xref: /freebsd/sys/kern/kern_sig.c (revision 51f61fc0c7ece7a30c737341e65455841bc3f04e)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ktrace.h"
43 
44 #include <sys/param.h>
45 #include <sys/ctype.h>
46 #include <sys/systm.h>
47 #include <sys/signalvar.h>
48 #include <sys/vnode.h>
49 #include <sys/acct.h>
50 #include <sys/bus.h>
51 #include <sys/capsicum.h>
52 #include <sys/compressor.h>
53 #include <sys/condvar.h>
54 #include <sys/event.h>
55 #include <sys/fcntl.h>
56 #include <sys/imgact.h>
57 #include <sys/kernel.h>
58 #include <sys/ktr.h>
59 #include <sys/ktrace.h>
60 #include <sys/limits.h>
61 #include <sys/lock.h>
62 #include <sys/malloc.h>
63 #include <sys/mutex.h>
64 #include <sys/refcount.h>
65 #include <sys/namei.h>
66 #include <sys/proc.h>
67 #include <sys/procdesc.h>
68 #include <sys/posix4.h>
69 #include <sys/pioctl.h>
70 #include <sys/racct.h>
71 #include <sys/resourcevar.h>
72 #include <sys/sdt.h>
73 #include <sys/sbuf.h>
74 #include <sys/sleepqueue.h>
75 #include <sys/smp.h>
76 #include <sys/stat.h>
77 #include <sys/sx.h>
78 #include <sys/syscallsubr.h>
79 #include <sys/sysctl.h>
80 #include <sys/sysent.h>
81 #include <sys/syslog.h>
82 #include <sys/sysproto.h>
83 #include <sys/timers.h>
84 #include <sys/unistd.h>
85 #include <sys/wait.h>
86 #include <vm/vm.h>
87 #include <vm/vm_extern.h>
88 #include <vm/uma.h>
89 
90 #include <sys/jail.h>
91 
92 #include <machine/cpu.h>
93 
94 #include <security/audit/audit.h>
95 
96 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
97 
98 SDT_PROVIDER_DECLARE(proc);
99 SDT_PROBE_DEFINE3(proc, , , signal__send,
100     "struct thread *", "struct proc *", "int");
101 SDT_PROBE_DEFINE2(proc, , , signal__clear,
102     "int", "ksiginfo_t *");
103 SDT_PROBE_DEFINE3(proc, , , signal__discard,
104     "struct thread *", "struct proc *", "int");
105 
106 static int	coredump(struct thread *);
107 static int	killpg1(struct thread *td, int sig, int pgid, int all,
108 		    ksiginfo_t *ksi);
109 static int	issignal(struct thread *td);
110 static int	sigprop(int sig);
111 static void	tdsigwakeup(struct thread *, int, sig_t, int);
112 static int	sig_suspend_threads(struct thread *, struct proc *, int);
113 static int	filt_sigattach(struct knote *kn);
114 static void	filt_sigdetach(struct knote *kn);
115 static int	filt_signal(struct knote *kn, long hint);
116 static struct thread *sigtd(struct proc *p, int sig, int prop);
117 static void	sigqueue_start(void);
118 
119 static uma_zone_t	ksiginfo_zone = NULL;
120 struct filterops sig_filtops = {
121 	.f_isfd = 0,
122 	.f_attach = filt_sigattach,
123 	.f_detach = filt_sigdetach,
124 	.f_event = filt_signal,
125 };
126 
127 static int	kern_logsigexit = 1;
128 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
129     &kern_logsigexit, 0,
130     "Log processes quitting on abnormal signals to syslog(3)");
131 
132 static int	kern_forcesigexit = 1;
133 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
134     &kern_forcesigexit, 0, "Force trap signal to be handled");
135 
136 static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0,
137     "POSIX real time signal");
138 
139 static int	max_pending_per_proc = 128;
140 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
141     &max_pending_per_proc, 0, "Max pending signals per proc");
142 
143 static int	preallocate_siginfo = 1024;
144 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RDTUN,
145     &preallocate_siginfo, 0, "Preallocated signal memory size");
146 
147 static int	signal_overflow = 0;
148 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
149     &signal_overflow, 0, "Number of signals overflew");
150 
151 static int	signal_alloc_fail = 0;
152 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
153     &signal_alloc_fail, 0, "signals failed to be allocated");
154 
155 static int	kern_lognosys = 0;
156 SYSCTL_INT(_kern, OID_AUTO, lognosys, CTLFLAG_RWTUN, &kern_lognosys, 0,
157     "Log invalid syscalls");
158 
159 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
160 
161 /*
162  * Policy -- Can ucred cr1 send SIGIO to process cr2?
163  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
164  * in the right situations.
165  */
166 #define CANSIGIO(cr1, cr2) \
167 	((cr1)->cr_uid == 0 || \
168 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
169 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
170 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
171 	    (cr1)->cr_uid == (cr2)->cr_uid)
172 
173 static int	sugid_coredump;
174 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RWTUN,
175     &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
176 
177 static int	capmode_coredump;
178 SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RWTUN,
179     &capmode_coredump, 0, "Allow processes in capability mode to dump core");
180 
181 static int	do_coredump = 1;
182 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
183 	&do_coredump, 0, "Enable/Disable coredumps");
184 
185 static int	set_core_nodump_flag = 0;
186 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
187 	0, "Enable setting the NODUMP flag on coredump files");
188 
189 static int	coredump_devctl = 0;
190 SYSCTL_INT(_kern, OID_AUTO, coredump_devctl, CTLFLAG_RW, &coredump_devctl,
191 	0, "Generate a devctl notification when processes coredump");
192 
193 /*
194  * Signal properties and actions.
195  * The array below categorizes the signals and their default actions
196  * according to the following properties:
197  */
198 #define	SIGPROP_KILL		0x01	/* terminates process by default */
199 #define	SIGPROP_CORE		0x02	/* ditto and coredumps */
200 #define	SIGPROP_STOP		0x04	/* suspend process */
201 #define	SIGPROP_TTYSTOP		0x08	/* ditto, from tty */
202 #define	SIGPROP_IGNORE		0x10	/* ignore by default */
203 #define	SIGPROP_CONT		0x20	/* continue if suspended */
204 #define	SIGPROP_CANTMASK	0x40	/* non-maskable, catchable */
205 
206 static int sigproptbl[NSIG] = {
207 	[SIGHUP] =	SIGPROP_KILL,
208 	[SIGINT] =	SIGPROP_KILL,
209 	[SIGQUIT] =	SIGPROP_KILL | SIGPROP_CORE,
210 	[SIGILL] =	SIGPROP_KILL | SIGPROP_CORE,
211 	[SIGTRAP] =	SIGPROP_KILL | SIGPROP_CORE,
212 	[SIGABRT] =	SIGPROP_KILL | SIGPROP_CORE,
213 	[SIGEMT] =	SIGPROP_KILL | SIGPROP_CORE,
214 	[SIGFPE] =	SIGPROP_KILL | SIGPROP_CORE,
215 	[SIGKILL] =	SIGPROP_KILL,
216 	[SIGBUS] =	SIGPROP_KILL | SIGPROP_CORE,
217 	[SIGSEGV] =	SIGPROP_KILL | SIGPROP_CORE,
218 	[SIGSYS] =	SIGPROP_KILL | SIGPROP_CORE,
219 	[SIGPIPE] =	SIGPROP_KILL,
220 	[SIGALRM] =	SIGPROP_KILL,
221 	[SIGTERM] =	SIGPROP_KILL,
222 	[SIGURG] =	SIGPROP_IGNORE,
223 	[SIGSTOP] =	SIGPROP_STOP,
224 	[SIGTSTP] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
225 	[SIGCONT] =	SIGPROP_IGNORE | SIGPROP_CONT,
226 	[SIGCHLD] =	SIGPROP_IGNORE,
227 	[SIGTTIN] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
228 	[SIGTTOU] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
229 	[SIGIO] =	SIGPROP_IGNORE,
230 	[SIGXCPU] =	SIGPROP_KILL,
231 	[SIGXFSZ] =	SIGPROP_KILL,
232 	[SIGVTALRM] =	SIGPROP_KILL,
233 	[SIGPROF] =	SIGPROP_KILL,
234 	[SIGWINCH] =	SIGPROP_IGNORE,
235 	[SIGINFO] =	SIGPROP_IGNORE,
236 	[SIGUSR1] =	SIGPROP_KILL,
237 	[SIGUSR2] =	SIGPROP_KILL,
238 };
239 
240 static void reschedule_signals(struct proc *p, sigset_t block, int flags);
241 
242 static void
243 sigqueue_start(void)
244 {
245 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
246 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
247 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
248 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
249 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
250 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
251 }
252 
253 ksiginfo_t *
254 ksiginfo_alloc(int wait)
255 {
256 	int flags;
257 
258 	flags = M_ZERO;
259 	if (! wait)
260 		flags |= M_NOWAIT;
261 	if (ksiginfo_zone != NULL)
262 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
263 	return (NULL);
264 }
265 
266 void
267 ksiginfo_free(ksiginfo_t *ksi)
268 {
269 	uma_zfree(ksiginfo_zone, ksi);
270 }
271 
272 static __inline int
273 ksiginfo_tryfree(ksiginfo_t *ksi)
274 {
275 	if (!(ksi->ksi_flags & KSI_EXT)) {
276 		uma_zfree(ksiginfo_zone, ksi);
277 		return (1);
278 	}
279 	return (0);
280 }
281 
282 void
283 sigqueue_init(sigqueue_t *list, struct proc *p)
284 {
285 	SIGEMPTYSET(list->sq_signals);
286 	SIGEMPTYSET(list->sq_kill);
287 	SIGEMPTYSET(list->sq_ptrace);
288 	TAILQ_INIT(&list->sq_list);
289 	list->sq_proc = p;
290 	list->sq_flags = SQ_INIT;
291 }
292 
293 /*
294  * Get a signal's ksiginfo.
295  * Return:
296  *	0	-	signal not found
297  *	others	-	signal number
298  */
299 static int
300 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
301 {
302 	struct proc *p = sq->sq_proc;
303 	struct ksiginfo *ksi, *next;
304 	int count = 0;
305 
306 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
307 
308 	if (!SIGISMEMBER(sq->sq_signals, signo))
309 		return (0);
310 
311 	if (SIGISMEMBER(sq->sq_ptrace, signo)) {
312 		count++;
313 		SIGDELSET(sq->sq_ptrace, signo);
314 		si->ksi_flags |= KSI_PTRACE;
315 	}
316 	if (SIGISMEMBER(sq->sq_kill, signo)) {
317 		count++;
318 		if (count == 1)
319 			SIGDELSET(sq->sq_kill, signo);
320 	}
321 
322 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
323 		if (ksi->ksi_signo == signo) {
324 			if (count == 0) {
325 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
326 				ksi->ksi_sigq = NULL;
327 				ksiginfo_copy(ksi, si);
328 				if (ksiginfo_tryfree(ksi) && p != NULL)
329 					p->p_pendingcnt--;
330 			}
331 			if (++count > 1)
332 				break;
333 		}
334 	}
335 
336 	if (count <= 1)
337 		SIGDELSET(sq->sq_signals, signo);
338 	si->ksi_signo = signo;
339 	return (signo);
340 }
341 
342 void
343 sigqueue_take(ksiginfo_t *ksi)
344 {
345 	struct ksiginfo *kp;
346 	struct proc	*p;
347 	sigqueue_t	*sq;
348 
349 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
350 		return;
351 
352 	p = sq->sq_proc;
353 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
354 	ksi->ksi_sigq = NULL;
355 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
356 		p->p_pendingcnt--;
357 
358 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
359 	     kp = TAILQ_NEXT(kp, ksi_link)) {
360 		if (kp->ksi_signo == ksi->ksi_signo)
361 			break;
362 	}
363 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo) &&
364 	    !SIGISMEMBER(sq->sq_ptrace, ksi->ksi_signo))
365 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
366 }
367 
368 static int
369 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
370 {
371 	struct proc *p = sq->sq_proc;
372 	struct ksiginfo *ksi;
373 	int ret = 0;
374 
375 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
376 
377 	/*
378 	 * SIGKILL/SIGSTOP cannot be caught or masked, so take the fast path
379 	 * for these signals.
380 	 */
381 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
382 		SIGADDSET(sq->sq_kill, signo);
383 		goto out_set_bit;
384 	}
385 
386 	/* directly insert the ksi, don't copy it */
387 	if (si->ksi_flags & KSI_INS) {
388 		if (si->ksi_flags & KSI_HEAD)
389 			TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
390 		else
391 			TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
392 		si->ksi_sigq = sq;
393 		goto out_set_bit;
394 	}
395 
396 	if (__predict_false(ksiginfo_zone == NULL)) {
397 		SIGADDSET(sq->sq_kill, signo);
398 		goto out_set_bit;
399 	}
400 
401 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
402 		signal_overflow++;
403 		ret = EAGAIN;
404 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
405 		signal_alloc_fail++;
406 		ret = EAGAIN;
407 	} else {
408 		if (p != NULL)
409 			p->p_pendingcnt++;
410 		ksiginfo_copy(si, ksi);
411 		ksi->ksi_signo = signo;
412 		if (si->ksi_flags & KSI_HEAD)
413 			TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
414 		else
415 			TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
416 		ksi->ksi_sigq = sq;
417 	}
418 
419 	if (ret != 0) {
420 		if ((si->ksi_flags & KSI_PTRACE) != 0) {
421 			SIGADDSET(sq->sq_ptrace, signo);
422 			ret = 0;
423 			goto out_set_bit;
424 		} else if ((si->ksi_flags & KSI_TRAP) != 0 ||
425 		    (si->ksi_flags & KSI_SIGQ) == 0) {
426 			SIGADDSET(sq->sq_kill, signo);
427 			ret = 0;
428 			goto out_set_bit;
429 		}
430 		return (ret);
431 	}
432 
433 out_set_bit:
434 	SIGADDSET(sq->sq_signals, signo);
435 	return (ret);
436 }
437 
438 void
439 sigqueue_flush(sigqueue_t *sq)
440 {
441 	struct proc *p = sq->sq_proc;
442 	ksiginfo_t *ksi;
443 
444 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
445 
446 	if (p != NULL)
447 		PROC_LOCK_ASSERT(p, MA_OWNED);
448 
449 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
450 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
451 		ksi->ksi_sigq = NULL;
452 		if (ksiginfo_tryfree(ksi) && p != NULL)
453 			p->p_pendingcnt--;
454 	}
455 
456 	SIGEMPTYSET(sq->sq_signals);
457 	SIGEMPTYSET(sq->sq_kill);
458 	SIGEMPTYSET(sq->sq_ptrace);
459 }
460 
461 static void
462 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
463 {
464 	sigset_t tmp;
465 	struct proc *p1, *p2;
466 	ksiginfo_t *ksi, *next;
467 
468 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
469 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
470 	p1 = src->sq_proc;
471 	p2 = dst->sq_proc;
472 	/* Move siginfo to target list */
473 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
474 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
475 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
476 			if (p1 != NULL)
477 				p1->p_pendingcnt--;
478 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
479 			ksi->ksi_sigq = dst;
480 			if (p2 != NULL)
481 				p2->p_pendingcnt++;
482 		}
483 	}
484 
485 	/* Move pending bits to target list */
486 	tmp = src->sq_kill;
487 	SIGSETAND(tmp, *set);
488 	SIGSETOR(dst->sq_kill, tmp);
489 	SIGSETNAND(src->sq_kill, tmp);
490 
491 	tmp = src->sq_ptrace;
492 	SIGSETAND(tmp, *set);
493 	SIGSETOR(dst->sq_ptrace, tmp);
494 	SIGSETNAND(src->sq_ptrace, tmp);
495 
496 	tmp = src->sq_signals;
497 	SIGSETAND(tmp, *set);
498 	SIGSETOR(dst->sq_signals, tmp);
499 	SIGSETNAND(src->sq_signals, tmp);
500 }
501 
502 #if 0
503 static void
504 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
505 {
506 	sigset_t set;
507 
508 	SIGEMPTYSET(set);
509 	SIGADDSET(set, signo);
510 	sigqueue_move_set(src, dst, &set);
511 }
512 #endif
513 
514 static void
515 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
516 {
517 	struct proc *p = sq->sq_proc;
518 	ksiginfo_t *ksi, *next;
519 
520 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
521 
522 	/* Remove siginfo queue */
523 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
524 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
525 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
526 			ksi->ksi_sigq = NULL;
527 			if (ksiginfo_tryfree(ksi) && p != NULL)
528 				p->p_pendingcnt--;
529 		}
530 	}
531 	SIGSETNAND(sq->sq_kill, *set);
532 	SIGSETNAND(sq->sq_ptrace, *set);
533 	SIGSETNAND(sq->sq_signals, *set);
534 }
535 
536 void
537 sigqueue_delete(sigqueue_t *sq, int signo)
538 {
539 	sigset_t set;
540 
541 	SIGEMPTYSET(set);
542 	SIGADDSET(set, signo);
543 	sigqueue_delete_set(sq, &set);
544 }
545 
546 /* Remove a set of signals for a process */
547 static void
548 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
549 {
550 	sigqueue_t worklist;
551 	struct thread *td0;
552 
553 	PROC_LOCK_ASSERT(p, MA_OWNED);
554 
555 	sigqueue_init(&worklist, NULL);
556 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
557 
558 	FOREACH_THREAD_IN_PROC(p, td0)
559 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
560 
561 	sigqueue_flush(&worklist);
562 }
563 
564 void
565 sigqueue_delete_proc(struct proc *p, int signo)
566 {
567 	sigset_t set;
568 
569 	SIGEMPTYSET(set);
570 	SIGADDSET(set, signo);
571 	sigqueue_delete_set_proc(p, &set);
572 }
573 
574 static void
575 sigqueue_delete_stopmask_proc(struct proc *p)
576 {
577 	sigset_t set;
578 
579 	SIGEMPTYSET(set);
580 	SIGADDSET(set, SIGSTOP);
581 	SIGADDSET(set, SIGTSTP);
582 	SIGADDSET(set, SIGTTIN);
583 	SIGADDSET(set, SIGTTOU);
584 	sigqueue_delete_set_proc(p, &set);
585 }
586 
587 /*
588  * Determine signal that should be delivered to thread td, the current
589  * thread, 0 if none.  If there is a pending stop signal with default
590  * action, the process stops in issignal().
