xref: /freebsd/sys/kern/kern_sx.c (revision 4fd2d3b6927878771635a3628ae1623daf810d39)
1 /*-
2  * Copyright (c) 2007 Attilio Rao <attilio@freebsd.org>
3  * Copyright (c) 2001 Jason Evans <jasone@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice(s), this list of conditions and the following disclaimer as
11  *    the first lines of this file unmodified other than the possible
12  *    addition of one or more copyright notices.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice(s), this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
18  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
19  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
20  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
21  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
22  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
23  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
24  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
27  * DAMAGE.
28  */
29 
30 /*
31  * Shared/exclusive locks.  This implementation attempts to ensure
32  * deterministic lock granting behavior, so that slocks and xlocks are
33  * interleaved.
34  *
35  * Priority propagation will not generally raise the priority of lock holders,
36  * so should not be relied upon in combination with sx locks.
37  */
38 
39 #include "opt_adaptive_sx.h"
40 #include "opt_ddb.h"
41 
42 #include <sys/cdefs.h>
43 __FBSDID("$FreeBSD$");
44 
45 #include <sys/param.h>
46 #include <sys/ktr.h>
47 #include <sys/lock.h>
48 #include <sys/mutex.h>
49 #include <sys/proc.h>
50 #include <sys/sleepqueue.h>
51 #include <sys/sx.h>
52 #include <sys/systm.h>
53 
54 #ifdef ADAPTIVE_SX
55 #include <machine/cpu.h>
56 #endif
57 
58 #ifdef DDB
59 #include <ddb/ddb.h>
60 #endif
61 
62 #if !defined(SMP) && defined(ADAPTIVE_SX)
63 #error "You must have SMP to enable the ADAPTIVE_SX option"
64 #endif
65 
66 CTASSERT(((SX_ADAPTIVESPIN | SX_RECURSE) & LO_CLASSFLAGS) ==
67     (SX_ADAPTIVESPIN | SX_RECURSE));
68 
69 /* Handy macros for sleep queues. */
70 #define	SQ_EXCLUSIVE_QUEUE	0
71 #define	SQ_SHARED_QUEUE		1
72 
73 /*
74  * Variations on DROP_GIANT()/PICKUP_GIANT() for use in this file.  We
75  * drop Giant anytime we have to sleep or if we adaptively spin.
76  */
77 #define	GIANT_DECLARE							\
78 	int _giantcnt = 0;						\
79 	WITNESS_SAVE_DECL(Giant)					\
80 
81 #define	GIANT_SAVE() do {						\
82 	if (mtx_owned(&Giant)) {					\
83 		WITNESS_SAVE(&Giant.lock_object, Giant);		\
84 		while (mtx_owned(&Giant)) {				\
85 			_giantcnt++;					\
86 			mtx_unlock(&Giant);				\
87 		}							\
88 	}								\
89 } while (0)
90 
91 #define GIANT_RESTORE() do {						\
92 	if (_giantcnt > 0) {						\
93 		mtx_assert(&Giant, MA_NOTOWNED);			\
94 		while (_giantcnt--)					\
95 			mtx_lock(&Giant);				\
96 		WITNESS_RESTORE(&Giant.lock_object, Giant);		\
97 	}								\
98 } while (0)
99 
100 /*
101  * Returns true if an exclusive lock is recursed.  It assumes
102  * curthread currently has an exclusive lock.
103  */
104 #define	sx_recursed(sx)		((sx)->sx_recurse != 0)
105 
106 static void	assert_sx(struct lock_object *lock, int what);
107 #ifdef DDB
108 static void	db_show_sx(struct lock_object *lock);
109 #endif
110 static void	lock_sx(struct lock_object *lock, int how);
111 static int	unlock_sx(struct lock_object *lock);
112 
113 struct lock_class lock_class_sx = {
114 	.lc_name = "sx",
115 	.lc_flags = LC_SLEEPLOCK | LC_SLEEPABLE | LC_RECURSABLE | LC_UPGRADABLE,
116 	.lc_assert = assert_sx,
117 #ifdef DDB
118 	.lc_ddb_show = db_show_sx,
119 #endif
120 	.lc_lock = lock_sx,
121 	.lc_unlock = unlock_sx,
122 };
123 
124 #ifndef INVARIANTS
125 #define	_sx_assert(sx, what, file, line)
126 #endif
127 
128 void
129 assert_sx(struct lock_object *lock, int what)
130 {
131 
132 	sx_assert((struct sx *)lock, what);
133 }
134 
135 void
136 lock_sx(struct lock_object *lock, int how)
137 {
138 	struct sx *sx;
139 
140 	sx = (struct sx *)lock;
141 	if (how)
142 		sx_xlock(sx);
143 	else
144 		sx_slock(sx);
145 }
146 
147 int
148 unlock_sx(struct lock_object *lock)
149 {
150 	struct sx *sx;
151 
152 	sx = (struct sx *)lock;
153 	sx_assert(sx, SA_LOCKED | SA_NOTRECURSED);
154 	if (sx_xlocked(sx)) {
155 		sx_xunlock(sx);
156 		return (1);
157 	} else {
158 		sx_sunlock(sx);
159 		return (0);
160 	}
161 }
162 
163 void
164 sx_sysinit(void *arg)
165 {
166 	struct sx_args *sargs = arg;
167 
168 	sx_init(sargs->sa_sx, sargs->sa_desc);
169 }
170 
171 void
172 sx_init_flags(struct sx *sx, const char *description, int opts)
173 {
174 	int flags;
175 
176 	MPASS((opts & ~(SX_QUIET | SX_RECURSE | SX_NOWITNESS | SX_DUPOK |
177 	    SX_NOPROFILE | SX_ADAPTIVESPIN)) == 0);
