xref: /freebsd/sys/kern/kern_switch.c (revision 14f0e2e9bf2529b504c3094971c553cadf813e83)
1 /*
2  * Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /***
28 Here is the logic..
29 
30 If there are N processors, then there are at most N KSEs (kernel
31 schedulable entities) working to process threads that belong to a
32 KSEGROUP (kg). If there are X of these KSEs actually running at the
33 moment in question, then there are at most M (N-X) of these KSEs on
34 the run queue, as running KSEs are not on the queue.
35 
36 Runnable threads are queued off the KSEGROUP in priority order.
37 If there are M or more threads runnable, the top M threads
38 (by priority) are 'preassigned' to the M KSEs not running. The KSEs take
39 their priority from those threads and are put on the run queue.
40 
41 The last thread that had a priority high enough to have a KSE associated
42 with it, AND IS ON THE RUN QUEUE is pointed to by
43 kg->kg_last_assigned. If no threads queued off the KSEGROUP have KSEs
44 assigned as all the available KSEs are activly running, or because there
45 are no threads queued, that pointer is NULL.
46 
47 When a KSE is removed from the run queue to become runnable, we know
48 it was associated with the highest priority thread in the queue (at the head
49 of the queue). If it is also the last assigned we know M was 1 and must
50 now be 0. Since the thread is no longer queued that pointer must be
51 removed from it. Since we know there were no more KSEs available,
52 (M was 1 and is now 0) and since we are not FREEING our KSE
53 but using it, we know there are STILL no more KSEs available, we can prove
54 that the next thread in the ksegrp list will not have a KSE to assign to
55 it, so we can show that the pointer must be made 'invalid' (NULL).
56 
57 The pointer exists so that when a new thread is made runnable, it can
58 have its priority compared with the last assigned thread to see if
59 it should 'steal' its KSE or not.. i.e. is it 'earlier'
60 on the list than that thread or later.. If it's earlier, then the KSE is
61 removed from the last assigned (which is now not assigned a KSE)
62 and reassigned to the new thread, which is placed earlier in the list.
63 The pointer is then backed up to the previous thread (which may or may not
64 be the new thread).
65 
66 When a thread sleeps or is removed, the KSE becomes available and if there
67 are queued threads that are not assigned KSEs, the highest priority one of
68 them is assigned the KSE, which is then placed back on the run queue at
69 the approipriate place, and the kg->kg_last_assigned pointer is adjusted down
70 to point to it.
71 
72 The following diagram shows 2 KSEs and 3 threads from a single process.
73 
74  RUNQ: --->KSE---KSE--...    (KSEs queued at priorities from threads)
75               \    \____
76                \        \
77     KSEGROUP---thread--thread--thread    (queued in priority order)
78         \                 /
79          \_______________/
80           (last_assigned)
81 
82 The result of this scheme is that the M available KSEs are always
83 queued at the priorities they have inherrited from the M highest priority
84 threads for that KSEGROUP. If this situation changes, the KSEs are
85 reassigned to keep this true.
86 ***/
87 
88 #include <sys/cdefs.h>
89 __FBSDID("$FreeBSD$");
90 
91 #include "opt_sched.h"
92 
93 #ifndef KERN_SWITCH_INCLUDE
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/kdb.h>
97 #include <sys/kernel.h>
98 #include <sys/ktr.h>
99 #include <sys/lock.h>
100 #include <sys/mutex.h>
101 #include <sys/proc.h>
102 #include <sys/queue.h>
103 #include <sys/sched.h>
104 #else  /* KERN_SWITCH_INCLUDE */
105 #if defined(SMP) && (defined(__i386__) || defined(__amd64__))
106 #include <sys/smp.h>
107 #endif
108 #include <machine/critical.h>
109 #if defined(SMP) && defined(SCHED_4BSD)
110 #include <sys/sysctl.h>
111 #endif
112 
113 #ifdef FULL_PREEMPTION
114 #ifndef PREEMPTION
115 #error "The FULL_PREEMPTION option requires the PREEMPTION option"
116 #endif
117 #endif
118 
119 CTASSERT((RQB_BPW * RQB_LEN) == RQ_NQS);
120 
121 #define td_kse td_sched
122 
123 /************************************************************************
124  * Functions that manipulate runnability from a thread perspective.	*
125  ************************************************************************/
126 /*
127  * Select the KSE that will be run next.  From that find the thread, and
128  * remove it from the KSEGRP's run queue.  If there is thread clustering,
129  * this will be what does it.
