xref: /freebsd/sys/kern/kern_sig.c (revision fb2971ccd2bab42f5406f919812ceb8e014773ea)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_compat.h"
41 #include "opt_kdtrace.h"
42 #include "opt_ktrace.h"
43 #include "opt_core.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/signalvar.h>
48 #include <sys/vnode.h>
49 #include <sys/acct.h>
50 #include <sys/condvar.h>
51 #include <sys/event.h>
52 #include <sys/fcntl.h>
53 #include <sys/imgact.h>
54 #include <sys/kernel.h>
55 #include <sys/ktr.h>
56 #include <sys/ktrace.h>
57 #include <sys/lock.h>
58 #include <sys/malloc.h>
59 #include <sys/mutex.h>
60 #include <sys/namei.h>
61 #include <sys/proc.h>
62 #include <sys/posix4.h>
63 #include <sys/pioctl.h>
64 #include <sys/resourcevar.h>
65 #include <sys/sdt.h>
66 #include <sys/sbuf.h>
67 #include <sys/sleepqueue.h>
68 #include <sys/smp.h>
69 #include <sys/stat.h>
70 #include <sys/sx.h>
71 #include <sys/syscallsubr.h>
72 #include <sys/sysctl.h>
73 #include <sys/sysent.h>
74 #include <sys/syslog.h>
75 #include <sys/sysproto.h>
76 #include <sys/timers.h>
77 #include <sys/unistd.h>
78 #include <sys/wait.h>
79 #include <vm/vm.h>
80 #include <vm/vm_extern.h>
81 #include <vm/uma.h>
82 
83 #include <sys/jail.h>
84 
85 #include <machine/cpu.h>
86 
87 #include <security/audit/audit.h>
88 
89 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
90 
91 SDT_PROVIDER_DECLARE(proc);
92 SDT_PROBE_DEFINE(proc, kernel, , signal_send, signal-send);
93 SDT_PROBE_ARGTYPE(proc, kernel, , signal_send, 0, "struct thread *");
94 SDT_PROBE_ARGTYPE(proc, kernel, , signal_send, 1, "struct proc *");
95 SDT_PROBE_ARGTYPE(proc, kernel, , signal_send, 2, "int");
96 SDT_PROBE_DEFINE(proc, kernel, , signal_clear, signal-clear);
97 SDT_PROBE_ARGTYPE(proc, kernel, , signal_clear, 0, "int");
98 SDT_PROBE_ARGTYPE(proc, kernel, , signal_clear, 1, "ksiginfo_t *");
99 SDT_PROBE_DEFINE(proc, kernel, , signal_discard, signal-discard);
100 SDT_PROBE_ARGTYPE(proc, kernel, , signal_discard, 0, "struct thread *");
101 SDT_PROBE_ARGTYPE(proc, kernel, , signal_discard, 1, "struct proc *");
102 SDT_PROBE_ARGTYPE(proc, kernel, , signal_discard, 2, "int");
103 
104 static int	coredump(struct thread *);
105 static char	*expand_name(const char *, uid_t, pid_t, struct thread *, int);
106 static int	killpg1(struct thread *td, int sig, int pgid, int all,
107 		    ksiginfo_t *ksi);
108 static int	issignal(struct thread *td, int stop_allowed);
109 static int	sigprop(int sig);
110 static void	tdsigwakeup(struct thread *, int, sig_t, int);
111 static void	sig_suspend_threads(struct thread *, struct proc *, int);
112 static int	filt_sigattach(struct knote *kn);
113 static void	filt_sigdetach(struct knote *kn);
114 static int	filt_signal(struct knote *kn, long hint);
115 static struct thread *sigtd(struct proc *p, int sig, int prop);
116 static void	sigqueue_start(void);
117 
118 static uma_zone_t	ksiginfo_zone = NULL;
119 struct filterops sig_filtops = {
120 	.f_isfd = 0,
121 	.f_attach = filt_sigattach,
122 	.f_detach = filt_sigdetach,
123 	.f_event = filt_signal,
124 };
125 
126 static int	kern_logsigexit = 1;
127 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
128     &kern_logsigexit, 0,
129     "Log processes quitting on abnormal signals to syslog(3)");
130 
131 static int	kern_forcesigexit = 1;
132 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
133     &kern_forcesigexit, 0, "Force trap signal to be handled");
134 
135 SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0, "POSIX real time signal");
136 
137 static int	max_pending_per_proc = 128;
138 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
139     &max_pending_per_proc, 0, "Max pending signals per proc");
140 
141 static int	preallocate_siginfo = 1024;
142 TUNABLE_INT("kern.sigqueue.preallocate", &preallocate_siginfo);
143 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RD,
144     &preallocate_siginfo, 0, "Preallocated signal memory size");
145 
146 static int	signal_overflow = 0;
147 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
148     &signal_overflow, 0, "Number of signals overflew");
149 
150 static int	signal_alloc_fail = 0;
151 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
152     &signal_alloc_fail, 0, "signals failed to be allocated");
153 
154 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
155 
156 /*
157  * Policy -- Can ucred cr1 send SIGIO to process cr2?
158  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
159  * in the right situations.
160  */
161 #define CANSIGIO(cr1, cr2) \
162 	((cr1)->cr_uid == 0 || \
163 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
164 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
165 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
166 	    (cr1)->cr_uid == (cr2)->cr_uid)
167 
168 static int	sugid_coredump;
169 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW,
170     &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
171 
172 static int	do_coredump = 1;
173 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
174 	&do_coredump, 0, "Enable/Disable coredumps");
175 
176 static int	set_core_nodump_flag = 0;
177 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
178 	0, "Enable setting the NODUMP flag on coredump files");
179 
180 /*
181  * Signal properties and actions.
182  * The array below categorizes the signals and their default actions
183  * according to the following properties:
184  */
185 #define	SA_KILL		0x01		/* terminates process by default */
186 #define	SA_CORE		0x02		/* ditto and coredumps */
187 #define	SA_STOP		0x04		/* suspend process */
188 #define	SA_TTYSTOP	0x08		/* ditto, from tty */
189 #define	SA_IGNORE	0x10		/* ignore by default */
190 #define	SA_CONT		0x20		/* continue if suspended */
191 #define	SA_CANTMASK	0x40		/* non-maskable, catchable */
192 #define	SA_PROC		0x80		/* deliverable to any thread */
193 
194 static int sigproptbl[NSIG] = {
195         SA_KILL|SA_PROC,		/* SIGHUP */
196         SA_KILL|SA_PROC,		/* SIGINT */
197         SA_KILL|SA_CORE|SA_PROC,	/* SIGQUIT */
198         SA_KILL|SA_CORE,		/* SIGILL */
199         SA_KILL|SA_CORE,		/* SIGTRAP */
200         SA_KILL|SA_CORE,		/* SIGABRT */
201         SA_KILL|SA_CORE|SA_PROC,	/* SIGEMT */
202         SA_KILL|SA_CORE,		/* SIGFPE */
203         SA_KILL|SA_PROC,		/* SIGKILL */
204         SA_KILL|SA_CORE,		/* SIGBUS */
205         SA_KILL|SA_CORE,		/* SIGSEGV */
206         SA_KILL|SA_CORE,		/* SIGSYS */
207         SA_KILL|SA_PROC,		/* SIGPIPE */
208         SA_KILL|SA_PROC,		/* SIGALRM */
209         SA_KILL|SA_PROC,		/* SIGTERM */
210         SA_IGNORE|SA_PROC,		/* SIGURG */
211         SA_STOP|SA_PROC,		/* SIGSTOP */
212         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTSTP */
213         SA_IGNORE|SA_CONT|SA_PROC,	/* SIGCONT */
214         SA_IGNORE|SA_PROC,		/* SIGCHLD */
215         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTTIN */
216         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTTOU */
217         SA_IGNORE|SA_PROC,		/* SIGIO */
218         SA_KILL,			/* SIGXCPU */
219         SA_KILL,			/* SIGXFSZ */
220         SA_KILL|SA_PROC,		/* SIGVTALRM */
221         SA_KILL|SA_PROC,		/* SIGPROF */
222         SA_IGNORE|SA_PROC,		/* SIGWINCH  */
223         SA_IGNORE|SA_PROC,		/* SIGINFO */
224         SA_KILL|SA_PROC,		/* SIGUSR1 */
225         SA_KILL|SA_PROC,		/* SIGUSR2 */
226 };
227 
228 static void reschedule_signals(struct proc *p, sigset_t block, int flags);
229 
230 static void
231 sigqueue_start(void)
232 {
233 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
234 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
235 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
236 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
237 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
238 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
239 }
240 
241 ksiginfo_t *
242 ksiginfo_alloc(int wait)
243 {
244 	int flags;
245 
246 	flags = M_ZERO;
247 	if (! wait)
248 		flags |= M_NOWAIT;
249 	if (ksiginfo_zone != NULL)
250 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
251 	return (NULL);
252 }
253 
254 void
255 ksiginfo_free(ksiginfo_t *ksi)
256 {
257 	uma_zfree(ksiginfo_zone, ksi);
258 }
259 
260 static __inline int
261 ksiginfo_tryfree(ksiginfo_t *ksi)
262 {
263 	if (!(ksi->ksi_flags & KSI_EXT)) {
264 		uma_zfree(ksiginfo_zone, ksi);
265 		return (1);
266 	}
267 	return (0);
268 }
269 
270 void
271 sigqueue_init(sigqueue_t *list, struct proc *p)
272 {
273 	SIGEMPTYSET(list->sq_signals);
274 	SIGEMPTYSET(list->sq_kill);
275 	TAILQ_INIT(&list->sq_list);
276 	list->sq_proc = p;
277 	list->sq_flags = SQ_INIT;
278 }
279 
280 /*
281  * Get a signal's ksiginfo.
282  * Return:
283  * 	0	-	signal not found
284  *	others	-	signal number
285  */
286 static int
287 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
288 {
289 	struct proc *p = sq->sq_proc;
290 	struct ksiginfo *ksi, *next;
291 	int count = 0;
292 
293 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
294 
295 	if (!SIGISMEMBER(sq->sq_signals, signo))
296 		return (0);
297 
298 	if (SIGISMEMBER(sq->sq_kill, signo)) {
299 		count++;
300 		SIGDELSET(sq->sq_kill, signo);
301 	}
302 
303 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
304 		if (ksi->ksi_signo == signo) {
305 			if (count == 0) {
306 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
307 				ksi->ksi_sigq = NULL;
308 				ksiginfo_copy(ksi, si);
309 				if (ksiginfo_tryfree(ksi) && p != NULL)
310 					p->p_pendingcnt--;
311 			}
312 			if (++count > 1)
313 				break;
314 		}
315 	}
316 
317 	if (count <= 1)
318 		SIGDELSET(sq->sq_signals, signo);
319 	si->ksi_signo = signo;
320 	return (signo);
321 }
322 
323 void
324 sigqueue_take(ksiginfo_t *ksi)
325 {
326 	struct ksiginfo *kp;
327 	struct proc	*p;
328 	sigqueue_t	*sq;
329 
330 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
331 		return;
332 
333 	p = sq->sq_proc;
334 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
335 	ksi->ksi_sigq = NULL;
336 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
337 		p->p_pendingcnt--;
338 
339 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
340 	     kp = TAILQ_NEXT(kp, ksi_link)) {
341 		if (kp->ksi_signo == ksi->ksi_signo)
342 			break;
343 	}
344 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo))
345 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
346 }
347 
348 static int
349 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
350 {
351 	struct proc *p = sq->sq_proc;
352 	struct ksiginfo *ksi;
353 	int ret = 0;
354 
355 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
356 
357 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
358 		SIGADDSET(sq->sq_kill, signo);
359 		goto out_set_bit;
360 	}
361 
362 	/* directly insert the ksi, don't copy it */
363 	if (si->ksi_flags & KSI_INS) {
364 		if (si->ksi_flags & KSI_HEAD)
365 			TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
366 		else
367 			TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
368 		si->ksi_sigq = sq;
369 		goto out_set_bit;
370 	}
371 
372 	if (__predict_false(ksiginfo_zone == NULL)) {
373 		SIGADDSET(sq->sq_kill, signo);
374 		goto out_set_bit;
375 	}
376 
377 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
378 		signal_overflow++;
379 		ret = EAGAIN;
380 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
381 		signal_alloc_fail++;
382 		ret = EAGAIN;
383 	} else {
384 		if (p != NULL)
385 			p->p_pendingcnt++;
386 		ksiginfo_copy(si, ksi);
387 		ksi->ksi_signo = signo;
388 		if (si->ksi_flags & KSI_HEAD)
389 			TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
390 		else
391 			TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
392 		ksi->ksi_sigq = sq;
393 	}
394 
395 	if ((si->ksi_flags & KSI_TRAP) != 0 ||
396 	    (si->ksi_flags & KSI_SIGQ) == 0) {
397 		if (ret != 0)
398 			SIGADDSET(sq->sq_kill, signo);
399 		ret = 0;
400 		goto out_set_bit;
401 	}
402 
403 	if (ret != 0)
404 		return (ret);
405 
406 out_set_bit:
407 	SIGADDSET(sq->sq_signals, signo);
408 	return (ret);
409 }
410 
411 void
412 sigqueue_flush(sigqueue_t *sq)
413 {
414 	struct proc *p = sq->sq_proc;
415 	ksiginfo_t *ksi;
416 
417 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
418 
419 	if (p != NULL)
420 		PROC_LOCK_ASSERT(p, MA_OWNED);
421 
422 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
423 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
424 		ksi->ksi_sigq = NULL;
425 		if (ksiginfo_tryfree(ksi) && p != NULL)
426 			p->p_pendingcnt--;
427 	}
428 
429 	SIGEMPTYSET(sq->sq_signals);
430 	SIGEMPTYSET(sq->sq_kill);
431 }
432 
433 static void
434 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
435 {
436 	sigset_t tmp;
437 	struct proc *p1, *p2;
438 	ksiginfo_t *ksi, *next;
439 
440 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
441 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
442 	p1 = src->sq_proc;
443 	p2 = dst->sq_proc;
444 	/* Move siginfo to target list */
445 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
446 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
447 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
448 			if (p1 != NULL)
449 				p1->p_pendingcnt--;
450 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
451 			ksi->ksi_sigq = dst;
452 			if (p2 != NULL)
453 				p2->p_pendingcnt++;
454 		}
455 	}
456 
457 	/* Move pending bits to target list */
458 	tmp = src->sq_kill;
459 	SIGSETAND(tmp, *set);
460 	SIGSETOR(dst->sq_kill, tmp);
461 	SIGSETNAND(src->sq_kill, tmp);
462 
463 	tmp = src->sq_signals;
464 	SIGSETAND(tmp, *set);
465 	SIGSETOR(dst->sq_signals, tmp);
466 	SIGSETNAND(src->sq_signals, tmp);
467 }
468 
469 #if 0
470 static void
471 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
472 {
473 	sigset_t set;
474 
475 	SIGEMPTYSET(set);
476 	SIGADDSET(set, signo);
477 	sigqueue_move_set(src, dst, &set);
478 }
479 #endif
480 
481 static void
482 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
483 {
484 	struct proc *p = sq->sq_proc;
485 	ksiginfo_t *ksi, *next;
486 
487 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
488 
489 	/* Remove siginfo queue */
490 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
491 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
492 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
493 			ksi->ksi_sigq = NULL;
494 			if (ksiginfo_tryfree(ksi) && p != NULL)
495 				p->p_pendingcnt--;
496 		}
497 	}
498 	SIGSETNAND(sq->sq_kill, *set);
499 	SIGSETNAND(sq->sq_signals, *set);
500 }
501 
502 void
503 sigqueue_delete(sigqueue_t *sq, int signo)
504 {
505 	sigset_t set;
506 
507 	SIGEMPTYSET(set);
508 	SIGADDSET(set, signo);
509 	sigqueue_delete_set(sq, &set);
510 }
511 
512 /* Remove a set of signals for a process */
513 static void
514 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
515 {
516 	sigqueue_t worklist;
517 	struct thread *td0;
518 
519 	PROC_LOCK_ASSERT(p, MA_OWNED);
520 
521 	sigqueue_init(&worklist, NULL);
522 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
523 
524 	FOREACH_THREAD_IN_PROC(p, td0)
525 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
526 
527 	sigqueue_flush(&worklist);
528 }
529 
530 void
531 sigqueue_delete_proc(struct proc *p, int signo)
532 {
533 	sigset_t set;
534 
535 	SIGEMPTYSET(set);
536 	SIGADDSET(set, signo);
537 	sigqueue_delete_set_proc(p, &set);
538 }
539 
540 static void
541 sigqueue_delete_stopmask_proc(struct proc *p)
542 {
543 	sigset_t set;
544 
545 	SIGEMPTYSET(set);
546 	SIGADDSET(set, SIGSTOP);
547 	SIGADDSET(set, SIGTSTP);
548 	SIGADDSET(set, SIGTTIN);
549 	SIGADDSET(set, SIGTTOU);
550 	sigqueue_delete_set_proc(p, &set);
551 }
552 
553 /*
554  * Determine signal that should be delivered to process p, the current
555  * process, 0 if none.  If there is a pending stop signal with default
556  * action, the process stops in issignal().