591  */
592 int
593 cursig(struct thread *td)
594 {
595 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
596 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
597 	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
598 	return (SIGPENDING(td) ? issignal(td) : 0);
599 }
600 
601 /*
602  * Arrange for ast() to handle unmasked pending signals on return to user
603  * mode.  This must be called whenever a signal is added to td_sigqueue or
604  * unmasked in td_sigmask.
605  */
606 void
607 signotify(struct thread *td)
608 {
609 
610 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
611 
612 	if (SIGPENDING(td)) {
613 		thread_lock(td);
614 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
615 		thread_unlock(td);
616 	}
617 }
618 
619 /*
620  * Returns 1 (true) if altstack is configured for the thread, and the
621  * passed stack bottom address falls into the altstack range.  Handles
622  * the 43 compat special case where the alt stack size is zero.
623  */
624 int
625 sigonstack(size_t sp)
626 {
627 	struct thread *td;
628 
629 	td = curthread;
630 	if ((td->td_pflags & TDP_ALTSTACK) == 0)
631 		return (0);
632 #if defined(COMPAT_43)
633 	if (td->td_sigstk.ss_size == 0)
634 		return ((td->td_sigstk.ss_flags & SS_ONSTACK) != 0);
635 #endif
636 	return (sp >= (size_t)td->td_sigstk.ss_sp &&
637 	    sp < td->td_sigstk.ss_size + (size_t)td->td_sigstk.ss_sp);
638 }
639 
640 static __inline int
641 sigprop(int sig)
642 {
643 
644 	if (sig > 0 && sig < nitems(sigproptbl))
645 		return (sigproptbl[sig]);
646 	return (0);
647 }
648 
649 int
650 sig_ffs(sigset_t *set)
651 {
652 	int i;
653 
654 	for (i = 0; i < _SIG_WORDS; i++)
655 		if (set->__bits[i])
656 			return (ffs(set->__bits[i]) + (i * 32));
657 	return (0);
658 }
659 
660 static bool
661 sigact_flag_test(const struct sigaction *act, int flag)
662 {
663 
664 	/*
665 	 * SA_SIGINFO is reset when signal disposition is set to
666 	 * ignore or default.  Other flags are kept according to user
667 	 * settings.
668 	 */
669 	return ((act->sa_flags & flag) != 0 && (flag != SA_SIGINFO ||
670 	    ((__sighandler_t *)act->sa_sigaction != SIG_IGN &&
671 	    (__sighandler_t *)act->sa_sigaction != SIG_DFL)));
672 }
673 
674 /*
675  * kern_sigaction
676  * sigaction
677  * freebsd4_sigaction
678  * osigaction
679  */
680 int
681 kern_sigaction(struct thread *td, int sig, const struct sigaction *act,
682     struct sigaction *oact, int flags)
683 {
684 	struct sigacts *ps;
685 	struct proc *p = td->td_proc;
686 
687 	if (!_SIG_VALID(sig))
688 		return (EINVAL);
689 	if (act != NULL && act->sa_handler != SIG_DFL &&
690 	    act->sa_handler != SIG_IGN && (act->sa_flags & ~(SA_ONSTACK |
691 	    SA_RESTART | SA_RESETHAND | SA_NOCLDSTOP | SA_NODEFER |
692 	    SA_NOCLDWAIT | SA_SIGINFO)) != 0)
693 		return (EINVAL);
694 
695 	PROC_LOCK(p);
696 	ps = p->p_sigacts;
697 	mtx_lock(&ps->ps_mtx);
698 	if (oact) {
699 		memset(oact, 0, sizeof(*oact));
700 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
701 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
702 			oact->sa_flags |= SA_ONSTACK;
703 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
704 			oact->sa_flags |= SA_RESTART;
705 		if (SIGISMEMBER(ps->ps_sigreset, sig))
706 			oact->sa_flags |= SA_RESETHAND;
707 		if (SIGISMEMBER(ps->ps_signodefer, sig))
708 			oact->sa_flags |= SA_NODEFER;
709 		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
710 			oact->sa_flags |= SA_SIGINFO;
711 			oact->sa_sigaction =
712 			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
713 		} else
714 			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
715 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
716 			oact->sa_flags |= SA_NOCLDSTOP;
717 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
718 			oact->sa_flags |= SA_NOCLDWAIT;
719 	}
720 	if (act) {
721 		if ((sig == SIGKILL || sig == SIGSTOP) &&
722 		    act->sa_handler != SIG_DFL) {
723 			mtx_unlock(&ps->ps_mtx);
724 			PROC_UNLOCK(p);
725 			return (EINVAL);
726 		}
727 
728 		/*
729 		 * Change setting atomically.
730 		 */
731 
732 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
733 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
734 		if (sigact_flag_test(act, SA_SIGINFO)) {
735 			ps->ps_sigact[_SIG_IDX(sig)] =
736 			    (__sighandler_t *)act->sa_sigaction;
737 			SIGADDSET(ps->ps_siginfo, sig);
738 		} else {
739 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
740 			SIGDELSET(ps->ps_siginfo, sig);
741 		}
742 		if (!sigact_flag_test(act, SA_RESTART))
743 			SIGADDSET(ps->ps_sigintr, sig);
744 		else
745 			SIGDELSET(ps->ps_sigintr, sig);
746 		if (sigact_flag_test(act, SA_ONSTACK))
747 			SIGADDSET(ps->ps_sigonstack, sig);
748 		else
749 			SIGDELSET(ps->ps_sigonstack, sig);
750 		if (sigact_flag_test(act, SA_RESETHAND))
751 			SIGADDSET(ps->ps_sigreset, sig);
752 		else
753 			SIGDELSET(ps->ps_sigreset, sig);
754 		if (sigact_flag_test(act, SA_NODEFER))
755 			SIGADDSET(ps->ps_signodefer, sig);
756 		else
757 			SIGDELSET(ps->ps_signodefer, sig);
758 		if (sig == SIGCHLD) {
759 			if (act->sa_flags & SA_NOCLDSTOP)
760 				ps->ps_flag |= PS_NOCLDSTOP;
761 			else
762 				ps->ps_flag &= ~PS_NOCLDSTOP;
763 			if (act->sa_flags & SA_NOCLDWAIT) {
764 				/*
765 				 * Paranoia: since SA_NOCLDWAIT is implemented
766 				 * by reparenting the dying child to PID 1 (and
767 				 * trust it to reap the zombie), PID 1 itself
768 				 * is forbidden to set SA_NOCLDWAIT.
769 				 */
770 				if (p->p_pid == 1)
771 					ps->ps_flag &= ~PS_NOCLDWAIT;
772 				else
773 					ps->ps_flag |= PS_NOCLDWAIT;
774 			} else
775 				ps->ps_flag &= ~PS_NOCLDWAIT;
776 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
777 				ps->ps_flag |= PS_CLDSIGIGN;
778 			else
779 				ps->ps_flag &= ~PS_CLDSIGIGN;
780 		}
781 		/*
782 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
783 		 * and for signals set to SIG_DFL where the default is to
784 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
785 		 * have to restart the process.
786 		 */
787 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
788 		    (sigprop(sig) & SIGPROP_IGNORE &&
789 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
790 			/* never to be seen again */
791 			sigqueue_delete_proc(p, sig);
792 			if (sig != SIGCONT)
793 				/* easier in psignal */
794 				SIGADDSET(ps->ps_sigignore, sig);
795 			SIGDELSET(ps->ps_sigcatch, sig);
796 		} else {
797 			SIGDELSET(ps->ps_sigignore, sig);
798 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
799 				SIGDELSET(ps->ps_sigcatch, sig);
800 			else
801 				SIGADDSET(ps->ps_sigcatch, sig);
802 		}
803 #ifdef COMPAT_FREEBSD4
804 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
805 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
806 		    (flags & KSA_FREEBSD4) == 0)
807 			SIGDELSET(ps->ps_freebsd4, sig);
808 		else
809 			SIGADDSET(ps->ps_freebsd4, sig);
810 #endif
811 #ifdef COMPAT_43
812 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
813 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
814 		    (flags & KSA_OSIGSET) == 0)
815 			SIGDELSET(ps->ps_osigset, sig);
816 		else
817 			SIGADDSET(ps->ps_osigset, sig);
818 #endif
819 	}
820 	mtx_unlock(&ps->ps_mtx);
821 	PROC_UNLOCK(p);
822 	return (0);
823 }
824 
825 #ifndef _SYS_SYSPROTO_H_
826 struct sigaction_args {
827 	int	sig;
828 	struct	sigaction *act;
829 	struct	sigaction *oact;
830 };
831 #endif
832 int
833 sys_sigaction(struct thread *td, struct sigaction_args *uap)
834 {
835 	struct sigaction act, oact;
836 	struct sigaction *actp, *oactp;
837 	int error;
838 
839 	actp = (uap->act != NULL) ? &act : NULL;
840 	oactp = (uap->oact != NULL) ? &oact : NULL;
841 	if (actp) {
842 		error = copyin(uap->act, actp, sizeof(act));
843 		if (error)
844 			return (error);
845 	}
846 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
847 	if (oactp && !error)
848 		error = copyout(oactp, uap->oact, sizeof(oact));
849 	return (error);
850 }
851 
852 #ifdef COMPAT_FREEBSD4
853 #ifndef _SYS_SYSPROTO_H_
854 struct freebsd4_sigaction_args {
855 	int	sig;
856 	struct	sigaction *act;
857 	struct	sigaction *oact;
858 };
859 #endif
860 int
861 freebsd4_sigaction(struct thread *td, struct freebsd4_sigaction_args *uap)
862 {
863 	struct sigaction act, oact;
864 	struct sigaction *actp, *oactp;
865 	int error;
866 
867 
868 	actp = (uap->act != NULL) ? &act : NULL;
869 	oactp = (uap->oact != NULL) ? &oact : NULL;
870 	if (actp) {
871 		error = copyin(uap->act, actp, sizeof(act));
872 		if (error)
873 			return (error);
874 	}
875 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
876 	if (oactp && !error)
877 		error = copyout(oactp, uap->oact, sizeof(oact));
878 	return (error);
879 }
880 #endif	/* COMAPT_FREEBSD4 */
881 
882 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
883 #ifndef _SYS_SYSPROTO_H_
884 struct osigaction_args {
885 	int	signum;
886 	struct	osigaction *nsa;
887 	struct	osigaction *osa;
888 };
889 #endif
890 int
891 osigaction(struct thread *td, struct osigaction_args *uap)
892 {
893 	struct osigaction sa;
894 	struct sigaction nsa, osa;
895 	struct sigaction *nsap, *osap;
896 	int error;
897 
898 	if (uap->signum <= 0 || uap->signum >= ONSIG)
899 		return (EINVAL);
900 
901 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
902 	osap = (uap->osa != NULL) ? &osa : NULL;
903 
904 	if (nsap) {
905 		error = copyin(uap->nsa, &sa, sizeof(sa));
906 		if (error)
907 			return (error);
908 		nsap->sa_handler = sa.sa_handler;
909 		nsap->sa_flags = sa.sa_flags;
910 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
911 	}
912 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
913 	if (osap && !error) {
914 		sa.sa_handler = osap->sa_handler;
915 		sa.sa_flags = osap->sa_flags;
916 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
917 		error = copyout(&sa, uap->osa, sizeof(sa));
918 	}
919 	return (error);
920 }
921 
922 #if !defined(__i386__)
923 /* Avoid replicating the same stub everywhere */
924 int
925 osigreturn(struct thread *td, struct osigreturn_args *uap)
926 {
927 
928 	return (nosys(td, (struct nosys_args *)uap));
929 }
930 #endif
931 #endif /* COMPAT_43 */
932 
933 /*
934  * Initialize signal state for process 0;
935  * set to ignore signals that are ignored by default.
936  */
937 void
938 siginit(struct proc *p)
939 {
940 	int i;
941 	struct sigacts *ps;
942 
943 	PROC_LOCK(p);
944 	ps = p->p_sigacts;
945 	mtx_lock(&ps->ps_mtx);
946 	for (i = 1; i <= NSIG; i++) {
947 		if (sigprop(i) & SIGPROP_IGNORE && i != SIGCONT) {
948 			SIGADDSET(ps->ps_sigignore, i);
949 		}
950 	}
951 	mtx_unlock(&ps->ps_mtx);
952 	PROC_UNLOCK(p);
953 }
954 
955 /*
956  * Reset specified signal to the default disposition.
957  */
958 static void
959 sigdflt(struct sigacts *ps, int sig)
960 {
961 
962 	mtx_assert(&ps->ps_mtx, MA_OWNED);
963 	SIGDELSET(ps->ps_sigcatch, sig);
964 	if ((sigprop(sig) & SIGPROP_IGNORE) != 0 && sig != SIGCONT)
965 		SIGADDSET(ps->ps_sigignore, sig);
966 	ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
967 	SIGDELSET(ps->ps_siginfo, sig);
968 }
969 
970 /*
971  * Reset signals for an exec of the specified process.
972  */
973 void
974 execsigs(struct proc *p)
975 {
976 	sigset_t osigignore;
977 	struct sigacts *ps;
978 	int sig;
979 	struct thread *td;
980 
981 	/*
982 	 * Reset caught signals.  Held signals remain held
983 	 * through td_sigmask (unless they were caught,
984 	 * and are now ignored by default).
985 	 */
986 	PROC_LOCK_ASSERT(p, MA_OWNED);
987 	ps = p->p_sigacts;
988 	mtx_lock(&ps->ps_mtx);
989 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
990 		sig = sig_ffs(&ps->ps_sigcatch);
991 		sigdflt(ps, sig);
992 		if ((sigprop(sig) & SIGPROP_IGNORE) != 0)
993 			sigqueue_delete_proc(p, sig);
994 	}
995 
996 	/*
997 	 * As CloudABI processes cannot modify signal handlers, fully
998 	 * reset all signals to their default behavior. Do ignore
999 	 * SIGPIPE, as it would otherwise be impossible to recover from
1000 	 * writes to broken pipes and sockets.