130  */
131 struct thread *
132 choosethread(void)
133 {
134 	struct kse *ke;
135 	struct thread *td;
136 	struct ksegrp *kg;
137 
138 #if defined(SMP) && (defined(__i386__) || defined(__amd64__))
139 	if (smp_active == 0 && PCPU_GET(cpuid) != 0) {
140 		/* Shutting down, run idlethread on AP's */
141 		td = PCPU_GET(idlethread);
142 		ke = td->td_kse;
143 		CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
144 		ke->ke_flags |= KEF_DIDRUN;
145 		TD_SET_RUNNING(td);
146 		return (td);
147 	}
148 #endif
149 
150 retry:
151 	ke = sched_choose();
152 	if (ke) {
153 		td = ke->ke_thread;
154 		KASSERT((td->td_kse == ke), ("kse/thread mismatch"));
155 		kg = ke->ke_ksegrp;
156 		if (td->td_proc->p_flag & P_HADTHREADS) {
157 			if (kg->kg_last_assigned == td) {
158 				kg->kg_last_assigned = TAILQ_PREV(td,
159 				    threadqueue, td_runq);
160 			}
161 			TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
162 			kg->kg_runnable--;
163 		}
164 		CTR2(KTR_RUNQ, "choosethread: td=%p pri=%d",
165 		    td, td->td_priority);
166 	} else {
167 		/* Simulate runq_choose() having returned the idle thread */
168 		td = PCPU_GET(idlethread);
169 		ke = td->td_kse;
170 		CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
171 	}
172 	ke->ke_flags |= KEF_DIDRUN;
173 
174 	/*
175 	 * If we are in panic, only allow system threads,
176 	 * plus the one we are running in, to be run.
177 	 */
178 	if (panicstr && ((td->td_proc->p_flag & P_SYSTEM) == 0 &&
179 	    (td->td_flags & TDF_INPANIC) == 0)) {
180 		/* note that it is no longer on the run queue */
181 		TD_SET_CAN_RUN(td);
182 		goto retry;
183 	}
184 
185 	TD_SET_RUNNING(td);
186 	return (td);
187 }
188 
189 /*
190  * Given a surplus system slot, try assign a new runnable thread to it.
191  * Called from:
192  *  sched_thread_exit()  (local)
193  *  sched_switch()  (local)
194  *  sched_thread_exit()  (local)
195  *  remrunqueue()  (local)  (not at the moment)
196  */
197 static void
198 slot_fill(struct ksegrp *kg)
199 {
200 	struct thread *td;
201 
202 	mtx_assert(&sched_lock, MA_OWNED);
203 	while (kg->kg_avail_opennings > 0) {
204 		/*
205 		 * Find the first unassigned thread
206 		 */
207 		if ((td = kg->kg_last_assigned) != NULL)
208 			td = TAILQ_NEXT(td, td_runq);
209 		else
210 			td = TAILQ_FIRST(&kg->kg_runq);
211 
212 		/*
213 		 * If we found one, send it to the system scheduler.
214 		 */
215 		if (td) {
216 			kg->kg_last_assigned = td;
217 			sched_add(td, SRQ_BORING);
218 			CTR2(KTR_RUNQ, "slot_fill: td%p -> kg%p", td, kg);
219 		} else {
220 			/* no threads to use up the slots. quit now */
221 			break;
222 		}
223 	}
224 }
225 
226 #ifdef	SCHED_4BSD
227 /*
228  * Remove a thread from its KSEGRP's run queue.
229  * This in turn may remove it from a KSE if it was already assigned
230  * to one, possibly causing a new thread to be assigned to the KSE
231  * and the KSE getting a new priority.