557  */
558 int
559 cursig(struct thread *td, int stop_allowed)
560 {
561 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
562 	KASSERT(stop_allowed == SIG_STOP_ALLOWED ||
563 	    stop_allowed == SIG_STOP_NOT_ALLOWED, ("cursig: stop_allowed"));
564 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
565 	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
566 	return (SIGPENDING(td) ? issignal(td, stop_allowed) : 0);
567 }
568 
569 /*
570  * Arrange for ast() to handle unmasked pending signals on return to user
571  * mode.  This must be called whenever a signal is added to td_sigqueue or
572  * unmasked in td_sigmask.
573  */
574 void
575 signotify(struct thread *td)
576 {
577 	struct proc *p;
578 
579 	p = td->td_proc;
580 
581 	PROC_LOCK_ASSERT(p, MA_OWNED);
582 
583 	if (SIGPENDING(td)) {
584 		thread_lock(td);
585 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
586 		thread_unlock(td);
587 	}
588 }
589 
590 int
591 sigonstack(size_t sp)
592 {
593 	struct thread *td = curthread;
594 
595 	return ((td->td_pflags & TDP_ALTSTACK) ?
596 #if defined(COMPAT_43)
597 	    ((td->td_sigstk.ss_size == 0) ?
598 		(td->td_sigstk.ss_flags & SS_ONSTACK) :
599 		((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
600 #else
601 	    ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
602 #endif
603 	    : 0);
604 }
605 
606 static __inline int
607 sigprop(int sig)
608 {
609 
610 	if (sig > 0 && sig < NSIG)
611 		return (sigproptbl[_SIG_IDX(sig)]);
612 	return (0);
613 }
614 
615 int
616 sig_ffs(sigset_t *set)
617 {
618 	int i;
619 
620 	for (i = 0; i < _SIG_WORDS; i++)
621 		if (set->__bits[i])
622 			return (ffs(set->__bits[i]) + (i * 32));
623 	return (0);
624 }
625 
626 /*
627  * kern_sigaction
628  * sigaction
629  * freebsd4_sigaction
630  * osigaction
631  */
632 int
633 kern_sigaction(td, sig, act, oact, flags)
634 	struct thread *td;
635 	register int sig;
636 	struct sigaction *act, *oact;
637 	int flags;
638 {
639 	struct sigacts *ps;
640 	struct proc *p = td->td_proc;
641 
642 	if (!_SIG_VALID(sig))
643 		return (EINVAL);
644 
645 	PROC_LOCK(p);
646 	ps = p->p_sigacts;
647 	mtx_lock(&ps->ps_mtx);
648 	if (oact) {
649 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
650 		oact->sa_flags = 0;
651 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
652 			oact->sa_flags |= SA_ONSTACK;
653 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
654 			oact->sa_flags |= SA_RESTART;
655 		if (SIGISMEMBER(ps->ps_sigreset, sig))
656 			oact->sa_flags |= SA_RESETHAND;
657 		if (SIGISMEMBER(ps->ps_signodefer, sig))
658 			oact->sa_flags |= SA_NODEFER;
659 		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
660 			oact->sa_flags |= SA_SIGINFO;
661 			oact->sa_sigaction =
662 			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
663 		} else
664 			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
665 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
666 			oact->sa_flags |= SA_NOCLDSTOP;
667 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
668 			oact->sa_flags |= SA_NOCLDWAIT;
669 	}
670 	if (act) {
671 		if ((sig == SIGKILL || sig == SIGSTOP) &&
672 		    act->sa_handler != SIG_DFL) {
673 			mtx_unlock(&ps->ps_mtx);
674 			PROC_UNLOCK(p);
675 			return (EINVAL);
676 		}
677 
678 		/*
679 		 * Change setting atomically.
680 		 */
681 
682 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
683 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
684 		if (act->sa_flags & SA_SIGINFO) {
685 			ps->ps_sigact[_SIG_IDX(sig)] =
686 			    (__sighandler_t *)act->sa_sigaction;
687 			SIGADDSET(ps->ps_siginfo, sig);
688 		} else {
689 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
690 			SIGDELSET(ps->ps_siginfo, sig);
691 		}
692 		if (!(act->sa_flags & SA_RESTART))
693 			SIGADDSET(ps->ps_sigintr, sig);
694 		else
695 			SIGDELSET(ps->ps_sigintr, sig);
696 		if (act->sa_flags & SA_ONSTACK)
697 			SIGADDSET(ps->ps_sigonstack, sig);
698 		else
699 			SIGDELSET(ps->ps_sigonstack, sig);
700 		if (act->sa_flags & SA_RESETHAND)
701 			SIGADDSET(ps->ps_sigreset, sig);
702 		else
703 			SIGDELSET(ps->ps_sigreset, sig);
704 		if (act->sa_flags & SA_NODEFER)
705 			SIGADDSET(ps->ps_signodefer, sig);
706 		else
707 			SIGDELSET(ps->ps_signodefer, sig);
708 		if (sig == SIGCHLD) {
709 			if (act->sa_flags & SA_NOCLDSTOP)
710 				ps->ps_flag |= PS_NOCLDSTOP;
711 			else
712 				ps->ps_flag &= ~PS_NOCLDSTOP;
713 			if (act->sa_flags & SA_NOCLDWAIT) {
714 				/*
715 				 * Paranoia: since SA_NOCLDWAIT is implemented
716 				 * by reparenting the dying child to PID 1 (and
717 				 * trust it to reap the zombie), PID 1 itself
718 				 * is forbidden to set SA_NOCLDWAIT.
719 				 */
720 				if (p->p_pid == 1)
721 					ps->ps_flag &= ~PS_NOCLDWAIT;
722 				else
723 					ps->ps_flag |= PS_NOCLDWAIT;
724 			} else
725 				ps->ps_flag &= ~PS_NOCLDWAIT;
726 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
727 				ps->ps_flag |= PS_CLDSIGIGN;
728 			else
729 				ps->ps_flag &= ~PS_CLDSIGIGN;
730 		}
731 		/*
732 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
733 		 * and for signals set to SIG_DFL where the default is to
734 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
735 		 * have to restart the process.
736 		 */
737 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
738 		    (sigprop(sig) & SA_IGNORE &&
739 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
740 			/* never to be seen again */
741 			sigqueue_delete_proc(p, sig);
742 			if (sig != SIGCONT)
743 				/* easier in psignal */
744 				SIGADDSET(ps->ps_sigignore, sig);
745 			SIGDELSET(ps->ps_sigcatch, sig);
746 		} else {
747 			SIGDELSET(ps->ps_sigignore, sig);
748 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
749 				SIGDELSET(ps->ps_sigcatch, sig);
750 			else
751 				SIGADDSET(ps->ps_sigcatch, sig);
752 		}
753 #ifdef COMPAT_FREEBSD4
754 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
755 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
756 		    (flags & KSA_FREEBSD4) == 0)
757 			SIGDELSET(ps->ps_freebsd4, sig);
758 		else
759 			SIGADDSET(ps->ps_freebsd4, sig);
760 #endif
761 #ifdef COMPAT_43
762 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
763 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
764 		    (flags & KSA_OSIGSET) == 0)
765 			SIGDELSET(ps->ps_osigset, sig);
766 		else
767 			SIGADDSET(ps->ps_osigset, sig);
768 #endif
769 	}
770 	mtx_unlock(&ps->ps_mtx);
771 	PROC_UNLOCK(p);
772 	return (0);
773 }
774 
775 #ifndef _SYS_SYSPROTO_H_
776 struct sigaction_args {
777 	int	sig;
778 	struct	sigaction *act;
779 	struct	sigaction *oact;
780 };
781 #endif
782 int
783 sigaction(td, uap)
784 	struct thread *td;
785 	register struct sigaction_args *uap;
786 {
787 	struct sigaction act, oact;
788 	register struct sigaction *actp, *oactp;
789 	int error;
790 
791 	actp = (uap->act != NULL) ? &act : NULL;
792 	oactp = (uap->oact != NULL) ? &oact : NULL;
793 	if (actp) {
794 		error = copyin(uap->act, actp, sizeof(act));
795 		if (error)
796 			return (error);
797 	}
798 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
799 	if (oactp && !error)
800 		error = copyout(oactp, uap->oact, sizeof(oact));
801 	return (error);
802 }
803 
804 #ifdef COMPAT_FREEBSD4
805 #ifndef _SYS_SYSPROTO_H_
806 struct freebsd4_sigaction_args {
807 	int	sig;
808 	struct	sigaction *act;
809 	struct	sigaction *oact;
810 };
811 #endif
812 int
813 freebsd4_sigaction(td, uap)
814 	struct thread *td;
815 	register struct freebsd4_sigaction_args *uap;
816 {
817 	struct sigaction act, oact;
818 	register struct sigaction *actp, *oactp;
819 	int error;
820 
821 
822 	actp = (uap->act != NULL) ? &act : NULL;
823 	oactp = (uap->oact != NULL) ? &oact : NULL;
824 	if (actp) {
825 		error = copyin(uap->act, actp, sizeof(act));
826 		if (error)
827 			return (error);
828 	}
829 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
830 	if (oactp && !error)
831 		error = copyout(oactp, uap->oact, sizeof(oact));
832 	return (error);
833 }
834 #endif	/* COMAPT_FREEBSD4 */
835 
836 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
837 #ifndef _SYS_SYSPROTO_H_
838 struct osigaction_args {
839 	int	signum;
840 	struct	osigaction *nsa;
841 	struct	osigaction *osa;
842 };
843 #endif
844 int
845 osigaction(td, uap)
846 	struct thread *td;
847 	register struct osigaction_args *uap;
848 {
849 	struct osigaction sa;
850 	struct sigaction nsa, osa;
851 	register struct sigaction *nsap, *osap;
852 	int error;
853 
854 	if (uap->signum <= 0 || uap->signum >= ONSIG)
855 		return (EINVAL);
856 
857 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
858 	osap = (uap->osa != NULL) ? &osa : NULL;
859 
860 	if (nsap) {
861 		error = copyin(uap->nsa, &sa, sizeof(sa));
862 		if (error)
863 			return (error);
864 		nsap->sa_handler = sa.sa_handler;
865 		nsap->sa_flags = sa.sa_flags;
866 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
867 	}
868 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
869 	if (osap && !error) {
870 		sa.sa_handler = osap->sa_handler;
871 		sa.sa_flags = osap->sa_flags;
872 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
873 		error = copyout(&sa, uap->osa, sizeof(sa));
874 	}
875 	return (error);
876 }
877 
878 #if !defined(__i386__)
879 /* Avoid replicating the same stub everywhere */
880 int
881 osigreturn(td, uap)
882 	struct thread *td;
883 	struct osigreturn_args *uap;
884 {
885 
886 	return (nosys(td, (struct nosys_args *)uap));
887 }
888 #endif
889 #endif /* COMPAT_43 */
890 
891 /*
892  * Initialize signal state for process 0;
893  * set to ignore signals that are ignored by default.
894  */
895 void
896 siginit(p)
897 	struct proc *p;
898 {
899 	register int i;
900 	struct sigacts *ps;
901 
902 	PROC_LOCK(p);
903 	ps = p->p_sigacts;
904 	mtx_lock(&ps->ps_mtx);
905 	for (i = 1; i <= NSIG; i++)
906 		if (sigprop(i) & SA_IGNORE && i != SIGCONT)
907 			SIGADDSET(ps->ps_sigignore, i);
908 	mtx_unlock(&ps->ps_mtx);
909 	PROC_UNLOCK(p);
910 }
911 
912 /*
913  * Reset signals for an exec of the specified process.