1001 	 */
1002 	if (SV_PROC_ABI(p) == SV_ABI_CLOUDABI) {
1003 		osigignore = ps->ps_sigignore;
1004 		while (SIGNOTEMPTY(osigignore)) {
1005 			sig = sig_ffs(&osigignore);
1006 			SIGDELSET(osigignore, sig);
1007 			if (sig != SIGPIPE)
1008 				sigdflt(ps, sig);
1009 		}
1010 		SIGADDSET(ps->ps_sigignore, SIGPIPE);
1011 	}
1012 
1013 	/*
1014 	 * Reset stack state to the user stack.
1015 	 * Clear set of signals caught on the signal stack.
1016 	 */
1017 	td = curthread;
1018 	MPASS(td->td_proc == p);
1019 	td->td_sigstk.ss_flags = SS_DISABLE;
1020 	td->td_sigstk.ss_size = 0;
1021 	td->td_sigstk.ss_sp = 0;
1022 	td->td_pflags &= ~TDP_ALTSTACK;
1023 	/*
1024 	 * Reset no zombies if child dies flag as Solaris does.
1025 	 */
1026 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
1027 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
1028 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
1029 	mtx_unlock(&ps->ps_mtx);
1030 }
1031 
1032 /*
1033  * kern_sigprocmask()
1034  *
1035  *	Manipulate signal mask.
1036  */
1037 int
1038 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
1039     int flags)
1040 {
1041 	sigset_t new_block, oset1;
1042 	struct proc *p;
1043 	int error;
1044 
1045 	p = td->td_proc;
1046 	if ((flags & SIGPROCMASK_PROC_LOCKED) != 0)
1047 		PROC_LOCK_ASSERT(p, MA_OWNED);
1048 	else
1049 		PROC_LOCK(p);
1050 	mtx_assert(&p->p_sigacts->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0
1051 	    ? MA_OWNED : MA_NOTOWNED);
1052 	if (oset != NULL)
1053 		*oset = td->td_sigmask;
1054 
1055 	error = 0;
1056 	if (set != NULL) {
1057 		switch (how) {
1058 		case SIG_BLOCK:
1059 			SIG_CANTMASK(*set);
1060 			oset1 = td->td_sigmask;
1061 			SIGSETOR(td->td_sigmask, *set);
1062 			new_block = td->td_sigmask;
1063 			SIGSETNAND(new_block, oset1);
1064 			break;
1065 		case SIG_UNBLOCK:
1066 			SIGSETNAND(td->td_sigmask, *set);
1067 			signotify(td);
1068 			goto out;
1069 		case SIG_SETMASK:
1070 			SIG_CANTMASK(*set);
1071 			oset1 = td->td_sigmask;
1072 			if (flags & SIGPROCMASK_OLD)
1073 				SIGSETLO(td->td_sigmask, *set);
1074 			else
1075 				td->td_sigmask = *set;
1076 			new_block = td->td_sigmask;
1077 			SIGSETNAND(new_block, oset1);
1078 			signotify(td);
1079 			break;
1080 		default:
1081 			error = EINVAL;
1082 			goto out;
1083 		}
1084 
1085 		/*
1086 		 * The new_block set contains signals that were not previously
1087 		 * blocked, but are blocked now.
1088 		 *
1089 		 * In case we block any signal that was not previously blocked
1090 		 * for td, and process has the signal pending, try to schedule
1091 		 * signal delivery to some thread that does not block the
1092 		 * signal, possibly waking it up.
1093 		 */
1094 		if (p->p_numthreads != 1)
1095 			reschedule_signals(p, new_block, flags);
1096 	}
1097 
1098 out:
1099 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
1100 		PROC_UNLOCK(p);
1101 	return (error);
1102 }
1103 
1104 #ifndef _SYS_SYSPROTO_H_
1105 struct sigprocmask_args {
1106 	int	how;
1107 	const sigset_t *set;
1108 	sigset_t *oset;
1109 };
1110 #endif
1111 int
1112 sys_sigprocmask(struct thread *td, struct sigprocmask_args *uap)
1113 {
1114 	sigset_t set, oset;
1115 	sigset_t *setp, *osetp;
1116 	int error;
1117 
1118 	setp = (uap->set != NULL) ? &set : NULL;
1119 	osetp = (uap->oset != NULL) ? &oset : NULL;
1120 	if (setp) {
1121 		error = copyin(uap->set, setp, sizeof(set));
1122 		if (error)
1123 			return (error);
1124 	}
1125 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1126 	if (osetp && !error) {
1127 		error = copyout(osetp, uap->oset, sizeof(oset));
1128 	}
1129 	return (error);
1130 }
1131 
1132 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1133 #ifndef _SYS_SYSPROTO_H_
1134 struct osigprocmask_args {
1135 	int	how;
1136 	osigset_t mask;
1137 };
1138 #endif
1139 int
1140 osigprocmask(struct thread *td, struct osigprocmask_args *uap)
1141 {
1142 	sigset_t set, oset;
1143 	int error;
1144 
1145 	OSIG2SIG(uap->mask, set);
1146 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1147 	SIG2OSIG(oset, td->td_retval[0]);
1148 	return (error);
1149 }
1150 #endif /* COMPAT_43 */
1151 
1152 int
1153 sys_sigwait(struct thread *td, struct sigwait_args *uap)
1154 {
1155 	ksiginfo_t ksi;
1156 	sigset_t set;
1157 	int error;
1158 
1159 	error = copyin(uap->set, &set, sizeof(set));
1160 	if (error) {
1161 		td->td_retval[0] = error;
1162 		return (0);
1163 	}
1164 
1165 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1166 	if (error) {
1167 		if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
1168 			error = ERESTART;
1169 		if (error == ERESTART)
1170 			return (error);
1171 		td->td_retval[0] = error;
1172 		return (0);
1173 	}
1174 
1175 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1176 	td->td_retval[0] = error;
1177 	return (0);
1178 }
1179 
1180 int
1181 sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1182 {
1183 	struct timespec ts;
1184 	struct timespec *timeout;
1185 	sigset_t set;
1186 	ksiginfo_t ksi;
1187 	int error;
1188 
1189 	if (uap->timeout) {
1190 		error = copyin(uap->timeout, &ts, sizeof(ts));
1191 		if (error)
1192 			return (error);
1193 
1194 		timeout = &ts;
1195 	} else
1196 		timeout = NULL;
1197 
1198 	error = copyin(uap->set, &set, sizeof(set));
1199 	if (error)
1200 		return (error);
1201 
1202 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1203 	if (error)
1204 		return (error);
1205 
1206 	if (uap->info)
1207 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1208 
1209 	if (error == 0)
1210 		td->td_retval[0] = ksi.ksi_signo;
1211 	return (error);
1212 }
1213 
1214 int
1215 sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1216 {
1217 	ksiginfo_t ksi;
1218 	sigset_t set;
1219 	int error;
1220 
1221 	error = copyin(uap->set, &set, sizeof(set));
1222 	if (error)
1223 		return (error);
1224 
1225 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1226 	if (error)
1227 		return (error);
1228 
1229 	if (uap->info)
1230 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1231 
1232 	if (error == 0)
1233 		td->td_retval[0] = ksi.ksi_signo;
1234 	return (error);
1235 }
1236 
1237 static void
1238 proc_td_siginfo_capture(struct thread *td, siginfo_t *si)
1239 {
1240 	struct thread *thr;
1241 
1242 	FOREACH_THREAD_IN_PROC(td->td_proc, thr) {
1243 		if (thr == td)
1244 			thr->td_si = *si;
1245 		else
1246 			thr->td_si.si_signo = 0;
1247 	}
1248 }
1249 
1250 int
1251 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1252 	struct timespec *timeout)
1253 {
1254 	struct sigacts *ps;
1255 	sigset_t saved_mask, new_block;
1256 	struct proc *p;
1257 	int error, sig, timo, timevalid = 0;
1258 	struct timespec rts, ets, ts;
1259 	struct timeval tv;
1260 
1261 	p = td->td_proc;
1262 	error = 0;
1263 	ets.tv_sec = 0;
1264 	ets.tv_nsec = 0;
1265 
1266 	if (timeout != NULL) {
1267 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1268 			timevalid = 1;
1269 			getnanouptime(&rts);
1270 			timespecadd(&rts, timeout, &ets);
1271 		}
1272 	}
1273 	ksiginfo_init(ksi);
1274 	/* Some signals can not be waited for. */
1275 	SIG_CANTMASK(waitset);
1276 	ps = p->p_sigacts;
1277 	PROC_LOCK(p);
1278 	saved_mask = td->td_sigmask;
1279 	SIGSETNAND(td->td_sigmask, waitset);
1280 	for (;;) {
1281 		mtx_lock(&ps->ps_mtx);
1282 		sig = cursig(td);
1283 		mtx_unlock(&ps->ps_mtx);
1284 		KASSERT(sig >= 0, ("sig %d", sig));
1285 		if (sig != 0 && SIGISMEMBER(waitset, sig)) {
1286 			if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1287 			    sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1288 				error = 0;
1289 				break;
1290 			}
1291 		}
1292 
1293 		if (error != 0)
1294 			break;
1295 
1296 		/*
1297 		 * POSIX says this must be checked after looking for pending
1298 		 * signals.
1299 		 */
1300 		if (timeout != NULL) {
1301 			if (!timevalid) {
1302 				error = EINVAL;
1303 				break;
1304 			}
1305 			getnanouptime(&rts);
1306 			if (timespeccmp(&rts, &ets, >=)) {
1307 				error = EAGAIN;
1308 				break;
1309 			}
1310 			timespecsub(&ets, &rts, &ts);
1311 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1312 			timo = tvtohz(&tv);
1313 		} else {
1314 			timo = 0;
1315 		}
1316 
1317 		error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo);
1318 
1319 		if (timeout != NULL) {
1320 			if (error == ERESTART) {
1321 				/* Timeout can not be restarted. */
1322 				error = EINTR;
1323 			} else if (error == EAGAIN) {
1324 				/* We will calculate timeout by ourself. */
1325 				error = 0;
1326 			}
1327 		}
1328 	}
1329 
1330 	new_block = saved_mask;
1331 	SIGSETNAND(new_block, td->td_sigmask);
1332 	td->td_sigmask = saved_mask;
1333 	/*
1334 	 * Fewer signals can be delivered to us, reschedule signal
1335 	 * notification.
1336 	 */
1337 	if (p->p_numthreads != 1)
1338 		reschedule_signals(p, new_block, 0);
1339 
1340 	if (error == 0) {
1341 		SDT_PROBE2(proc, , , signal__clear, sig, ksi);
1342 
1343 		if (ksi->ksi_code == SI_TIMER)
1344 			itimer_accept(p, ksi->ksi_timerid, ksi);
1345 
1346 #ifdef KTRACE
1347 		if (KTRPOINT(td, KTR_PSIG)) {
1348 			sig_t action;
1349 
1350 			mtx_lock(&ps->ps_mtx);
1351 			action = ps->ps_sigact[_SIG_IDX(sig)];
1352 			mtx_unlock(&ps->ps_mtx);
1353 			ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
1354 		}
1355 #endif
1356 		if (sig == SIGKILL) {
1357 			proc_td_siginfo_capture(td, &ksi->ksi_info);
1358 			sigexit(td, sig);
1359 		}
1360 	}
1361 	PROC_UNLOCK(p);
1362 	return (error);
1363 }
1364 
1365 #ifndef _SYS_SYSPROTO_H_
1366 struct sigpending_args {
1367 	sigset_t	*set;
1368 };
1369 #endif
1370 int
1371 sys_sigpending(struct thread *td, struct sigpending_args *uap)
1372 {
1373 	struct proc *p = td->td_proc;
1374 	sigset_t pending;
1375 
1376 	PROC_LOCK(p);
1377 	pending = p->p_sigqueue.sq_signals;
1378 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1379 	PROC_UNLOCK(p);
1380 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1381 }
1382 
1383 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1384 #ifndef _SYS_SYSPROTO_H_
1385 struct osigpending_args {
1386 	int	dummy;
1387 };
1388 #endif
1389 int
1390 osigpending(struct thread *td, struct osigpending_args *uap)
1391 {
1392 	struct proc *p = td->td_proc;
1393 	sigset_t pending;
1394 
1395 	PROC_LOCK(p);
1396 	pending = p->p_sigqueue.sq_signals;
1397 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1398 	PROC_UNLOCK(p);
1399 	SIG2OSIG(pending, td->td_retval[0]);
1400 	return (0);
1401 }
1402 #endif /* COMPAT_43 */
1403 
1404 #if defined(COMPAT_43)
1405 /*
1406  * Generalized interface signal handler, 4.3-compatible.
1407  */
1408 #ifndef _SYS_SYSPROTO_H_
1409 struct osigvec_args {
1410 	int	signum;
1411 	struct	sigvec *nsv;
1412 	struct	sigvec *osv;
1413 };
1414 #endif
1415 /* ARGSUSED */
1416 int
1417 osigvec(struct thread *td, struct osigvec_args *uap)
1418 {
1419 	struct sigvec vec;
1420 	struct sigaction nsa, osa;
1421 	struct sigaction *nsap, *osap;
1422 	int error;
1423 
1424 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1425 		return (EINVAL);
1426 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1427 	osap = (uap->osv != NULL) ? &osa : NULL;
1428 	if (nsap) {
1429 		error = copyin(uap->nsv, &vec, sizeof(vec));
1430 		if (error)
1431 			return (error);
1432 		nsap->sa_handler = vec.sv_handler;
1433 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1434 		nsap->sa_flags = vec.sv_flags;
1435 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1436 	}
1437 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1438 	if (osap && !error) {
1439 		vec.sv_handler = osap->sa_handler;
1440 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1441 		vec.sv_flags = osap->sa_flags;
1442 		vec.sv_flags &= ~SA_NOCLDWAIT;
1443 		vec.sv_flags ^= SA_RESTART;
1444 		error = copyout(&vec, uap->osv, sizeof(vec));
1445 	}
1446 	return (error);
1447 }
1448 
1449 #ifndef _SYS_SYSPROTO_H_
1450 struct osigblock_args {
1451 	int	mask;
1452 };
1453 #endif
1454 int
1455 osigblock(struct thread *td, struct osigblock_args *uap)
1456 {
1457 	sigset_t set, oset;
1458 
1459 	OSIG2SIG(uap->mask, set);
1460 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
1461 	SIG2OSIG(oset, td->td_retval[0]);
1462 	return (0);
1463 }
1464 
1465 #ifndef _SYS_SYSPROTO_H_
1466 struct osigsetmask_args {
1467 	int	mask;
1468 };
1469 #endif
1470 int
1471 osigsetmask(struct thread *td, struct osigsetmask_args *uap)
1472 {
1473 	sigset_t set, oset;
1474 
1475 	OSIG2SIG(uap->mask, set);
1476 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
1477 	SIG2OSIG(oset, td->td_retval[0]);
1478 	return (0);
1479 }
1480 #endif /* COMPAT_43 */
1481 
1482 /*
1483  * Suspend calling thread until signal, providing mask to be set in the
1484  * meantime.
1485  */
1486 #ifndef _SYS_SYSPROTO_H_
1487 struct sigsuspend_args {
1488 	const sigset_t *sigmask;
1489 };
1490 #endif
1491 /* ARGSUSED */
1492 int
1493 sys_sigsuspend(struct thread *td, struct sigsuspend_args *uap)
1494 {
1495 	sigset_t mask;
1496 	int error;
1497 
1498 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1499 	if (error)
1500 		return (error);
1501 	return (kern_sigsuspend(td, mask));
1502 }
1503 
1504 int
1505 kern_sigsuspend(struct thread *td, sigset_t mask)
1506 {
1507 	struct proc *p = td->td_proc;
1508 	int has_sig, sig;
1509 
1510 	/*
1511 	 * When returning from sigsuspend, we want
1512 	 * the old mask to be restored after the
1513 	 * signal handler has finished.  Thus, we
1514 	 * save it here and mark the sigacts structure
1515 	 * to indicate this.