232  */
233 static void
234 remrunqueue(struct thread *td)
235 {
236 	struct thread *td2, *td3;
237 	struct ksegrp *kg;
238 	struct kse *ke;
239 
240 	mtx_assert(&sched_lock, MA_OWNED);
241 	KASSERT((TD_ON_RUNQ(td)), ("remrunqueue: Bad state on run queue"));
242 	kg = td->td_ksegrp;
243 	ke = td->td_kse;
244 	CTR1(KTR_RUNQ, "remrunqueue: td%p", td);
245 	TD_SET_CAN_RUN(td);
246 	/*
247 	 * If it is not a threaded process, take the shortcut.
248 	 */
249 	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
250 		/* remve from sys run queue and free up a slot */
251 		sched_rem(td);
252 		ke->ke_state = KES_THREAD;
253 		return;
254 	}
255    	td3 = TAILQ_PREV(td, threadqueue, td_runq);
256 	TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
257 	kg->kg_runnable--;
258 	if (ke->ke_state == KES_ONRUNQ) {
259 		/*
260 		 * This thread has been assigned to the system run queue.
261 		 * We need to dissociate it and try assign the
262 		 * KSE to the next available thread. Then, we should
263 		 * see if we need to move the KSE in the run queues.
264 		 */
265 		sched_rem(td);
266 		ke->ke_state = KES_THREAD;
267 		td2 = kg->kg_last_assigned;
268 		KASSERT((td2 != NULL), ("last assigned has wrong value"));
269 		if (td2 == td)
270 			kg->kg_last_assigned = td3;
271 		/* slot_fill(kg); */ /* will replace it with another */
272 	}
273 }
274 #endif
275 
276 /*
277  * Change the priority of a thread that is on the run queue.
278  */
279 void
280 adjustrunqueue( struct thread *td, int newpri)
281 {
282 	struct ksegrp *kg;
283 	struct kse *ke;
284 
285 	mtx_assert(&sched_lock, MA_OWNED);
286 	KASSERT((TD_ON_RUNQ(td)), ("adjustrunqueue: Bad state on run queue"));
287 
288 	ke = td->td_kse;
289 	CTR1(KTR_RUNQ, "adjustrunqueue: td%p", td);
290 	/*
291 	 * If it is not a threaded process, take the shortcut.
292 	 */
293 	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
294 		/* We only care about the kse in the run queue. */
295 		td->td_priority = newpri;
296 		if (ke->ke_rqindex != (newpri / RQ_PPQ)) {
297 			sched_rem(td);
298 			sched_add(td, SRQ_BORING);
299 		}
300 		return;
301 	}
302 
303 	/* It is a threaded process */
304 	kg = td->td_ksegrp;
305 	if (ke->ke_state == KES_ONRUNQ) {
306 		if (kg->kg_last_assigned == td) {
307 			kg->kg_last_assigned =
308 			    TAILQ_PREV(td, threadqueue, td_runq);
309 		}
310 		sched_rem(td);
311 	}
312 	TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
313 	kg->kg_runnable--;
314 	TD_SET_CAN_RUN(td);
315 	td->td_priority = newpri;
316 	setrunqueue(td, SRQ_BORING);
317 }
318 int limitcount;
319 void
320 setrunqueue(struct thread *td, int flags)
321 {
322 	struct ksegrp *kg;
323 	struct thread *td2;
324 	struct thread *tda;
325 
326 	CTR3(KTR_RUNQ, "setrunqueue: td:%p kg:%p pid:%d",
327 	    td, td->td_ksegrp, td->td_proc->p_pid);
328 	mtx_assert(&sched_lock, MA_OWNED);
329 	KASSERT((td->td_inhibitors == 0),
330 			("setrunqueue: trying to run inhibitted thread"));
331 	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
332 	    ("setrunqueue: bad thread state"));
333 	TD_SET_RUNQ(td);
334 	kg = td->td_ksegrp;
335 	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
336 		/*
337 		 * Common path optimisation: Only one of everything
338 		 * and the KSE is always already attached.
