1 /*- 2 * Copyright (c) 2007 Attilio Rao <attilio@freebsd.org> 3 * Copyright (c) 2001 Jason Evans <jasone@freebsd.org> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice(s), this list of conditions and the following disclaimer as 11 * the first lines of this file unmodified other than the possible 12 * addition of one or more copyright notices. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice(s), this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY 18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 19 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 20 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY 21 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 22 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 23 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 24 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 27 * DAMAGE. 28 */ 29 30 /* 31 * Shared/exclusive locks. This implementation attempts to ensure 32 * deterministic lock granting behavior, so that slocks and xlocks are 33 * interleaved. 34 * 35 * Priority propagation will not generally raise the priority of lock holders, 36 * so should not be relied upon in combination with sx locks. 37 */ 38 39 #include "opt_adaptive_sx.h" 40 #include "opt_ddb.h" 41 42 #include <sys/cdefs.h> 43 __FBSDID("$FreeBSD$"); 44 45 #include <sys/param.h> 46 #include <sys/ktr.h> 47 #include <sys/lock.h> 48 #include <sys/mutex.h> 49 #include <sys/proc.h> 50 #include <sys/sleepqueue.h> 51 #include <sys/sx.h> 52 #include <sys/systm.h> 53 54 #ifdef ADAPTIVE_SX 55 #include <machine/cpu.h> 56 #endif 57 58 #ifdef DDB 59 #include <ddb/ddb.h> 60 #endif 61 62 #if !defined(SMP) && defined(ADAPTIVE_SX) 63 #error "You must have SMP to enable the ADAPTIVE_SX option" 64 #endif 65 66 CTASSERT(((SX_ADAPTIVESPIN | SX_RECURSE) & LO_CLASSFLAGS) == 67 (SX_ADAPTIVESPIN | SX_RECURSE)); 68 69 /* Handy macros for sleep queues. */ 70 #define SQ_EXCLUSIVE_QUEUE 0 71 #define SQ_SHARED_QUEUE 1 72 73 /* 74 * Variations on DROP_GIANT()/PICKUP_GIANT() for use in this file. We 75 * drop Giant anytime we have to sleep or if we adaptively spin. 76 */ 77 #define GIANT_DECLARE \ 78 int _giantcnt = 0; \ 79 WITNESS_SAVE_DECL(Giant) \ 80 81 #define GIANT_SAVE() do { \ 82 if (mtx_owned(&Giant)) { \ 83 WITNESS_SAVE(&Giant.lock_object, Giant); \ 84 while (mtx_owned(&Giant)) { \ 85 _giantcnt++; \ 86 mtx_unlock(&Giant); \ 87 } \ 88 } \ 89 } while (0) 90 91 #define GIANT_RESTORE() do { \ 92 if (_giantcnt > 0) { \ 93 mtx_assert(&Giant, MA_NOTOWNED); \ 94 while (_giantcnt--) \ 95 mtx_lock(&Giant); \ 96 WITNESS_RESTORE(&Giant.lock_object, Giant); \ 97 } \ 98 } while (0) 99 100 /* 101 * Returns true if an exclusive lock is recursed. It assumes 102 * curthread currently has an exclusive lock. 103 */ 104 #define sx_recursed(sx) ((sx)->sx_recurse != 0) 105 106 static void assert_sx(struct lock_object *lock, int what); 107 #ifdef DDB 108 static void db_show_sx(struct lock_object *lock); 109 #endif 110 static void lock_sx(struct lock_object *lock, int how); 111 static int unlock_sx(struct lock_object *lock); 112 113 struct lock_class lock_class_sx = { 114 .lc_name = "sx", 115 .lc_flags = LC_SLEEPLOCK | LC_SLEEPABLE | LC_RECURSABLE | LC_UPGRADABLE, 116 .lc_assert = assert_sx, 117 #ifdef DDB 118 .lc_ddb_show = db_show_sx, 119 #endif 120 .lc_lock = lock_sx, 121 .lc_unlock = unlock_sx, 122 }; 123 124 #ifndef INVARIANTS 125 #define _sx_assert(sx, what, file, line) 126 #endif 127 128 void 129 assert_sx(struct lock_object *lock, int what) 130 { 131 132 sx_assert((struct sx *)lock, what); 133 } 134 135 void 136 lock_sx(struct lock_object *lock, int how) 137 { 138 struct sx *sx; 139 140 sx = (struct sx *)lock; 141 if (how) 142 sx_xlock(sx); 143 else 144 sx_slock(sx); 145 } 