914  */
915 void
916 execsigs(struct proc *p)
917 {
918 	struct sigacts *ps;
919 	int sig;
920 	struct thread *td;
921 
922 	/*
923 	 * Reset caught signals.  Held signals remain held
924 	 * through td_sigmask (unless they were caught,
925 	 * and are now ignored by default).
926 	 */
927 	PROC_LOCK_ASSERT(p, MA_OWNED);
928 	td = FIRST_THREAD_IN_PROC(p);
929 	ps = p->p_sigacts;
930 	mtx_lock(&ps->ps_mtx);
931 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
932 		sig = sig_ffs(&ps->ps_sigcatch);
933 		SIGDELSET(ps->ps_sigcatch, sig);
934 		if (sigprop(sig) & SA_IGNORE) {
935 			if (sig != SIGCONT)
936 				SIGADDSET(ps->ps_sigignore, sig);
937 			sigqueue_delete_proc(p, sig);
938 		}
939 		ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
940 	}
941 	/*
942 	 * Reset stack state to the user stack.
943 	 * Clear set of signals caught on the signal stack.
944 	 */
945 	td->td_sigstk.ss_flags = SS_DISABLE;
946 	td->td_sigstk.ss_size = 0;
947 	td->td_sigstk.ss_sp = 0;
948 	td->td_pflags &= ~TDP_ALTSTACK;
949 	/*
950 	 * Reset no zombies if child dies flag as Solaris does.
951 	 */
952 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
953 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
954 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
955 	mtx_unlock(&ps->ps_mtx);
956 }
957 
958 /*
959  * kern_sigprocmask()
960  *
961  *	Manipulate signal mask.
962  */
963 int
964 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
965     int flags)
966 {
967 	sigset_t new_block, oset1;
968 	struct proc *p;
969 	int error;
970 
971 	p = td->td_proc;
972 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
973 		PROC_LOCK(p);
974 	if (oset != NULL)
975 		*oset = td->td_sigmask;
976 
977 	error = 0;
978 	if (set != NULL) {
979 		switch (how) {
980 		case SIG_BLOCK:
981 			SIG_CANTMASK(*set);
982 			oset1 = td->td_sigmask;
983 			SIGSETOR(td->td_sigmask, *set);
984 			new_block = td->td_sigmask;
985 			SIGSETNAND(new_block, oset1);
986 			break;
987 		case SIG_UNBLOCK:
988 			SIGSETNAND(td->td_sigmask, *set);
989 			signotify(td);
990 			goto out;
991 		case SIG_SETMASK:
992 			SIG_CANTMASK(*set);
993 			oset1 = td->td_sigmask;
994 			if (flags & SIGPROCMASK_OLD)
995 				SIGSETLO(td->td_sigmask, *set);
996 			else
997 				td->td_sigmask = *set;
998 			new_block = td->td_sigmask;
999 			SIGSETNAND(new_block, oset1);
1000 			signotify(td);
1001 			break;
1002 		default:
1003 			error = EINVAL;
1004 			goto out;
1005 		}
1006 
1007 		/*
1008 		 * The new_block set contains signals that were not previously
1009 		 * blocked, but are blocked now.
1010 		 *
1011 		 * In case we block any signal that was not previously blocked
1012 		 * for td, and process has the signal pending, try to schedule
1013 		 * signal delivery to some thread that does not block the
1014 		 * signal, possibly waking it up.
1015 		 */
1016 		if (p->p_numthreads != 1)
1017 			reschedule_signals(p, new_block, flags);
1018 	}
1019 
1020 out:
1021 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
1022 		PROC_UNLOCK(p);
1023 	return (error);
1024 }
1025 
1026 #ifndef _SYS_SYSPROTO_H_
1027 struct sigprocmask_args {
1028 	int	how;
1029 	const sigset_t *set;
1030 	sigset_t *oset;
1031 };
1032 #endif
1033 int
1034 sigprocmask(td, uap)
1035 	register struct thread *td;
1036 	struct sigprocmask_args *uap;
1037 {
1038 	sigset_t set, oset;
1039 	sigset_t *setp, *osetp;
1040 	int error;
1041 
1042 	setp = (uap->set != NULL) ? &set : NULL;
1043 	osetp = (uap->oset != NULL) ? &oset : NULL;
1044 	if (setp) {
1045 		error = copyin(uap->set, setp, sizeof(set));
1046 		if (error)
1047 			return (error);
1048 	}
1049 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1050 	if (osetp && !error) {
1051 		error = copyout(osetp, uap->oset, sizeof(oset));
1052 	}
1053 	return (error);
1054 }
1055 
1056 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1057 #ifndef _SYS_SYSPROTO_H_
1058 struct osigprocmask_args {
1059 	int	how;
1060 	osigset_t mask;
1061 };
1062 #endif
1063 int
1064 osigprocmask(td, uap)
1065 	register struct thread *td;
1066 	struct osigprocmask_args *uap;
1067 {
1068 	sigset_t set, oset;
1069 	int error;
1070 
1071 	OSIG2SIG(uap->mask, set);
1072 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1073 	SIG2OSIG(oset, td->td_retval[0]);
1074 	return (error);
1075 }
1076 #endif /* COMPAT_43 */
1077 
1078 int
1079 sigwait(struct thread *td, struct sigwait_args *uap)
1080 {
1081 	ksiginfo_t ksi;
1082 	sigset_t set;
1083 	int error;
1084 
1085 	error = copyin(uap->set, &set, sizeof(set));
1086 	if (error) {
1087 		td->td_retval[0] = error;
1088 		return (0);
1089 	}
1090 
1091 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1092 	if (error) {
1093 		if (error == ERESTART)
1094 			return (error);
1095 		td->td_retval[0] = error;
1096 		return (0);
1097 	}
1098 
1099 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1100 	td->td_retval[0] = error;
1101 	return (0);
1102 }
1103 
1104 int
1105 sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1106 {
1107 	struct timespec ts;
1108 	struct timespec *timeout;
1109 	sigset_t set;
1110 	ksiginfo_t ksi;
1111 	int error;
1112 
1113 	if (uap->timeout) {
1114 		error = copyin(uap->timeout, &ts, sizeof(ts));
1115 		if (error)
1116 			return (error);
1117 
1118 		timeout = &ts;
1119 	} else
1120 		timeout = NULL;
1121 
1122 	error = copyin(uap->set, &set, sizeof(set));
1123 	if (error)
1124 		return (error);
1125 
1126 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1127 	if (error)
1128 		return (error);
1129 
1130 	if (uap->info)
1131 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1132 
1133 	if (error == 0)
1134 		td->td_retval[0] = ksi.ksi_signo;
1135 	return (error);
1136 }
1137 
1138 int
1139 sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1140 {
1141 	ksiginfo_t ksi;
1142 	sigset_t set;
1143 	int error;
1144 
1145 	error = copyin(uap->set, &set, sizeof(set));
1146 	if (error)
1147 		return (error);
1148 
1149 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1150 	if (error)
1151 		return (error);
1152 
1153 	if (uap->info)
1154 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1155 
1156 	if (error == 0)
1157 		td->td_retval[0] = ksi.ksi_signo;
1158 	return (error);
1159 }
1160 
1161 int
1162 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1163 	struct timespec *timeout)
1164 {
1165 	struct sigacts *ps;
1166 	sigset_t saved_mask, new_block;
1167 	struct proc *p;
1168 	int error, sig, timo, timevalid = 0;
1169 	struct timespec rts, ets, ts;
1170 	struct timeval tv;
1171 
1172 	p = td->td_proc;
1173 	error = 0;
1174 	ets.tv_sec = 0;
1175 	ets.tv_nsec = 0;
1176 
1177 	if (timeout != NULL) {
1178 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1179 			timevalid = 1;
1180 			getnanouptime(&rts);
1181 		 	ets = rts;
1182 			timespecadd(&ets, timeout);
1183 		}
1184 	}
1185 	ksiginfo_init(ksi);
1186 	/* Some signals can not be waited for. */
1187 	SIG_CANTMASK(waitset);
1188 	ps = p->p_sigacts;
1189 	PROC_LOCK(p);
1190 	saved_mask = td->td_sigmask;
1191 	SIGSETNAND(td->td_sigmask, waitset);
1192 	for (;;) {
1193 		mtx_lock(&ps->ps_mtx);
1194 		sig = cursig(td, SIG_STOP_ALLOWED);
1195 		mtx_unlock(&ps->ps_mtx);
1196 		if (sig != 0 && SIGISMEMBER(waitset, sig)) {
1197 			if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1198 		    	    sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1199 				error = 0;
1200 				break;
1201 			}
1202 		}
1203 
1204 		if (error != 0)
1205 			break;
1206 
1207 		/*
1208 		 * POSIX says this must be checked after looking for pending
1209 		 * signals.
1210 		 */
1211 		if (timeout != NULL) {
1212 			if (!timevalid) {
1213 				error = EINVAL;
1214 				break;
1215 			}
1216 			getnanouptime(&rts);
1217 			if (timespeccmp(&rts, &ets, >=)) {
1218 				error = EAGAIN;
1219 				break;
1220 			}
1221 			ts = ets;
1222 			timespecsub(&ts, &rts);
1223 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1224 			timo = tvtohz(&tv);
1225 		} else {
1226 			timo = 0;
1227 		}
1228 
1229 		error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo);
1230 
1231 		if (timeout != NULL) {
1232 			if (error == ERESTART) {
1233 				/* Timeout can not be restarted. */
1234 				error = EINTR;
1235 			} else if (error == EAGAIN) {
1236 				/* We will calculate timeout by ourself. */
1237 				error = 0;
1238 			}
1239 		}
1240 	}
1241 
1242 	new_block = saved_mask;
1243 	SIGSETNAND(new_block, td->td_sigmask);
1244 	td->td_sigmask = saved_mask;
1245 	/*
1246 	 * Fewer signals can be delivered to us, reschedule signal
1247 	 * notification.
1248 	 */
1249 	if (p->p_numthreads != 1)
1250 		reschedule_signals(p, new_block, 0);
1251 
1252 	if (error == 0) {
1253 		SDT_PROBE(proc, kernel, , signal_clear, sig, ksi, 0, 0, 0);
1254 
1255 		if (ksi->ksi_code == SI_TIMER)
1256 			itimer_accept(p, ksi->ksi_timerid, ksi);
1257 
1258 #ifdef KTRACE
1259 		if (KTRPOINT(td, KTR_PSIG)) {
1260 			sig_t action;
1261 
1262 			mtx_lock(&ps->ps_mtx);
1263 			action = ps->ps_sigact[_SIG_IDX(sig)];
1264 			mtx_unlock(&ps->ps_mtx);
1265 			ktrpsig(sig, action, &td->td_sigmask, 0);
1266 		}
1267 #endif
1268 		if (sig == SIGKILL)
1269 			sigexit(td, sig);
1270 	}
1271 	PROC_UNLOCK(p);
1272 	return (error);
1273 }
1274 
1275 #ifndef _SYS_SYSPROTO_H_
1276 struct sigpending_args {
1277 	sigset_t	*set;
1278 };
1279 #endif
1280 int
1281 sigpending(td, uap)
1282 	struct thread *td;
1283 	struct sigpending_args *uap;
1284 {
1285 	struct proc *p = td->td_proc;
1286 	sigset_t pending;
1287 
1288 	PROC_LOCK(p);
1289 	pending = p->p_sigqueue.sq_signals;
1290 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1291 	PROC_UNLOCK(p);
1292 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1293 }
1294 
1295 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1296 #ifndef _SYS_SYSPROTO_H_
1297 struct osigpending_args {
1298 	int	dummy;
1299 };
1300 #endif
1301 int
1302 osigpending(td, uap)
1303 	struct thread *td;
1304 	struct osigpending_args *uap;
1305 {
1306 	struct proc *p = td->td_proc;
1307 	sigset_t pending;
1308 
1309 	PROC_LOCK(p);
1310 	pending = p->p_sigqueue.sq_signals;
1311 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1312 	PROC_UNLOCK(p);
1313 	SIG2OSIG(pending, td->td_retval[0]);
1314 	return (0);
1315 }
1316 #endif /* COMPAT_43 */
1317 
1318 #if defined(COMPAT_43)
1319 /*
1320  * Generalized interface signal handler, 4.3-compatible.
1321  */
1322 #ifndef _SYS_SYSPROTO_H_
1323 struct osigvec_args {
1324 	int	signum;
1325 	struct	sigvec *nsv;
1326 	struct	sigvec *osv;
1327 };
1328 #endif
1329 /* ARGSUSED */
1330 int
1331 osigvec(td, uap)
1332 	struct thread *td;
1333 	register struct osigvec_args *uap;
1334 {
1335 	struct sigvec vec;
1336 	struct sigaction nsa, osa;
1337 	register struct sigaction *nsap, *osap;
1338 	int error;
1339 
1340 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1341 		return (EINVAL);
1342 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1343 	osap = (uap->osv != NULL) ? &osa : NULL;
1344 	if (nsap) {
1345 		error = copyin(uap->nsv, &vec, sizeof(vec));
1346 		if (error)
1347 			return (error);
1348 		nsap->sa_handler = vec.sv_handler;
1349 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1350 		nsap->sa_flags = vec.sv_flags;
1351 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1352 	}
1353 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1354 	if (osap && !error) {
1355 		vec.sv_handler = osap->sa_handler;
1356 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1357 		vec.sv_flags = osap->sa_flags;
1358 		vec.sv_flags &= ~SA_NOCLDWAIT;
1359 		vec.sv_flags ^= SA_RESTART;
1360 		error = copyout(&vec, uap->osv, sizeof(vec));
1361 	}
1362 	return (error);
1363 }
1364 
1365 #ifndef _SYS_SYSPROTO_H_
1366 struct osigblock_args {
1367 	int	mask;
1368 };
1369 #endif
1370 int
1371 osigblock(td, uap)
1372 	register struct thread *td;
1373 	struct osigblock_args *uap;
1374 {
1375 	sigset_t set, oset;
1376 
1377 	OSIG2SIG(uap->mask, set);
1378 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
1379 	SIG2OSIG(oset, td->td_retval[0]);
1380 	return (0);
1381 }
1382 
1383 #ifndef _SYS_SYSPROTO_H_
1384 struct osigsetmask_args {
1385 	int	mask;
1386 };
1387 #endif
1388 int
1389 osigsetmask(td, uap)
1390 	struct thread *td;
1391 	struct osigsetmask_args *uap;
1392 {
1393 	sigset_t set, oset;
1394 
1395 	OSIG2SIG(uap->mask, set);
1396 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
1397 	SIG2OSIG(oset, td->td_retval[0]);
1398 	return (0);
1399 }
1400 #endif /* COMPAT_43 */
1401 
1402 /*
1403  * Suspend calling thread until signal, providing mask to be set in the
1404  * meantime.