339 		 * Totally ignore the ksegrp run queue.
340 		 */
341 		if (kg->kg_avail_opennings != 1) {
342 			if (limitcount < 1) {
343 				limitcount++;
344 				printf("pid %d: corrected slot count (%d->1)\n",
345 				    td->td_proc->p_pid, kg->kg_avail_opennings);
346 
347 			}
348 			kg->kg_avail_opennings = 1;
349 		}
350 		sched_add(td, flags);
351 		return;
352 	}
353 
354 	/*
355 	 * If the concurrency has reduced, and we would go in the
356 	 * assigned section, then keep removing entries from the
357 	 * system run queue, until we are not in that section
358 	 * or there is room for us to be put in that section.
359 	 * What we MUST avoid is the case where there are threads of less
360 	 * priority than the new one scheduled, but it can not
361 	 * be scheduled itself. That would lead to a non contiguous set
362 	 * of scheduled threads, and everything would break.
363 	 */
364 	tda = kg->kg_last_assigned;
365 	while ((kg->kg_avail_opennings <= 0) &&
366 	    (tda && (tda->td_priority > td->td_priority))) {
367 		/*
368 		 * None free, but there is one we can commandeer.
369 		 */
370 		CTR2(KTR_RUNQ,
371 		    "setrunqueue: kg:%p: take slot from td: %p", kg, tda);
372 		sched_rem(tda);
373 		tda = kg->kg_last_assigned =
374 		    TAILQ_PREV(tda, threadqueue, td_runq);
375 		kg->kg_avail_opennings++;
376 	}
377 
378 	/*
379 	 * Add the thread to the ksegrp's run queue at
380 	 * the appropriate place.
381 	 */
382 	TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) {
383 		if (td2->td_priority > td->td_priority) {
384 			kg->kg_runnable++;
385 			TAILQ_INSERT_BEFORE(td2, td, td_runq);
386 			break;
387 		}
388 	}
389 	if (td2 == NULL) {
390 		/* We ran off the end of the TAILQ or it was empty. */
391 		kg->kg_runnable++;
392 		TAILQ_INSERT_TAIL(&kg->kg_runq, td, td_runq);
393 	}
394 
395 	/*
396 	 * If we have a slot to use, then put the thread on the system
397 	 * run queue and if needed, readjust the last_assigned pointer.
398 	 * it may be that we need to schedule something anyhow
399 	 * even if the availabel slots are -ve so that
400 	 * all the items < last_assigned are scheduled.
401 	 */
402 	if (kg->kg_avail_opennings > 0) {
403 		if (tda == NULL) {
404 			/*
405 			 * No pre-existing last assigned so whoever is first
406 			 * gets the slot.. (maybe us)
407 			 */
408 			td2 = TAILQ_FIRST(&kg->kg_runq);
409 			kg->kg_last_assigned = td2;
410 		} else if (tda->td_priority > td->td_priority) {
411 			td2 = td;
412 		} else {
413 			/*
414 			 * We are past last_assigned, so
415 			 * give the next slot to whatever is next,
416 			 * which may or may not be us.
417 			 */
418 			td2 = TAILQ_NEXT(tda, td_runq);
419 			kg->kg_last_assigned = td2;
420 		}
421 		sched_add(td2, flags);
422 	} else {
423 		CTR3(KTR_RUNQ, "setrunqueue: held: td%p kg%p pid%d",
424 			td, td->td_ksegrp, td->td_proc->p_pid);
425 	}
426 }
427 
428 /*
429  * Kernel thread preemption implementation.  Critical sections mark
430  * regions of code in which preemptions are not allowed.
