRACE
309 	if (KTRPOINT(td, KTR_CSW)) {
310 		sleepq_release(ident);
311 		ktrcsw(1, 0, wmesg);
312 		sleepq_lock(ident);
313 	}
314 #endif
315 #ifdef WITNESS
316 	sleepq_release(ident);
317 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
318 	    wmesg);
319 	sleepq_lock(ident);
320 #endif
321 	if (sbt != 0)
322 		rval = sleepq_timedwait(ident, 0);
323 	else {
324 		sleepq_wait(ident, 0);
325 		rval = 0;
326 	}
327 #ifdef KTRACE
328 	if (KTRPOINT(td, KTR_CSW))
329 		ktrcsw(0, 0, wmesg);
330 #endif
331 	PICKUP_GIANT();
332 	mtx_lock_spin(mtx);
333 	WITNESS_RESTORE(&mtx->lock_object, mtx);
334 	return (rval);
335 }
336 
337 /*
338  * pause() delays the calling thread by the given number of system ticks.
339  * During cold bootup, pause() uses the DELAY() function instead of
340  * the tsleep() function to do the waiting. The "timo" argument must be
341  * greater than or equal to zero. A "timo" value of zero is equivalent
342  * to a "timo" value of one.
343  */
344 int
345 pause_sbt(const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
346 {
347 	KASSERT(sbt >= 0, ("pause: timeout must be >= 0"));
348 
349 	/* silently convert invalid timeouts */
350 	if (sbt == 0)
351 		sbt = tick_sbt;
352 
353 	if (cold || kdb_active) {
354 		/*
355 		 * We delay one second at a time to avoid overflowing the
356 		 * system specific DELAY() function(s):
357 		 */
358 		while (sbt >= SBT_1S) {
359 			DELAY(1000000);
360 			sbt -= SBT_1S;
361 		}
362 		/* Do the delay remainder, if any */
363 		sbt = (sbt + SBT_1US - 1) / SBT_1US;
364 		if (sbt > 0)
365 			DELAY(sbt);
366 		return (0);
367 	}
368 	return (_sleep(&pause_wchan[curcpu], NULL, 0, wmesg, sbt, pr, flags));
369 }
370 
371 /*
372  * Make all threads sleeping on the specified identifier runnable.
373  */
374 void
375 wakeup(void *ident)
376 {
377 	int wakeup_swapper;
378 
379 	sleepq_lock(ident);
380 	wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
381 	sleepq_release(ident);
382 	if (wakeup_swapper) {
383 		KASSERT(ident != &proc0,
384 		    ("wakeup and wakeup_swapper and proc0"));
385 		kick_proc0();
386 	}
387 }
388 
389 /*
390  * Make a thread sleeping on the specified identifier runnable.
391  * May wake more than one thread if a target thread is currently
392  * swapped out.
393  */
394 void
395 wakeup_one(void *ident)
396 {
397 	int wakeup_swapper;
398 
399 	sleepq_lock(ident);
400 	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
401 	sleepq_release(ident);
402 	if (wakeup_swapper)
403 		kick_proc0();
404 }
405 
406 static void
407 kdb_switch(void)
408 {
409 	thread_unlock(curthread);
410 	kdb_backtrace();
411 	kdb_reenter();
412 	panic("%s: did not reenter debugger", __func__);
413 }
414 
415 /*
416  * The machine independent parts of context switching.
417  */
418 void
419 mi_switch(int flags, struct thread *newtd)
420 {
421 	uint64_t runtime, new_switchtime;
422 	struct thread *td;
423 	struct proc *p;
424 
425 	td = curthread;			/* XXX */
426 	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
427 	p = td->td_proc;		/* XXX */
428 	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
429 #ifdef INVARIANTS
430 	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
431 		mtx_assert(&Giant, MA_NOTOWNED);
432 #endif
433 	KASSERT(td->td_critnest == 1 || panicstr,
434 	    ("mi_switch: switch in a critical section"));
435 	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
436 	    ("mi_switch: switch must be voluntary or involuntary"));
437 	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
438 
439 	/*
440 	 * Don't perform context switches from the debugger.
441 	 */
442 	if (kdb_active)
443 		kdb_switch();
444 	if (SCHEDULER_STOPPED())
445 		return;
446 	if (flags & SW_VOL) {
447 		td->td_ru.ru_nvcsw++;
448 		td->td_swvoltick = ticks;
449 	} else
450 		td->td_ru.ru_nivcsw++;
451 #ifdef SCHED_STATS
452 	SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
453 #endif
454 	/*
455 	 * Compute the amount of time during which the current
456 	 * thread was running, and add that to its total so far.