178 
179 	flags = LO_RECURSABLE | LO_SLEEPABLE | LO_UPGRADABLE;
180 	if (opts & SX_DUPOK)
181 		flags |= LO_DUPOK;
182 	if (opts & SX_NOPROFILE)
183 		flags |= LO_NOPROFILE;
184 	if (!(opts & SX_NOWITNESS))
185 		flags |= LO_WITNESS;
186 	if (opts & SX_QUIET)
187 		flags |= LO_QUIET;
188 
189 	flags |= opts & (SX_ADAPTIVESPIN | SX_RECURSE);
190 	sx->sx_lock = SX_LOCK_UNLOCKED;
191 	sx->sx_recurse = 0;
192 	lock_init(&sx->lock_object, &lock_class_sx, description, NULL, flags);
193 }
194 
195 void
196 sx_destroy(struct sx *sx)
197 {
198 
199 	KASSERT(sx->sx_lock == SX_LOCK_UNLOCKED, ("sx lock still held"));
200 	KASSERT(sx->sx_recurse == 0, ("sx lock still recursed"));
201 	sx->sx_lock = SX_LOCK_DESTROYED;
202 	lock_destroy(&sx->lock_object);
203 }
204 
205 int
206 _sx_slock(struct sx *sx, int opts, const char *file, int line)
207 {
208 	int error = 0;
209 
210 	MPASS(curthread != NULL);
211 	KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
212 	    ("sx_slock() of destroyed sx @ %s:%d", file, line));
213 	WITNESS_CHECKORDER(&sx->lock_object, LOP_NEWORDER, file, line);
214 	error = __sx_slock(sx, opts, file, line);
215 	if (!error) {
216 		LOCK_LOG_LOCK("SLOCK", &sx->lock_object, 0, 0, file, line);
217 		WITNESS_LOCK(&sx->lock_object, 0, file, line);
218 		curthread->td_locks++;
219 	}
220 
221 	return (error);
222 }
223 
224 int
225 _sx_try_slock(struct sx *sx, const char *file, int line)
226 {
227 	uintptr_t x;
228 
229 	for (;;) {
230 		x = sx->sx_lock;
231 		KASSERT(x != SX_LOCK_DESTROYED,
232 		    ("sx_try_slock() of destroyed sx @ %s:%d", file, line));
233 		if (!(x & SX_LOCK_SHARED))
234 			break;
235 		if (atomic_cmpset_acq_ptr(&sx->sx_lock, x, x + SX_ONE_SHARER)) {
236 			LOCK_LOG_TRY("SLOCK", &sx->lock_object, 0, 1, file, line);
237 			WITNESS_LOCK(&sx->lock_object, LOP_TRYLOCK, file, line);
238 			curthread->td_locks++;
239 			return (1);
240 		}
241 	}
242 
243 	LOCK_LOG_TRY("SLOCK", &sx->lock_object, 0, 0, file, line);
244 	return (0);
245 }
246 
247 int
248 _sx_xlock(struct sx *sx, int opts, const char *file, int line)
249 {
250 	int error = 0;
251 
252 	MPASS(curthread != NULL);
253 	KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
254 	    ("sx_xlock() of destroyed sx @ %s:%d", file, line));
255 	WITNESS_CHECKORDER(&sx->lock_object, LOP_NEWORDER | LOP_EXCLUSIVE, file,
256 	    line);
257 	error = __sx_xlock(sx, curthread, opts, file, line);
258 	if (!error) {
259 		LOCK_LOG_LOCK("XLOCK", &sx->lock_object, 0, sx->sx_recurse,
260 		    file, line);
261 		WITNESS_LOCK(&sx->lock_object, LOP_EXCLUSIVE, file, line);
262 		curthread->td_locks++;
263 	}
264 
265 	return (error);
266 }
267 
268 int
269 _sx_try_xlock(struct sx *sx, const char *file, int line)
270 {
271 	int rval;
272 
273 	MPASS(curthread != NULL);
274 	KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
275 	    ("sx_try_xlock() of destroyed sx @ %s:%d", file, line));
276 
277 	if (sx_xlocked(sx) && (sx->lock_object.lo_flags & SX_RECURSE) != 0) {
278 		sx->sx_recurse++;
279 		atomic_set_ptr(&sx->sx_lock, SX_LOCK_RECURSED);
280 		rval = 1;
281 	} else
282 		rval = atomic_cmpset_acq_ptr(&sx->sx_lock, SX_LOCK_UNLOCKED,
283 		    (uintptr_t)curthread);
284 	LOCK_LOG_TRY("XLOCK", &sx->lock_object, 0, rval, file, line);
285 	if (rval) {
286 		WITNESS_LOCK(&sx->lock_object, LOP_EXCLUSIVE | LOP_TRYLOCK,
287 		    file, line);
288 		curthread->td_locks++;
289 	}
290 
291 	return (rval);
292 }
293 
294 void
295 _sx_sunlock(struct sx *sx, const char *file, int line)
296 {
297 
298 	MPASS(curthread != NULL);
299 	KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
300 	    ("sx_sunlock() of destroyed sx @ %s:%d", file, line));
301 	_sx_assert(sx, SA_SLOCKED, file, line);
302 	curthread->td_locks--;
303 	WITNESS_UNLOCK(&sx->lock_object, 0, file, line);
304 	LOCK_LOG_LOCK("SUNLOCK", &sx->lock_object, 0, 0, file, line);
305 	__sx_sunlock(sx, file, line);
306 	lock_profile_release_lock(&sx->lock_object);
307 }
308 
309 void
310 _sx_xunlock(struct sx *sx, const char *file, int line)
311 {
312 
313 	MPASS(curthread != NULL);
314 	KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
315 	    ("sx_xunlock() of destroyed sx @ %s:%d", file, line));
316 	_sx_assert(sx, SA_XLOCKED, file, line);
317 	curthread->td_locks--;
318 	WITNESS_UNLOCK(&sx->lock_object, LOP_EXCLUSIVE, file, line);
319 	LOCK_LOG_LOCK("XUNLOCK", &sx->lock_object, 0, sx->sx_recurse, file,
320 	    line);
321 	if (!sx_recursed(sx))
322 		lock_profile_release_lock(&sx->lock_object);
323 	__sx_xunlock(sx, curthread, file, line);
324 }
325 
326 /*
327  * Try to do a non-blocking upgrade from a shared lock to an exclusive lock.