431  */
432 void
433 critical_enter(void)
434 {
435 	struct thread *td;
436 
437 	td = curthread;
438 	if (td->td_critnest == 0)
439 		cpu_critical_enter(td);
440 	td->td_critnest++;
441 }
442 
443 void
444 critical_exit(void)
445 {
446 	struct thread *td;
447 
448 	td = curthread;
449 	KASSERT(td->td_critnest != 0,
450 	    ("critical_exit: td_critnest == 0"));
451 	if (td->td_critnest == 1) {
452 #ifdef PREEMPTION
453 		mtx_assert(&sched_lock, MA_NOTOWNED);
454 		if (td->td_pflags & TDP_OWEPREEMPT) {
455 			mtx_lock_spin(&sched_lock);
456 			mi_switch(SW_INVOL, NULL);
457 			mtx_unlock_spin(&sched_lock);
458 		}
459 #endif
460 		td->td_critnest = 0;
461 		cpu_critical_exit(td);
462 	} else {
463 		td->td_critnest--;
464 	}
465 }
466 
467 /*
468  * This function is called when a thread is about to be put on run queue
469  * because it has been made runnable or its priority has been adjusted.  It
470  * determines if the new thread should be immediately preempted to.  If so,
471  * it switches to it and eventually returns true.  If not, it returns false
472  * so that the caller may place the thread on an appropriate run queue.
473  */
474 int
475 maybe_preempt(struct thread *td)
476 {
477 #ifdef PREEMPTION
478 	struct thread *ctd;
479 	int cpri, pri;
480 #endif
481 
482 	mtx_assert(&sched_lock, MA_OWNED);
483 #ifdef PREEMPTION
484 	/*
485 	 * The new thread should not preempt the current thread if any of the
486 	 * following conditions are true:
487 	 *
488 	 *  - The current thread has a higher (numerically lower) or
489 	 *    equivalent priority.  Note that this prevents curthread from
490 	 *    trying to preempt to itself.
491 	 *  - It is too early in the boot for context switches (cold is set).
492 	 *  - The current thread has an inhibitor set or is in the process of
493 	 *    exiting.  In this case, the current thread is about to switch
494 	 *    out anyways, so there's no point in preempting.  If we did,
495 	 *    the current thread would not be properly resumed as well, so
496 	 *    just avoid that whole landmine.
497 	 *  - If the new thread's priority is not a realtime priority and
498 	 *    the current thread's priority is not an idle priority and
499 	 *    FULL_PREEMPTION is disabled.
500 	 *
501 	 * If all of these conditions are false, but the current thread is in
502 	 * a nested critical section, then we have to defer the preemption
503 	 * until we exit the critical section.  Otherwise, switch immediately
504 	 * to the new thread.
505 	 */
506 	ctd = curthread;
507 	KASSERT ((ctd->td_kse != NULL && ctd->td_kse->ke_thread == ctd),
508 	  ("thread has no (or wrong) sched-private part."));
509 	KASSERT((td->td_inhibitors == 0),
510 			("maybe_preempt: trying to run inhibitted thread"));
511 	pri = td->td_priority;
512 	cpri = ctd->td_priority;
513 	if (pri >= cpri || cold /* || dumping */ || TD_IS_INHIBITED(ctd) ||
514 	    td->td_kse->ke_state != KES_THREAD)
515 		return (0);
516 #ifndef FULL_PREEMPTION
517 	if (!(pri >= PRI_MIN_ITHD && pri <= PRI_MAX_ITHD) &&
518 	    !(cpri >= PRI_MIN_IDLE))
519 		return (0);
520 #endif
521 	if (ctd->td_critnest > 1) {
522 		CTR1(KTR_PROC, "maybe_preempt: in critical section %d",
523 		    ctd->td_critnest);
524 		ctd->td_pflags |= TDP_OWEPREEMPT;
525 		return (0);
526 	}
527 
528 	/*
529 	 * Our thread state says that we are already on a run queue, so
530 	 * update our state as if we had been dequeued by choosethread().
531 	 * However we must not actually be on the system run queue yet.
532 	 */
533 	MPASS(TD_ON_RUNQ(td));
534 	MPASS(td->td_sched->ke_state != KES_ONRUNQ);
535 	if (td->td_proc->p_flag & P_HADTHREADS) {
536 		/*
537 		 * If this is a threaded process we actually ARE on the
538 		 * ksegrp run queue so take it off that first.