146 147 int 148 unlock_sx(struct lock_object *lock) 149 { 150 struct sx *sx; 151 152 sx = (struct sx *)lock; 153 sx_assert(sx, SA_LOCKED | SA_NOTRECURSED); 154 if (sx_xlocked(sx)) { 155 sx_xunlock(sx); 156 return (1); 157 } else { 158 sx_sunlock(sx); 159 return (0); 160 } 161 } 162 163 void 164 sx_sysinit(void *arg) 165 { 166 struct sx_args *sargs = arg; 167 168 sx_init(sargs->sa_sx, sargs->sa_desc); 169 } 170 171 void 172 sx_init_flags(struct sx *sx, const char *description, int opts) 173 { 174 int flags; 175 176 MPASS((opts & ~(SX_QUIET | SX_RECURSE | SX_NOWITNESS | SX_DUPOK | 177 SX_NOPROFILE | SX_ADAPTIVESPIN)) == 0); 178 179 flags = LO_RECURSABLE | LO_SLEEPABLE | LO_UPGRADABLE; 180 if (opts & SX_DUPOK) 181 flags |= LO_DUPOK; 182 if (opts & SX_NOPROFILE) 183 flags |= LO_NOPROFILE; 184 if (!(opts & SX_NOWITNESS)) 185 flags |= LO_WITNESS; 186 if (opts & SX_QUIET) 187 flags |= LO_QUIET; 188 189 flags |= opts & (SX_ADAPTIVESPIN | SX_RECURSE); 190 sx->sx_lock = SX_LOCK_UNLOCKED; 191 sx->sx_recurse = 0; 192 lock_init(&sx->lock_object, &lock_class_sx, description, NULL, flags); 193 } 194 195 void 196 sx_destroy(struct sx *sx) 197 { 198 199 KASSERT(sx->sx_lock == SX_LOCK_UNLOCKED, ("sx lock still held")); 200 KASSERT(sx->sx_recurse == 0, ("sx lock still recursed")); 201 sx->sx_lock = SX_LOCK_DESTROYED; 202 lock_destroy(&sx->lock_object); 203 } 204 205 int 206 _sx_slock(struct sx *sx, int opts, const char *file, int line) 207 { 208 int error = 0; 209 210 MPASS(curthread != NULL); 211 KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, 212 ("sx_slock() of destroyed sx @ %s:%d", file, line)); 213 WITNESS_CHECKORDER(&sx->lock_object, LOP_NEWORDER, file, line); 214 error = __sx_slock(sx, opts, file, line); 215 if (!error) { 216 LOCK_LOG_LOCK("SLOCK", &sx->lock_object, 0, 0, file, line); 217 WITNESS_LOCK(&sx->lock_object, 0, file, line); 218 curthread->td_locks++; 219 } 220 221 return (error); 222 } 223 224 int 225 _sx_try_slock(struct sx *sx, const char *file, int line) 226 { 227 uintptr_t x; 228 229 for (;;) { 230 x = sx->sx_lock; 231 KASSERT(x != SX_LOCK_DESTROYED, 232 ("sx_try_slock() of destroyed sx @ %s:%d", file, line)); 233 if (!(x & SX_LOCK_SHARED)) 234 break; 235 if (atomic_cmpset_acq_ptr(&sx->sx_lock, x, x + SX_ONE_SHARER)) { 236 LOCK_LOG_TRY("SLOCK", &sx->lock_object, 0, 1, file, line); 237 WITNESS_LOCK(&sx->lock_object, LOP_TRYLOCK, file, line); 238 curthread->td_locks++; 239 return (1); 240 } 241 } 242 243 LOCK_LOG_TRY("SLOCK", &sx->lock_object, 0, 0, file, line); 244 return (0); 245 } 246 247 int 248 _sx_xlock(struct sx *sx, int opts, const char *file, int line) 249 { 250 int error = 0; 251 252 MPASS(curthread != NULL); 253 KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, 254 ("sx_xlock() of destroyed sx @ %s:%d", file, line)); 255 WITNESS_CHECKORDER(&sx->lock_object, LOP_NEWORDER | LOP_EXCLUSIVE, file, 256 line); 257 error = __sx_xlock(sx, curthread, opts, file, line); 258 if (!error) { 259 LOCK_LOG_LOCK("XLOCK", &sx->lock_object, 0, sx->sx_recurse, 260 file, line); 261 WITNESS_LOCK(&sx->lock_object, LOP_EXCLUSIVE, file, line); 262 curthread->td_locks++; 263 } 264 265 return (error); 266 } 267 268 int 269 _sx_try_xlock(struct sx *sx, const char *file, int line) 270 { 271 int rval; 272 273 MPASS(curthread != NULL); 274 KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, 275 ("sx_try_xlock() of destroyed sx @ %s:%d", file, line)); 276 277 if (sx_xlocked(sx) && (sx->lock_object.lo_flags & SX_RECURSE) != 0) { 278 sx->sx_recurse++; 279 atomic_set_ptr(&sx->sx_lock, SX_LOCK_RECURSED); 280 rval = 1; 281 } else 282 rval = atomic_cmpset_acq_ptr(&sx->sx_lock, SX_LOCK_UNLOCKED, 283 (uintptr_t)curthread); 284 LOCK_LOG_TRY("XLOCK", &sx->lock_object, 0, rval, file, line); 285 if (rval) { 