328  * This will only succeed if this thread holds a single shared lock.
329  * Return 1 if if the upgrade succeed, 0 otherwise.
330  */
331 int
332 _sx_try_upgrade(struct sx *sx, const char *file, int line)
333 {
334 	uintptr_t x;
335 	int success;
336 
337 	KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
338 	    ("sx_try_upgrade() of destroyed sx @ %s:%d", file, line));
339 	_sx_assert(sx, SA_SLOCKED, file, line);
340 
341 	/*
342 	 * Try to switch from one shared lock to an exclusive lock.  We need
343 	 * to maintain the SX_LOCK_EXCLUSIVE_WAITERS flag if set so that
344 	 * we will wake up the exclusive waiters when we drop the lock.
345 	 */
346 	x = sx->sx_lock & SX_LOCK_EXCLUSIVE_WAITERS;
347 	success = atomic_cmpset_ptr(&sx->sx_lock, SX_SHARERS_LOCK(1) | x,
348 	    (uintptr_t)curthread | x);
349 	LOCK_LOG_TRY("XUPGRADE", &sx->lock_object, 0, success, file, line);
350 	if (success)
351 		WITNESS_UPGRADE(&sx->lock_object, LOP_EXCLUSIVE | LOP_TRYLOCK,
352 		    file, line);
353 	return (success);
354 }
355 
356 /*
357  * Downgrade an unrecursed exclusive lock into a single shared lock.
358  */
359 void
360 _sx_downgrade(struct sx *sx, const char *file, int line)
361 {
362 	uintptr_t x;
363 
364 	KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
365 	    ("sx_downgrade() of destroyed sx @ %s:%d", file, line));
366 	_sx_assert(sx, SA_XLOCKED | SA_NOTRECURSED, file, line);
367 #ifndef INVARIANTS
368 	if (sx_recursed(sx))
369 		panic("downgrade of a recursed lock");
370 #endif
371 
372 	WITNESS_DOWNGRADE(&sx->lock_object, 0, file, line);
373 
374 	/*
375 	 * Try to switch from an exclusive lock with no shared waiters
376 	 * to one sharer with no shared waiters.  If there are
377 	 * exclusive waiters, we don't need to lock the sleep queue so
378 	 * long as we preserve the flag.  We do one quick try and if
379 	 * that fails we grab the sleepq lock to keep the flags from
380 	 * changing and do it the slow way.
381 	 *
382 	 * We have to lock the sleep queue if there are shared waiters
383 	 * so we can wake them up.
384 	 */
385 	x = sx->sx_lock;
386 	if (!(x & SX_LOCK_SHARED_WAITERS) &&
387 	    atomic_cmpset_rel_ptr(&sx->sx_lock, x, SX_SHARERS_LOCK(1) |
388 	    (x & SX_LOCK_EXCLUSIVE_WAITERS))) {
389 		LOCK_LOG_LOCK("XDOWNGRADE", &sx->lock_object, 0, 0, file, line);
390 		return;
391 	}
392 
393 	/*
394 	 * Lock the sleep queue so we can read the waiters bits
395 	 * without any races and wakeup any shared waiters.
396 	 */
397 	sleepq_lock(&sx->lock_object);
398 
399 	/*
400 	 * Preserve SX_LOCK_EXCLUSIVE_WAITERS while downgraded to a single
401 	 * shared lock.  If there are any shared waiters, wake them up.