539 		 * Also undo any damage done to the last_assigned pointer.
540 		 * XXX Fix setrunqueue so this isn't needed
541 		 */
542 		struct ksegrp *kg;
543 
544 		kg = td->td_ksegrp;
545 		if (kg->kg_last_assigned == td)
546 			kg->kg_last_assigned =
547 			    TAILQ_PREV(td, threadqueue, td_runq);
548 		TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
549 	}
550 
551 	TD_SET_RUNNING(td);
552 	CTR3(KTR_PROC, "preempting to thread %p (pid %d, %s)\n", td,
553 	    td->td_proc->p_pid, td->td_proc->p_comm);
554 	mi_switch(SW_INVOL, td);
555 	return (1);
556 #else
557 	return (0);
558 #endif
559 }
560 
561 #if 0
562 #ifndef PREEMPTION
563 /* XXX: There should be a non-static version of this. */
564 static void
565 printf_caddr_t(void *data)
566 {
567 	printf("%s", (char *)data);
568 }
569 static char preempt_warning[] =
570     "WARNING: Kernel preemption is disabled, expect reduced performance.\n";
571 SYSINIT(preempt_warning, SI_SUB_COPYRIGHT, SI_ORDER_ANY, printf_caddr_t,
572     preempt_warning)
573 #endif
574 #endif
575 
576 /************************************************************************
577  * SYSTEM RUN QUEUE manipulations and tests				*
578  ************************************************************************/
579 /*
580  * Initialize a run structure.
581  */
582 void
583 runq_init(struct runq *rq)
584 {
585 	int i;
586 
587 	bzero(rq, sizeof *rq);
588 	for (i = 0; i < RQ_NQS; i++)
589 		TAILQ_INIT(&rq->rq_queues[i]);
590 }
591 
592 /*
593  * Clear the status bit of the queue corresponding to priority level pri,
594  * indicating that it is empty.
595  */
596 static __inline void
597 runq_clrbit(struct runq *rq, int pri)
598 {
599 	struct rqbits *rqb;
600 
601 	rqb = &rq->rq_status;
602 	CTR4(KTR_RUNQ, "runq_clrbit: bits=%#x %#x bit=%#x word=%d",
603 	    rqb->rqb_bits[RQB_WORD(pri)],
604 	    rqb->rqb_bits[RQB_WORD(pri)] & ~RQB_BIT(pri),
605 	    RQB_BIT(pri), RQB_WORD(pri));
606 	rqb->rqb_bits[RQB_WORD(pri)] &= ~RQB_BIT(pri);
607 }
608 
609 /*
610  * Find the index of the first non-empty run queue.  This is done by
611  * scanning the status bits, a set bit indicates a non-empty queue.
612  */
613 static __inline int
614 runq_findbit(struct runq *rq)
615 {
616 	struct rqbits *rqb;
617 	int pri;
618 	int i;
619 
620 	rqb = &rq->rq_status;
621 	for (i = 0; i < RQB_LEN; i++)
622 		if (rqb->rqb_bits[i]) {
623 			pri = RQB_FFS(rqb->rqb_bits[i]) + (i << RQB_L2BPW);
624 			CTR3(KTR_RUNQ, "runq_findbit: bits=%#x i=%d pri=%d",
625 			    rqb->rqb_bits[i], i, pri);
626 			return (pri);
627 		}
628 
629 	return (-1);
630 }
631 
632 /*
633  * Set the status bit of the queue corresponding to priority level pri,
634  * indicating that it is non-empty.
635  */
636 static __inline void
637 runq_setbit(struct runq *rq, int pri)
638 {
639 	struct rqbits *rqb;
640 
641 	rqb = &rq->rq_status;
642 	CTR4(KTR_RUNQ, "runq_setbit: bits=%#x %#x bit=%#x word=%d",
643 	    rqb->rqb_bits[RQB_WORD(pri)],
644 	    rqb->rqb_bits[RQB_WORD(pri)] | RQB_BIT(pri),
645 	    RQB_BIT(pri), RQB_WORD(pri));
646 	rqb->rqb_bits[RQB_WORD(pri)] |= RQB_BIT(pri);
647 }
648 
649 /*
650  * Add the KSE to the queue specified by its priority, and set the
651  * corresponding status bit.