1516 	 */
1517 	PROC_LOCK(p);
1518 	kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
1519 	    SIGPROCMASK_PROC_LOCKED);
1520 	td->td_pflags |= TDP_OLDMASK;
1521 
1522 	/*
1523 	 * Process signals now. Otherwise, we can get spurious wakeup
1524 	 * due to signal entered process queue, but delivered to other
1525 	 * thread. But sigsuspend should return only on signal
1526 	 * delivery.
1527 	 */
1528 	(p->p_sysent->sv_set_syscall_retval)(td, EINTR);
1529 	for (has_sig = 0; !has_sig;) {
1530 		while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
1531 			0) == 0)
1532 			/* void */;
1533 		thread_suspend_check(0);
1534 		mtx_lock(&p->p_sigacts->ps_mtx);
1535 		while ((sig = cursig(td)) != 0) {
1536 			KASSERT(sig >= 0, ("sig %d", sig));
1537 			has_sig += postsig(sig);
1538 		}
1539 		mtx_unlock(&p->p_sigacts->ps_mtx);
1540 	}
1541 	PROC_UNLOCK(p);
1542 	td->td_errno = EINTR;
1543 	td->td_pflags |= TDP_NERRNO;
1544 	return (EJUSTRETURN);
1545 }
1546 
1547 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1548 /*
1549  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1550  * convention: libc stub passes mask, not pointer, to save a copyin.
1551  */
1552 #ifndef _SYS_SYSPROTO_H_
1553 struct osigsuspend_args {
1554 	osigset_t mask;
1555 };
1556 #endif
1557 /* ARGSUSED */
1558 int
1559 osigsuspend(struct thread *td, struct osigsuspend_args *uap)
1560 {
1561 	sigset_t mask;
1562 
1563 	OSIG2SIG(uap->mask, mask);
1564 	return (kern_sigsuspend(td, mask));
1565 }
1566 #endif /* COMPAT_43 */
1567 
1568 #if defined(COMPAT_43)
1569 #ifndef _SYS_SYSPROTO_H_
1570 struct osigstack_args {
1571 	struct	sigstack *nss;
1572 	struct	sigstack *oss;
1573 };
1574 #endif
1575 /* ARGSUSED */
1576 int
1577 osigstack(struct thread *td, struct osigstack_args *uap)
1578 {
1579 	struct sigstack nss, oss;
1580 	int error = 0;
1581 
1582 	if (uap->nss != NULL) {
1583 		error = copyin(uap->nss, &nss, sizeof(nss));
1584 		if (error)
1585 			return (error);
1586 	}
1587 	oss.ss_sp = td->td_sigstk.ss_sp;
1588 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1589 	if (uap->nss != NULL) {
1590 		td->td_sigstk.ss_sp = nss.ss_sp;
1591 		td->td_sigstk.ss_size = 0;
1592 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1593 		td->td_pflags |= TDP_ALTSTACK;
1594 	}
1595 	if (uap->oss != NULL)
1596 		error = copyout(&oss, uap->oss, sizeof(oss));
1597 
1598 	return (error);
1599 }
1600 #endif /* COMPAT_43 */
1601 
1602 #ifndef _SYS_SYSPROTO_H_
1603 struct sigaltstack_args {
1604 	stack_t	*ss;
1605 	stack_t	*oss;
1606 };
1607 #endif
1608 /* ARGSUSED */
1609 int
1610 sys_sigaltstack(struct thread *td, struct sigaltstack_args *uap)
1611 {
1612 	stack_t ss, oss;
1613 	int error;
1614 
1615 	if (uap->ss != NULL) {
1616 		error = copyin(uap->ss, &ss, sizeof(ss));
1617 		if (error)
1618 			return (error);
1619 	}
1620 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1621 	    (uap->oss != NULL) ? &oss : NULL);
1622 	if (error)
1623 		return (error);
1624 	if (uap->oss != NULL)
1625 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1626 	return (error);
1627 }
1628 
1629 int
1630 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1631 {
1632 	struct proc *p = td->td_proc;
1633 	int oonstack;
1634 
1635 	oonstack = sigonstack(cpu_getstack(td));
1636 
1637 	if (oss != NULL) {
1638 		*oss = td->td_sigstk;
1639 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1640 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1641 	}
1642 
1643 	if (ss != NULL) {
1644 		if (oonstack)
1645 			return (EPERM);
1646 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1647 			return (EINVAL);
1648 		if (!(ss->ss_flags & SS_DISABLE)) {
1649 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1650 				return (ENOMEM);
1651 
1652 			td->td_sigstk = *ss;
1653 			td->td_pflags |= TDP_ALTSTACK;
1654 		} else {
1655 			td->td_pflags &= ~TDP_ALTSTACK;
1656 		}
1657 	}
1658 	return (0);
1659 }
1660 
1661 /*
1662  * Common code for kill process group/broadcast kill.
1663  * cp is calling process.
1664  */
1665 static int
1666 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1667 {
1668 	struct proc *p;
1669 	struct pgrp *pgrp;
1670 	int err;
1671 	int ret;
1672 
1673 	ret = ESRCH;
1674 	if (all) {
1675 		/*
1676 		 * broadcast
1677 		 */
1678 		sx_slock(&allproc_lock);
1679 		FOREACH_PROC_IN_SYSTEM(p) {
1680 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1681 			    p == td->td_proc || p->p_state == PRS_NEW) {
1682 				continue;
1683 			}
1684 			PROC_LOCK(p);
1685 			err = p_cansignal(td, p, sig);
1686 			if (err == 0) {
1687 				if (sig)
1688 					pksignal(p, sig, ksi);
1689 				ret = err;
1690 			}
1691 			else if (ret == ESRCH)
1692 				ret = err;
1693 			PROC_UNLOCK(p);
1694 		}
1695 		sx_sunlock(&allproc_lock);
1696 	} else {
1697 		sx_slock(&proctree_lock);
1698 		if (pgid == 0) {
1699 			/*
1700 			 * zero pgid means send to my process group.
1701 			 */
1702 			pgrp = td->td_proc->p_pgrp;
1703 			PGRP_LOCK(pgrp);
1704 		} else {
1705 			pgrp = pgfind(pgid);
1706 			if (pgrp == NULL) {
1707 				sx_sunlock(&proctree_lock);
1708 				return (ESRCH);
1709 			}
1710 		}
1711 		sx_sunlock(&proctree_lock);
1712 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1713 			PROC_LOCK(p);
1714 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1715 			    p->p_state == PRS_NEW) {
1716 				PROC_UNLOCK(p);
1717 				continue;
1718 			}
1719 			err = p_cansignal(td, p, sig);
1720 			if (err == 0) {
1721 				if (sig)
1722 					pksignal(p, sig, ksi);
1723 				ret = err;
1724 			}
1725 			else if (ret == ESRCH)
1726 				ret = err;
1727 			PROC_UNLOCK(p);
1728 		}
1729 		PGRP_UNLOCK(pgrp);
1730 	}
1731 	return (ret);
1732 }
1733 
1734 #ifndef _SYS_SYSPROTO_H_
1735 struct kill_args {
1736 	int	pid;
1737 	int	signum;
1738 };
1739 #endif
1740 /* ARGSUSED */
1741 int
1742 sys_kill(struct thread *td, struct kill_args *uap)
1743 {
1744 	ksiginfo_t ksi;
1745 	struct proc *p;
1746 	int error;
1747 
1748 	/*
1749 	 * A process in capability mode can send signals only to himself.
1750 	 * The main rationale behind this is that abort(3) is implemented as
1751 	 * kill(getpid(), SIGABRT).
1752 	 */
1753 	if (IN_CAPABILITY_MODE(td) && uap->pid != td->td_proc->p_pid)
1754 		return (ECAPMODE);
1755 
1756 	AUDIT_ARG_SIGNUM(uap->signum);
1757 	AUDIT_ARG_PID(uap->pid);
1758 	if ((u_int)uap->signum > _SIG_MAXSIG)
1759 		return (EINVAL);
1760 
1761 	ksiginfo_init(&ksi);
1762 	ksi.ksi_signo = uap->signum;
1763 	ksi.ksi_code = SI_USER;
1764 	ksi.ksi_pid = td->td_proc->p_pid;
1765 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1766 
1767 	if (uap->pid > 0) {
1768 		/* kill single process */
1769 		if ((p = pfind_any(uap->pid)) == NULL)
1770 			return (ESRCH);
1771 		AUDIT_ARG_PROCESS(p);
1772 		error = p_cansignal(td, p, uap->signum);
1773 		if (error == 0 && uap->signum)
1774 			pksignal(p, uap->signum, &ksi);
1775 		PROC_UNLOCK(p);
1776 		return (error);
1777 	}
1778 	switch (uap->pid) {
1779 	case -1:		/* broadcast signal */
1780 		return (killpg1(td, uap->signum, 0, 1, &ksi));
1781 	case 0:			/* signal own process group */
1782 		return (killpg1(td, uap->signum, 0, 0, &ksi));
1783 	default:		/* negative explicit process group */
1784 		return (killpg1(td, uap->signum, -uap->pid, 0, &ksi));
1785 	}
1786 	/* NOTREACHED */
1787 }
1788 
1789 int
1790 sys_pdkill(struct thread *td, struct pdkill_args *uap)
1791 {
1792 	struct proc *p;
1793 	int error;
1794 
1795 	AUDIT_ARG_SIGNUM(uap->signum);
1796 	AUDIT_ARG_FD(uap->fd);
1797 	if ((u_int)uap->signum > _SIG_MAXSIG)
1798 		return (EINVAL);
1799 
1800 	error = procdesc_find(td, uap->fd, &cap_pdkill_rights, &p);
1801 	if (error)
1802 		return (error);
1803 	AUDIT_ARG_PROCESS(p);
1804 	error = p_cansignal(td, p, uap->signum);
1805 	if (error == 0 && uap->signum)
1806 		kern_psignal(p, uap->signum);
1807 	PROC_UNLOCK(p);
1808 	return (error);
1809 }
1810 
1811 #if defined(COMPAT_43)
1812 #ifndef _SYS_SYSPROTO_H_
1813 struct okillpg_args {
1814 	int	pgid;
1815 	int	signum;
1816 };
1817 #endif
1818 /* ARGSUSED */
1819 int
1820 okillpg(struct thread *td, struct okillpg_args *uap)
1821 {
1822 	ksiginfo_t ksi;
1823 
1824 	AUDIT_ARG_SIGNUM(uap->signum);
1825 	AUDIT_ARG_PID(uap->pgid);
1826 	if ((u_int)uap->signum > _SIG_MAXSIG)
1827 		return (EINVAL);
1828 
1829 	ksiginfo_init(&ksi);
1830 	ksi.ksi_signo = uap->signum;
1831 	ksi.ksi_code = SI_USER;
1832 	ksi.ksi_pid = td->td_proc->p_pid;
1833 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1834 	return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
1835 }
1836 #endif /* COMPAT_43 */
1837 
1838 #ifndef _SYS_SYSPROTO_H_
1839 struct sigqueue_args {
1840 	pid_t pid;
1841 	int signum;
1842 	/* union sigval */ void *value;
1843 };
1844 #endif
1845 int
1846 sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
1847 {
1848 	union sigval sv;
1849 
1850 	sv.sival_ptr = uap->value;
1851 
1852 	return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
1853 }
1854 
1855 int
1856 kern_sigqueue(struct thread *td, pid_t pid, int signum, union sigval *value)
1857 {
1858 	ksiginfo_t ksi;
1859 	struct proc *p;
1860 	int error;
1861 
1862 	if ((u_int)signum > _SIG_MAXSIG)
1863 		return (EINVAL);
1864 
1865 	/*
1866 	 * Specification says sigqueue can only send signal to
1867 	 * single process.
1868 	 */
1869 	if (pid <= 0)
1870 		return (EINVAL);
1871 
1872 	if ((p = pfind_any(pid)) == NULL)
1873 		return (ESRCH);
1874 	error = p_cansignal(td, p, signum);
1875 	if (error == 0 && signum != 0) {
1876 		ksiginfo_init(&ksi);
1877 		ksi.ksi_flags = KSI_SIGQ;
1878 		ksi.ksi_signo = signum;
1879 		ksi.ksi_code = SI_QUEUE;
1880 		ksi.ksi_pid = td->td_proc->p_pid;
1881 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1882 		ksi.ksi_value = *value;
1883 		error = pksignal(p, ksi.ksi_signo, &ksi);
1884 	}
1885 	PROC_UNLOCK(p);
1886 	return (error);
1887 }
1888 
1889 /*
1890  * Send a signal to a process group.
1891  */
1892 void
1893 gsignal(int pgid, int sig, ksiginfo_t *ksi)
1894 {
1895 	struct pgrp *pgrp;
1896 
1897 	if (pgid != 0) {
1898 		sx_slock(&proctree_lock);
1899 		pgrp = pgfind(pgid);
1900 		sx_sunlock(&proctree_lock);
1901 		if (pgrp != NULL) {
1902 			pgsignal(pgrp, sig, 0, ksi);
1903 			PGRP_UNLOCK(pgrp);
1904 		}
1905 	}
1906 }
1907 
1908 /*
1909  * Send a signal to a process group.  If checktty is 1,
1910  * limit to members which have a controlling terminal.
1911  */
1912 void
1913 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
1914 {
1915 	struct proc *p;
1916 
1917 	if (pgrp) {
1918 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1919 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1920 			PROC_LOCK(p);
1921 			if (p->p_state == PRS_NORMAL &&
1922 			    (checkctty == 0 || p->p_flag & P_CONTROLT))
1923 				pksignal(p, sig, ksi);
1924 			PROC_UNLOCK(p);
1925 		}
1926 	}
1927 }
1928 
1929 
1930 /*
1931  * Recalculate the signal mask and reset the signal disposition after
1932  * usermode frame for delivery is formed.  Should be called after
1933  * mach-specific routine, because sysent->sv_sendsig() needs correct
1934  * ps_siginfo and signal mask.
1935  */
1936 static void
1937 postsig_done(int sig, struct thread *td, struct sigacts *ps)
1938 {
1939 	sigset_t mask;
1940 
1941 	mtx_assert(&ps->ps_mtx, MA_OWNED);
1942 	td->td_ru.ru_nsignals++;
1943 	mask = ps->ps_catchmask[_SIG_IDX(sig)];
1944 	if (!SIGISMEMBER(ps->ps_signodefer, sig))
1945 		SIGADDSET(mask, sig);
1946 	kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
1947 	    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
1948 	if (SIGISMEMBER(ps->ps_sigreset, sig))
1949 		sigdflt(ps, sig);
1950 }
1951 
1952 
1953 /*
1954  * Send a signal caused by a trap to the current thread.  If it will be
1955  * caught immediately, deliver it with correct code.  Otherwise, post it
1956  * normally.
1957  */
1958 void
1959 trapsignal(struct thread *td, ksiginfo_t *ksi)
1960 {
1961 	struct sigacts *ps;
1962 	struct proc *p;
1963 	int sig;
1964 	int code;
1965 
1966 	p = td->td_proc;
1967 	sig = ksi->ksi_signo;
1968 	code = ksi->ksi_code;
1969 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
1970 
1971 	PROC_LOCK(p);
1972 	ps = p->p_sigacts;
1973 	mtx_lock(&ps->ps_mtx);
1974 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1975 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1976 #ifdef KTRACE
1977 		if (KTRPOINT(curthread, KTR_PSIG))
1978 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1979 			    &td->td_sigmask, code);
1980 #endif
1981 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1982 				ksi, &td->td_sigmask);
1983 		postsig_done(sig, td, ps);
1984 		mtx_unlock(&ps->ps_mtx);
1985 	} else {
1986 		/*
1987 		 * Avoid a possible infinite loop if the thread
1988 		 * masking the signal or process is ignoring the
1989 		 * signal.