402 	 */
403 	x = sx->sx_lock;
404 	atomic_store_rel_ptr(&sx->sx_lock, SX_SHARERS_LOCK(1) |
405 	    (x & SX_LOCK_EXCLUSIVE_WAITERS));
406 	if (x & SX_LOCK_SHARED_WAITERS)
407 		sleepq_broadcast(&sx->lock_object, SLEEPQ_SX, 0,
408 		    SQ_SHARED_QUEUE);
409 	sleepq_release(&sx->lock_object);
410 
411 	LOCK_LOG_LOCK("XDOWNGRADE", &sx->lock_object, 0, 0, file, line);
412 }
413 
414 /*
415  * This function represents the so-called 'hard case' for sx_xlock
416  * operation.  All 'easy case' failures are redirected to this.  Note
417  * that ideally this would be a static function, but it needs to be
418  * accessible from at least sx.h.
419  */
420 int
421 _sx_xlock_hard(struct sx *sx, uintptr_t tid, int opts, const char *file,
422     int line)
423 {
424 	GIANT_DECLARE;
425 #ifdef ADAPTIVE_SX
426 	volatile struct thread *owner;
427 #endif
428 	uint64_t waittime = 0;
429 	uintptr_t x;
430 	int contested = 0, error = 0;
431 
432 	/* If we already hold an exclusive lock, then recurse. */
433 	if (sx_xlocked(sx)) {
434 		KASSERT((sx->lock_object.lo_flags & SX_RECURSE) != 0,
435 	    ("_sx_xlock_hard: recursed on non-recursive sx %s @ %s:%d\n",
436 		    sx->lock_object.lo_name, file, line));
437 		sx->sx_recurse++;
438 		atomic_set_ptr(&sx->sx_lock, SX_LOCK_RECURSED);
439 		if (LOCK_LOG_TEST(&sx->lock_object, 0))
440 			CTR2(KTR_LOCK, "%s: %p recursing", __func__, sx);
441 		return (0);
442 	}
443 
444 	if (LOCK_LOG_TEST(&sx->lock_object, 0))
445 		CTR5(KTR_LOCK, "%s: %s contested (lock=%p) at %s:%d", __func__,
446 		    sx->lock_object.lo_name, (void *)sx->sx_lock, file, line);
447 
448 	while (!atomic_cmpset_acq_ptr(&sx->sx_lock, SX_LOCK_UNLOCKED, tid)) {
449 		lock_profile_obtain_lock_failed(&sx->lock_object, &contested,
450 		    &waittime);
451 #ifdef ADAPTIVE_SX
452 		/*
453 		 * If the lock is write locked and the owner is
454 		 * running on another CPU, spin until the owner stops
455 		 * running or the state of the lock changes.
456 		 */
457 		x = sx->sx_lock;
458 		if (!(x & SX_LOCK_SHARED) &&
459 		    (sx->lock_object.lo_flags & SX_ADAPTIVESPIN)) {
460 			x = SX_OWNER(x);
461 			owner = (struct thread *)x;
462 			if (TD_IS_RUNNING(owner)) {
463 				if (LOCK_LOG_TEST(&sx->lock_object, 0))
464 					CTR3(KTR_LOCK,
465 					    "%s: spinning on %p held by %p",
466 					    __func__, sx, owner);
467 				GIANT_SAVE();
468 				while (SX_OWNER(sx->sx_lock) == x &&
469 				    TD_IS_RUNNING(owner))
470 					cpu_spinwait();
471 				continue;
472 			}
473 		}
474 #endif
475 
476 		sleepq_lock(&sx->lock_object);
477 		x = sx->sx_lock;
478 
479 		/*
480 		 * If the lock was released while spinning on the
481 		 * sleep queue chain lock, try again.
482 		 */
483 		if (x == SX_LOCK_UNLOCKED) {
484 			sleepq_release(&sx->lock_object);
485 			continue;
486 		}
487 
488 #ifdef ADAPTIVE_SX
489 		/*
490 		 * The current lock owner might have started executing
491 		 * on another CPU (or the lock could have changed
492 		 * owners) while we were waiting on the sleep queue
493 		 * chain lock.  If so, drop the sleep queue lock and try
494 		 * again.
495 		 */
496 		if (!(x & SX_LOCK_SHARED) &&
497 		    (sx->lock_object.lo_flags & SX_ADAPTIVESPIN)) {
498 			owner = (struct thread *)SX_OWNER(x);
499 			if (TD_IS_RUNNING(owner)) {
500 				sleepq_release(&sx->lock_object);
501 				continue;
502 			}
503 		}
504 #endif
505 
506 		/*
507 		 * If an exclusive lock was released with both shared
508 		 * and exclusive waiters and a shared waiter hasn't
509 		 * woken up and acquired the lock yet, sx_lock will be
510 		 * set to SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS.
511 		 * If we see that value, try to acquire it once.  Note
512 		 * that we have to preserve SX_LOCK_EXCLUSIVE_WAITERS
513 		 * as there are other exclusive waiters still.  If we
514 		 * fail, restart the loop.
515 		 */
516 		if (x == (SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS)) {
517 			if (atomic_cmpset_acq_ptr(&sx->sx_lock,
518 			    SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS,
519 			    tid | SX_LOCK_EXCLUSIVE_WAITERS)) {
520 				sleepq_release(&sx->lock_object);
521 				CTR2(KTR_LOCK, "%s: %p claimed by new writer",
522 				    __func__, sx);
523 				break;
524 			}
525 			sleepq_release(&sx->lock_object);
526 			continue;
527 		}
528 
529 		/*
530 		 * Try to set the SX_LOCK_EXCLUSIVE_WAITERS.  If we fail,
531 		 * than loop back and retry.