1405  */
1406 #ifndef _SYS_SYSPROTO_H_
1407 struct sigsuspend_args {
1408 	const sigset_t *sigmask;
1409 };
1410 #endif
1411 /* ARGSUSED */
1412 int
1413 sigsuspend(td, uap)
1414 	struct thread *td;
1415 	struct sigsuspend_args *uap;
1416 {
1417 	sigset_t mask;
1418 	int error;
1419 
1420 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1421 	if (error)
1422 		return (error);
1423 	return (kern_sigsuspend(td, mask));
1424 }
1425 
1426 int
1427 kern_sigsuspend(struct thread *td, sigset_t mask)
1428 {
1429 	struct proc *p = td->td_proc;
1430 	int has_sig, sig;
1431 
1432 	/*
1433 	 * When returning from sigsuspend, we want
1434 	 * the old mask to be restored after the
1435 	 * signal handler has finished.  Thus, we
1436 	 * save it here and mark the sigacts structure
1437 	 * to indicate this.
1438 	 */
1439 	PROC_LOCK(p);
1440 	kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
1441 	    SIGPROCMASK_PROC_LOCKED);
1442 	td->td_pflags |= TDP_OLDMASK;
1443 
1444 	/*
1445 	 * Process signals now. Otherwise, we can get spurious wakeup
1446 	 * due to signal entered process queue, but delivered to other
1447 	 * thread. But sigsuspend should return only on signal
1448 	 * delivery.
1449 	 */
1450 	(p->p_sysent->sv_set_syscall_retval)(td, EINTR);
1451 	for (has_sig = 0; !has_sig;) {
1452 		while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
1453 			0) == 0)
1454 			/* void */;
1455 		thread_suspend_check(0);
1456 		mtx_lock(&p->p_sigacts->ps_mtx);
1457 		while ((sig = cursig(td, SIG_STOP_ALLOWED)) != 0)
1458 			has_sig += postsig(sig);
1459 		mtx_unlock(&p->p_sigacts->ps_mtx);
1460 	}
1461 	PROC_UNLOCK(p);
1462 	return (EJUSTRETURN);
1463 }
1464 
1465 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1466 /*
1467  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1468  * convention: libc stub passes mask, not pointer, to save a copyin.
1469  */
1470 #ifndef _SYS_SYSPROTO_H_
1471 struct osigsuspend_args {
1472 	osigset_t mask;
1473 };
1474 #endif
1475 /* ARGSUSED */
1476 int
1477 osigsuspend(td, uap)
1478 	struct thread *td;
1479 	struct osigsuspend_args *uap;
1480 {
1481 	sigset_t mask;
1482 
1483 	OSIG2SIG(uap->mask, mask);
1484 	return (kern_sigsuspend(td, mask));
1485 }
1486 #endif /* COMPAT_43 */
1487 
1488 #if defined(COMPAT_43)
1489 #ifndef _SYS_SYSPROTO_H_
1490 struct osigstack_args {
1491 	struct	sigstack *nss;
1492 	struct	sigstack *oss;
1493 };
1494 #endif
1495 /* ARGSUSED */
1496 int
1497 osigstack(td, uap)
1498 	struct thread *td;
1499 	register struct osigstack_args *uap;
1500 {
1501 	struct sigstack nss, oss;
1502 	int error = 0;
1503 
1504 	if (uap->nss != NULL) {
1505 		error = copyin(uap->nss, &nss, sizeof(nss));
1506 		if (error)
1507 			return (error);
1508 	}
1509 	oss.ss_sp = td->td_sigstk.ss_sp;
1510 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1511 	if (uap->nss != NULL) {
1512 		td->td_sigstk.ss_sp = nss.ss_sp;
1513 		td->td_sigstk.ss_size = 0;
1514 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1515 		td->td_pflags |= TDP_ALTSTACK;
1516 	}
1517 	if (uap->oss != NULL)
1518 		error = copyout(&oss, uap->oss, sizeof(oss));
1519 
1520 	return (error);
1521 }
1522 #endif /* COMPAT_43 */
1523 
1524 #ifndef _SYS_SYSPROTO_H_
1525 struct sigaltstack_args {
1526 	stack_t	*ss;
1527 	stack_t	*oss;
1528 };
1529 #endif
1530 /* ARGSUSED */
1531 int
1532 sigaltstack(td, uap)
1533 	struct thread *td;
1534 	register struct sigaltstack_args *uap;
1535 {
1536 	stack_t ss, oss;
1537 	int error;
1538 
1539 	if (uap->ss != NULL) {
1540 		error = copyin(uap->ss, &ss, sizeof(ss));
1541 		if (error)
1542 			return (error);
1543 	}
1544 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1545 	    (uap->oss != NULL) ? &oss : NULL);
1546 	if (error)
1547 		return (error);
1548 	if (uap->oss != NULL)
1549 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1550 	return (error);
1551 }
1552 
1553 int
1554 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1555 {
1556 	struct proc *p = td->td_proc;
1557 	int oonstack;
1558 
1559 	oonstack = sigonstack(cpu_getstack(td));
1560 
1561 	if (oss != NULL) {
1562 		*oss = td->td_sigstk;
1563 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1564 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1565 	}
1566 
1567 	if (ss != NULL) {
1568 		if (oonstack)
1569 			return (EPERM);
1570 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1571 			return (EINVAL);
1572 		if (!(ss->ss_flags & SS_DISABLE)) {
1573 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1574 				return (ENOMEM);
1575 
1576 			td->td_sigstk = *ss;
1577 			td->td_pflags |= TDP_ALTSTACK;
1578 		} else {
1579 			td->td_pflags &= ~TDP_ALTSTACK;
1580 		}
1581 	}
1582 	return (0);
1583 }
1584 
1585 /*
1586  * Common code for kill process group/broadcast kill.
1587  * cp is calling process.
1588  */
1589 static int
1590 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1591 {
1592 	struct proc *p;
1593 	struct pgrp *pgrp;
1594 	int nfound = 0;
1595 
1596 	if (all) {
1597 		/*
1598 		 * broadcast
1599 		 */
1600 		sx_slock(&allproc_lock);
1601 		FOREACH_PROC_IN_SYSTEM(p) {
1602 			PROC_LOCK(p);
1603 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1604 			    p == td->td_proc || p->p_state == PRS_NEW) {
1605 				PROC_UNLOCK(p);
1606 				continue;
1607 			}
1608 			if (p_cansignal(td, p, sig) == 0) {
1609 				nfound++;
1610 				if (sig)
1611 					pksignal(p, sig, ksi);
1612 			}
1613 			PROC_UNLOCK(p);
1614 		}
1615 		sx_sunlock(&allproc_lock);
1616 	} else {
1617 		sx_slock(&proctree_lock);
1618 		if (pgid == 0) {
1619 			/*
1620 			 * zero pgid means send to my process group.
1621 			 */
1622 			pgrp = td->td_proc->p_pgrp;
1623 			PGRP_LOCK(pgrp);
1624 		} else {
1625 			pgrp = pgfind(pgid);
1626 			if (pgrp == NULL) {
1627 				sx_sunlock(&proctree_lock);
1628 				return (ESRCH);
1629 			}
1630 		}
1631 		sx_sunlock(&proctree_lock);
1632 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1633 			PROC_LOCK(p);
1634 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1635 				p->p_state == PRS_NEW ) {
1636 				PROC_UNLOCK(p);
1637 				continue;
1638 			}
1639 			if (p_cansignal(td, p, sig) == 0) {
1640 				nfound++;
1641 				if (sig)
1642 					pksignal(p, sig, ksi);
1643 			}
1644 			PROC_UNLOCK(p);
1645 		}
1646 		PGRP_UNLOCK(pgrp);
1647 	}
1648 	return (nfound ? 0 : ESRCH);
1649 }
1650 
1651 #ifndef _SYS_SYSPROTO_H_
1652 struct kill_args {
1653 	int	pid;
1654 	int	signum;
1655 };
1656 #endif
1657 /* ARGSUSED */
1658 int
1659 kill(struct thread *td, struct kill_args *uap)
1660 {
1661 	ksiginfo_t ksi;
1662 	struct proc *p;
1663 	int error;
1664 
1665 	AUDIT_ARG_SIGNUM(uap->signum);
1666 	AUDIT_ARG_PID(uap->pid);
1667 	if ((u_int)uap->signum > _SIG_MAXSIG)
1668 		return (EINVAL);
1669 
1670 	ksiginfo_init(&ksi);
1671 	ksi.ksi_signo = uap->signum;
1672 	ksi.ksi_code = SI_USER;
1673 	ksi.ksi_pid = td->td_proc->p_pid;
1674 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1675 
1676 	if (uap->pid > 0) {
1677 		/* kill single process */
1678 		if ((p = pfind(uap->pid)) == NULL) {
1679 			if ((p = zpfind(uap->pid)) == NULL)
1680 				return (ESRCH);
1681 		}
1682 		AUDIT_ARG_PROCESS(p);
1683 		error = p_cansignal(td, p, uap->signum);
1684 		if (error == 0 && uap->signum)
1685 			pksignal(p, uap->signum, &ksi);
1686 		PROC_UNLOCK(p);
1687 		return (error);
1688 	}
1689 	switch (uap->pid) {
1690 	case -1:		/* broadcast signal */
1691 		return (killpg1(td, uap->signum, 0, 1, &ksi));
1692 	case 0:			/* signal own process group */
1693 		return (killpg1(td, uap->signum, 0, 0, &ksi));
1694 	default:		/* negative explicit process group */
1695 		return (killpg1(td, uap->signum, -uap->pid, 0, &ksi));
1696 	}
1697 	/* NOTREACHED */
1698 }
1699 
1700 #if defined(COMPAT_43)
1701 #ifndef _SYS_SYSPROTO_H_
1702 struct okillpg_args {
1703 	int	pgid;
1704 	int	signum;
1705 };
1706 #endif
1707 /* ARGSUSED */
1708 int
1709 okillpg(struct thread *td, struct okillpg_args *uap)
1710 {
1711 	ksiginfo_t ksi;
1712 
1713 	AUDIT_ARG_SIGNUM(uap->signum);
1714 	AUDIT_ARG_PID(uap->pgid);
1715 	if ((u_int)uap->signum > _SIG_MAXSIG)
1716 		return (EINVAL);
1717 
1718 	ksiginfo_init(&ksi);
1719 	ksi.ksi_signo = uap->signum;
1720 	ksi.ksi_code = SI_USER;
1721 	ksi.ksi_pid = td->td_proc->p_pid;
1722 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1723 	return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
1724 }
1725 #endif /* COMPAT_43 */
1726 
1727 #ifndef _SYS_SYSPROTO_H_
1728 struct sigqueue_args {
1729 	pid_t pid;
1730 	int signum;
1731 	/* union sigval */ void *value;
1732 };
1733 #endif
1734 int
1735 sigqueue(struct thread *td, struct sigqueue_args *uap)
1736 {
1737 	ksiginfo_t ksi;
1738 	struct proc *p;
1739 	int error;
1740 
1741 	if ((u_int)uap->signum > _SIG_MAXSIG)
1742 		return (EINVAL);
1743 
1744 	/*
1745 	 * Specification says sigqueue can only send signal to
1746 	 * single process.
1747 	 */
1748 	if (uap->pid <= 0)
1749 		return (EINVAL);
1750 
1751 	if ((p = pfind(uap->pid)) == NULL) {
1752 		if ((p = zpfind(uap->pid)) == NULL)
1753 			return (ESRCH);
1754 	}
1755 	error = p_cansignal(td, p, uap->signum);
1756 	if (error == 0 && uap->signum != 0) {
1757 		ksiginfo_init(&ksi);
1758 		ksi.ksi_flags = KSI_SIGQ;
1759 		ksi.ksi_signo = uap->signum;
1760 		ksi.ksi_code = SI_QUEUE;
1761 		ksi.ksi_pid = td->td_proc->p_pid;
1762 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1763 		ksi.ksi_value.sival_ptr = uap->value;
1764 		error = pksignal(p, ksi.ksi_signo, &ksi);
1765 	}
1766 	PROC_UNLOCK(p);
1767 	return (error);
1768 }
1769 
1770 /*
1771  * Send a signal to a process group.
1772  */
1773 void
1774 gsignal(int pgid, int sig, ksiginfo_t *ksi)
1775 {
1776 	struct pgrp *pgrp;
1777 
1778 	if (pgid != 0) {
1779 		sx_slock(&proctree_lock);
1780 		pgrp = pgfind(pgid);
1781 		sx_sunlock(&proctree_lock);
1782 		if (pgrp != NULL) {
1783 			pgsignal(pgrp, sig, 0, ksi);
1784 			PGRP_UNLOCK(pgrp);
1785 		}
1786 	}
1787 }
1788 
1789 /*
1790  * Send a signal to a process group.  If checktty is 1,
1791  * limit to members which have a controlling terminal.
1792  */
1793 void
1794 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
1795 {
1796 	struct proc *p;
1797 
1798 	if (pgrp) {
1799 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1800 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1801 			PROC_LOCK(p);
1802 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
1803 				pksignal(p, sig, ksi);
1804 			PROC_UNLOCK(p);
1805 		}
1806 	}
1807 }
1808 
1809 /*
1810  * Send a signal caused by a trap to the current thread.  If it will be
1811  * caught immediately, deliver it with correct code.  Otherwise, post it
1812  * normally.