286 WITNESS_LOCK(&sx->lock_object, LOP_EXCLUSIVE | LOP_TRYLOCK, 287 file, line); 288 curthread->td_locks++; 289 } 290 291 return (rval); 292 } 293 294 void 295 _sx_sunlock(struct sx *sx, const char *file, int line) 296 { 297 298 MPASS(curthread != NULL); 299 KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, 300 ("sx_sunlock() of destroyed sx @ %s:%d", file, line)); 301 _sx_assert(sx, SA_SLOCKED, file, line); 302 curthread->td_locks--; 303 WITNESS_UNLOCK(&sx->lock_object, 0, file, line); 304 LOCK_LOG_LOCK("SUNLOCK", &sx->lock_object, 0, 0, file, line); 305 __sx_sunlock(sx, file, line); 306 lock_profile_release_lock(&sx->lock_object); 307 } 308 309 void 310 _sx_xunlock(struct sx *sx, const char *file, int line) 311 { 312 313 MPASS(curthread != NULL); 314 KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, 315 ("sx_xunlock() of destroyed sx @ %s:%d", file, line)); 316 _sx_assert(sx, SA_XLOCKED, file, line); 317 curthread->td_locks--; 318 WITNESS_UNLOCK(&sx->lock_object, LOP_EXCLUSIVE, file, line); 319 LOCK_LOG_LOCK("XUNLOCK", &sx->lock_object, 0, sx->sx_recurse, file, 320 line); 321 if (!sx_recursed(sx)) 322 lock_profile_release_lock(&sx->lock_object); 323 __sx_xunlock(sx, curthread, file, line); 324 } 325 326 /* 327 * Try to do a non-blocking upgrade from a shared lock to an exclusive lock. 328 * This will only succeed if this thread holds a single shared lock. 329 * Return 1 if if the upgrade succeed, 0 otherwise. 330 */ 331 int 332 _sx_try_upgrade(struct sx *sx, const char *file, int line) 333 { 334 uintptr_t x; 335 int success; 336 337 KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, 338 ("sx_try_upgrade() of destroyed sx @ %s:%d", file, line)); 339 _sx_assert(sx, SA_SLOCKED, file, line); 340 341 /* 342 * Try to switch from one shared lock to an exclusive lock. We need 343 * to maintain the SX_LOCK_EXCLUSIVE_WAITERS flag if set so that 344 * we will wake up the exclusive waiters when we drop the lock. 345 */ 346 x = sx->sx_lock & SX_LOCK_EXCLUSIVE_WAITERS; 347 success = atomic_cmpset_ptr(&sx->sx_lock, SX_SHARERS_LOCK(1) | x, 348 (uintptr_t)curthread | x); 349 LOCK_LOG_TRY("XUPGRADE", &sx->lock_object, 0, success, file, line); 350 if (success) 351 WITNESS_UPGRADE(&sx->lock_object, LOP_EXCLUSIVE | LOP_TRYLOCK, 352 file, line); 353 return (success); 354 } 355 356 /* 357 * Downgrade an unrecursed exclusive lock into a single shared lock. 358 */ 359 void 360 _sx_downgrade(struct sx *sx, const char *file, int line) 361 { 362 uintptr_t x; 363 364 KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, 365 ("sx_downgrade() of destroyed sx @ %s:%d", file, line)); 366 _sx_assert(sx, SA_XLOCKED | SA_NOTRECURSED, file, line); 367 #ifndef INVARIANTS 368 if (sx_recursed(sx)) 369 panic("downgrade of a recursed lock"); 370 #endif 371 372 WITNESS_DOWNGRADE(&sx->lock_object, 0, file, line); 373 374 /* 375 * Try to switch from an exclusive lock with no shared waiters 376 * to one sharer with no shared waiters. If there are 377 * exclusive waiters, we don't need to lock the sleep queue so 378 * long as we preserve the flag. We do one quick try and if 379 * that fails we grab the sleepq lock to keep the flags from 380 * changing and do it the slow way. 381 * 382 * We have to lock the sleep queue if there are shared waiters 383 * so we can wake them up. 384 */ 385 x = sx->sx_lock; 386 if (!(x & SX_LOCK_SHARED_WAITERS) && 387 atomic_cmpset_rel_ptr(&sx->sx_lock, x, SX_SHARERS_LOCK(1) | 388 (x & SX_LOCK_EXCLUSIVE_WAITERS))) { 389 LOCK_LOG_LOCK("XDOWNGRADE", &sx->lock_object, 0, 0, file, line); 390 return; 391 } 392 393 /* 394 * Lock the sleep queue so we can read the waiters bits 395 * without any races and wakeup any shared waiters. 