532 		 */
533 		if (!(x & SX_LOCK_EXCLUSIVE_WAITERS)) {
534 			if (!atomic_cmpset_ptr(&sx->sx_lock, x,
535 			    x | SX_LOCK_EXCLUSIVE_WAITERS)) {
536 				sleepq_release(&sx->lock_object);
537 				continue;
538 			}
539 			if (LOCK_LOG_TEST(&sx->lock_object, 0))
540 				CTR2(KTR_LOCK, "%s: %p set excl waiters flag",
541 				    __func__, sx);
542 		}
543 
544 		/*
545 		 * Since we have been unable to acquire the exclusive
546 		 * lock and the exclusive waiters flag is set, we have
547 		 * to sleep.
548 		 */
549 		if (LOCK_LOG_TEST(&sx->lock_object, 0))
550 			CTR2(KTR_LOCK, "%s: %p blocking on sleep queue",
551 			    __func__, sx);
552 
553 		GIANT_SAVE();
554 		sleepq_add(&sx->lock_object, NULL, sx->lock_object.lo_name,
555 		    SLEEPQ_SX | ((opts & SX_INTERRUPTIBLE) ?
556 		    SLEEPQ_INTERRUPTIBLE : 0), SQ_EXCLUSIVE_QUEUE);
557 		if (!(opts & SX_INTERRUPTIBLE))
558 			sleepq_wait(&sx->lock_object, 0);
559 		else
560 			error = sleepq_wait_sig(&sx->lock_object, 0);
561 
562 		if (error) {
563 			if (LOCK_LOG_TEST(&sx->lock_object, 0))
564 				CTR2(KTR_LOCK,
565 			"%s: interruptible sleep by %p suspended by signal",
566 				    __func__, sx);
567 			break;
568 		}
569 		if (LOCK_LOG_TEST(&sx->lock_object, 0))
570 			CTR2(KTR_LOCK, "%s: %p resuming from sleep queue",
571 			    __func__, sx);
572 	}
573 
574 	GIANT_RESTORE();
575 	if (!error)
576 		lock_profile_obtain_lock_success(&sx->lock_object, contested,
577 		    waittime, file, line);
578 	return (error);
579 }
580 
581 /*
582  * This function represents the so-called 'hard case' for sx_xunlock
583  * operation.  All 'easy case' failures are redirected to this.  Note
584  * that ideally this would be a static function, but it needs to be
585  * accessible from at least sx.h.
586  */
587 void
588 _sx_xunlock_hard(struct sx *sx, uintptr_t tid, const char *file, int line)
589 {
590 	uintptr_t x;
591 	int queue;
592 
593 	MPASS(!(sx->sx_lock & SX_LOCK_SHARED));
594 
595 	/* If the lock is recursed, then unrecurse one level. */
596 	if (sx_xlocked(sx) && sx_recursed(sx)) {
597 		if ((--sx->sx_recurse) == 0)
598 			atomic_clear_ptr(&sx->sx_lock, SX_LOCK_RECURSED);
599 		if (LOCK_LOG_TEST(&sx->lock_object, 0))
600 			CTR2(KTR_LOCK, "%s: %p unrecursing", __func__, sx);
601 		return;
602 	}
603 	MPASS(sx->sx_lock & (SX_LOCK_SHARED_WAITERS |
604 	    SX_LOCK_EXCLUSIVE_WAITERS));
605 	if (LOCK_LOG_TEST(&sx->lock_object, 0))
606 		CTR2(KTR_LOCK, "%s: %p contested", __func__, sx);
607 
608 	sleepq_lock(&sx->lock_object);
609 	x = SX_LOCK_UNLOCKED;
610 
611 	/*
612 	 * The wake up algorithm here is quite simple and probably not
613 	 * ideal.  It gives precedence to shared waiters if they are
614 	 * present.  For this condition, we have to preserve the
615 	 * state of the exclusive waiters flag.
616 	 */
617 	if (sx->sx_lock & SX_LOCK_SHARED_WAITERS) {
618 		queue = SQ_SHARED_QUEUE;
619 		x |= (sx->sx_lock & SX_LOCK_EXCLUSIVE_WAITERS);
620 	} else
621 		queue = SQ_EXCLUSIVE_QUEUE;
622 
623 	/* Wake up all the waiters for the specific queue. */
624 	if (LOCK_LOG_TEST(&sx->lock_object, 0))
625 		CTR3(KTR_LOCK, "%s: %p waking up all threads on %s queue",
626 		    __func__, sx, queue == SQ_SHARED_QUEUE ? "shared" :
627 		    "exclusive");
628 	atomic_store_rel_ptr(&sx->sx_lock, x);
629 	sleepq_broadcast(&sx->lock_object, SLEEPQ_SX, 0, queue);
630 	sleepq_release(&sx->lock_object);
631 }
632 
633 /*
634  * This function represents the so-called 'hard case' for sx_slock
635  * operation.  All 'easy case' failures are redirected to this.  Note
636  * that ideally this would be a static function, but it needs to be
637  * accessible from at least sx.h.