652  */
653 void
654 runq_add(struct runq *rq, struct kse *ke)
655 {
656 	struct rqhead *rqh;
657 	int pri;
658 
659 	pri = ke->ke_thread->td_priority / RQ_PPQ;
660 	ke->ke_rqindex = pri;
661 	runq_setbit(rq, pri);
662 	rqh = &rq->rq_queues[pri];
663 	CTR5(KTR_RUNQ, "runq_add: td=%p ke=%p pri=%d %d rqh=%p",
664 	    ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
665 	TAILQ_INSERT_TAIL(rqh, ke, ke_procq);
666 }
667 
668 /*
669  * Return true if there are runnable processes of any priority on the run
670  * queue, false otherwise.  Has no side effects, does not modify the run
671  * queue structure.
672  */
673 int
674 runq_check(struct runq *rq)
675 {
676 	struct rqbits *rqb;
677 	int i;
678 
679 	rqb = &rq->rq_status;
680 	for (i = 0; i < RQB_LEN; i++)
681 		if (rqb->rqb_bits[i]) {
682 			CTR2(KTR_RUNQ, "runq_check: bits=%#x i=%d",
683 			    rqb->rqb_bits[i], i);
684 			return (1);
685 		}
686 	CTR0(KTR_RUNQ, "runq_check: empty");
687 
688 	return (0);
689 }
690 
691 #if defined(SMP) && defined(SCHED_4BSD)
692 int runq_fuzz = 1;
693 SYSCTL_INT(_kern_sched, OID_AUTO, runq_fuzz, CTLFLAG_RW, &runq_fuzz, 0, "");
694 #endif
695 
696 /*
697  * Find the highest priority process on the run queue.
698  */
699 struct kse *
700 runq_choose(struct runq *rq)
701 {
702 	struct rqhead *rqh;
703 	struct kse *ke;
704 	int pri;
705 
706 	mtx_assert(&sched_lock, MA_OWNED);
707 	while ((pri = runq_findbit(rq)) != -1) {
708 		rqh = &rq->rq_queues[pri];
709 #if defined(SMP) && defined(SCHED_4BSD)
710 		/* fuzz == 1 is normal.. 0 or less are ignored */
711 		if (runq_fuzz > 1) {
712 			/*
713 			 * In the first couple of entries, check if
714 			 * there is one for our CPU as a preference.
715 			 */
716 			int count = runq_fuzz;
717 			int cpu = PCPU_GET(cpuid);
718 			struct kse *ke2;
719 			ke2 = ke = TAILQ_FIRST(rqh);
720 
721 			while (count-- && ke2) {
722 				if (ke->ke_thread->td_lastcpu == cpu) {
723 					ke = ke2;
724 					break;
725 				}
726 				ke2 = TAILQ_NEXT(ke2, ke_procq);
727 			}
728 		} else
729 #endif
730 			ke = TAILQ_FIRST(rqh);
731 		KASSERT(ke != NULL, ("runq_choose: no proc on busy queue"));
732 		CTR3(KTR_RUNQ,
733 		    "runq_choose: pri=%d kse=%p rqh=%p", pri, ke, rqh);
734 		return (ke);
735 	}
736 	CTR1(KTR_RUNQ, "runq_choose: idleproc pri=%d", pri);
737 
738 	return (NULL);
739 }
740 
741 /*
742  * Remove the KSE from the queue specified by its priority, and clear the
743  * corresponding status bit if the queue becomes empty.
744  * Caller must set ke->ke_state afterwards.