396 */ 397 sleepq_lock(&sx->lock_object); 398 399 /* 400 * Preserve SX_LOCK_EXCLUSIVE_WAITERS while downgraded to a single 401 * shared lock. If there are any shared waiters, wake them up. 402 */ 403 x = sx->sx_lock; 404 atomic_store_rel_ptr(&sx->sx_lock, SX_SHARERS_LOCK(1) | 405 (x & SX_LOCK_EXCLUSIVE_WAITERS)); 406 if (x & SX_LOCK_SHARED_WAITERS) 407 sleepq_broadcast(&sx->lock_object, SLEEPQ_SX, 0, 408 SQ_SHARED_QUEUE); 409 sleepq_release(&sx->lock_object); 410 411 LOCK_LOG_LOCK("XDOWNGRADE", &sx->lock_object, 0, 0, file, line); 412 } 413 414 /* 415 * This function represents the so-called 'hard case' for sx_xlock 416 * operation. All 'easy case' failures are redirected to this. Note 417 * that ideally this would be a static function, but it needs to be 418 * accessible from at least sx.h. 419 */ 420 int 421 _sx_xlock_hard(struct sx *sx, uintptr_t tid, int opts, const char *file, 422 int line) 423 { 424 GIANT_DECLARE; 425 #ifdef ADAPTIVE_SX 426 volatile struct thread *owner; 427 #endif 428 uint64_t waittime = 0; 429 uintptr_t x; 430 int contested = 0, error = 0; 431 432 /* If we already hold an exclusive lock, then recurse. */ 433 if (sx_xlocked(sx)) { 434 KASSERT((sx->lock_object.lo_flags & SX_RECURSE) != 0, 435 ("_sx_xlock_hard: recursed on non-recursive sx %s @ %s:%d\n", 436 sx->lock_object.lo_name, file, line)); 437 sx->sx_recurse++; 438 atomic_set_ptr(&sx->sx_lock, SX_LOCK_RECURSED); 439 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 440 CTR2(KTR_LOCK, "%s: %p recursing", __func__, sx); 441 return (0); 442 } 443 444 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 445 CTR5(KTR_LOCK, "%s: %s contested (lock=%p) at %s:%d", __func__, 446 sx->lock_object.lo_name, (void *)sx->sx_lock, file, line); 447 448 while (!atomic_cmpset_acq_ptr(&sx->sx_lock, SX_LOCK_UNLOCKED, tid)) { 449 lock_profile_obtain_lock_failed(&sx->lock_object, &contested, 450 &waittime); 451 #ifdef ADAPTIVE_SX 452 /* 453 * If the lock is write locked and the owner is 454 * running on another CPU, spin until the owner stops 455 * running or the state of the lock changes. 456 */ 457 x = sx->sx_lock; 458 if (!(x & SX_LOCK_SHARED) && 459 (sx->lock_object.lo_flags & SX_ADAPTIVESPIN)) { 460 x = SX_OWNER(x); 461 owner = (struct thread *)x; 462 if (TD_IS_RUNNING(owner)) { 463 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 464 CTR3(KTR_LOCK, 465 "%s: spinning on %p held by %p", 466 __func__, sx, owner); 467 GIANT_SAVE(); 468 while (SX_OWNER(sx->sx_lock) == x && 469 TD_IS_RUNNING(owner)) 470 cpu_spinwait(); 471 continue; 472 } 473 } 474 #endif 475 476 sleepq_lock(&sx->lock_object); 477 x = sx->sx_lock; 478 479 /* 480 * If the lock was released while spinning on the 481 * sleep queue chain lock, try again. 482 */ 483 if (x == SX_LOCK_UNLOCKED) { 484 sleepq_release(&sx->lock_object); 485 continue; 486 } 487 488 #ifdef ADAPTIVE_SX 489 /* 490 * The current lock owner might have started executing 491 * on another CPU (or the lock could have changed 492 * owners) while we were waiting on the sleep queue 493 * chain lock. If so, drop the sleep queue lock and try 494 * again. 495 */ 496 if (!(x & SX_LOCK_SHARED) && 497 (sx->lock_object.lo_flags & SX_ADAPTIVESPIN)) { 498 owner = (struct thread *)SX_OWNER(x); 499 if (TD_IS_RUNNING(owner)) { 500 sleepq_release(&sx->lock_object); 501 continue; 502 } 503 } 504 #endif 505 506 /* 507 * If an exclusive lock was released with both shared 508 * and exclusive waiters and a shared waiter hasn't 509 * woken up and acquired the lock yet, sx_lock will be 510 * set to SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS. 511 * If we see that value, try to acquire it once. Note 512 * that we have to preserve SX_LOCK_EXCLUSIVE_WAITERS 513 * as there are other exclusive waiters still. If we 514 * fail, restart the loop. 515 */ 516 if (x == (SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS)) { 517 if (atomic_cmpset_acq_ptr(&sx->sx_lock, 518 SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS, 519 tid | SX_LOCK_EXCLUSIVE_WAITERS)) { 520 sleepq_release(&sx->lock_object); 521 CTR2(KTR_LOCK, "%s: %p claimed by new writer", 522 __func__, sx); 523 break; 524 } 525 sleepq_release(&sx->lock_object); 526 continue; 527 } 528 529 /* 530 * Try to set the SX_LOCK_EXCLUSIVE_WAITERS. If we fail, 531 * than loop back and retry. 