638  */
639 int
640 _sx_slock_hard(struct sx *sx, int opts, const char *file, int line)
641 {
642 	GIANT_DECLARE;
643 #ifdef ADAPTIVE_SX
644 	volatile struct thread *owner;
645 #endif
646 	uint64_t waittime = 0;
647 	int contested = 0;
648 	uintptr_t x;
649 	int error = 0;
650 
651 	/*
652 	 * As with rwlocks, we don't make any attempt to try to block
653 	 * shared locks once there is an exclusive waiter.
654 	 */
655 	for (;;) {
656 		x = sx->sx_lock;
657 
658 		/*
659 		 * If no other thread has an exclusive lock then try to bump up
660 		 * the count of sharers.  Since we have to preserve the state
661 		 * of SX_LOCK_EXCLUSIVE_WAITERS, if we fail to acquire the
662 		 * shared lock loop back and retry.
663 		 */
664 		if (x & SX_LOCK_SHARED) {
665 			MPASS(!(x & SX_LOCK_SHARED_WAITERS));
666 			if (atomic_cmpset_acq_ptr(&sx->sx_lock, x,
667 			    x + SX_ONE_SHARER)) {
668 				if (LOCK_LOG_TEST(&sx->lock_object, 0))
669 					CTR4(KTR_LOCK,
670 					    "%s: %p succeed %p -> %p", __func__,
671 					    sx, (void *)x,
672 					    (void *)(x + SX_ONE_SHARER));
673 				break;
674 			}
675 			continue;
676 		}
677 		lock_profile_obtain_lock_failed(&sx->lock_object, &contested,
678 		    &waittime);
679 
680 #ifdef ADAPTIVE_SX
681 		/*
682 		 * If the owner is running on another CPU, spin until
683 		 * the owner stops running or the state of the lock
684 		 * changes.
685 		 */
686 		if (sx->lock_object.lo_flags & SX_ADAPTIVESPIN) {
687 			x = SX_OWNER(x);
688 			owner = (struct thread *)x;
689 			if (TD_IS_RUNNING(owner)) {
690 				if (LOCK_LOG_TEST(&sx->lock_object, 0))
691 					CTR3(KTR_LOCK,
692 					    "%s: spinning on %p held by %p",
693 					    __func__, sx, owner);
694 				GIANT_SAVE();
695 				while (SX_OWNER(sx->sx_lock) == x &&
696 				    TD_IS_RUNNING(owner))
697 					cpu_spinwait();
698 				continue;
699 			}
700 		}
701 #endif
702 
703 		/*
704 		 * Some other thread already has an exclusive lock, so
705 		 * start the process of blocking.
706 		 */
707 		sleepq_lock(&sx->lock_object);
708 		x = sx->sx_lock;
709 
710 		/*
711 		 * The lock could have been released while we spun.
712 		 * In this case loop back and retry.
713 		 */
714 		if (x & SX_LOCK_SHARED) {
715 			sleepq_release(&sx->lock_object);
716 			continue;
717 		}
718 
719 #ifdef ADAPTIVE_SX
720 		/*
721 		 * If the owner is running on another CPU, spin until
722 		 * the owner stops running or the state of the lock
723 		 * changes.
724 		 */
725 		if (!(x & SX_LOCK_SHARED) &&
726 		    (sx->lock_object.lo_flags & SX_ADAPTIVESPIN)) {
727 			owner = (struct thread *)SX_OWNER(x);
728 			if (TD_IS_RUNNING(owner)) {
729 				sleepq_release(&sx->lock_object);
730 				continue;
731 			}
732 		}
733 #endif
734 
735 		/*
736 		 * Try to set the SX_LOCK_SHARED_WAITERS flag.  If we
737 		 * fail to set it drop the sleep queue lock and loop
738 		 * back.
739 		 */
740 		if (!(x & SX_LOCK_SHARED_WAITERS)) {
741 			if (!atomic_cmpset_ptr(&sx->sx_lock, x,
742 			    x | SX_LOCK_SHARED_WAITERS)) {
743 				sleepq_release(&sx->lock_object);
744 				continue;
745 			}
746 			if (LOCK_LOG_TEST(&sx->lock_object, 0))
747 				CTR2(KTR_LOCK, "%s: %p set shared waiters flag",
748 				    __func__, sx);
749 		}
750 
751 		/*
752 		 * Since we have been unable to acquire the shared lock,
753 		 * we have to sleep.
754 		 */
755 		if (LOCK_LOG_TEST(&sx->lock_object, 0))
756 			CTR2(KTR_LOCK, "%s: %p blocking on sleep queue",
757 			    __func__, sx);
758 
759 		GIANT_SAVE();
760 		sleepq_add(&sx->lock_object, NULL, sx->lock_object.lo_name,
761 		    SLEEPQ_SX | ((opts & SX_INTERRUPTIBLE) ?
762 		    SLEEPQ_INTERRUPTIBLE : 0), SQ_SHARED_QUEUE);
763 		if (!(opts & SX_INTERRUPTIBLE))
764 			sleepq_wait(&sx->lock_object, 0);
765 		else
766 			error = sleepq_wait_sig(&sx->lock_object, 0);
767 
768 		if (error) {
769 			if (LOCK_LOG_TEST(&sx->lock_object, 0))
770 				CTR2(KTR_LOCK,
771 			"%s: interruptible sleep by %p suspended by signal",
772 				    __func__, sx);
773 			break;
774 		}
775 		if (LOCK_LOG_TEST(&sx->lock_object, 0))
776 			CTR2(KTR_LOCK, "%s: %p resuming from sleep queue",
777 			    __func__, sx);
778 	}
779 	if (error == 0)
780 		lock_profile_obtain_lock_success(&sx->lock_object, contested,
781 		    waittime, file, line);
782 
783 	GIANT_RESTORE();
784 	return (error);
785 }
786 
787 /*
788  * This function represents the so-called 'hard case' for sx_sunlock
789  * operation.  All 'easy case' failures are redirected to this.  Note
790  * that ideally this would be a static function, but it needs to be
791  * accessible from at least sx.h.