1813  */
1814 void
1815 trapsignal(struct thread *td, ksiginfo_t *ksi)
1816 {
1817 	struct sigacts *ps;
1818 	sigset_t mask;
1819 	struct proc *p;
1820 	int sig;
1821 	int code;
1822 
1823 	p = td->td_proc;
1824 	sig = ksi->ksi_signo;
1825 	code = ksi->ksi_code;
1826 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
1827 
1828 	PROC_LOCK(p);
1829 	ps = p->p_sigacts;
1830 	mtx_lock(&ps->ps_mtx);
1831 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1832 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1833 		td->td_ru.ru_nsignals++;
1834 #ifdef KTRACE
1835 		if (KTRPOINT(curthread, KTR_PSIG))
1836 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1837 			    &td->td_sigmask, code);
1838 #endif
1839 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1840 				ksi, &td->td_sigmask);
1841 		mask = ps->ps_catchmask[_SIG_IDX(sig)];
1842 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
1843 			SIGADDSET(mask, sig);
1844 		kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
1845 		    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
1846 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
1847 			/*
1848 			 * See kern_sigaction() for origin of this code.
1849 			 */
1850 			SIGDELSET(ps->ps_sigcatch, sig);
1851 			if (sig != SIGCONT &&
1852 			    sigprop(sig) & SA_IGNORE)
1853 				SIGADDSET(ps->ps_sigignore, sig);
1854 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1855 		}
1856 		mtx_unlock(&ps->ps_mtx);
1857 	} else {
1858 		/*
1859 		 * Avoid a possible infinite loop if the thread
1860 		 * masking the signal or process is ignoring the
1861 		 * signal.
1862 		 */
1863 		if (kern_forcesigexit &&
1864 		    (SIGISMEMBER(td->td_sigmask, sig) ||
1865 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
1866 			SIGDELSET(td->td_sigmask, sig);
1867 			SIGDELSET(ps->ps_sigcatch, sig);
1868 			SIGDELSET(ps->ps_sigignore, sig);
1869 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1870 		}
1871 		mtx_unlock(&ps->ps_mtx);
1872 		p->p_code = code;	/* XXX for core dump/debugger */
1873 		p->p_sig = sig;		/* XXX to verify code */
1874 		tdsendsignal(p, td, sig, ksi);
1875 	}
1876 	PROC_UNLOCK(p);
1877 }
1878 
1879 static struct thread *
1880 sigtd(struct proc *p, int sig, int prop)
1881 {
1882 	struct thread *td, *signal_td;
1883 
1884 	PROC_LOCK_ASSERT(p, MA_OWNED);
1885 
1886 	/*
1887 	 * Check if current thread can handle the signal without
1888 	 * switching context to another thread.
1889 	 */
1890 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
1891 		return (curthread);
1892 	signal_td = NULL;
1893 	FOREACH_THREAD_IN_PROC(p, td) {
1894 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
1895 			signal_td = td;
1896 			break;
1897 		}
1898 	}
1899 	if (signal_td == NULL)
1900 		signal_td = FIRST_THREAD_IN_PROC(p);
1901 	return (signal_td);
1902 }
1903 
1904 /*
1905  * Send the signal to the process.  If the signal has an action, the action
1906  * is usually performed by the target process rather than the caller; we add
1907  * the signal to the set of pending signals for the process.
1908  *
1909  * Exceptions:
1910  *   o When a stop signal is sent to a sleeping process that takes the
1911  *     default action, the process is stopped without awakening it.
1912  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1913  *     regardless of the signal action (eg, blocked or ignored).
1914  *
1915  * Other ignored signals are discarded immediately.
1916  *
1917  * NB: This function may be entered from the debugger via the "kill" DDB
1918  * command.  There is little that can be done to mitigate the possibly messy
1919  * side effects of this unwise possibility.
1920  */
1921 void
1922 psignal(struct proc *p, int sig)
1923 {
1924 	ksiginfo_t ksi;
1925 
1926 	ksiginfo_init(&ksi);
1927 	ksi.ksi_signo = sig;
1928 	ksi.ksi_code = SI_KERNEL;
1929 	(void) tdsendsignal(p, NULL, sig, &ksi);
1930 }
1931 
1932 int
1933 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
1934 {
1935 
1936 	return (tdsendsignal(p, NULL, sig, ksi));
1937 }
1938 
1939 /* Utility function for finding a thread to send signal event to. */
1940 int
1941 sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
1942 {
1943 	struct thread *td;
1944 
1945 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
1946 		td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
1947 		if (td == NULL)
1948 			return (ESRCH);
1949 		*ttd = td;
1950 	} else {
1951 		*ttd = NULL;
1952 		PROC_LOCK(p);
1953 	}
1954 	return (0);
1955 }
1956 
1957 void
1958 tdsignal(struct thread *td, int sig)
1959 {
1960 	ksiginfo_t ksi;
1961 
1962 	ksiginfo_init(&ksi);
1963 	ksi.ksi_signo = sig;
1964 	ksi.ksi_code = SI_KERNEL;
1965 	(void) tdsendsignal(td->td_proc, td, sig, &ksi);
1966 }
1967 
1968 void
1969 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
1970 {
1971 
1972 	(void) tdsendsignal(td->td_proc, td, sig, ksi);
1973 }
1974 
1975 int
1976 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
1977 {
1978 	sig_t action;
1979 	sigqueue_t *sigqueue;
1980 	int prop;
1981 	struct sigacts *ps;
1982 	int intrval;
1983 	int ret = 0;
1984 	int wakeup_swapper;
1985 
1986 	MPASS(td == NULL || p == td->td_proc);
1987 	PROC_LOCK_ASSERT(p, MA_OWNED);
1988 
1989 	if (!_SIG_VALID(sig))
1990 		panic("%s(): invalid signal %d", __func__, sig);
1991 
1992 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
1993 
1994 	/*
1995 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
1996 	 */
1997 	if (p->p_state == PRS_ZOMBIE) {
1998 		if (ksi && (ksi->ksi_flags & KSI_INS))
1999 			ksiginfo_tryfree(ksi);
2000 		return (ret);
2001 	}
2002 
2003 	ps = p->p_sigacts;
2004 	KNOTE_LOCKED(&p->p_klist, NOTE_SIGNAL | sig);
2005 	prop = sigprop(sig);
2006 
2007 	if (td == NULL) {
2008 		td = sigtd(p, sig, prop);
2009 		sigqueue = &p->p_sigqueue;
2010 	} else {
2011 		KASSERT(td->td_proc == p, ("invalid thread"));
2012 		sigqueue = &td->td_sigqueue;
2013 	}
2014 
2015 	SDT_PROBE(proc, kernel, , signal_send, td, p, sig, 0, 0 );
2016 
2017 	/*
2018 	 * If the signal is being ignored,
2019 	 * then we forget about it immediately.
2020 	 * (Note: we don't set SIGCONT in ps_sigignore,
2021 	 * and if it is set to SIG_IGN,
2022 	 * action will be SIG_DFL here.)
2023 	 */
2024 	mtx_lock(&ps->ps_mtx);
2025 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2026 		SDT_PROBE(proc, kernel, , signal_discard, ps, td, sig, 0, 0 );
2027 
2028 		mtx_unlock(&ps->ps_mtx);
2029 		if (ksi && (ksi->ksi_flags & KSI_INS))
2030 			ksiginfo_tryfree(ksi);
2031 		return (ret);
2032 	}
2033 	if (SIGISMEMBER(td->td_sigmask, sig))
2034 		action = SIG_HOLD;
2035 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2036 		action = SIG_CATCH;
2037 	else
2038 		action = SIG_DFL;
2039 	if (SIGISMEMBER(ps->ps_sigintr, sig))
2040 		intrval = EINTR;
2041 	else
2042 		intrval = ERESTART;
2043 	mtx_unlock(&ps->ps_mtx);
2044 
2045 	if (prop & SA_CONT)
2046 		sigqueue_delete_stopmask_proc(p);
2047 	else if (prop & SA_STOP) {
2048 		/*
2049 		 * If sending a tty stop signal to a member of an orphaned
2050 		 * process group, discard the signal here if the action
2051 		 * is default; don't stop the process below if sleeping,
2052 		 * and don't clear any pending SIGCONT.
2053 		 */
2054 		if ((prop & SA_TTYSTOP) &&
2055 		    (p->p_pgrp->pg_jobc == 0) &&
2056 		    (action == SIG_DFL)) {
2057 			if (ksi && (ksi->ksi_flags & KSI_INS))
2058 				ksiginfo_tryfree(ksi);
2059 			return (ret);
2060 		}
2061 		sigqueue_delete_proc(p, SIGCONT);
2062 		if (p->p_flag & P_CONTINUED) {
2063 			p->p_flag &= ~P_CONTINUED;
2064 			PROC_LOCK(p->p_pptr);
2065 			sigqueue_take(p->p_ksi);
2066 			PROC_UNLOCK(p->p_pptr);
2067 		}
2068 	}
2069 
2070 	ret = sigqueue_add(sigqueue, sig, ksi);
2071 	if (ret != 0)
2072 		return (ret);
2073 	signotify(td);
2074 	/*
2075 	 * Defer further processing for signals which are held,
2076 	 * except that stopped processes must be continued by SIGCONT.
2077 	 */
2078 	if (action == SIG_HOLD &&
2079 	    !((prop & SA_CONT) && (p->p_flag & P_STOPPED_SIG)))
2080 		return (ret);
2081 	/*
2082 	 * SIGKILL: Remove procfs STOPEVENTs.
2083 	 */
2084 	if (sig == SIGKILL) {
2085 		/* from procfs_ioctl.c: PIOCBIC */
2086 		p->p_stops = 0;
2087 		/* from procfs_ioctl.c: PIOCCONT */
2088 		p->p_step = 0;
2089 		wakeup(&p->p_step);
2090 	}
2091 	/*
2092 	 * Some signals have a process-wide effect and a per-thread
2093 	 * component.  Most processing occurs when the process next
2094 	 * tries to cross the user boundary, however there are some
2095 	 * times when processing needs to be done immediatly, such as
2096 	 * waking up threads so that they can cross the user boundary.
2097 	 * We try do the per-process part here.
2098 	 */
2099 	if (P_SHOULDSTOP(p)) {
2100 		if (sig == SIGKILL) {
2101 			/*
2102 			 * If traced process is already stopped,
2103 			 * then no further action is necessary.
2104 			 */
2105 			if (p->p_flag & P_TRACED)
2106 				goto out;
2107 			/*
2108 			 * SIGKILL sets process running.
2109 			 * It will die elsewhere.
2110 			 * All threads must be restarted.
2111 			 */
2112 			p->p_flag &= ~P_STOPPED_SIG;
2113 			goto runfast;
2114 		}
2115 
2116 		if (prop & SA_CONT) {
2117 			/*
2118 			 * If traced process is already stopped,
2119 			 * then no further action is necessary.
2120 			 */
2121 			if (p->p_flag & P_TRACED)
2122 				goto out;
2123 			/*
2124 			 * If SIGCONT is default (or ignored), we continue the
2125 			 * process but don't leave the signal in sigqueue as
2126 			 * it has no further action.  If SIGCONT is held, we
2127 			 * continue the process and leave the signal in
2128 			 * sigqueue.  If the process catches SIGCONT, let it
2129 			 * handle the signal itself.  If it isn't waiting on
2130 			 * an event, it goes back to run state.
2131 			 * Otherwise, process goes back to sleep state.
2132 			 */
2133 			p->p_flag &= ~P_STOPPED_SIG;
2134 			PROC_SLOCK(p);
2135 			if (p->p_numthreads == p->p_suspcount) {
2136 				PROC_SUNLOCK(p);
2137 				p->p_flag |= P_CONTINUED;
2138 				p->p_xstat = SIGCONT;
2139 				PROC_LOCK(p->p_pptr);
2140 				childproc_continued(p);
2141 				PROC_UNLOCK(p->p_pptr);
2142 				PROC_SLOCK(p);
2143 			}
2144 			if (action == SIG_DFL) {
2145 				thread_unsuspend(p);
2146 				PROC_SUNLOCK(p);
2147 				sigqueue_delete(sigqueue, sig);
2148 				goto out;
2149 			}
2150 			if (action == SIG_CATCH) {
2151 				/*
2152 				 * The process wants to catch it so it needs
2153 				 * to run at least one thread, but which one?
2154 				 */
2155 				PROC_SUNLOCK(p);
2156 				goto runfast;
2157 			}
2158 			/*
2159 			 * The signal is not ignored or caught.
2160 			 */
2161 			thread_unsuspend(p);
2162 			PROC_SUNLOCK(p);
2163 			goto out;
2164 		}
2165 
2166 		if (prop & SA_STOP) {
2167 			/*
2168 			 * If traced process is already stopped,
2169 			 * then no further action is necessary.
2170 			 */
2171 			if (p->p_flag & P_TRACED)
2172 				goto out;
2173 			/*
2174 			 * Already stopped, don't need to stop again
2175 			 * (If we did the shell could get confused).
2176 			 * Just make sure the signal STOP bit set.
2177 			 */
2178 			p->p_flag |= P_STOPPED_SIG;
2179 			sigqueue_delete(sigqueue, sig);
2180 			goto out;
2181 		}
2182 
2183 		/*
2184 		 * All other kinds of signals:
2185 		 * If a thread is sleeping interruptibly, simulate a
2186 		 * wakeup so that when it is continued it will be made
2187 		 * runnable and can look at the signal.  However, don't make
2188 		 * the PROCESS runnable, leave it stopped.
2189 		 * It may run a bit until it hits a thread_suspend_check().
2190 		 */
2191 		wakeup_swapper = 0;
2192 		PROC_SLOCK(p);
2193 		thread_lock(td);
2194 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
2195 			wakeup_swapper = sleepq_abort(td, intrval);
2196 		thread_unlock(td);
2197 		PROC_SUNLOCK(p);
2198 		if (wakeup_swapper)
2199 			kick_proc0();
2200 		goto out;
2201 		/*
2202 		 * Mutexes are short lived. Threads waiting on them will
2203 		 * hit thread_suspend_check() soon.
2204 		 */
2205 	} else if (p->p_state == PRS_NORMAL) {
2206 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2207 			tdsigwakeup(td, sig, action, intrval);
2208 			goto out;
2209 		}
2210 
2211 		MPASS(action == SIG_DFL);
2212 
2213 		if (prop & SA_STOP) {
2214 			if (p->p_flag & P_PPWAIT)
2215 				goto out;
2216 			p->p_flag |= P_STOPPED_SIG;
2217 			p->p_xstat = sig;
2218 			PROC_SLOCK(p);
2219 			sig_suspend_threads(td, p, 1);
2220 			if (p->p_numthreads == p->p_suspcount) {
2221 				/*
2222 				 * only thread sending signal to another
2223 				 * process can reach here, if thread is sending
2224 				 * signal to its process, because thread does
2225 				 * not suspend itself here, p_numthreads
2226 				 * should never be equal to p_suspcount.