1990 		 */
1991 		if (kern_forcesigexit &&
1992 		    (SIGISMEMBER(td->td_sigmask, sig) ||
1993 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
1994 			SIGDELSET(td->td_sigmask, sig);
1995 			SIGDELSET(ps->ps_sigcatch, sig);
1996 			SIGDELSET(ps->ps_sigignore, sig);
1997 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1998 		}
1999 		mtx_unlock(&ps->ps_mtx);
2000 		p->p_sig = sig;		/* XXX to verify code */
2001 		tdsendsignal(p, td, sig, ksi);
2002 	}
2003 	PROC_UNLOCK(p);
2004 }
2005 
2006 static struct thread *
2007 sigtd(struct proc *p, int sig, int prop)
2008 {
2009 	struct thread *td, *signal_td;
2010 
2011 	PROC_LOCK_ASSERT(p, MA_OWNED);
2012 
2013 	/*
2014 	 * Check if current thread can handle the signal without
2015 	 * switching context to another thread.
2016 	 */
2017 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
2018 		return (curthread);
2019 	signal_td = NULL;
2020 	FOREACH_THREAD_IN_PROC(p, td) {
2021 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
2022 			signal_td = td;
2023 			break;
2024 		}
2025 	}
2026 	if (signal_td == NULL)
2027 		signal_td = FIRST_THREAD_IN_PROC(p);
2028 	return (signal_td);
2029 }
2030 
2031 /*
2032  * Send the signal to the process.  If the signal has an action, the action
2033  * is usually performed by the target process rather than the caller; we add
2034  * the signal to the set of pending signals for the process.
2035  *
2036  * Exceptions:
2037  *   o When a stop signal is sent to a sleeping process that takes the
2038  *     default action, the process is stopped without awakening it.
2039  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
2040  *     regardless of the signal action (eg, blocked or ignored).
2041  *
2042  * Other ignored signals are discarded immediately.
2043  *
2044  * NB: This function may be entered from the debugger via the "kill" DDB
2045  * command.  There is little that can be done to mitigate the possibly messy
2046  * side effects of this unwise possibility.
2047  */
2048 void
2049 kern_psignal(struct proc *p, int sig)
2050 {
2051 	ksiginfo_t ksi;
2052 
2053 	ksiginfo_init(&ksi);
2054 	ksi.ksi_signo = sig;
2055 	ksi.ksi_code = SI_KERNEL;
2056 	(void) tdsendsignal(p, NULL, sig, &ksi);
2057 }
2058 
2059 int
2060 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
2061 {
2062 
2063 	return (tdsendsignal(p, NULL, sig, ksi));
2064 }
2065 
2066 /* Utility function for finding a thread to send signal event to. */
2067 int
2068 sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
2069 {
2070 	struct thread *td;
2071 
2072 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2073 		td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
2074 		if (td == NULL)
2075 			return (ESRCH);
2076 		*ttd = td;
2077 	} else {
2078 		*ttd = NULL;
2079 		PROC_LOCK(p);
2080 	}
2081 	return (0);
2082 }
2083 
2084 void
2085 tdsignal(struct thread *td, int sig)
2086 {
2087 	ksiginfo_t ksi;
2088 
2089 	ksiginfo_init(&ksi);
2090 	ksi.ksi_signo = sig;
2091 	ksi.ksi_code = SI_KERNEL;
2092 	(void) tdsendsignal(td->td_proc, td, sig, &ksi);
2093 }
2094 
2095 void
2096 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
2097 {
2098 
2099 	(void) tdsendsignal(td->td_proc, td, sig, ksi);
2100 }
2101 
2102 int
2103 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2104 {
2105 	sig_t action;
2106 	sigqueue_t *sigqueue;
2107 	int prop;
2108 	struct sigacts *ps;
2109 	int intrval;
2110 	int ret = 0;
2111 	int wakeup_swapper;
2112 
2113 	MPASS(td == NULL || p == td->td_proc);
2114 	PROC_LOCK_ASSERT(p, MA_OWNED);
2115 
2116 	if (!_SIG_VALID(sig))
2117 		panic("%s(): invalid signal %d", __func__, sig);
2118 
2119 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
2120 
2121 	/*
2122 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2123 	 */
2124 	if (p->p_state == PRS_ZOMBIE) {
2125 		if (ksi && (ksi->ksi_flags & KSI_INS))
2126 			ksiginfo_tryfree(ksi);
2127 		return (ret);
2128 	}
2129 
2130 	ps = p->p_sigacts;
2131 	KNOTE_LOCKED(p->p_klist, NOTE_SIGNAL | sig);
2132 	prop = sigprop(sig);
2133 
2134 	if (td == NULL) {
2135 		td = sigtd(p, sig, prop);
2136 		sigqueue = &p->p_sigqueue;
2137 	} else
2138 		sigqueue = &td->td_sigqueue;
2139 
2140 	SDT_PROBE3(proc, , , signal__send, td, p, sig);
2141 
2142 	/*
2143 	 * If the signal is being ignored,
2144 	 * then we forget about it immediately.
2145 	 * (Note: we don't set SIGCONT in ps_sigignore,
2146 	 * and if it is set to SIG_IGN,
2147 	 * action will be SIG_DFL here.)
2148 	 */
2149 	mtx_lock(&ps->ps_mtx);
2150 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2151 		SDT_PROBE3(proc, , , signal__discard, td, p, sig);
2152 
2153 		mtx_unlock(&ps->ps_mtx);
2154 		if (ksi && (ksi->ksi_flags & KSI_INS))
2155 			ksiginfo_tryfree(ksi);
2156 		return (ret);
2157 	}
2158 	if (SIGISMEMBER(td->td_sigmask, sig))
2159 		action = SIG_HOLD;
2160 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2161 		action = SIG_CATCH;
2162 	else
2163 		action = SIG_DFL;
2164 	if (SIGISMEMBER(ps->ps_sigintr, sig))
2165 		intrval = EINTR;
2166 	else
2167 		intrval = ERESTART;
2168 	mtx_unlock(&ps->ps_mtx);
2169 
2170 	if (prop & SIGPROP_CONT)
2171 		sigqueue_delete_stopmask_proc(p);
2172 	else if (prop & SIGPROP_STOP) {
2173 		/*
2174 		 * If sending a tty stop signal to a member of an orphaned
2175 		 * process group, discard the signal here if the action
2176 		 * is default; don't stop the process below if sleeping,
2177 		 * and don't clear any pending SIGCONT.
2178 		 */
2179 		if ((prop & SIGPROP_TTYSTOP) &&
2180 		    (p->p_pgrp->pg_jobc == 0) &&
2181 		    (action == SIG_DFL)) {
2182 			if (ksi && (ksi->ksi_flags & KSI_INS))
2183 				ksiginfo_tryfree(ksi);
2184 			return (ret);
2185 		}
2186 		sigqueue_delete_proc(p, SIGCONT);
2187 		if (p->p_flag & P_CONTINUED) {
2188 			p->p_flag &= ~P_CONTINUED;
2189 			PROC_LOCK(p->p_pptr);
2190 			sigqueue_take(p->p_ksi);
2191 			PROC_UNLOCK(p->p_pptr);
2192 		}
2193 	}
2194 
2195 	ret = sigqueue_add(sigqueue, sig, ksi);
2196 	if (ret != 0)
2197 		return (ret);
2198 	signotify(td);
2199 	/*
2200 	 * Defer further processing for signals which are held,
2201 	 * except that stopped processes must be continued by SIGCONT.
2202 	 */
2203 	if (action == SIG_HOLD &&
2204 	    !((prop & SIGPROP_CONT) && (p->p_flag & P_STOPPED_SIG)))
2205 		return (ret);
2206 
2207 	/* SIGKILL: Remove procfs STOPEVENTs. */
2208 	if (sig == SIGKILL) {
2209 		/* from procfs_ioctl.c: PIOCBIC */
2210 		p->p_stops = 0;
2211 		/* from procfs_ioctl.c: PIOCCONT */
2212 		p->p_step = 0;
2213 		wakeup(&p->p_step);
2214 	}
2215 	/*
2216 	 * Some signals have a process-wide effect and a per-thread
2217 	 * component.  Most processing occurs when the process next
2218 	 * tries to cross the user boundary, however there are some
2219 	 * times when processing needs to be done immediately, such as
2220 	 * waking up threads so that they can cross the user boundary.
2221 	 * We try to do the per-process part here.
2222 	 */
2223 	if (P_SHOULDSTOP(p)) {
2224 		KASSERT(!(p->p_flag & P_WEXIT),
2225 		    ("signal to stopped but exiting process"));
2226 		if (sig == SIGKILL) {
2227 			/*
2228 			 * If traced process is already stopped,
2229 			 * then no further action is necessary.
2230 			 */
2231 			if (p->p_flag & P_TRACED)
2232 				goto out;
2233 			/*
2234 			 * SIGKILL sets process running.
2235 			 * It will die elsewhere.
2236 			 * All threads must be restarted.
2237 			 */
2238 			p->p_flag &= ~P_STOPPED_SIG;
2239 			goto runfast;
2240 		}
2241 
2242 		if (prop & SIGPROP_CONT) {
2243 			/*
2244 			 * If traced process is already stopped,
2245 			 * then no further action is necessary.
2246 			 */
2247 			if (p->p_flag & P_TRACED)
2248 				goto out;
2249 			/*
2250 			 * If SIGCONT is default (or ignored), we continue the
2251 			 * process but don't leave the signal in sigqueue as
2252 			 * it has no further action.  If SIGCONT is held, we
2253 			 * continue the process and leave the signal in
2254 			 * sigqueue.  If the process catches SIGCONT, let it
2255 			 * handle the signal itself.  If it isn't waiting on
2256 			 * an event, it goes back to run state.
2257 			 * Otherwise, process goes back to sleep state.
2258 			 */
2259 			p->p_flag &= ~P_STOPPED_SIG;
2260 			PROC_SLOCK(p);
2261 			if (p->p_numthreads == p->p_suspcount) {
2262 				PROC_SUNLOCK(p);
2263 				p->p_flag |= P_CONTINUED;
2264 				p->p_xsig = SIGCONT;
2265 				PROC_LOCK(p->p_pptr);
2266 				childproc_continued(p);
2267 				PROC_UNLOCK(p->p_pptr);
2268 				PROC_SLOCK(p);
2269 			}
2270 			if (action == SIG_DFL) {
2271 				thread_unsuspend(p);
2272 				PROC_SUNLOCK(p);
2273 				sigqueue_delete(sigqueue, sig);
2274 				goto out;
2275 			}
2276 			if (action == SIG_CATCH) {
2277 				/*
2278 				 * The process wants to catch it so it needs
2279 				 * to run at least one thread, but which one?
2280 				 */
2281 				PROC_SUNLOCK(p);
2282 				goto runfast;
2283 			}
2284 			/*
2285 			 * The signal is not ignored or caught.
2286 			 */
2287 			thread_unsuspend(p);
2288 			PROC_SUNLOCK(p);
2289 			goto out;
2290 		}
2291 
2292 		if (prop & SIGPROP_STOP) {
2293 			/*
2294 			 * If traced process is already stopped,
2295 			 * then no further action is necessary.
2296 			 */
2297 			if (p->p_flag & P_TRACED)
2298 				goto out;
2299 			/*
2300 			 * Already stopped, don't need to stop again
2301 			 * (If we did the shell could get confused).
2302 			 * Just make sure the signal STOP bit set.
2303 			 */
2304 			p->p_flag |= P_STOPPED_SIG;
2305 			sigqueue_delete(sigqueue, sig);
2306 			goto out;
2307 		}
2308 
2309 		/*
2310 		 * All other kinds of signals:
2311 		 * If a thread is sleeping interruptibly, simulate a
2312 		 * wakeup so that when it is continued it will be made
2313 		 * runnable and can look at the signal.  However, don't make
2314 		 * the PROCESS runnable, leave it stopped.
2315 		 * It may run a bit until it hits a thread_suspend_check().
2316 		 */
2317 		wakeup_swapper = 0;
2318 		PROC_SLOCK(p);
2319 		thread_lock(td);
2320 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
2321 			wakeup_swapper = sleepq_abort(td, intrval);
2322 		thread_unlock(td);
2323 		PROC_SUNLOCK(p);
2324 		if (wakeup_swapper)
2325 			kick_proc0();
2326 		goto out;
2327 		/*
2328 		 * Mutexes are short lived. Threads waiting on them will
2329 		 * hit thread_suspend_check() soon.
2330 		 */
2331 	} else if (p->p_state == PRS_NORMAL) {
2332 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2333 			tdsigwakeup(td, sig, action, intrval);
2334 			goto out;
2335 		}
2336 
2337 		MPASS(action == SIG_DFL);
2338 
2339 		if (prop & SIGPROP_STOP) {
2340 			if (p->p_flag & (P_PPWAIT|P_WEXIT))
2341 				goto out;
2342 			p->p_flag |= P_STOPPED_SIG;
2343 			p->p_xsig = sig;
2344 			PROC_SLOCK(p);
2345 			wakeup_swapper = sig_suspend_threads(td, p, 1);
2346 			if (p->p_numthreads == p->p_suspcount) {
2347 				/*
2348 				 * only thread sending signal to another
2349 				 * process can reach here, if thread is sending
2350 				 * signal to its process, because thread does
2351 				 * not suspend itself here, p_numthreads
2352 				 * should never be equal to p_suspcount.
2353 				 */
2354 				thread_stopped(p);
2355 				PROC_SUNLOCK(p);
2356 				sigqueue_delete_proc(p, p->p_xsig);
2357 			} else
2358 				PROC_SUNLOCK(p);
2359 			if (wakeup_swapper)
2360 				kick_proc0();
2361 			goto out;
2362 		}
2363 	} else {
2364 		/* Not in "NORMAL" state. discard the signal. */
2365 		sigqueue_delete(sigqueue, sig);
2366 		goto out;
2367 	}
2368 
2369 	/*
2370 	 * The process is not stopped so we need to apply the signal to all the
2371 	 * running threads.
2372 	 */
2373 runfast:
2374 	tdsigwakeup(td, sig, action, intrval);
2375 	PROC_SLOCK(p);
2376 	thread_unsuspend(p);
2377 	PROC_SUNLOCK(p);
2378 out:
2379 	/* If we jump here, proc slock should not be owned. */
2380 	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2381 	return (ret);
2382 }
2383 
2384 /*
2385  * The force of a signal has been directed against a single
2386  * thread.  We need to see what we can do about knocking it
2387  * out of any sleep it may be in etc.
2388  */
2389 static void
2390 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2391 {
2392 	struct proc *p = td->td_proc;
2393 	int prop;
2394 	int wakeup_swapper;
2395 
2396 	wakeup_swapper = 0;
2397 	PROC_LOCK_ASSERT(p, MA_OWNED);
2398 	prop = sigprop(sig);
2399 
2400 	PROC_SLOCK(p);
2401 	thread_lock(td);
2402 	/*
2403 	 * Bring the priority of a thread up if we want it to get
2404 	 * killed in this lifetime.  Be careful to avoid bumping the
2405 	 * priority of the idle thread, since we still allow to signal
2406 	 * kernel processes.
2407 	 */
2408 	if (action == SIG_DFL && (prop & SIGPROP_KILL) != 0 &&
2409 	    td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2410 		sched_prio(td, PUSER);
2411 	if (TD_ON_SLEEPQ(td)) {
2412 		/*
2413 		 * If thread is sleeping uninterruptibly
2414 		 * we can't interrupt the sleep... the signal will
2415 		 * be noticed when the process returns through
2416 		 * trap() or syscall().
2417 		 */
2418 		if ((td->td_flags & TDF_SINTR) == 0)
2419 			goto out;
2420 		/*
2421 		 * If SIGCONT is default (or ignored) and process is
2422 		 * asleep, we are finished; the process should not
2423 		 * be awakened.
2424 		 */
2425 		if ((prop & SIGPROP_CONT) && action == SIG_DFL) {
2426 			thread_unlock(td);
2427 			PROC_SUNLOCK(p);
2428 			sigqueue_delete(&p->p_sigqueue, sig);
2429 			/*
2430 			 * It may be on either list in this state.
2431 			 * Remove from both for now.
2432 			 */
2433 			sigqueue_delete(&td->td_sigqueue, sig);
2434 			return;
2435 		}
2436 
2437 		/*
2438 		 * Don't awaken a sleeping thread for SIGSTOP if the
2439 		 * STOP signal is deferred.
2440 		 */
2441 		if ((prop & SIGPROP_STOP) != 0 && (td->td_flags & (TDF_SBDRY |
2442 		    TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2443 			goto out;
2444 
2445 		/*
2446 		 * Give low priority threads a better chance to run.