792  */
793 void
794 _sx_sunlock_hard(struct sx *sx, const char *file, int line)
795 {
796 	uintptr_t x;
797 
798 	for (;;) {
799 		x = sx->sx_lock;
800 
801 		/*
802 		 * We should never have sharers while at least one thread
803 		 * holds a shared lock.
804 		 */
805 		KASSERT(!(x & SX_LOCK_SHARED_WAITERS),
806 		    ("%s: waiting sharers", __func__));
807 
808 		/*
809 		 * See if there is more than one shared lock held.  If
810 		 * so, just drop one and return.
811 		 */
812 		if (SX_SHARERS(x) > 1) {
813 			if (atomic_cmpset_ptr(&sx->sx_lock, x,
814 			    x - SX_ONE_SHARER)) {
815 				if (LOCK_LOG_TEST(&sx->lock_object, 0))
816 					CTR4(KTR_LOCK,
817 					    "%s: %p succeeded %p -> %p",
818 					    __func__, sx, (void *)x,
819 					    (void *)(x - SX_ONE_SHARER));
820 				break;
821 			}
822 			continue;
823 		}
824 
825 		/*
826 		 * If there aren't any waiters for an exclusive lock,
827 		 * then try to drop it quickly.
828 		 */
829 		if (!(x & SX_LOCK_EXCLUSIVE_WAITERS)) {
830 			MPASS(x == SX_SHARERS_LOCK(1));
831 			if (atomic_cmpset_ptr(&sx->sx_lock, SX_SHARERS_LOCK(1),
832 			    SX_LOCK_UNLOCKED)) {
833 				if (LOCK_LOG_TEST(&sx->lock_object, 0))
834 					CTR2(KTR_LOCK, "%s: %p last succeeded",
835 					    __func__, sx);
836 				break;
837 			}
838 			continue;
839 		}
840 
841 		/*
842 		 * At this point, there should just be one sharer with
843 		 * exclusive waiters.
844 		 */
845 		MPASS(x == (SX_SHARERS_LOCK(1) | SX_LOCK_EXCLUSIVE_WAITERS));
846 
847 		sleepq_lock(&sx->lock_object);
848 
849 		/*
850 		 * Wake up semantic here is quite simple:
851 		 * Just wake up all the exclusive waiters.
852 		 * Note that the state of the lock could have changed,
853 		 * so if it fails loop back and retry.
854 		 */
855 		if (!atomic_cmpset_ptr(&sx->sx_lock,
856 		    SX_SHARERS_LOCK(1) | SX_LOCK_EXCLUSIVE_WAITERS,
857 		    SX_LOCK_UNLOCKED)) {
858 			sleepq_release(&sx->lock_object);
859 			continue;
860 		}
861 		if (LOCK_LOG_TEST(&sx->lock_object, 0))
862 			CTR2(KTR_LOCK, "%s: %p waking up all thread on"
863 			    "exclusive queue", __func__, sx);
864 		sleepq_broadcast(&sx->lock_object, SLEEPQ_SX, 0,
865 		    SQ_EXCLUSIVE_QUEUE);
866 		sleepq_release(&sx->lock_object);
867 		break;
868 	}
869 }
870 
871 #ifdef INVARIANT_SUPPORT
872 #ifndef INVARIANTS
873 #undef	_sx_assert
874 #endif
875 
876 /*
877  * In the non-WITNESS case, sx_assert() can only detect that at least
878  * *some* thread owns an slock, but it cannot guarantee that *this*
879  * thread owns an slock.
880  */
881 void
882 _sx_assert(struct sx *sx, int what, const char *file, int line)
883 {
884 #ifndef WITNESS
885 	int slocked = 0;
886 #endif
887 
888 	if (panicstr != NULL)
889 		return;
890 	switch (what) {
891 	case SA_SLOCKED:
892 	case SA_SLOCKED | SA_NOTRECURSED:
893 	case SA_SLOCKED | SA_RECURSED:
894 #ifndef WITNESS
895 		slocked = 1;
896 		/* FALLTHROUGH */
897 #endif
898 	case SA_LOCKED:
899 	case SA_LOCKED | SA_NOTRECURSED:
900 	case SA_LOCKED | SA_RECURSED:
901 #ifdef WITNESS
902 		witness_assert(&sx->lock_object, what, file, line);
903 #else
904 		/*
905 		 * If some other thread has an exclusive lock or we
906 		 * have one and are asserting a shared lock, fail.
907 		 * Also, if no one has a lock at all, fail.