2227 				 */
2228 				thread_stopped(p);
2229 				PROC_SUNLOCK(p);
2230 				sigqueue_delete_proc(p, p->p_xstat);
2231 			} else
2232 				PROC_SUNLOCK(p);
2233 			goto out;
2234 		}
2235 	} else {
2236 		/* Not in "NORMAL" state. discard the signal. */
2237 		sigqueue_delete(sigqueue, sig);
2238 		goto out;
2239 	}
2240 
2241 	/*
2242 	 * The process is not stopped so we need to apply the signal to all the
2243 	 * running threads.
2244 	 */
2245 runfast:
2246 	tdsigwakeup(td, sig, action, intrval);
2247 	PROC_SLOCK(p);
2248 	thread_unsuspend(p);
2249 	PROC_SUNLOCK(p);
2250 out:
2251 	/* If we jump here, proc slock should not be owned. */
2252 	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2253 	return (ret);
2254 }
2255 
2256 /*
2257  * The force of a signal has been directed against a single
2258  * thread.  We need to see what we can do about knocking it
2259  * out of any sleep it may be in etc.
2260  */
2261 static void
2262 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2263 {
2264 	struct proc *p = td->td_proc;
2265 	register int prop;
2266 	int wakeup_swapper;
2267 
2268 	wakeup_swapper = 0;
2269 	PROC_LOCK_ASSERT(p, MA_OWNED);
2270 	prop = sigprop(sig);
2271 
2272 	PROC_SLOCK(p);
2273 	thread_lock(td);
2274 	/*
2275 	 * Bring the priority of a thread up if we want it to get
2276 	 * killed in this lifetime.
2277 	 */
2278 	if (action == SIG_DFL && (prop & SA_KILL) && td->td_priority > PUSER)
2279 		sched_prio(td, PUSER);
2280 	if (TD_ON_SLEEPQ(td)) {
2281 		/*
2282 		 * If thread is sleeping uninterruptibly
2283 		 * we can't interrupt the sleep... the signal will
2284 		 * be noticed when the process returns through
2285 		 * trap() or syscall().
2286 		 */
2287 		if ((td->td_flags & TDF_SINTR) == 0)
2288 			goto out;
2289 		/*
2290 		 * If SIGCONT is default (or ignored) and process is
2291 		 * asleep, we are finished; the process should not
2292 		 * be awakened.
2293 		 */
2294 		if ((prop & SA_CONT) && action == SIG_DFL) {
2295 			thread_unlock(td);
2296 			PROC_SUNLOCK(p);
2297 			sigqueue_delete(&p->p_sigqueue, sig);
2298 			/*
2299 			 * It may be on either list in this state.
2300 			 * Remove from both for now.
2301 			 */
2302 			sigqueue_delete(&td->td_sigqueue, sig);
2303 			return;
2304 		}
2305 
2306 		/*
2307 		 * Give low priority threads a better chance to run.
2308 		 */
2309 		if (td->td_priority > PUSER)
2310 			sched_prio(td, PUSER);
2311 
2312 		wakeup_swapper = sleepq_abort(td, intrval);
2313 	} else {
2314 		/*
2315 		 * Other states do nothing with the signal immediately,
2316 		 * other than kicking ourselves if we are running.
2317 		 * It will either never be noticed, or noticed very soon.
2318 		 */
2319 #ifdef SMP
2320 		if (TD_IS_RUNNING(td) && td != curthread)
2321 			forward_signal(td);
2322 #endif
2323 	}
2324 out:
2325 	PROC_SUNLOCK(p);
2326 	thread_unlock(td);
2327 	if (wakeup_swapper)
2328 		kick_proc0();
2329 }
2330 
2331 static void
2332 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2333 {
2334 	struct thread *td2;
2335 	int wakeup_swapper;
2336 
2337 	PROC_LOCK_ASSERT(p, MA_OWNED);
2338 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2339 
2340 	wakeup_swapper = 0;
2341 	FOREACH_THREAD_IN_PROC(p, td2) {
2342 		thread_lock(td2);
2343 		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2344 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2345 		    (td2->td_flags & TDF_SINTR)) {
2346 			if (td2->td_flags & TDF_SBDRY) {
2347 				if (TD_IS_SUSPENDED(td2))
2348 					wakeup_swapper |=
2349 					    thread_unsuspend_one(td2);
2350 				if (TD_ON_SLEEPQ(td2))
2351 					wakeup_swapper |=
2352 					    sleepq_abort(td2, ERESTART);
2353 			} else if (!TD_IS_SUSPENDED(td2)) {
2354 				thread_suspend_one(td2);
2355 			}
2356 		} else if (!TD_IS_SUSPENDED(td2)) {
2357 			if (sending || td != td2)
2358 				td2->td_flags |= TDF_ASTPENDING;
2359 #ifdef SMP
2360 			if (TD_IS_RUNNING(td2) && td2 != td)
2361 				forward_signal(td2);
2362 #endif
2363 		}
2364 		thread_unlock(td2);
2365 	}
2366 	if (wakeup_swapper)
2367 		kick_proc0();
2368 }
2369 
2370 int
2371 ptracestop(struct thread *td, int sig)
2372 {
2373 	struct proc *p = td->td_proc;
2374 
2375 	PROC_LOCK_ASSERT(p, MA_OWNED);
2376 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2377 	    &p->p_mtx.lock_object, "Stopping for traced signal");
2378 
2379 	td->td_dbgflags |= TDB_XSIG;
2380 	td->td_xsig = sig;
2381 	PROC_SLOCK(p);
2382 	while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2383 		if (p->p_flag & P_SINGLE_EXIT) {
2384 			td->td_dbgflags &= ~TDB_XSIG;
2385 			PROC_SUNLOCK(p);
2386 			return (sig);
2387 		}
2388 		/*
2389 		 * Just make wait() to work, the last stopped thread
2390 		 * will win.
2391 		 */
2392 		p->p_xstat = sig;
2393 		p->p_xthread = td;
2394 		p->p_flag |= (P_STOPPED_SIG|P_STOPPED_TRACE);
2395 		sig_suspend_threads(td, p, 0);
2396 stopme:
2397 		thread_suspend_switch(td);
2398 		if (!(p->p_flag & P_TRACED)) {
2399 			break;
2400 		}
2401 		if (td->td_dbgflags & TDB_SUSPEND) {
2402 			if (p->p_flag & P_SINGLE_EXIT)
2403 				break;
2404 			goto stopme;
2405 		}
2406 	}
2407 	PROC_SUNLOCK(p);
2408 	return (td->td_xsig);
2409 }
2410 
2411 static void
2412 reschedule_signals(struct proc *p, sigset_t block, int flags)
2413 {
2414 	struct sigacts *ps;
2415 	struct thread *td;
2416 	int sig;
2417 
2418 	PROC_LOCK_ASSERT(p, MA_OWNED);
2419 	if (SIGISEMPTY(p->p_siglist))
2420 		return;
2421 	ps = p->p_sigacts;
2422 	SIGSETAND(block, p->p_siglist);
2423 	while ((sig = sig_ffs(&block)) != 0) {
2424 		SIGDELSET(block, sig);
2425 		td = sigtd(p, sig, 0);
2426 		signotify(td);
2427 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2428 			mtx_lock(&ps->ps_mtx);
2429 		if (p->p_flag & P_TRACED || SIGISMEMBER(ps->ps_sigcatch, sig))
2430 			tdsigwakeup(td, sig, SIG_CATCH,
2431 			    (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
2432 			     ERESTART));
2433 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2434 			mtx_unlock(&ps->ps_mtx);
2435 	}
2436 }
2437 
2438 void
2439 tdsigcleanup(struct thread *td)
2440 {
2441 	struct proc *p;
2442 	sigset_t unblocked;
2443 
2444 	p = td->td_proc;
2445 	PROC_LOCK_ASSERT(p, MA_OWNED);
2446 
2447 	sigqueue_flush(&td->td_sigqueue);
2448 	if (p->p_numthreads == 1)
2449 		return;
2450 
2451 	/*
2452 	 * Since we cannot handle signals, notify signal post code
2453 	 * about this by filling the sigmask.
2454 	 *
2455 	 * Also, if needed, wake up thread(s) that do not block the
2456 	 * same signals as the exiting thread, since the thread might
2457 	 * have been selected for delivery and woken up.
2458 	 */
2459 	SIGFILLSET(unblocked);
2460 	SIGSETNAND(unblocked, td->td_sigmask);
2461 	SIGFILLSET(td->td_sigmask);
2462 	reschedule_signals(p, unblocked, 0);
2463 
2464 }
2465 
2466 /*
2467  * If the current process has received a signal (should be caught or cause
2468  * termination, should interrupt current syscall), return the signal number.
2469  * Stop signals with default action are processed immediately, then cleared;
2470  * they aren't returned.  This is checked after each entry to the system for
2471  * a syscall or trap (though this can usually be done without calling issignal
2472  * by checking the pending signal masks in cursig.) The normal call
2473  * sequence is
2474  *
2475  *	while (sig = cursig(curthread))
2476  *		postsig(sig);
2477  */
2478 static int
2479 issignal(struct thread *td, int stop_allowed)
2480 {
2481 	struct proc *p;
2482 	struct sigacts *ps;
2483 	struct sigqueue *queue;
2484 	sigset_t sigpending;
2485 	int sig, prop, newsig;
2486 
2487 	p = td->td_proc;
2488 	ps = p->p_sigacts;
2489 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2490 	PROC_LOCK_ASSERT(p, MA_OWNED);
2491 	for (;;) {
2492 		int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2493 
2494 		sigpending = td->td_sigqueue.sq_signals;
2495 		SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
2496 		SIGSETNAND(sigpending, td->td_sigmask);
2497 
2498 		if (p->p_flag & P_PPWAIT)
2499 			SIG_STOPSIGMASK(sigpending);
2500 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2501 			return (0);
2502 		sig = sig_ffs(&sigpending);
2503 
2504 		if (p->p_stops & S_SIG) {
2505 			mtx_unlock(&ps->ps_mtx);
2506 			stopevent(p, S_SIG, sig);
2507 			mtx_lock(&ps->ps_mtx);
2508 		}
2509 
2510 		/*
2511 		 * We should see pending but ignored signals
2512 		 * only if P_TRACED was on when they were posted.
2513 		 */
2514 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2515 			sigqueue_delete(&td->td_sigqueue, sig);
2516 			sigqueue_delete(&p->p_sigqueue, sig);
2517 			continue;
2518 		}
2519 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
2520 			/*
2521 			 * If traced, always stop.
2522 			 * Remove old signal from queue before the stop.
2523 			 * XXX shrug off debugger, it causes siginfo to
2524 			 * be thrown away.
2525 			 */
2526 			queue = &td->td_sigqueue;
2527 			td->td_dbgksi.ksi_signo = 0;
2528 			if (sigqueue_get(queue, sig, &td->td_dbgksi) == 0) {
2529 				queue = &p->p_sigqueue;
2530 				sigqueue_get(queue, sig, &td->td_dbgksi);
2531 			}
2532 
2533 			mtx_unlock(&ps->ps_mtx);
2534 			newsig = ptracestop(td, sig);
2535 			mtx_lock(&ps->ps_mtx);
2536 
2537 			if (sig != newsig) {
2538 
2539 				/*
2540 				 * If parent wants us to take the signal,
2541 				 * then it will leave it in p->p_xstat;
2542 				 * otherwise we just look for signals again.
2543 			 	*/
2544 				if (newsig == 0)
2545 					continue;
2546 				sig = newsig;
2547 
2548 				/*
2549 				 * Put the new signal into td_sigqueue. If the
2550 				 * signal is being masked, look for other signals.
2551 				 */
2552 				sigqueue_add(queue, sig, NULL);
2553 				if (SIGISMEMBER(td->td_sigmask, sig))
2554 					continue;
2555 				signotify(td);
2556 			} else {
2557 				if (td->td_dbgksi.ksi_signo != 0) {
2558 					td->td_dbgksi.ksi_flags |= KSI_HEAD;
2559 					if (sigqueue_add(&td->td_sigqueue, sig,
2560 					    &td->td_dbgksi) != 0)
2561 						td->td_dbgksi.ksi_signo = 0;
2562 				}
2563 				if (td->td_dbgksi.ksi_signo == 0)
2564 					sigqueue_add(&td->td_sigqueue, sig,
2565 					    NULL);
2566 			}
2567 
2568 			/*
2569 			 * If the traced bit got turned off, go back up
2570 			 * to the top to rescan signals.  This ensures
2571 			 * that p_sig* and p_sigact are consistent.
2572 			 */
2573 			if ((p->p_flag & P_TRACED) == 0)
2574 				continue;
2575 		}
2576 
2577 		prop = sigprop(sig);
2578 
2579 		/*
2580 		 * Decide whether the signal should be returned.
2581 		 * Return the signal's number, or fall through
2582 		 * to clear it from the pending mask.
2583 		 */
2584 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2585 
2586 		case (intptr_t)SIG_DFL:
2587 			/*
2588 			 * Don't take default actions on system processes.
2589 			 */
2590 			if (p->p_pid <= 1) {
2591 #ifdef DIAGNOSTIC
2592 				/*
2593 				 * Are you sure you want to ignore SIGSEGV
2594 				 * in init? XXX
2595 				 */
2596 				printf("Process (pid %lu) got signal %d\n",
2597 					(u_long)p->p_pid, sig);
2598 #endif
2599 				break;		/* == ignore */
2600 			}
2601 			/*
2602 			 * If there is a pending stop signal to process
2603 			 * with default action, stop here,
2604 			 * then clear the signal.  However,
2605 			 * if process is member of an orphaned
2606 			 * process group, ignore tty stop signals.