2447 		 */
2448 		if (td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2449 			sched_prio(td, PUSER);
2450 
2451 		wakeup_swapper = sleepq_abort(td, intrval);
2452 	} else {
2453 		/*
2454 		 * Other states do nothing with the signal immediately,
2455 		 * other than kicking ourselves if we are running.
2456 		 * It will either never be noticed, or noticed very soon.
2457 		 */
2458 #ifdef SMP
2459 		if (TD_IS_RUNNING(td) && td != curthread)
2460 			forward_signal(td);
2461 #endif
2462 	}
2463 out:
2464 	PROC_SUNLOCK(p);
2465 	thread_unlock(td);
2466 	if (wakeup_swapper)
2467 		kick_proc0();
2468 }
2469 
2470 static int
2471 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2472 {
2473 	struct thread *td2;
2474 	int wakeup_swapper;
2475 
2476 	PROC_LOCK_ASSERT(p, MA_OWNED);
2477 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2478 	MPASS(sending || td == curthread);
2479 
2480 	wakeup_swapper = 0;
2481 	FOREACH_THREAD_IN_PROC(p, td2) {
2482 		thread_lock(td2);
2483 		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2484 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2485 		    (td2->td_flags & TDF_SINTR)) {
2486 			if (td2->td_flags & TDF_SBDRY) {
2487 				/*
2488 				 * Once a thread is asleep with
2489 				 * TDF_SBDRY and without TDF_SERESTART
2490 				 * or TDF_SEINTR set, it should never
2491 				 * become suspended due to this check.
2492 				 */
2493 				KASSERT(!TD_IS_SUSPENDED(td2),
2494 				    ("thread with deferred stops suspended"));
2495 				if (TD_SBDRY_INTR(td2))
2496 					wakeup_swapper |= sleepq_abort(td2,
2497 					    TD_SBDRY_ERRNO(td2));
2498 			} else if (!TD_IS_SUSPENDED(td2)) {
2499 				thread_suspend_one(td2);
2500 			}
2501 		} else if (!TD_IS_SUSPENDED(td2)) {
2502 			if (sending || td != td2)
2503 				td2->td_flags |= TDF_ASTPENDING;
2504 #ifdef SMP
2505 			if (TD_IS_RUNNING(td2) && td2 != td)
2506 				forward_signal(td2);
2507 #endif
2508 		}
2509 		thread_unlock(td2);
2510 	}
2511 	return (wakeup_swapper);
2512 }
2513 
2514 /*
2515  * Stop the process for an event deemed interesting to the debugger. If si is
2516  * non-NULL, this is a signal exchange; the new signal requested by the
2517  * debugger will be returned for handling. If si is NULL, this is some other
2518  * type of interesting event. The debugger may request a signal be delivered in
2519  * that case as well, however it will be deferred until it can be handled.
2520  */
2521 int
2522 ptracestop(struct thread *td, int sig, ksiginfo_t *si)
2523 {
2524 	struct proc *p = td->td_proc;
2525 	struct thread *td2;
2526 	ksiginfo_t ksi;
2527 	int prop;
2528 
2529 	PROC_LOCK_ASSERT(p, MA_OWNED);
2530 	KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
2531 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2532 	    &p->p_mtx.lock_object, "Stopping for traced signal");
2533 
2534 	td->td_xsig = sig;
2535 
2536 	if (si == NULL || (si->ksi_flags & KSI_PTRACE) == 0) {
2537 		td->td_dbgflags |= TDB_XSIG;
2538 		CTR4(KTR_PTRACE, "ptracestop: tid %d (pid %d) flags %#x sig %d",
2539 		    td->td_tid, p->p_pid, td->td_dbgflags, sig);
2540 		PROC_SLOCK(p);
2541 		while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2542 			if (P_KILLED(p)) {
2543 				/*
2544 				 * Ensure that, if we've been PT_KILLed, the
2545 				 * exit status reflects that. Another thread
2546 				 * may also be in ptracestop(), having just
2547 				 * received the SIGKILL, but this thread was
2548 				 * unsuspended first.
2549 				 */
2550 				td->td_dbgflags &= ~TDB_XSIG;
2551 				td->td_xsig = SIGKILL;
2552 				p->p_ptevents = 0;
2553 				break;
2554 			}
2555 			if (p->p_flag & P_SINGLE_EXIT &&
2556 			    !(td->td_dbgflags & TDB_EXIT)) {
2557 				/*
2558 				 * Ignore ptrace stops except for thread exit
2559 				 * events when the process exits.
2560 				 */
2561 				td->td_dbgflags &= ~TDB_XSIG;
2562 				PROC_SUNLOCK(p);
2563 				return (0);
2564 			}
2565 
2566 			/*
2567 			 * Make wait(2) work.  Ensure that right after the
2568 			 * attach, the thread which was decided to become the
2569 			 * leader of attach gets reported to the waiter.
2570 			 * Otherwise, just avoid overwriting another thread's
2571 			 * assignment to p_xthread.  If another thread has
2572 			 * already set p_xthread, the current thread will get
2573 			 * a chance to report itself upon the next iteration.
2574 			 */
2575 			if ((td->td_dbgflags & TDB_FSTP) != 0 ||
2576 			    ((p->p_flag2 & P2_PTRACE_FSTP) == 0 &&
2577 			    p->p_xthread == NULL)) {
2578 				p->p_xsig = sig;
2579 				p->p_xthread = td;
2580 
2581 				/*
2582 				 * If we are on sleepqueue already,
2583 				 * let sleepqueue code decide if it
2584 				 * needs to go sleep after attach.
2585 				 */
2586 				if (td->td_wchan == NULL)
2587 					td->td_dbgflags &= ~TDB_FSTP;
2588 
2589 				p->p_flag2 &= ~P2_PTRACE_FSTP;
2590 				p->p_flag |= P_STOPPED_SIG | P_STOPPED_TRACE;
2591 				sig_suspend_threads(td, p, 0);
2592 			}
2593 			if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
2594 				td->td_dbgflags &= ~TDB_STOPATFORK;
2595 			}
2596 stopme:
2597 			thread_suspend_switch(td, p);
2598 			if (p->p_xthread == td)
2599 				p->p_xthread = NULL;
2600 			if (!(p->p_flag & P_TRACED))
2601 				break;
2602 			if (td->td_dbgflags & TDB_SUSPEND) {
2603 				if (p->p_flag & P_SINGLE_EXIT)
2604 					break;
2605 				goto stopme;
2606 			}
2607 		}
2608 		PROC_SUNLOCK(p);
2609 	}
2610 
2611 	if (si != NULL && sig == td->td_xsig) {
2612 		/* Parent wants us to take the original signal unchanged. */
2613 		si->ksi_flags |= KSI_HEAD;
2614 		if (sigqueue_add(&td->td_sigqueue, sig, si) != 0)
2615 			si->ksi_signo = 0;
2616 	} else if (td->td_xsig != 0) {
2617 		/*
2618 		 * If parent wants us to take a new signal, then it will leave
2619 		 * it in td->td_xsig; otherwise we just look for signals again.
2620 		 */
2621 		ksiginfo_init(&ksi);
2622 		ksi.ksi_signo = td->td_xsig;
2623 		ksi.ksi_flags |= KSI_PTRACE;
2624 		prop = sigprop(td->td_xsig);
2625 		td2 = sigtd(p, td->td_xsig, prop);
2626 		tdsendsignal(p, td2, td->td_xsig, &ksi);
2627 		if (td != td2)
2628 			return (0);
2629 	}
2630 
2631 	return (td->td_xsig);
2632 }
2633 
2634 static void
2635 reschedule_signals(struct proc *p, sigset_t block, int flags)
2636 {
2637 	struct sigacts *ps;
2638 	struct thread *td;
2639 	int sig;
2640 
2641 	PROC_LOCK_ASSERT(p, MA_OWNED);
2642 	ps = p->p_sigacts;
2643 	mtx_assert(&ps->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0 ?
2644 	    MA_OWNED : MA_NOTOWNED);
2645 	if (SIGISEMPTY(p->p_siglist))
2646 		return;
2647 	SIGSETAND(block, p->p_siglist);
2648 	while ((sig = sig_ffs(&block)) != 0) {
2649 		SIGDELSET(block, sig);
2650 		td = sigtd(p, sig, 0);
2651 		signotify(td);
2652 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2653 			mtx_lock(&ps->ps_mtx);
2654 		if (p->p_flag & P_TRACED ||
2655 		    (SIGISMEMBER(ps->ps_sigcatch, sig) &&
2656 		    !SIGISMEMBER(td->td_sigmask, sig)))
2657 			tdsigwakeup(td, sig, SIG_CATCH,
2658 			    (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
2659 			     ERESTART));
2660 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2661 			mtx_unlock(&ps->ps_mtx);
2662 	}
2663 }
2664 
2665 void
2666 tdsigcleanup(struct thread *td)
2667 {
2668 	struct proc *p;
2669 	sigset_t unblocked;
2670 
2671 	p = td->td_proc;
2672 	PROC_LOCK_ASSERT(p, MA_OWNED);
2673 
2674 	sigqueue_flush(&td->td_sigqueue);
2675 	if (p->p_numthreads == 1)
2676 		return;
2677 
2678 	/*
2679 	 * Since we cannot handle signals, notify signal post code
2680 	 * about this by filling the sigmask.
2681 	 *
2682 	 * Also, if needed, wake up thread(s) that do not block the
2683 	 * same signals as the exiting thread, since the thread might
2684 	 * have been selected for delivery and woken up.
2685 	 */
2686 	SIGFILLSET(unblocked);
2687 	SIGSETNAND(unblocked, td->td_sigmask);
2688 	SIGFILLSET(td->td_sigmask);
2689 	reschedule_signals(p, unblocked, 0);
2690 
2691 }
2692 
2693 static int
2694 sigdeferstop_curr_flags(int cflags)
2695 {
2696 
2697 	MPASS((cflags & (TDF_SEINTR | TDF_SERESTART)) == 0 ||
2698 	    (cflags & TDF_SBDRY) != 0);
2699 	return (cflags & (TDF_SBDRY | TDF_SEINTR | TDF_SERESTART));
2700 }
2701 
2702 /*
2703  * Defer the delivery of SIGSTOP for the current thread, according to
2704  * the requested mode.  Returns previous flags, which must be restored
2705  * by sigallowstop().
2706  *
2707  * TDF_SBDRY, TDF_SEINTR, and TDF_SERESTART flags are only set and
2708  * cleared by the current thread, which allow the lock-less read-only
2709  * accesses below.
2710  */
2711 int
2712 sigdeferstop_impl(int mode)
2713 {
2714 	struct thread *td;
2715 	int cflags, nflags;
2716 
2717 	td = curthread;
2718 	cflags = sigdeferstop_curr_flags(td->td_flags);
2719 	switch (mode) {
2720 	case SIGDEFERSTOP_NOP:
2721 		nflags = cflags;
2722 		break;
2723 	case SIGDEFERSTOP_OFF:
2724 		nflags = 0;
2725 		break;
2726 	case SIGDEFERSTOP_SILENT:
2727 		nflags = (cflags | TDF_SBDRY) & ~(TDF_SEINTR | TDF_SERESTART);
2728 		break;
2729 	case SIGDEFERSTOP_EINTR:
2730 		nflags = (cflags | TDF_SBDRY | TDF_SEINTR) & ~TDF_SERESTART;
2731 		break;
2732 	case SIGDEFERSTOP_ERESTART:
2733 		nflags = (cflags | TDF_SBDRY | TDF_SERESTART) & ~TDF_SEINTR;
2734 		break;
2735 	default:
2736 		panic("sigdeferstop: invalid mode %x", mode);
2737 		break;
2738 	}
2739 	if (cflags == nflags)
2740 		return (SIGDEFERSTOP_VAL_NCHG);
2741 	thread_lock(td);
2742 	td->td_flags = (td->td_flags & ~cflags) | nflags;
2743 	thread_unlock(td);
2744 	return (cflags);
2745 }
2746 
2747 /*
2748  * Restores the STOP handling mode, typically permitting the delivery
2749  * of SIGSTOP for the current thread.  This does not immediately
2750  * suspend if a stop was posted.  Instead, the thread will suspend
2751  * either via ast() or a subsequent interruptible sleep.
2752  */
2753 void
2754 sigallowstop_impl(int prev)
2755 {
2756 	struct thread *td;
2757 	int cflags;
2758 
2759 	KASSERT(prev != SIGDEFERSTOP_VAL_NCHG, ("failed sigallowstop"));
2760 	KASSERT((prev & ~(TDF_SBDRY | TDF_SEINTR | TDF_SERESTART)) == 0,
2761 	    ("sigallowstop: incorrect previous mode %x", prev));
2762 	td = curthread;
2763 	cflags = sigdeferstop_curr_flags(td->td_flags);
2764 	if (cflags != prev) {
2765 		thread_lock(td);
2766 		td->td_flags = (td->td_flags & ~cflags) | prev;
2767 		thread_unlock(td);
2768 	}
2769 }
2770 
2771 /*
2772  * If the current process has received a signal (should be caught or cause
2773  * termination, should interrupt current syscall), return the signal number.
2774  * Stop signals with default action are processed immediately, then cleared;
2775  * they aren't returned.  This is checked after each entry to the system for
2776  * a syscall or trap (though this can usually be done without calling issignal
2777  * by checking the pending signal masks in cursig.) The normal call
2778  * sequence is
2779  *
2780  *	while (sig = cursig(curthread))
2781  *		postsig(sig);
2782  */
2783 static int
2784 issignal(struct thread *td)
2785 {
2786 	struct proc *p;
2787 	struct sigacts *ps;
2788 	struct sigqueue *queue;
2789 	sigset_t sigpending;
2790 	ksiginfo_t ksi;
2791 	int prop, sig, traced;
2792 
2793 	p = td->td_proc;
2794 	ps = p->p_sigacts;
2795 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2796 	PROC_LOCK_ASSERT(p, MA_OWNED);
2797 	for (;;) {
2798 		traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2799 
2800 		sigpending = td->td_sigqueue.sq_signals;
2801 		SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
2802 		SIGSETNAND(sigpending, td->td_sigmask);
2803 
2804 		if ((p->p_flag & P_PPWAIT) != 0 || (td->td_flags &
2805 		    (TDF_SBDRY | TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2806 			SIG_STOPSIGMASK(sigpending);
2807 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2808 			return (0);
2809 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED &&
2810 		    (p->p_flag2 & P2_PTRACE_FSTP) != 0 &&
2811 		    SIGISMEMBER(sigpending, SIGSTOP)) {
2812 			/*
2813 			 * If debugger just attached, always consume
2814 			 * SIGSTOP from ptrace(PT_ATTACH) first, to
2815 			 * execute the debugger attach ritual in
2816 			 * order.
2817 			 */
2818 			sig = SIGSTOP;
2819 			td->td_dbgflags |= TDB_FSTP;
2820 		} else {
2821 			sig = sig_ffs(&sigpending);
2822 		}
2823 
2824 		if (p->p_stops & S_SIG) {
2825 			mtx_unlock(&ps->ps_mtx);
2826 			stopevent(p, S_SIG, sig);
2827 			mtx_lock(&ps->ps_mtx);
2828 		}
2829 
2830 		/*
2831 		 * We should see pending but ignored signals
2832 		 * only if P_TRACED was on when they were posted.
2833 		 */
2834 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2835 			sigqueue_delete(&td->td_sigqueue, sig);
2836 			sigqueue_delete(&p->p_sigqueue, sig);
2837 			continue;
2838 		}
2839 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED) {
2840 			/*
2841 			 * If traced, always stop.
2842 			 * Remove old signal from queue before the stop.
2843 			 * XXX shrug off debugger, it causes siginfo to
2844 			 * be thrown away.