908 		 */
909 		if (sx->sx_lock == SX_LOCK_UNLOCKED ||
910 		    (!(sx->sx_lock & SX_LOCK_SHARED) && (slocked ||
911 		    sx_xholder(sx) != curthread)))
912 			panic("Lock %s not %slocked @ %s:%d\n",
913 			    sx->lock_object.lo_name, slocked ? "share " : "",
914 			    file, line);
915 
916 		if (!(sx->sx_lock & SX_LOCK_SHARED)) {
917 			if (sx_recursed(sx)) {
918 				if (what & SA_NOTRECURSED)
919 					panic("Lock %s recursed @ %s:%d\n",
920 					    sx->lock_object.lo_name, file,
921 					    line);
922 			} else if (what & SA_RECURSED)
923 				panic("Lock %s not recursed @ %s:%d\n",
924 				    sx->lock_object.lo_name, file, line);
925 		}
926 #endif
927 		break;
928 	case SA_XLOCKED:
929 	case SA_XLOCKED | SA_NOTRECURSED:
930 	case SA_XLOCKED | SA_RECURSED:
931 		if (sx_xholder(sx) != curthread)
932 			panic("Lock %s not exclusively locked @ %s:%d\n",
933 			    sx->lock_object.lo_name, file, line);
934 		if (sx_recursed(sx)) {
935 			if (what & SA_NOTRECURSED)
936 				panic("Lock %s recursed @ %s:%d\n",
937 				    sx->lock_object.lo_name, file, line);
938 		} else if (what & SA_RECURSED)
939 			panic("Lock %s not recursed @ %s:%d\n",
940 			    sx->lock_object.lo_name, file, line);
941 		break;
942 	case SA_UNLOCKED:
943 #ifdef WITNESS
944 		witness_assert(&sx->lock_object, what, file, line);
945 #else
946 		/*
947 		 * If we hold an exclusve lock fail.  We can't
948 		 * reliably check to see if we hold a shared lock or
949 		 * not.
950 		 */
951 		if (sx_xholder(sx) == curthread)
952 			panic("Lock %s exclusively locked @ %s:%d\n",
953 			    sx->lock_object.lo_name, file, line);
954 #endif
955 		break;
956 	default:
957 		panic("Unknown sx lock assertion: %d @ %s:%d", what, file,
958 		    line);
959 	}
960 }
961 #endif	/* INVARIANT_SUPPORT */
962 
963 #ifdef DDB
964 static void
965 db_show_sx(struct lock_object *lock)
966 {
967 	struct thread *td;
968 	struct sx *sx;
969 
970 	sx = (struct sx *)lock;
971 
972 	db_printf(" state: ");
973 	if (sx->sx_lock == SX_LOCK_UNLOCKED)
974 		db_printf("UNLOCKED\n");
975 	else if (sx->sx_lock == SX_LOCK_DESTROYED) {
976 		db_printf("DESTROYED\n");
977 		return;
978 	} else if (sx->sx_lock & SX_LOCK_SHARED)
979 		db_printf("SLOCK: %ju\n", (uintmax_t)SX_SHARERS(sx->sx_lock));
980 	else {
981 		td = sx_xholder(sx);
982 		db_printf("XLOCK: %p (tid %d, pid %d, \"%s\")\n", td,
983 		    td->td_tid, td->td_proc->p_pid, td->td_name);
984 		if (sx_recursed(sx))
985 			db_printf(" recursed: %d\n", sx->sx_recurse);
986 	}
987 
988 	db_printf(" waiters: ");
989 	switch(sx->sx_lock &
990 	    (SX_LOCK_SHARED_WAITERS | SX_LOCK_EXCLUSIVE_WAITERS)) {
991 	case SX_LOCK_SHARED_WAITERS:
992 		db_printf("shared\n");
993 		break;
994 	case SX_LOCK_EXCLUSIVE_WAITERS:
995 		db_printf("exclusive\n");
996 		break;
997 	case SX_LOCK_SHARED_WAITERS | SX_LOCK_EXCLUSIVE_WAITERS:
998 		db_printf("exclusive and shared\n");
999 		break;
1000 	default:
1001 		db_printf("none\n");
1002 	}
1003 }
1004 
1005 /*
1006  * Check to see if a thread that is blocked on a sleep queue is actually
1007  * blocked on an sx lock.  If so, output some details and return true.
1008  * If the lock has an exclusive owner, return that in *ownerp.
1009  */
1010 int
1011 sx_chain(struct thread *td, struct thread **ownerp)
1012 {
1013 	struct sx *sx;
1014 
1015 	/*
1016 	 * Check to see if this thread is blocked on an sx lock.
1017 	 * First, we check the lock class.  If that is ok, then we
1018 	 * compare the lock name against the wait message.
1019 	 */
1020 	sx = td->td_wchan;
1021 	if (LOCK_CLASS(&sx->lock_object) != &lock_class_sx ||
1022 	    sx->lock_object.lo_name != td->td_wmesg)
1023 		return (0);
1024 
1025 	/* We think we have an sx lock, so output some details. */
1026 	db_printf("blocked on sx \"%s\" ", td->td_wmesg);
1027 	*ownerp = sx_xholder(sx);
1028 	if (sx->sx_lock & SX_LOCK_SHARED)
1029 		db_printf("SLOCK (count %ju)\n",
1030 		    (uintmax_t)SX_SHARERS(sx->sx_lock));
1031 	else
1032 		db_printf("XLOCK\n");
1033 	return (1);
1034 }
1035 #endif
1036