2607 			 */
2608 			if (prop & SA_STOP) {
2609 				if (p->p_flag & P_TRACED ||
2610 		    		    (p->p_pgrp->pg_jobc == 0 &&
2611 				     prop & SA_TTYSTOP))
2612 					break;	/* == ignore */
2613 
2614 				/* Ignore, but do not drop the stop signal. */
2615 				if (stop_allowed != SIG_STOP_ALLOWED)
2616 					return (sig);
2617 				mtx_unlock(&ps->ps_mtx);
2618 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2619 				    &p->p_mtx.lock_object, "Catching SIGSTOP");
2620 				p->p_flag |= P_STOPPED_SIG;
2621 				p->p_xstat = sig;
2622 				PROC_SLOCK(p);
2623 				sig_suspend_threads(td, p, 0);
2624 				thread_suspend_switch(td);
2625 				PROC_SUNLOCK(p);
2626 				mtx_lock(&ps->ps_mtx);
2627 				break;
2628 			} else if (prop & SA_IGNORE) {
2629 				/*
2630 				 * Except for SIGCONT, shouldn't get here.
2631 				 * Default action is to ignore; drop it.
2632 				 */
2633 				break;		/* == ignore */
2634 			} else
2635 				return (sig);
2636 			/*NOTREACHED*/
2637 
2638 		case (intptr_t)SIG_IGN:
2639 			/*
2640 			 * Masking above should prevent us ever trying
2641 			 * to take action on an ignored signal other
2642 			 * than SIGCONT, unless process is traced.
2643 			 */
2644 			if ((prop & SA_CONT) == 0 &&
2645 			    (p->p_flag & P_TRACED) == 0)
2646 				printf("issignal\n");
2647 			break;		/* == ignore */
2648 
2649 		default:
2650 			/*
2651 			 * This signal has an action, let
2652 			 * postsig() process it.
2653 			 */
2654 			return (sig);
2655 		}
2656 		sigqueue_delete(&td->td_sigqueue, sig);		/* take the signal! */
2657 		sigqueue_delete(&p->p_sigqueue, sig);
2658 	}
2659 	/* NOTREACHED */
2660 }
2661 
2662 void
2663 thread_stopped(struct proc *p)
2664 {
2665 	int n;
2666 
2667 	PROC_LOCK_ASSERT(p, MA_OWNED);
2668 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2669 	n = p->p_suspcount;
2670 	if (p == curproc)
2671 		n++;
2672 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2673 		PROC_SUNLOCK(p);
2674 		p->p_flag &= ~P_WAITED;
2675 		PROC_LOCK(p->p_pptr);
2676 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
2677 			CLD_TRAPPED : CLD_STOPPED);
2678 		PROC_UNLOCK(p->p_pptr);
2679 		PROC_SLOCK(p);
2680 	}
2681 }
2682 
2683 /*
2684  * Take the action for the specified signal
2685  * from the current set of pending signals.
2686  */
2687 int
2688 postsig(sig)
2689 	register int sig;
2690 {
2691 	struct thread *td = curthread;
2692 	register struct proc *p = td->td_proc;
2693 	struct sigacts *ps;
2694 	sig_t action;
2695 	ksiginfo_t ksi;
2696 	sigset_t returnmask, mask;
2697 
2698 	KASSERT(sig != 0, ("postsig"));
2699 
2700 	PROC_LOCK_ASSERT(p, MA_OWNED);
2701 	ps = p->p_sigacts;
2702 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2703 	ksiginfo_init(&ksi);
2704 	if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
2705 	    sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
2706 		return (0);
2707 	ksi.ksi_signo = sig;
2708 	if (ksi.ksi_code == SI_TIMER)
2709 		itimer_accept(p, ksi.ksi_timerid, &ksi);
2710 	action = ps->ps_sigact[_SIG_IDX(sig)];
2711 #ifdef KTRACE
2712 	if (KTRPOINT(td, KTR_PSIG))
2713 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
2714 		    &td->td_oldsigmask : &td->td_sigmask, 0);
2715 #endif
2716 	if (p->p_stops & S_SIG) {
2717 		mtx_unlock(&ps->ps_mtx);
2718 		stopevent(p, S_SIG, sig);
2719 		mtx_lock(&ps->ps_mtx);
2720 	}
2721 
2722 	if (action == SIG_DFL) {
2723 		/*
2724 		 * Default action, where the default is to kill
2725 		 * the process.  (Other cases were ignored above.)
2726 		 */
2727 		mtx_unlock(&ps->ps_mtx);
2728 		sigexit(td, sig);
2729 		/* NOTREACHED */
2730 	} else {
2731 		/*
2732 		 * If we get here, the signal must be caught.
2733 		 */
2734 		KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),
2735 		    ("postsig action"));
2736 		/*
2737 		 * Set the new mask value and also defer further
2738 		 * occurrences of this signal.
2739 		 *
2740 		 * Special case: user has done a sigsuspend.  Here the
2741 		 * current mask is not of interest, but rather the
2742 		 * mask from before the sigsuspend is what we want
2743 		 * restored after the signal processing is completed.
2744 		 */
2745 		if (td->td_pflags & TDP_OLDMASK) {
2746 			returnmask = td->td_oldsigmask;
2747 			td->td_pflags &= ~TDP_OLDMASK;
2748 		} else
2749 			returnmask = td->td_sigmask;
2750 
2751 		mask = ps->ps_catchmask[_SIG_IDX(sig)];
2752 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
2753 			SIGADDSET(mask, sig);
2754 		kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
2755 		    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
2756 
2757 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
2758 			/*
2759 			 * See kern_sigaction() for origin of this code.
2760 			 */
2761 			SIGDELSET(ps->ps_sigcatch, sig);
2762 			if (sig != SIGCONT &&
2763 			    sigprop(sig) & SA_IGNORE)
2764 				SIGADDSET(ps->ps_sigignore, sig);
2765 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2766 		}
2767 		td->td_ru.ru_nsignals++;
2768 		if (p->p_sig == sig) {
2769 			p->p_code = 0;
2770 			p->p_sig = 0;
2771 		}
2772 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
2773 	}
2774 	return (1);
2775 }
2776 
2777 /*
2778  * Kill the current process for stated reason.
2779  */
2780 void
2781 killproc(p, why)
2782 	struct proc *p;
2783 	char *why;
2784 {
2785 
2786 	PROC_LOCK_ASSERT(p, MA_OWNED);
2787 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)",
2788 		p, p->p_pid, p->p_comm);
2789 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid, p->p_comm,
2790 		p->p_ucred ? p->p_ucred->cr_uid : -1, why);
2791 	p->p_flag |= P_WKILLED;
2792 	psignal(p, SIGKILL);
2793 }
2794 
2795 /*
2796  * Force the current process to exit with the specified signal, dumping core
2797  * if appropriate.  We bypass the normal tests for masked and caught signals,
2798  * allowing unrecoverable failures to terminate the process without changing
2799  * signal state.  Mark the accounting record with the signal termination.
2800  * If dumping core, save the signal number for the debugger.  Calls exit and
2801  * does not return.
2802  */
2803 void
2804 sigexit(td, sig)
2805 	struct thread *td;
2806 	int sig;
2807 {
2808 	struct proc *p = td->td_proc;
2809 
2810 	PROC_LOCK_ASSERT(p, MA_OWNED);
2811 	p->p_acflag |= AXSIG;
2812 	/*
2813 	 * We must be single-threading to generate a core dump.  This
2814 	 * ensures that the registers in the core file are up-to-date.
2815 	 * Also, the ELF dump handler assumes that the thread list doesn't
2816 	 * change out from under it.
2817 	 *
2818 	 * XXX If another thread attempts to single-thread before us
2819 	 *     (e.g. via fork()), we won't get a dump at all.
2820 	 */
2821 	if ((sigprop(sig) & SA_CORE) && (thread_single(SINGLE_NO_EXIT) == 0)) {
2822 		p->p_sig = sig;
2823 		/*
2824 		 * Log signals which would cause core dumps
2825 		 * (Log as LOG_INFO to appease those who don't want
2826 		 * these messages.)
2827 		 * XXX : Todo, as well as euid, write out ruid too
2828 		 * Note that coredump() drops proc lock.
2829 		 */
2830 		if (coredump(td) == 0)
2831 			sig |= WCOREFLAG;
2832 		if (kern_logsigexit)
2833 			log(LOG_INFO,
2834 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
2835 			    p->p_pid, p->p_comm,
2836 			    td->td_ucred ? td->td_ucred->cr_uid : -1,
2837 			    sig &~ WCOREFLAG,
2838 			    sig & WCOREFLAG ? " (core dumped)" : "");
2839 	} else
2840 		PROC_UNLOCK(p);
2841 	exit1(td, W_EXITCODE(0, sig));
2842 	/* NOTREACHED */
2843 }
2844 
2845 /*
2846  * Send queued SIGCHLD to parent when child process's state
2847  * is changed.
2848  */
2849 static void
2850 sigparent(struct proc *p, int reason, int status)
2851 {
2852 	PROC_LOCK_ASSERT(p, MA_OWNED);
2853 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2854 
2855 	if (p->p_ksi != NULL) {
2856 		p->p_ksi->ksi_signo  = SIGCHLD;
2857 		p->p_ksi->ksi_code   = reason;
2858 		p->p_ksi->ksi_status = status;
2859 		p->p_ksi->ksi_pid    = p->p_pid;
2860 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
2861 		if (KSI_ONQ(p->p_ksi))
2862 			return;
2863 	}
2864 	pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
2865 }
2866 
2867 static void
2868 childproc_jobstate(struct proc *p, int reason, int status)
2869 {
2870 	struct sigacts *ps;
2871 
2872 	PROC_LOCK_ASSERT(p, MA_OWNED);
2873 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2874 
2875 	/*
2876 	 * Wake up parent sleeping in kern_wait(), also send
2877 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
2878 	 * that parent will awake, because parent may masked
2879 	 * the signal.
2880 	 */
2881 	p->p_pptr->p_flag |= P_STATCHILD;
2882 	wakeup(p->p_pptr);
2883 
2884 	ps = p->p_pptr->p_sigacts;
2885 	mtx_lock(&ps->ps_mtx);
2886 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
2887 		mtx_unlock(&ps->ps_mtx);
2888 		sigparent(p, reason, status);
2889 	} else
2890 		mtx_unlock(&ps->ps_mtx);
2891 }
2892 
2893 void
2894 childproc_stopped(struct proc *p, int reason)
2895 {
2896 	childproc_jobstate(p, reason, p->p_xstat);
2897 }
2898 
2899 void
2900 childproc_continued(struct proc *p)
2901 {
2902 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
2903 }
2904 
2905 void
2906 childproc_exited(struct proc *p)
2907 {
2908 	int reason;
2909 	int status = p->p_xstat; /* convert to int */
2910 
2911 	reason = CLD_EXITED;
2912 	if (WCOREDUMP(status))
2913 		reason = CLD_DUMPED;
2914 	else if (WIFSIGNALED(status))
2915 		reason = CLD_KILLED;
2916 	/*
2917 	 * XXX avoid calling wakeup(p->p_pptr), the work is
2918 	 * done in exit1().
2919 	 */
2920 	sigparent(p, reason, status);
2921 }
2922 
2923 /*
2924  * We only have 1 character for the core count in the format
2925  * string, so the range will be 0-9
2926  */
2927 #define MAX_NUM_CORES 10
2928 static int num_cores = 5;
2929 
2930 static int
2931 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
2932 {
2933 	int error;
2934 	int new_val;
2935 
2936 	new_val = num_cores;
2937 	error = sysctl_handle_int(oidp, &new_val, 0, req);
2938 	if (error != 0 || req->newptr == NULL)
2939 		return (error);
2940 	if (new_val > MAX_NUM_CORES)
2941 		new_val = MAX_NUM_CORES;
2942 	if (new_val < 0)
2943 		new_val = 0;
2944 	num_cores = new_val;
2945 	return (0);
2946 }
2947 SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW,
2948 	    0, sizeof(int), sysctl_debug_num_cores_check, "I", "");
2949 
2950 #if defined(COMPRESS_USER_CORES)
2951 int compress_user_cores = 1;
2952 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores, CTLFLAG_RW,
2953         &compress_user_cores, 0, "");
2954 
2955 int compress_user_cores_gzlevel = -1; /* default level */
2956 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_gzlevel, CTLFLAG_RW,
2957     &compress_user_cores_gzlevel, -1, "user core gz compression level");
2958 
2959 #define GZ_SUFFIX	".gz"
2960 #define GZ_SUFFIX_LEN	3
2961 #endif
2962 
2963 static char corefilename[MAXPATHLEN] = {"%N.core"};
2964 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
2965 	      sizeof(corefilename), "process corefile name format string");
2966 
2967 /*
2968  * expand_name(name, uid, pid, td, compress)
2969  * Expand the name described in corefilename, using name, uid, and pid.
2970  * corefilename is a printf-like string, with three format specifiers:
2971  *	%N	name of process ("name")
2972  *	%P	process id (pid)
2973  *	%U	user id (uid)
2974  * For example, "%N.core" is the default; they can be disabled completely
2975  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
2976  * This is controlled by the sysctl variable kern.corefile (see above).