532 */ 533 if (!(x & SX_LOCK_EXCLUSIVE_WAITERS)) { 534 if (!atomic_cmpset_ptr(&sx->sx_lock, x, 535 x | SX_LOCK_EXCLUSIVE_WAITERS)) { 536 sleepq_release(&sx->lock_object); 537 continue; 538 } 539 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 540 CTR2(KTR_LOCK, "%s: %p set excl waiters flag", 541 __func__, sx); 542 } 543 544 /* 545 * Since we have been unable to acquire the exclusive 546 * lock and the exclusive waiters flag is set, we have 547 * to sleep. 548 */ 549 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 550 CTR2(KTR_LOCK, "%s: %p blocking on sleep queue", 551 __func__, sx); 552 553 GIANT_SAVE(); 554 sleepq_add(&sx->lock_object, NULL, sx->lock_object.lo_name, 555 SLEEPQ_SX | ((opts & SX_INTERRUPTIBLE) ? 556 SLEEPQ_INTERRUPTIBLE : 0), SQ_EXCLUSIVE_QUEUE); 557 if (!(opts & SX_INTERRUPTIBLE)) 558 sleepq_wait(&sx->lock_object, 0); 559 else 560 error = sleepq_wait_sig(&sx->lock_object, 0); 561 562 if (error) { 563 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 564 CTR2(KTR_LOCK, 565 "%s: interruptible sleep by %p suspended by signal", 566 __func__, sx); 567 break; 568 } 569 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 570 CTR2(KTR_LOCK, "%s: %p resuming from sleep queue", 571 __func__, sx); 572 } 573 574 GIANT_RESTORE(); 575 if (!error) 576 lock_profile_obtain_lock_success(&sx->lock_object, contested, 577 waittime, file, line); 578 return (error); 579 } 580 581 /* 582 * This function represents the so-called 'hard case' for sx_xunlock 583 * operation. All 'easy case' failures are redirected to this. Note 584 * that ideally this would be a static function, but it needs to be 585 * accessible from at least sx.h. 586 */ 587 void 588 _sx_xunlock_hard(struct sx *sx, uintptr_t tid, const char *file, int line) 589 { 590 uintptr_t x; 591 int queue; 592 593 MPASS(!(sx->sx_lock & SX_LOCK_SHARED)); 594 595 /* If the lock is recursed, then unrecurse one level. */ 596 if (sx_xlocked(sx) && sx_recursed(sx)) { 597 if ((--sx->sx_recurse) == 0) 598 atomic_clear_ptr(&sx->sx_lock, SX_LOCK_RECURSED); 599 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 600 CTR2(KTR_LOCK, "%s: %p unrecursing", __func__, sx); 601 return; 602 } 603 MPASS(sx->sx_lock & (SX_LOCK_SHARED_WAITERS | 604 SX_LOCK_EXCLUSIVE_WAITERS)); 605 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 606 CTR2(KTR_LOCK, "%s: %p contested", __func__, sx); 607 608 sleepq_lock(&sx->lock_object); 609 x = SX_LOCK_UNLOCKED; 610 611 /* 612 * The wake up algorithm here is quite simple and probably not 613 * ideal. It gives precedence to shared waiters if they are 614 * present. For this condition, we have to preserve the 615 * state of the exclusive waiters flag. 616 */ 617 if (sx->sx_lock & SX_LOCK_SHARED_WAITERS) { 618 queue = SQ_SHARED_QUEUE; 619 x |= (sx->sx_lock & SX_LOCK_EXCLUSIVE_WAITERS); 620 } else 621 queue = SQ_EXCLUSIVE_QUEUE; 622 623 /* Wake up all the waiters for the specific queue. */ 624 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 625 CTR3(KTR_LOCK, "%s: %p waking up all threads on %s queue", 626 __func__, sx, queue == SQ_SHARED_QUEUE ? "shared" : 627 "exclusive"); 628 atomic_store_rel_ptr(&sx->sx_lock, x); 629 sleepq_broadcast(&sx->lock_object, SLEEPQ_SX, 0, queue); 630 sleepq_release(&sx->lock_object); 631 } 632 633 /* 634 * This function represents the so-called 'hard case' for sx_slock 635 * operation. All 'easy case' failures are redirected to this. Note 636 * that ideally this would be a static function, but it needs to be 637 * accessible from at least sx.h. 638 */ 639 int 640 _sx_slock_hard(struct sx *sx, int opts, const char *file, int line) 641 { 642 GIANT_DECLARE; 643 #ifdef ADAPTIVE_SX 644 volatile struct thread *owner; 645 #endif 646 uint64_t waittime = 0; 647 int contested = 0; 648 uintptr_t x; 649 int error = 0; 650 651 /* 652 * As with rwlocks, we don't make any attempt to try to block 653 * shared locks once there is an exclusive waiter. 654 */ 655 for (;;) { 656 x = sx->sx_lock; 657 658 /* 659 * If no other thread has an exclusive lock then try to bump up 660 * the count of sharers. Since we have to preserve the state 661 * of SX_LOCK_EXCLUSIVE_WAITERS, if we fail to acquire the 662 * shared lock loop back and retry. 663 */ 664 if (x & SX_LOCK_SHARED) { 665 MPASS(!(x & SX_LOCK_SHARED_WAITERS)); 666 if (atomic_cmpset_acq_ptr(&sx->sx_lock, x, 667 x + SX_ONE_SHARER)) { 668 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 669 CTR4(KTR_LOCK, 670 "%s: %p succeed %p -> %p", __func__, 671 sx, (void *)x, 672 (void *)(x + SX_ONE_SHARER)); 673 break; 674 } 675 continue; 676 } 677 lock_profile_obtain_lock_failed(&sx->lock_object, &contested, 678 &waittime); 679 680 #ifdef ADAPTIVE_SX 681 /* 682 * If the owner is running on another CPU, spin until 683 * the owner stops running or the state of the lock 684 * changes. 685 */ 686 if (sx->lock_object.lo_flags & SX_ADAPTIVESPIN) { 687 x = SX_OWNER(x); 688 owner = (struct thread *)x; 689 if (TD_IS_RUNNING(owner)) { 690 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 691 CTR3(KTR_LOCK, 692 "%s: spinning on %p held by %p", 693 __func__, sx, owner); 694 GIANT_SAVE(); 695 while (SX_OWNER(sx->sx_lock) == x && 696 TD_IS_RUNNING(owner)) 697 cpu_spinwait(); 698 continue; 699 } 700 } 701 #endif 702 703 /* 704 * Some other thread already has an exclusive lock, so 705 * start the process of blocking. 706 */ 707 sleepq_lock(&sx->lock_object); 708 x = sx->sx_lock; 709 710 /* 711 * The lock could have been released while we spun. 712 * In this case loop back and retry. 713 */ 714 if (x & SX_LOCK_SHARED) { 715 sleepq_release(&sx->lock_object); 716 continue; 717 } 718 719 #ifdef ADAPTIVE_SX 720 /* 721 * If the owner is running on another CPU, spin until 722 * the owner stops running or the state of the lock 723 * changes. 724 */ 725 if (!(x & SX_LOCK_SHARED) && 726 (sx->lock_object.lo_flags & SX_ADAPTIVESPIN)) { 727 owner = (struct thread *)SX_OWNER(x); 728 if (TD_IS_RUNNING(owner)) { 729 sleepq_release(&sx->lock_object); 730 continue; 731 } 732 } 733 #endif 734 735 /* 736 * Try to set the SX_LOCK_SHARED_WAITERS flag. If we 737 * fail to set it drop the sleep queue lock and loop 738 * back. 739 */ 740 if (!(x & SX_LOCK_SHARED_WAITERS)) { 741 if (!atomic_cmpset_ptr(&sx->sx_lock, x, 742 x | SX_LOCK_SHARED_WAITERS)) { 743 sleepq_release(&sx->lock_object); 744 continue; 745 } 746 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 747 CTR2(KTR_LOCK, "%s: %p set shared waiters flag", 748 __func__, sx); 749 } 750 751 /* 752 * Since we have been unable to acquire the shared lock, 753 * we have to sleep. 754 */ 755 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 756 CTR2(KTR_LOCK, "%s: %p blocking on sleep queue", 757 __func__, sx); 758 759 GIANT_SAVE(); 760 sleepq_add(&sx->lock_object, NULL, sx->lock_object.lo_name, 761 SLEEPQ_SX | ((opts & SX_INTERRUPTIBLE) ? 762 SLEEPQ_INTERRUPTIBLE : 0), SQ_SHARED_QUEUE); 763 if (!