457 	 */
458 	new_switchtime = cpu_ticks();
459 	runtime = new_switchtime - PCPU_GET(switchtime);
460 	td->td_runtime += runtime;
461 	td->td_incruntime += runtime;
462 	PCPU_SET(switchtime, new_switchtime);
463 	td->td_generation++;	/* bump preempt-detect counter */
464 	PCPU_INC(cnt.v_swtch);
465 	PCPU_SET(switchticks, ticks);
466 	CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
467 	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
468 #if (KTR_COMPILE & KTR_SCHED) != 0
469 	if (TD_IS_IDLETHREAD(td))
470 		KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
471 		    "prio:%d", td->td_priority);
472 	else
473 		KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
474 		    "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
475 		    "lockname:\"%s\"", td->td_lockname);
476 #endif
477 	SDT_PROBE0(sched, , , preempt);
478 #ifdef XEN
479 	PT_UPDATES_FLUSH();
480 #endif
481 	sched_switch(td, newtd, flags);
482 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
483 	    "prio:%d", td->td_priority);
484 
485 	CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
486 	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
487 
488 	/*
489 	 * If the last thread was exiting, finish cleaning it up.
490 	 */
491 	if ((td = PCPU_GET(deadthread))) {
492 		PCPU_SET(deadthread, NULL);
493 		thread_stash(td);
494 	}
495 }
496 
497 /*
498  * Change thread state to be runnable, placing it on the run queue if
499  * it is in memory.  If it is swapped out, return true so our caller
500  * will know to awaken the swapper.
501  */
502 int
503 setrunnable(struct thread *td)
504 {
505 
506 	THREAD_LOCK_ASSERT(td, MA_OWNED);
507 	KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
508 	    ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
509 	switch (td->td_state) {
510 	case TDS_RUNNING:
511 	case TDS_RUNQ:
512 		return (0);
513 	case TDS_INHIBITED:
514 		/*
515 		 * If we are only inhibited because we are swapped out
516 		 * then arange to swap in this process. Otherwise just return.
517 		 */
518 		if (td->td_inhibitors != TDI_SWAPPED)
519 			return (0);
520 		/* FALLTHROUGH */
521 	case TDS_CAN_RUN:
522 		break;
523 	default:
524 		printf("state is 0x%x", td->td_state);
525 		panic("setrunnable(2)");
526 	}
527 	if ((td->td_flags & TDF_INMEM) == 0) {
528 		if ((td->td_flags & TDF_SWAPINREQ) == 0) {
529 			td->td_flags |= TDF_SWAPINREQ;
530 			return (1);
531 		}
532 	} else
533 		sched_wakeup(td);
534 	return (0);
535 }
536 
537 /*
538  * Compute a tenex style load average of a quantity on
539  * 1, 5 and 15 minute intervals.
540  */
541 static void
542 loadav(void *arg)
543 {
544 	int i, nrun;
545 	struct loadavg *avg;
546 
547 	nrun = sched_load();
548 	avg = &averunnable;
549 
550 	for (i = 0; i < 3; i++)
551 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
552 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
553 
554 	/*
555 	 * Schedule the next update to occur after 5 seconds, but add a
556 	 * random variation to avoid synchronisation with processes that
557 	 * run at regular intervals.
558 	 */
559 	callout_reset_sbt(&loadav_callout,
560 	    SBT_1US * (4000000 + (int)(random() % 2000001)), SBT_1US,
561 	    loadav, NULL, C_DIRECT_EXEC | C_PREL(32));
562 }
563 
564 /* ARGSUSED */
565 static void
566 synch_setup(void *dummy)
567 {
568 	callout_init(&loadav_callout, CALLOUT_MPSAFE);
569 
570 	/* Kick off timeout driven events by calling first time. */
571 	loadav(NULL);
572 }
573 
574 int
575 should_yield(void)
576 {
577 
578 	return ((u_int)ticks - (u_int)curthread->td_swvoltick >= hogticks);
579 }
580 
581 void
582 maybe_yield(void)
583 {
584 
585 	if (should_yield())
586 		kern_yield(PRI_USER);
587 }
588 
589 void
590 kern_yield(int prio)
591 {
592 	struct thread *td;
593 
594 	td = curthread;
595 	DROP_GIANT();
596 	thread_lock(td);
597 	if (prio == PRI_USER)
598 		prio = td->td_user_pri;
599 	if (prio >= 0)
600 		sched_prio(td, prio);
601 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
602 	thread_unlock(td);
603 	PICKUP_GIANT();
604 }
605 
606 /*
607  * General purpose yield system call.
608  */
609 int
610 sys_yield(struct thread *td, struct yield_args *uap)
611 {
612 
613 	thread_lock(td);
614 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
615 		sched_prio(td, PRI_MAX_TIMESHARE);
616 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
617 	thread_unlock(td);
618 	td->td_retval[0] = 0;
619 	return (0);
620 }
621