2977  */
2978 static char *
2979 expand_name(const char *name, uid_t uid, pid_t pid, struct thread *td,
2980     int compress)
2981 {
2982 	struct sbuf sb;
2983 	const char *format;
2984 	char *temp;
2985 	size_t i;
2986 	int indexpos;
2987 	char *hostname;
2988 
2989 	hostname = NULL;
2990 	format = corefilename;
2991 	temp = malloc(MAXPATHLEN, M_TEMP, M_NOWAIT | M_ZERO);
2992 	if (temp == NULL)
2993 		return (NULL);
2994 	indexpos = -1;
2995 	(void)sbuf_new(&sb, temp, MAXPATHLEN, SBUF_FIXEDLEN);
2996 	for (i = 0; format[i]; i++) {
2997 		switch (format[i]) {
2998 		case '%':	/* Format character */
2999 			i++;
3000 			switch (format[i]) {
3001 			case '%':
3002 				sbuf_putc(&sb, '%');
3003 				break;
3004 			case 'H':	/* hostname */
3005 				if (hostname == NULL) {
3006 					hostname = malloc(MAXHOSTNAMELEN,
3007 					    M_TEMP, M_NOWAIT);
3008 					if (hostname == NULL) {
3009 						log(LOG_ERR,
3010 						    "pid %ld (%s), uid (%lu): "
3011 						    "unable to alloc memory "
3012 						    "for corefile hostname\n",
3013 						    (long)pid, name,
3014 						    (u_long)uid);
3015                                                 goto nomem;
3016                                         }
3017                                 }
3018 				getcredhostname(td->td_ucred, hostname,
3019 				    MAXHOSTNAMELEN);
3020 				sbuf_printf(&sb, "%s", hostname);
3021 				break;
3022 			case 'I':       /* autoincrementing index */
3023 				sbuf_printf(&sb, "0");
3024 				indexpos = sbuf_len(&sb) - 1;
3025 				break;
3026 			case 'N':	/* process name */
3027 				sbuf_printf(&sb, "%s", name);
3028 				break;
3029 			case 'P':	/* process id */
3030 				sbuf_printf(&sb, "%u", pid);
3031 				break;
3032 			case 'U':	/* user id */
3033 				sbuf_printf(&sb, "%u", uid);
3034 				break;
3035 			default:
3036 			  	log(LOG_ERR,
3037 				    "Unknown format character %c in "
3038 				    "corename `%s'\n", format[i], format);
3039 			}
3040 			break;
3041 		default:
3042 			sbuf_putc(&sb, format[i]);
3043 		}
3044 	}
3045 	free(hostname, M_TEMP);
3046 #ifdef COMPRESS_USER_CORES
3047 	if (compress) {
3048 		sbuf_printf(&sb, GZ_SUFFIX);
3049 	}
3050 #endif
3051 	if (sbuf_error(&sb) != 0) {
3052 		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
3053 		    "long\n", (long)pid, name, (u_long)uid);
3054 nomem:
3055 		sbuf_delete(&sb);
3056 		free(temp, M_TEMP);
3057 		return (NULL);
3058 	}
3059 	sbuf_finish(&sb);
3060 	sbuf_delete(&sb);
3061 
3062 	/*
3063 	 * If the core format has a %I in it, then we need to check
3064 	 * for existing corefiles before returning a name.
3065 	 * To do this we iterate over 0..num_cores to find a
3066 	 * non-existing core file name to use.
3067 	 */
3068 	if (indexpos != -1) {
3069 		struct nameidata nd;
3070 		int error, n;
3071 		int flags = O_CREAT | O_EXCL | FWRITE | O_NOFOLLOW;
3072 		int cmode = S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP;
3073 		int vfslocked;
3074 
3075 		for (n = 0; n < num_cores; n++) {
3076 			temp[indexpos] = '0' + n;
3077 			NDINIT(&nd, LOOKUP, NOFOLLOW | MPSAFE, UIO_SYSSPACE,
3078 			    temp, td);
3079 			error = vn_open(&nd, &flags, cmode, NULL);
3080 			if (error) {
3081 				if (error == EEXIST) {
3082 					continue;
3083 				}
3084 				log(LOG_ERR,
3085 				    "pid %d (%s), uid (%u):  Path `%s' failed "
3086                                     "on initial open test, error = %d\n",
3087 				    pid, name, uid, temp, error);
3088 				free(temp, M_TEMP);
3089 				return (NULL);
3090 			}
3091 			vfslocked = NDHASGIANT(&nd);
3092 			NDFREE(&nd, NDF_ONLY_PNBUF);
3093 			VOP_UNLOCK(nd.ni_vp, 0);
3094 			error = vn_close(nd.ni_vp, FWRITE, td->td_ucred, td);
3095 			VFS_UNLOCK_GIANT(vfslocked);
3096 			if (error) {
3097 				log(LOG_ERR,
3098 				    "pid %d (%s), uid (%u):  Path `%s' failed "
3099                                     "on close after initial open test, "
3100                                     "error = %d\n",
3101 				    pid, name, uid, temp, error);
3102 				free(temp, M_TEMP);
3103 				return (NULL);
3104 			}
3105 			break;
3106 		}
3107 	}
3108 	return (temp);
3109 }
3110 
3111 /*
3112  * Dump a process' core.  The main routine does some
3113  * policy checking, and creates the name of the coredump;
3114  * then it passes on a vnode and a size limit to the process-specific
3115  * coredump routine if there is one; if there _is not_ one, it returns
3116  * ENOSYS; otherwise it returns the error from the process-specific routine.
3117  */
3118 
3119 static int
3120 coredump(struct thread *td)
3121 {
3122 	struct proc *p = td->td_proc;
3123 	register struct vnode *vp;
3124 	register struct ucred *cred = td->td_ucred;
3125 	struct flock lf;
3126 	struct nameidata nd;
3127 	struct vattr vattr;
3128 	int error, error1, flags, locked;
3129 	struct mount *mp;
3130 	char *name;			/* name of corefile */
3131 	off_t limit;
3132 	int vfslocked;
3133 	int compress;
3134 
3135 #ifdef COMPRESS_USER_CORES
3136 	compress = compress_user_cores;
3137 #else
3138 	compress = 0;
3139 #endif
3140 	PROC_LOCK_ASSERT(p, MA_OWNED);
3141 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3142 	_STOPEVENT(p, S_CORE, 0);
3143 
3144 	name = expand_name(p->p_comm, td->td_ucred->cr_uid, p->p_pid, td,
3145 	    compress);
3146 	if (name == NULL) {
3147 		PROC_UNLOCK(p);
3148 #ifdef AUDIT
3149 		audit_proc_coredump(td, NULL, EINVAL);
3150 #endif
3151 		return (EINVAL);
3152 	}
3153 	if (((sugid_coredump == 0) && p->p_flag & P_SUGID) || do_coredump == 0) {
3154 		PROC_UNLOCK(p);
3155 #ifdef AUDIT
3156 		audit_proc_coredump(td, name, EFAULT);
3157 #endif
3158 		free(name, M_TEMP);
3159 		return (EFAULT);
3160 	}
3161 
3162 	/*
3163 	 * Note that the bulk of limit checking is done after
3164 	 * the corefile is created.  The exception is if the limit
3165 	 * for corefiles is 0, in which case we don't bother
3166 	 * creating the corefile at all.  This layout means that
3167 	 * a corefile is truncated instead of not being created,
3168 	 * if it is larger than the limit.
3169 	 */
3170 	limit = (off_t)lim_cur(p, RLIMIT_CORE);
3171 	PROC_UNLOCK(p);
3172 	if (limit == 0) {
3173 #ifdef AUDIT
3174 		audit_proc_coredump(td, name, EFBIG);
3175 #endif
3176 		free(name, M_TEMP);
3177 		return (EFBIG);
3178 	}
3179 
3180 restart:
3181 	NDINIT(&nd, LOOKUP, NOFOLLOW | MPSAFE, UIO_SYSSPACE, name, td);
3182 	flags = O_CREAT | FWRITE | O_NOFOLLOW;
3183 	error = vn_open_cred(&nd, &flags, S_IRUSR | S_IWUSR, VN_OPEN_NOAUDIT,
3184 	    cred, NULL);
3185 	if (error) {
3186 #ifdef AUDIT
3187 		audit_proc_coredump(td, name, error);
3188 #endif
3189 		free(name, M_TEMP);
3190 		return (error);
3191 	}
3192 	vfslocked = NDHASGIANT(&nd);
3193 	NDFREE(&nd, NDF_ONLY_PNBUF);
3194 	vp = nd.ni_vp;
3195 
3196 	/* Don't dump to non-regular files or files with links. */
3197 	if (vp->v_type != VREG ||
3198 	    VOP_GETATTR(vp, &vattr, cred) || vattr.va_nlink != 1) {
3199 		VOP_UNLOCK(vp, 0);
3200 		error = EFAULT;
3201 		goto close;
3202 	}
3203 
3204 	VOP_UNLOCK(vp, 0);
3205 	lf.l_whence = SEEK_SET;
3206 	lf.l_start = 0;
3207 	lf.l_len = 0;
3208 	lf.l_type = F_WRLCK;
3209 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3210 
3211 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
3212 		lf.l_type = F_UNLCK;
3213 		if (locked)
3214 			VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3215 		if ((error = vn_close(vp, FWRITE, cred, td)) != 0)
3216 			goto out;
3217 		if ((error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH)) != 0)
3218 			goto out;
3219 		VFS_UNLOCK_GIANT(vfslocked);
3220 		goto restart;
3221 	}
3222 
3223 	VATTR_NULL(&vattr);
3224 	vattr.va_size = 0;
3225 	if (set_core_nodump_flag)
3226 		vattr.va_flags = UF_NODUMP;
3227 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3228 	VOP_SETATTR(vp, &vattr, cred);
3229 	VOP_UNLOCK(vp, 0);
3230 	vn_finished_write(mp);
3231 	PROC_LOCK(p);
3232 	p->p_acflag |= ACORE;
3233 	PROC_UNLOCK(p);
3234 
3235 	error = p->p_sysent->sv_coredump ?
3236 	  p->p_sysent->sv_coredump(td, vp, limit, compress ? IMGACT_CORE_COMPRESS : 0) :
3237 	  ENOSYS;
3238 
3239 	if (locked) {
3240 		lf.l_type = F_UNLCK;
3241 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3242 	}
3243 close:
3244 	error1 = vn_close(vp, FWRITE, cred, td);
3245 	if (error == 0)
3246 		error = error1;
3247 out:
3248 #ifdef AUDIT
3249 	audit_proc_coredump(td, name, error);
3250 #endif
3251 	free(name, M_TEMP);
3252 	VFS_UNLOCK_GIANT(vfslocked);
3253 	return (error);
3254 }
3255 
3256 /*
3257  * Nonexistent system call-- signal process (may want to handle it).  Flag
3258  * error in case process won't see signal immediately (blocked or ignored).
3259  */
3260 #ifndef _SYS_SYSPROTO_H_
3261 struct nosys_args {
3262 	int	dummy;
3263 };
3264 #endif
3265 /* ARGSUSED */
3266 int
3267 nosys(td, args)
3268 	struct thread *td;
3269 	struct nosys_args *args;
3270 {
3271 	struct proc *p = td->td_proc;
3272 
3273 	PROC_LOCK(p);
3274 	psignal(p, SIGSYS);
3275 	PROC_UNLOCK(p);
3276 	return (ENOSYS);
3277 }
3278 
3279 /*
3280  * Send a SIGIO or SIGURG signal to a process or process group using stored
3281  * credentials rather than those of the current process.
3282  */
3283 void
3284 pgsigio(sigiop, sig, checkctty)
3285 	struct sigio **sigiop;
3286 	int sig, checkctty;
3287 {
3288 	ksiginfo_t ksi;
3289 	struct sigio *sigio;
3290 
3291 	ksiginfo_init(&ksi);
3292 	ksi.ksi_signo = sig;
3293 	ksi.ksi_code = SI_KERNEL;
3294 
3295 	SIGIO_LOCK();
3296 	sigio = *sigiop;
3297 	if (sigio == NULL) {
3298 		SIGIO_UNLOCK();
3299 		return;
3300 	}
3301 	if (sigio->sio_pgid > 0) {
3302 		PROC_LOCK(sigio->sio_proc);
3303 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3304 			psignal(sigio->sio_proc, sig);
3305 		PROC_UNLOCK(sigio->sio_proc);
3306 	} else if (sigio->sio_pgid < 0) {
3307 		struct proc *p;
3308 
3309 		PGRP_LOCK(sigio->sio_pgrp);
3310 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3311 			PROC_LOCK(p);
3312 			if (CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3313 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3314 				psignal(p, sig);
3315 			PROC_UNLOCK(p);
3316 		}
3317 		PGRP_UNLOCK(sigio->sio_pgrp);
3318 	}
3319 	SIGIO_UNLOCK();
3320 }
3321 
3322 static int
3323 filt_sigattach(struct knote *kn)
3324 {
3325 	struct proc *p = curproc;
3326 
3327 	kn->kn_ptr.p_proc = p;
3328 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3329 
3330 	knlist_add(&p->p_klist, kn, 0);
3331 
3332 	return (0);
3333 }
3334 
3335 static void
3336 filt_sigdetach(struct knote *kn)
3337 {
3338 	struct proc *p = kn->kn_ptr.p_proc;
3339 
3340 	knlist_remove(&p->p_klist, kn, 0);
3341 }
3342 
3343 /*
3344  * signal knotes are shared with proc knotes, so we apply a mask to
3345  * the hint in order to differentiate them from process hints.  This
3346  * could be avoided by using a signal-specific knote list, but probably
3347  * isn't worth the trouble.
3348  */
3349 static int
3350 filt_signal(struct knote *kn, long hint)
3351 {
3352 
3353 	if (hint & NOTE_SIGNAL) {
3354 		hint &= ~NOTE_SIGNAL;
3355 
3356 		if (kn->kn_id == hint)
3357 			kn->kn_data++;
3358 	}
3359 	return (kn->kn_data != 0);
3360 }
3361 
3362 struct sigacts *
3363 sigacts_alloc(void)
3364 {
3365 	struct sigacts *ps;
3366 
3367 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3368 	ps->ps_refcnt = 1;
3369 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3370 	return (ps);
3371 }
3372 
3373 void
3374 sigacts_free(struct sigacts *ps)
3375 {
3376 
3377 	mtx_lock(&ps->ps_mtx);
3378 	ps->ps_refcnt--;
3379 	if (ps->ps_refcnt == 0) {
3380 		mtx_destroy(&ps->ps_mtx);
3381 		free(ps, M_SUBPROC);
3382 	} else
3383 		mtx_unlock(&ps->ps_mtx);
3384 }
3385 
3386 struct sigacts *
3387 sigacts_hold(struct sigacts *ps)
3388 {
3389 	mtx_lock(&ps->ps_mtx);
3390 	ps->ps_refcnt++;
3391 	mtx_unlock(&ps->ps_mtx);
3392 	return (ps);
3393 }
3394 
3395 void
3396 sigacts_copy(struct sigacts *dest, struct sigacts *src)
3397 {
3398 
3399 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3400 	mtx_lock(&src->ps_mtx);
3401 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3402 	mtx_unlock(&src->ps_mtx);
3403 }
3404 
3405 int
3406 sigacts_shared(struct sigacts *ps)
3407 {
3408 	int shared;
3409 
3410 	mtx_lock(&ps->ps_mtx);
3411 	shared = ps->ps_refcnt > 1;
3412 	mtx_unlock(&ps->ps_mtx);
3413 	return (shared);
3414 }
3415