(opts & SX_INTERRUPTIBLE)) 764 sleepq_wait(&sx->lock_object, 0); 765 else 766 error = sleepq_wait_sig(&sx->lock_object, 0); 767 768 if (error) { 769 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 770 CTR2(KTR_LOCK, 771 "%s: interruptible sleep by %p suspended by signal", 772 __func__, sx); 773 break; 774 } 775 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 776 CTR2(KTR_LOCK, "%s: %p resuming from sleep queue", 777 __func__, sx); 778 } 779 if (error == 0) 780 lock_profile_obtain_lock_success(&sx->lock_object, contested, 781 waittime, file, line); 782 783 GIANT_RESTORE(); 784 return (error); 785 } 786 787 /* 788 * This function represents the so-called 'hard case' for sx_sunlock 789 * operation. All 'easy case' failures are redirected to this. Note 790 * that ideally this would be a static function, but it needs to be 791 * accessible from at least sx.h. 792 */ 793 void 794 _sx_sunlock_hard(struct sx *sx, const char *file, int line) 795 { 796 uintptr_t x; 797 798 for (;;) { 799 x = sx->sx_lock; 800 801 /* 802 * We should never have sharers while at least one thread 803 * holds a shared lock. 804 */ 805 KASSERT(!(x & SX_LOCK_SHARED_WAITERS), 806 ("%s: waiting sharers", __func__)); 807 808 /* 809 * See if there is more than one shared lock held. If 810 * so, just drop one and return. 811 */ 812 if (SX_SHARERS(x) > 1) { 813 if (atomic_cmpset_ptr(&sx->sx_lock, x, 814 x - SX_ONE_SHARER)) { 815 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 816 CTR4(KTR_LOCK, 817 "%s: %p succeeded %p -> %p", 818 __func__, sx, (void *)x, 819 (void *)(x - SX_ONE_SHARER)); 820 break; 821 } 822 continue; 823 } 824 825 /* 826 * If there aren't any waiters for an exclusive lock, 827 * then try to drop it quickly. 828 */ 829 if (!(x & SX_LOCK_EXCLUSIVE_WAITERS)) { 830 MPASS(x == SX_SHARERS_LOCK(1)); 831 if (atomic_cmpset_ptr(&sx->sx_lock, SX_SHARERS_LOCK(1), 832 SX_LOCK_UNLOCKED)) { 833 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 834 CTR2(KTR_LOCK, "%s: %p last succeeded", 835 __func__, sx); 836 break; 837 } 838 continue; 839 } 840 841 /* 842 * At this point, there should just be one sharer with 843 * exclusive waiters. 844 */ 845 MPASS(x == (SX_SHARERS_LOCK(1) | SX_LOCK_EXCLUSIVE_WAITERS)); 846 847 sleepq_lock(&sx->lock_object); 848 849 /* 850 * Wake up semantic here is quite simple: 851 * Just wake up all the exclusive waiters. 852 * Note that the state of the lock could have changed, 853 * so if it fails loop back and retry. 854 */ 855 if (!atomic_cmpset_ptr(&sx->sx_lock, 856 SX_SHARERS_LOCK(1) | SX_LOCK_EXCLUSIVE_WAITERS, 857 SX_LOCK_UNLOCKED)) { 858 sleepq_release(&sx->lock_object); 859 continue; 860 } 861 if (LOCK_LOG_TEST(&sx->lock_object, 0)) 862 CTR2(KTR_LOCK, "%s: %p waking up all thread on" 863 "exclusive queue", __func__, sx); 864 sleepq_broadcast(&sx->lock_object, SLEEPQ_SX, 0, 865 SQ_EXCLUSIVE_QUEUE); 866 sleepq_release(&sx->lock_object); 867 break; 868 } 869 } 870 871 #ifdef INVARIANT_SUPPORT 872 #ifndef INVARIANTS 873 #undef _sx_assert 874 #endif 875 876 /* 877 * In the non-WITNESS case, sx_assert() can only detect that at least 878 * *some* thread owns an slock, but it cannot guarantee that *this* 879 * thread owns an slock. 880 */ 881 void 882 _sx_assert(struct sx *sx, int what, const char *file, int line) 883 { 884 #ifndef WITNESS 885 int slocked = 0; 886 #endif 887 888 if (panicstr != NULL) 889 return; 890 switch (what) { 891 case SA_SLOCKED: 892 case SA_SLOCKED | SA_NOTRECURSED: 893 case SA_SLOCKED | SA_RECURSED: 894 #ifndef WITNESS 895 slocked = 1; 896 /* FALLTHROUGH */ 897 #endif 898 case SA_LOCKED: 899 case SA_LOCKED | SA_NOTRECURSED: 900 case SA_LOCKED | SA_RECURSED: 901 #ifdef WITNESS 902 witness_assert(&sx->lock_object, what, file, line); 903 #else 904 /* 905 * If some other thread has an exclusive lock or we 906 * have one and are asserting a shared lock, fail. 907 * Also, if no one has a lock at all, fail. 908 */ 909 if (sx->sx_lock == SX_LOCK_UNLOCKED || 910 (!