745  */
746 void
747 runq_remove(struct runq *rq, struct kse *ke)
748 {
749 	struct rqhead *rqh;
750 	int pri;
751 
752 	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
753 		("runq_remove: process swapped out"));
754 	pri = ke->ke_rqindex;
755 	rqh = &rq->rq_queues[pri];
756 	CTR5(KTR_RUNQ, "runq_remove: td=%p, ke=%p pri=%d %d rqh=%p",
757 	    ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
758 	KASSERT(ke != NULL, ("runq_remove: no proc on busy queue"));
759 	TAILQ_REMOVE(rqh, ke, ke_procq);
760 	if (TAILQ_EMPTY(rqh)) {
761 		CTR0(KTR_RUNQ, "runq_remove: empty");
762 		runq_clrbit(rq, pri);
763 	}
764 }
765 
766 /****** functions that are temporarily here ***********/
767 #include <vm/uma.h>
768 #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
769 extern struct mtx kse_zombie_lock;
770 
771 /*
772  *  Allocate scheduler specific per-process resources.
773  * The thread and ksegrp have already been linked in.
774  * In this case just set the default concurrency value.
775  *
776  * Called from:
777  *  proc_init() (UMA init method)
778  */
779 void
780 sched_newproc(struct proc *p, struct ksegrp *kg, struct thread *td)
781 {
782 
783 	/* This can go in sched_fork */
784 	sched_init_concurrency(kg);
785 }
786 
787 /*
788  * Called by the uma process fini routine..
789  * undo anything we may have done in the uma_init method.
790  * Panic if it's not all 1:1:1:1
791  * Called from:
792  *  proc_fini() (UMA method)
793  */
794 void
795 sched_destroyproc(struct proc *p)
796 {
797 
798 	/* this function slated for destruction */
799 	KASSERT((p->p_numthreads == 1), ("Cached proc with > 1 thread "));
800 	KASSERT((p->p_numksegrps == 1), ("Cached proc with > 1 ksegrp "));
801 }
802 
803 #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
804 /*
805  * thread is being either created or recycled.
806  * Fix up the per-scheduler resources associated with it.
807  * Called from:
808  *  sched_fork_thread()
809  *  thread_dtor()  (*may go away)
810  *  thread_init()  (*may go away)
811  */
812 void
813 sched_newthread(struct thread *td)
814 {
815 	struct td_sched *ke;
816 
817 	ke = (struct td_sched *) (td + 1);
818 	bzero(ke, sizeof(*ke));
819 	td->td_sched     = ke;
820 	ke->ke_thread	= td;
821 	ke->ke_oncpu	= NOCPU;
822 	ke->ke_state	= KES_THREAD;
823 }
824 
825 /*
826  * Set up an initial concurrency of 1
827  * and set the given thread (if given) to be using that
828  * concurrency slot.
829  * May be used "offline"..before the ksegrp is attached to the world
830  * and thus wouldn't need schedlock in that case.
831  * Called from:
832  *  thr_create()
833  *  proc_init() (UMA) via sched_newproc()
834  */
835 void
836 sched_init_concurrency(struct ksegrp *kg)
837 {
838 
839 	kg->kg_concurrency = 1;
840 	kg->kg_avail_opennings = 1;
841 }
842 
843 /*
844  * Change the concurrency of an existing ksegrp to N
845  * Called from:
846  *  kse_create()
847  *  kse_exit()
848  *  thread_exit()
849  *  thread_single()
850  */
851 void
852 sched_set_concurrency(struct ksegrp *kg, int concurrency)
853 {
854 
855 	/* Handle the case for a declining concurrency */
856 	kg->kg_avail_opennings += (concurrency - kg->kg_concurrency);
857 	kg->kg_concurrency = concurrency;
858 }
859 
860 /*
861  * Called from thread_exit() for all exiting thread
862  *
863  * Not to be confused with sched_exit_thread()
864  * that is only called from thread_exit() for threads exiting
865  * without the rest of the process exiting because it is also called from
866  * sched_exit() and we wouldn't want to call it twice.
867  * XXX This can probably be fixed.
868  */
869 void
870 sched_thread_exit(struct thread *td)
871 {
872 
873 	td->td_ksegrp->kg_avail_opennings++;
874 	slot_fill(td->td_ksegrp);
875 }
876 
877 #endif /* KERN_SWITCH_INCLUDE */
878