2845 			 */
2846 			queue = &td->td_sigqueue;
2847 			ksiginfo_init(&ksi);
2848 			if (sigqueue_get(queue, sig, &ksi) == 0) {
2849 				queue = &p->p_sigqueue;
2850 				sigqueue_get(queue, sig, &ksi);
2851 			}
2852 			td->td_si = ksi.ksi_info;
2853 
2854 			mtx_unlock(&ps->ps_mtx);
2855 			sig = ptracestop(td, sig, &ksi);
2856 			mtx_lock(&ps->ps_mtx);
2857 
2858 			td->td_si.si_signo = 0;
2859 
2860 			/*
2861 			 * Keep looking if the debugger discarded or
2862 			 * replaced the signal.
2863 			 */
2864 			if (sig == 0)
2865 				continue;
2866 
2867 			/*
2868 			 * If the signal became masked, re-queue it.
2869 			 */
2870 			if (SIGISMEMBER(td->td_sigmask, sig)) {
2871 				ksi.ksi_flags |= KSI_HEAD;
2872 				sigqueue_add(&p->p_sigqueue, sig, &ksi);
2873 				continue;
2874 			}
2875 
2876 			/*
2877 			 * If the traced bit got turned off, requeue
2878 			 * the signal and go back up to the top to
2879 			 * rescan signals.  This ensures that p_sig*
2880 			 * and p_sigact are consistent.
2881 			 */
2882 			if ((p->p_flag & P_TRACED) == 0) {
2883 				ksi.ksi_flags |= KSI_HEAD;
2884 				sigqueue_add(queue, sig, &ksi);
2885 				continue;
2886 			}
2887 		}
2888 
2889 		prop = sigprop(sig);
2890 
2891 		/*
2892 		 * Decide whether the signal should be returned.
2893 		 * Return the signal's number, or fall through
2894 		 * to clear it from the pending mask.
2895 		 */
2896 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2897 
2898 		case (intptr_t)SIG_DFL:
2899 			/*
2900 			 * Don't take default actions on system processes.
2901 			 */
2902 			if (p->p_pid <= 1) {
2903 #ifdef DIAGNOSTIC
2904 				/*
2905 				 * Are you sure you want to ignore SIGSEGV
2906 				 * in init? XXX
2907 				 */
2908 				printf("Process (pid %lu) got signal %d\n",
2909 					(u_long)p->p_pid, sig);
2910 #endif
2911 				break;		/* == ignore */
2912 			}
2913 			/*
2914 			 * If there is a pending stop signal to process with
2915 			 * default action, stop here, then clear the signal.
2916 			 * Traced or exiting processes should ignore stops.
2917 			 * Additionally, a member of an orphaned process group
2918 			 * should ignore tty stops.
2919 			 */
2920 			if (prop & SIGPROP_STOP) {
2921 				if (p->p_flag &
2922 				    (P_TRACED | P_WEXIT | P_SINGLE_EXIT) ||
2923 				    (p->p_pgrp->pg_jobc == 0 &&
2924 				     prop & SIGPROP_TTYSTOP))
2925 					break;	/* == ignore */
2926 				if (TD_SBDRY_INTR(td)) {
2927 					KASSERT((td->td_flags & TDF_SBDRY) != 0,
2928 					    ("lost TDF_SBDRY"));
2929 					return (-1);
2930 				}
2931 				mtx_unlock(&ps->ps_mtx);
2932 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2933 				    &p->p_mtx.lock_object, "Catching SIGSTOP");
2934 				sigqueue_delete(&td->td_sigqueue, sig);
2935 				sigqueue_delete(&p->p_sigqueue, sig);
2936 				p->p_flag |= P_STOPPED_SIG;
2937 				p->p_xsig = sig;
2938 				PROC_SLOCK(p);
2939 				sig_suspend_threads(td, p, 0);
2940 				thread_suspend_switch(td, p);
2941 				PROC_SUNLOCK(p);
2942 				mtx_lock(&ps->ps_mtx);
2943 				goto next;
2944 			} else if (prop & SIGPROP_IGNORE) {
2945 				/*
2946 				 * Except for SIGCONT, shouldn't get here.
2947 				 * Default action is to ignore; drop it.
2948 				 */
2949 				break;		/* == ignore */
2950 			} else
2951 				return (sig);
2952 			/*NOTREACHED*/
2953 
2954 		case (intptr_t)SIG_IGN:
2955 			/*
2956 			 * Masking above should prevent us ever trying
2957 			 * to take action on an ignored signal other
2958 			 * than SIGCONT, unless process is traced.
2959 			 */
2960 			if ((prop & SIGPROP_CONT) == 0 &&
2961 			    (p->p_flag & P_TRACED) == 0)
2962 				printf("issignal\n");
2963 			break;		/* == ignore */
2964 
2965 		default:
2966 			/*
2967 			 * This signal has an action, let
2968 			 * postsig() process it.
2969 			 */
2970 			return (sig);
2971 		}
2972 		sigqueue_delete(&td->td_sigqueue, sig);	/* take the signal! */
2973 		sigqueue_delete(&p->p_sigqueue, sig);
2974 next:;
2975 	}
2976 	/* NOTREACHED */
2977 }
2978 
2979 void
2980 thread_stopped(struct proc *p)
2981 {
2982 	int n;
2983 
2984 	PROC_LOCK_ASSERT(p, MA_OWNED);
2985 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2986 	n = p->p_suspcount;
2987 	if (p == curproc)
2988 		n++;
2989 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2990 		PROC_SUNLOCK(p);
2991 		p->p_flag &= ~P_WAITED;
2992 		PROC_LOCK(p->p_pptr);
2993 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
2994 			CLD_TRAPPED : CLD_STOPPED);
2995 		PROC_UNLOCK(p->p_pptr);
2996 		PROC_SLOCK(p);
2997 	}
2998 }
2999 
3000 /*
3001  * Take the action for the specified signal
3002  * from the current set of pending signals.
3003  */
3004 int
3005 postsig(int sig)
3006 {
3007 	struct thread *td;
3008 	struct proc *p;
3009 	struct sigacts *ps;
3010 	sig_t action;
3011 	ksiginfo_t ksi;
3012 	sigset_t returnmask;
3013 
3014 	KASSERT(sig != 0, ("postsig"));
3015 
3016 	td = curthread;
3017 	p = td->td_proc;
3018 	PROC_LOCK_ASSERT(p, MA_OWNED);
3019 	ps = p->p_sigacts;
3020 	mtx_assert(&ps->ps_mtx, MA_OWNED);
3021 	ksiginfo_init(&ksi);
3022 	if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
3023 	    sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
3024 		return (0);
3025 	ksi.ksi_signo = sig;
3026 	if (ksi.ksi_code == SI_TIMER)
3027 		itimer_accept(p, ksi.ksi_timerid, &ksi);
3028 	action = ps->ps_sigact[_SIG_IDX(sig)];
3029 #ifdef KTRACE
3030 	if (KTRPOINT(td, KTR_PSIG))
3031 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
3032 		    &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
3033 #endif
3034 	if ((p->p_stops & S_SIG) != 0) {
3035 		mtx_unlock(&ps->ps_mtx);
3036 		stopevent(p, S_SIG, sig);
3037 		mtx_lock(&ps->ps_mtx);
3038 	}
3039 
3040 	if (action == SIG_DFL) {
3041 		/*
3042 		 * Default action, where the default is to kill
3043 		 * the process.  (Other cases were ignored above.)
3044 		 */
3045 		mtx_unlock(&ps->ps_mtx);
3046 		proc_td_siginfo_capture(td, &ksi.ksi_info);
3047 		sigexit(td, sig);
3048 		/* NOTREACHED */
3049 	} else {
3050 		/*
3051 		 * If we get here, the signal must be caught.
3052 		 */
3053 		KASSERT(action != SIG_IGN, ("postsig action %p", action));
3054 		KASSERT(!SIGISMEMBER(td->td_sigmask, sig),
3055 		    ("postsig action: blocked sig %d", sig));
3056 
3057 		/*
3058 		 * Set the new mask value and also defer further
3059 		 * occurrences of this signal.
3060 		 *
3061 		 * Special case: user has done a sigsuspend.  Here the
3062 		 * current mask is not of interest, but rather the
3063 		 * mask from before the sigsuspend is what we want
3064 		 * restored after the signal processing is completed.
3065 		 */
3066 		if (td->td_pflags & TDP_OLDMASK) {
3067 			returnmask = td->td_oldsigmask;
3068 			td->td_pflags &= ~TDP_OLDMASK;
3069 		} else
3070 			returnmask = td->td_sigmask;
3071 
3072 		if (p->p_sig == sig) {
3073 			p->p_sig = 0;
3074 		}
3075 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
3076 		postsig_done(sig, td, ps);
3077 	}
3078 	return (1);
3079 }
3080 
3081 void
3082 proc_wkilled(struct proc *p)
3083 {
3084 
3085 	PROC_LOCK_ASSERT(p, MA_OWNED);
3086 	if ((p->p_flag & P_WKILLED) == 0) {
3087 		p->p_flag |= P_WKILLED;
3088 		/*
3089 		 * Notify swapper that there is a process to swap in.
3090 		 * The notification is racy, at worst it would take 10
3091 		 * seconds for the swapper process to notice.
3092 		 */
3093 		if ((p->p_flag & (P_INMEM | P_SWAPPINGIN)) == 0)
3094 			wakeup(&proc0);
3095 	}
3096 }
3097 
3098 /*
3099  * Kill the current process for stated reason.
3100  */
3101 void
3102 killproc(struct proc *p, char *why)
3103 {
3104 
3105 	PROC_LOCK_ASSERT(p, MA_OWNED);
3106 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,
3107 	    p->p_comm);
3108 	log(LOG_ERR, "pid %d (%s), jid %d, uid %d, was killed: %s\n",
3109 	    p->p_pid, p->p_comm, p->p_ucred->cr_prison->pr_id,
3110 	    p->p_ucred->cr_uid, why);
3111 	proc_wkilled(p);
3112 	kern_psignal(p, SIGKILL);
3113 }
3114 
3115 /*
3116  * Force the current process to exit with the specified signal, dumping core
3117  * if appropriate.  We bypass the normal tests for masked and caught signals,
3118  * allowing unrecoverable failures to terminate the process without changing
3119  * signal state.  Mark the accounting record with the signal termination.
3120  * If dumping core, save the signal number for the debugger.  Calls exit and
3121  * does not return.
3122  */
3123 void
3124 sigexit(struct thread *td, int sig)
3125 {
3126 	struct proc *p = td->td_proc;
3127 
3128 	PROC_LOCK_ASSERT(p, MA_OWNED);
3129 	p->p_acflag |= AXSIG;
3130 	/*
3131 	 * We must be single-threading to generate a core dump.  This
3132 	 * ensures that the registers in the core file are up-to-date.
3133 	 * Also, the ELF dump handler assumes that the thread list doesn't
3134 	 * change out from under it.
3135 	 *
3136 	 * XXX If another thread attempts to single-thread before us
3137 	 *     (e.g. via fork()), we won't get a dump at all.
3138 	 */
3139 	if ((sigprop(sig) & SIGPROP_CORE) &&
3140 	    thread_single(p, SINGLE_NO_EXIT) == 0) {
3141 		p->p_sig = sig;
3142 		/*
3143 		 * Log signals which would cause core dumps
3144 		 * (Log as LOG_INFO to appease those who don't want
3145 		 * these messages.)
3146 		 * XXX : Todo, as well as euid, write out ruid too
3147 		 * Note that coredump() drops proc lock.
3148 		 */
3149 		if (coredump(td) == 0)
3150 			sig |= WCOREFLAG;
3151 		if (kern_logsigexit)
3152 			log(LOG_INFO,
3153 			    "pid %d (%s), jid %d, uid %d: exited on "
3154 			    "signal %d%s\n", p->p_pid, p->p_comm,
3155 			    p->p_ucred->cr_prison->pr_id,
3156 			    td->td_ucred->cr_uid,
3157 			    sig &~ WCOREFLAG,
3158 			    sig & WCOREFLAG ? " (core dumped)" : "");
3159 	} else
3160 		PROC_UNLOCK(p);
3161 	exit1(td, 0, sig);
3162 	/* NOTREACHED */
3163 }
3164 
3165 /*
3166  * Send queued SIGCHLD to parent when child process's state
3167  * is changed.
3168  */
3169 static void
3170 sigparent(struct proc *p, int reason, int status)
3171 {
3172 	PROC_LOCK_ASSERT(p, MA_OWNED);
3173 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3174 
3175 	if (p->p_ksi != NULL) {
3176 		p->p_ksi->ksi_signo  = SIGCHLD;
3177 		p->p_ksi->ksi_code   = reason;
3178 		p->p_ksi->ksi_status = status;
3179 		p->p_ksi->ksi_pid    = p->p_pid;
3180 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
3181 		if (KSI_ONQ(p->p_ksi))
3182 			return;
3183 	}
3184 	pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
3185 }
3186 
3187 static void
3188 childproc_jobstate(struct proc *p, int reason, int sig)
3189 {
3190 	struct sigacts *ps;
3191 
3192 	PROC_LOCK_ASSERT(p, MA_OWNED);
3193 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3194 
3195 	/*
3196 	 * Wake up parent sleeping in kern_wait(), also send
3197 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
3198 	 * that parent will awake, because parent may masked
3199 	 * the signal.
3200 	 */
3201 	p->p_pptr->p_flag |= P_STATCHILD;
3202 	wakeup(p->p_pptr);
3203 
3204 	ps = p->p_pptr->p_sigacts;
3205 	mtx_lock(&ps->ps_mtx);
3206 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
3207 		mtx_unlock(&ps->ps_mtx);
3208 		sigparent(p, reason, sig);
3209 	} else
3210 		mtx_unlock(&ps->ps_mtx);
3211 }
3212 
3213 void
3214 childproc_stopped(struct proc *p, int reason)
3215 {
3216 
3217 	childproc_jobstate(p, reason, p->p_xsig);
3218 }
3219 
3220 void
3221 childproc_continued(struct proc *p)
3222 {
3223 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
3224 }
3225 
3226 void
3227 childproc_exited(struct proc *p)
3228 {
3229 	int reason, status;
3230 
3231 	if (WCOREDUMP(p->p_xsig)) {
3232 		reason = CLD_DUMPED;
3233 		status = WTERMSIG(p->p_xsig);
3234 	} else if (WIFSIGNALED(p->p_xsig)) {
3235 		reason = CLD_KILLED;
3236 		status = WTERMSIG(p->p_xsig);
3237 	} else {
3238 		reason = CLD_EXITED;
3239 		status = p->p_xexit;
3240 	}
3241 	/*
3242 	 * XXX avoid calling wakeup(p->p_pptr), the work is
3243 	 * done in exit1().
3244 	 */
3245 	sigparent(p, reason, status);
3246 }
3247 
3248 #define	MAX_NUM_CORE_FILES 100000
3249 #ifndef NUM_CORE_FILES
3250 #define	NUM_CORE_FILES 5
3251 #endif
3252 CTASSERT(NUM_CORE_FILES >= 0 && NUM_CORE_FILES <= MAX_NUM_CORE_FILES);
3253 static int num_cores = NUM_CORE_FILES;
3254 
3255 static int
3256 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
3257 {
3258 	int error;
3259 	int new_val;
3260 
3261 	new_val = num_cores;
3262 	error = sysctl_handle_int(oidp, &new_val, 0, req);
3263 	if (error != 0 || req->newptr == NULL)
3264 		return (error);
3265 	if (new_val > MAX_NUM_CORE_FILES)
3266 		new_val = MAX_NUM_CORE_FILES;
3267 	if (new_val < 0)
3268 		new_val = 0;
3269 	num_cores = new_val;
3270 	return (0);
3271 }
3272 SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW,
3273 	    0, sizeof(int), sysctl_debug_num_cores_check, "I",
3274 	    "Maximum number of generated process corefiles while using index format");
3275 
3276 #define	GZIP_SUFFIX	".gz"
3277 #define	ZSTD_SUFFIX	".zst"
3278 
3279 int compress_user_cores = 0;
3280 
3281 static int
3282 sysctl_compress_user_cores(SYSCTL_HANDLER_ARGS)
3283 {
3284 	int error, val;
3285 
3286 	val = compress_user_cores;
3287 	error = sysctl_handle_int(oidp, &val, 0, req);
3288 	if (error != 0 || req->newptr == NULL)
3289 		return (error);
3290 	if (val != 0 && !compressor_avail(val))
3291 		return (EINVAL);
3292 	compress_user_cores = val;
3293 	return (error);
3294 }
3295 SYSCTL_PROC(_kern, OID_AUTO, compress_user_cores, CTLTYPE_INT | CTLFLAG_RWTUN,
3296     0, sizeof(int), sysctl_compress_user_cores, "I",
3297     "Enable compression of user corefiles ("
3298     __XSTRING(COMPRESS_GZIP) " = gzip, "
3299     __XSTRING(COMPRESS_ZSTD) " = zstd)");
3300 
3301 int compress_user_cores_level = 6;
3302 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_level, CTLFLAG_RWTUN,
3303     &compress_user_cores_level, 0,
3304     "Corefile compression level");
3305 
3306 /*
3307  * Protect the access to corefilename[] by allproc_lock.