(sx->sx_lock & SX_LOCK_SHARED) && (slocked || 911 sx_xholder(sx) != curthread))) 912 panic("Lock %s not %slocked @ %s:%d\n", 913 sx->lock_object.lo_name, slocked ? "share " : "", 914 file, line); 915 916 if (!(sx->sx_lock & SX_LOCK_SHARED)) { 917 if (sx_recursed(sx)) { 918 if (what & SA_NOTRECURSED) 919 panic("Lock %s recursed @ %s:%d\n", 920 sx->lock_object.lo_name, file, 921 line); 922 } else if (what & SA_RECURSED) 923 panic("Lock %s not recursed @ %s:%d\n", 924 sx->lock_object.lo_name, file, line); 925 } 926 #endif 927 break; 928 case SA_XLOCKED: 929 case SA_XLOCKED | SA_NOTRECURSED: 930 case SA_XLOCKED | SA_RECURSED: 931 if (sx_xholder(sx) != curthread) 932 panic("Lock %s not exclusively locked @ %s:%d\n", 933 sx->lock_object.lo_name, file, line); 934 if (sx_recursed(sx)) { 935 if (what & SA_NOTRECURSED) 936 panic("Lock %s recursed @ %s:%d\n", 937 sx->lock_object.lo_name, file, line); 938 } else if (what & SA_RECURSED) 939 panic("Lock %s not recursed @ %s:%d\n", 940 sx->lock_object.lo_name, file, line); 941 break; 942 case SA_UNLOCKED: 943 #ifdef WITNESS 944 witness_assert(&sx->lock_object, what, file, line); 945 #else 946 /* 947 * If we hold an exclusve lock fail. We can't 948 * reliably check to see if we hold a shared lock or 949 * not. 950 */ 951 if (sx_xholder(sx) == curthread) 952 panic("Lock %s exclusively locked @ %s:%d\n", 953 sx->lock_object.lo_name, file, line); 954 #endif 955 break; 956 default: 957 panic("Unknown sx lock assertion: %d @ %s:%d", what, file, 958 line); 959 } 960 } 961 #endif /* INVARIANT_SUPPORT */ 962 963 #ifdef DDB 964 static void 965 db_show_sx(struct lock_object *lock) 966 { 967 struct thread *td; 968 struct sx *sx; 969 970 sx = (struct sx *)lock; 971 972 db_printf(" state: "); 973 if (sx->sx_lock == SX_LOCK_UNLOCKED) 974 db_printf("UNLOCKED\n"); 975 else if (sx->sx_lock == SX_LOCK_DESTROYED) { 976 db_printf("DESTROYED\n"); 977 return; 978 } else if (sx->sx_lock & SX_LOCK_SHARED) 979 db_printf("SLOCK: %ju\n", (uintmax_t)SX_SHARERS(sx->sx_lock)); 980 else { 981 td = sx_xholder(sx); 982 db_printf("XLOCK: %p (tid %d, pid %d, \"%s\")\n", td, 983 td->td_tid, td->td_proc->p_pid, td->td_name); 984 if (sx_recursed(sx)) 985 db_printf(" recursed: %d\n", sx->sx_recurse); 986 } 987 988 db_printf(" waiters: "); 989 switch(sx->sx_lock & 990 (SX_LOCK_SHARED_WAITERS | SX_LOCK_EXCLUSIVE_WAITERS)) { 991 case SX_LOCK_SHARED_WAITERS: 992 db_printf("shared\n"); 993 break; 994 case SX_LOCK_EXCLUSIVE_WAITERS: 995 db_printf("exclusive\n"); 996 break; 997 case SX_LOCK_SHARED_WAITERS | SX_LOCK_EXCLUSIVE_WAITERS: 998 db_printf("exclusive and shared\n"); 999 break; 1000 default: 1001 db_printf("none\n"); 1002 } 1003 } 1004 1005 /* 1006 * Check to see if a thread that is blocked on a sleep queue is actually 1007 * blocked on an sx lock. If so, output some details and return true. 1008 * If the lock has an exclusive owner, return that in *ownerp. 1009 */ 1010 int 1011 sx_chain(struct thread *td, struct thread **ownerp) 1012 { 1013 struct sx *sx; 1014 1015 /* 1016 * Check to see if this thread is blocked on an sx lock. 1017 * First, we check the lock class. If that is ok, then we 1018 * compare the lock name against the wait message. 1019 */ 1020 sx = td->td_wchan; 1021 if (LOCK_CLASS(&sx->lock_object) != &lock_class_sx || 1022 sx->lock_object.lo_name != td->td_wmesg) 1023 return (0); 1024 1025 /* We think we have an sx lock, so output some details. */ 1026 db_printf("blocked on sx \"%s\" ", td->td_wmesg); 1027 *ownerp = sx_xholder(sx); 1028 if (sx->sx_lock & SX_LOCK_SHARED) 1029 db_printf("SLOCK (count %ju)\n", 1030 (uintmax_t)SX_SHARERS(sx->sx_lock)); 1031 else 1032 db_printf("XLOCK\n"); 1033 return (1); 1034 } 1035 #endif 1036