3308  */
3309 #define	corefilename_lock	allproc_lock
3310 
3311 static char corefilename[MAXPATHLEN] = {"%N.core"};
3312 TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename));
3313 
3314 static int
3315 sysctl_kern_corefile(SYSCTL_HANDLER_ARGS)
3316 {
3317 	int error;
3318 
3319 	sx_xlock(&corefilename_lock);
3320 	error = sysctl_handle_string(oidp, corefilename, sizeof(corefilename),
3321 	    req);
3322 	sx_xunlock(&corefilename_lock);
3323 
3324 	return (error);
3325 }
3326 SYSCTL_PROC(_kern, OID_AUTO, corefile, CTLTYPE_STRING | CTLFLAG_RW |
3327     CTLFLAG_MPSAFE, 0, 0, sysctl_kern_corefile, "A",
3328     "Process corefile name format string");
3329 
3330 static void
3331 vnode_close_locked(struct thread *td, struct vnode *vp)
3332 {
3333 
3334 	VOP_UNLOCK(vp, 0);
3335 	vn_close(vp, FWRITE, td->td_ucred, td);
3336 }
3337 
3338 /*
3339  * If the core format has a %I in it, then we need to check
3340  * for existing corefiles before defining a name.
3341  * To do this we iterate over 0..ncores to find a
3342  * non-existing core file name to use. If all core files are
3343  * already used we choose the oldest one.
3344  */
3345 static int
3346 corefile_open_last(struct thread *td, char *name, int indexpos,
3347     int indexlen, int ncores, struct vnode **vpp)
3348 {
3349 	struct vnode *oldvp, *nextvp, *vp;
3350 	struct vattr vattr;
3351 	struct nameidata nd;
3352 	int error, i, flags, oflags, cmode;
3353 	char ch;
3354 	struct timespec lasttime;
3355 
3356 	nextvp = oldvp = NULL;
3357 	cmode = S_IRUSR | S_IWUSR;
3358 	oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3359 	    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3360 
3361 	for (i = 0; i < ncores; i++) {
3362 		flags = O_CREAT | FWRITE | O_NOFOLLOW;
3363 
3364 		ch = name[indexpos + indexlen];
3365 		(void)snprintf(name + indexpos, indexlen + 1, "%.*u", indexlen,
3366 		    i);
3367 		name[indexpos + indexlen] = ch;
3368 
3369 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3370 		error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred,
3371 		    NULL);
3372 		if (error != 0)
3373 			break;
3374 
3375 		vp = nd.ni_vp;
3376 		NDFREE(&nd, NDF_ONLY_PNBUF);
3377 		if ((flags & O_CREAT) == O_CREAT) {
3378 			nextvp = vp;
3379 			break;
3380 		}
3381 
3382 		error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3383 		if (error != 0) {
3384 			vnode_close_locked(td, vp);
3385 			break;
3386 		}
3387 
3388 		if (oldvp == NULL ||
3389 		    lasttime.tv_sec > vattr.va_mtime.tv_sec ||
3390 		    (lasttime.tv_sec == vattr.va_mtime.tv_sec &&
3391 		    lasttime.tv_nsec >= vattr.va_mtime.tv_nsec)) {
3392 			if (oldvp != NULL)
3393 				vnode_close_locked(td, oldvp);
3394 			oldvp = vp;
3395 			lasttime = vattr.va_mtime;
3396 		} else {
3397 			vnode_close_locked(td, vp);
3398 		}
3399 	}
3400 
3401 	if (oldvp != NULL) {
3402 		if (nextvp == NULL) {
3403 			if ((td->td_proc->p_flag & P_SUGID) != 0) {
3404 				error = EFAULT;
3405 				vnode_close_locked(td, oldvp);
3406 			} else {
3407 				nextvp = oldvp;
3408 			}
3409 		} else {
3410 			vnode_close_locked(td, oldvp);
3411 		}
3412 	}
3413 	if (error != 0) {
3414 		if (nextvp != NULL)
3415 			vnode_close_locked(td, oldvp);
3416 	} else {
3417 		*vpp = nextvp;
3418 	}
3419 
3420 	return (error);
3421 }
3422 
3423 /*
3424  * corefile_open(comm, uid, pid, td, compress, vpp, namep)
3425  * Expand the name described in corefilename, using name, uid, and pid
3426  * and open/create core file.
3427  * corefilename is a printf-like string, with three format specifiers:
3428  *	%N	name of process ("name")
3429  *	%P	process id (pid)
3430  *	%U	user id (uid)
3431  * For example, "%N.core" is the default; they can be disabled completely
3432  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3433  * This is controlled by the sysctl variable kern.corefile (see above).
3434  */
3435 static int
3436 corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td,
3437     int compress, int signum, struct vnode **vpp, char **namep)
3438 {
3439 	struct sbuf sb;
3440 	struct nameidata nd;
3441 	const char *format;
3442 	char *hostname, *name;
3443 	int cmode, error, flags, i, indexpos, indexlen, oflags, ncores;
3444 
3445 	hostname = NULL;
3446 	format = corefilename;
3447 	name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO);
3448 	indexlen = 0;
3449 	indexpos = -1;
3450 	ncores = num_cores;
3451 	(void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN);
3452 	sx_slock(&corefilename_lock);
3453 	for (i = 0; format[i] != '\0'; i++) {
3454 		switch (format[i]) {
3455 		case '%':	/* Format character */
3456 			i++;
3457 			switch (format[i]) {
3458 			case '%':
3459 				sbuf_putc(&sb, '%');
3460 				break;
3461 			case 'H':	/* hostname */
3462 				if (hostname == NULL) {
3463 					hostname = malloc(MAXHOSTNAMELEN,
3464 					    M_TEMP, M_WAITOK);
3465 				}
3466 				getcredhostname(td->td_ucred, hostname,
3467 				    MAXHOSTNAMELEN);
3468 				sbuf_printf(&sb, "%s", hostname);
3469 				break;
3470 			case 'I':	/* autoincrementing index */
3471 				if (indexpos != -1) {
3472 					sbuf_printf(&sb, "%%I");
3473 					break;
3474 				}
3475 
3476 				indexpos = sbuf_len(&sb);
3477 				sbuf_printf(&sb, "%u", ncores - 1);
3478 				indexlen = sbuf_len(&sb) - indexpos;
3479 				break;
3480 			case 'N':	/* process name */
3481 				sbuf_printf(&sb, "%s", comm);
3482 				break;
3483 			case 'P':	/* process id */
3484 				sbuf_printf(&sb, "%u", pid);
3485 				break;
3486 			case 'S':	/* signal number */
3487 				sbuf_printf(&sb, "%i", signum);
3488 				break;
3489 			case 'U':	/* user id */
3490 				sbuf_printf(&sb, "%u", uid);
3491 				break;
3492 			default:
3493 				log(LOG_ERR,
3494 				    "Unknown format character %c in "
3495 				    "corename `%s'\n", format[i], format);
3496 				break;
3497 			}
3498 			break;
3499 		default:
3500 			sbuf_putc(&sb, format[i]);
3501 			break;
3502 		}
3503 	}
3504 	sx_sunlock(&corefilename_lock);
3505 	free(hostname, M_TEMP);
3506 	if (compress == COMPRESS_GZIP)
3507 		sbuf_printf(&sb, GZIP_SUFFIX);
3508 	else if (compress == COMPRESS_ZSTD)
3509 		sbuf_printf(&sb, ZSTD_SUFFIX);
3510 	if (sbuf_error(&sb) != 0) {
3511 		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
3512 		    "long\n", (long)pid, comm, (u_long)uid);
3513 		sbuf_delete(&sb);
3514 		free(name, M_TEMP);
3515 		return (ENOMEM);
3516 	}
3517 	sbuf_finish(&sb);
3518 	sbuf_delete(&sb);
3519 
3520 	if (indexpos != -1) {
3521 		error = corefile_open_last(td, name, indexpos, indexlen, ncores,
3522 		    vpp);
3523 		if (error != 0) {
3524 			log(LOG_ERR,
3525 			    "pid %d (%s), uid (%u):  Path `%s' failed "
3526 			    "on initial open test, error = %d\n",
3527 			    pid, comm, uid, name, error);
3528 		}
3529 	} else {
3530 		cmode = S_IRUSR | S_IWUSR;
3531 		oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3532 		    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3533 		flags = O_CREAT | FWRITE | O_NOFOLLOW;
3534 		if ((td->td_proc->p_flag & P_SUGID) != 0)
3535 			flags |= O_EXCL;
3536 
3537 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3538 		error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred,
3539 		    NULL);
3540 		if (error == 0) {
3541 			*vpp = nd.ni_vp;
3542 			NDFREE(&nd, NDF_ONLY_PNBUF);
3543 		}
3544 	}
3545 
3546 	if (error != 0) {
3547 #ifdef AUDIT
3548 		audit_proc_coredump(td, name, error);
3549 #endif
3550 		free(name, M_TEMP);
3551 		return (error);
3552 	}
3553 	*namep = name;
3554 	return (0);
3555 }
3556 
3557 /*
3558  * Dump a process' core.  The main routine does some
3559  * policy checking, and creates the name of the coredump;
3560  * then it passes on a vnode and a size limit to the process-specific
3561  * coredump routine if there is one; if there _is not_ one, it returns
3562  * ENOSYS; otherwise it returns the error from the process-specific routine.
3563  */
3564 
3565 static int
3566 coredump(struct thread *td)
3567 {
3568 	struct proc *p = td->td_proc;
3569 	struct ucred *cred = td->td_ucred;
3570 	struct vnode *vp;
3571 	struct flock lf;
3572 	struct vattr vattr;
3573 	int error, error1, locked;
3574 	char *name;			/* name of corefile */
3575 	void *rl_cookie;
3576 	off_t limit;
3577 	char *fullpath, *freepath = NULL;
3578 	struct sbuf *sb;
3579 
3580 	PROC_LOCK_ASSERT(p, MA_OWNED);
3581 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3582 	_STOPEVENT(p, S_CORE, 0);
3583 
3584 	if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0) ||
3585 	    (p->p_flag2 & P2_NOTRACE) != 0) {
3586 		PROC_UNLOCK(p);
3587 		return (EFAULT);
3588 	}
3589 
3590 	/*
3591 	 * Note that the bulk of limit checking is done after
3592 	 * the corefile is created.  The exception is if the limit
3593 	 * for corefiles is 0, in which case we don't bother
3594 	 * creating the corefile at all.  This layout means that
3595 	 * a corefile is truncated instead of not being created,
3596 	 * if it is larger than the limit.
3597 	 */
3598 	limit = (off_t)lim_cur(td, RLIMIT_CORE);
3599 	if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
3600 		PROC_UNLOCK(p);
3601 		return (EFBIG);
3602 	}
3603 	PROC_UNLOCK(p);
3604 
3605 	error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td,
3606 	    compress_user_cores, p->p_sig, &vp, &name);
3607 	if (error != 0)
3608 		return (error);
3609 
3610 	/*
3611 	 * Don't dump to non-regular files or files with links.
3612 	 * Do not dump into system files. Effective user must own the corefile.
3613 	 */
3614 	if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 ||
3615 	    vattr.va_nlink != 1 || (vp->v_vflag & VV_SYSTEM) != 0 ||
3616 	    vattr.va_uid != cred->cr_uid) {
3617 		VOP_UNLOCK(vp, 0);
3618 		error = EFAULT;
3619 		goto out;
3620 	}
3621 
3622 	VOP_UNLOCK(vp, 0);
3623 
3624 	/* Postpone other writers, including core dumps of other processes. */
3625 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
3626 
3627 	lf.l_whence = SEEK_SET;
3628 	lf.l_start = 0;
3629 	lf.l_len = 0;
3630 	lf.l_type = F_WRLCK;
3631 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3632 
3633 	VATTR_NULL(&vattr);
3634 	vattr.va_size = 0;
3635 	if (set_core_nodump_flag)
3636 		vattr.va_flags = UF_NODUMP;
3637 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3638 	VOP_SETATTR(vp, &vattr, cred);
3639 	VOP_UNLOCK(vp, 0);
3640 	PROC_LOCK(p);
3641 	p->p_acflag |= ACORE;
3642 	PROC_UNLOCK(p);
3643 
3644 	if (p->p_sysent->sv_coredump != NULL) {
3645 		error = p->p_sysent->sv_coredump(td, vp, limit, 0);
3646 	} else {
3647 		error = ENOSYS;
3648 	}
3649 
3650 	if (locked) {
3651 		lf.l_type = F_UNLCK;
3652 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3653 	}
3654 	vn_rangelock_unlock(vp, rl_cookie);
3655 
3656 	/*
3657 	 * Notify the userland helper that a process triggered a core dump.
3658 	 * This allows the helper to run an automated debugging session.
3659 	 */
3660 	if (error != 0 || coredump_devctl == 0)
3661 		goto out;
3662 	sb = sbuf_new_auto();
3663 	if (vn_fullpath_global(td, p->p_textvp, &fullpath, &freepath) != 0)
3664 		goto out2;
3665 	sbuf_printf(sb, "comm=\"");
3666 	devctl_safe_quote_sb(sb, fullpath);
3667 	free(freepath, M_TEMP);
3668 	sbuf_printf(sb, "\" core=\"");
3669 
3670 	/*
3671 	 * We can't lookup core file vp directly. When we're replacing a core, and
3672 	 * other random times, we flush the name cache, so it will fail. Instead,
3673 	 * if the path of the core is relative, add the current dir in front if it.
3674 	 */
3675 	if (name[0] != '/') {
3676 		fullpath = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
3677 		if (kern___getcwd(td, fullpath, UIO_SYSSPACE, MAXPATHLEN, MAXPATHLEN) != 0) {
3678 			free(fullpath, M_TEMP);
3679 			goto out2;
3680 		}
3681 		devctl_safe_quote_sb(sb, fullpath);
3682 		free(fullpath, M_TEMP);
3683 		sbuf_putc(sb, '/');
3684 	}
3685 	devctl_safe_quote_sb(sb, name);
3686 	sbuf_printf(sb, "\"");
3687 	if (sbuf_finish(sb) == 0)
3688 		devctl_notify("kernel", "signal", "coredump", sbuf_data(sb));
3689 out2:
3690 	sbuf_delete(sb);
3691 out:
3692 	error1 = vn_close(vp, FWRITE, cred, td);
3693 	if (error == 0)
3694 		error = error1;
3695 #ifdef AUDIT
3696 	audit_proc_coredump(td, name, error);
3697 #endif
3698 	free(name, M_TEMP);
3699 	return (error);
3700 }
3701 
3702 /*
3703  * Nonexistent system call-- signal process (may want to handle it).  Flag
3704  * error in case process won't see signal immediately (blocked or ignored).
3705  */
3706 #ifndef _SYS_SYSPROTO_H_
3707 struct nosys_args {
3708 	int	dummy;
3709 };
3710 #endif
3711 /* ARGSUSED */
3712 int
3713 nosys(struct thread *td, struct nosys_args *args)
3714 {
3715 	struct proc *p;
3716 
3717 	p = td->td_proc;
3718 
3719 	PROC_LOCK(p);
3720 	tdsignal(td, SIGSYS);
3721 	PROC_UNLOCK(p);
3722 	if (kern_lognosys == 1 || kern_lognosys == 3) {
3723 		uprintf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
3724 		    td->td_sa.code);
3725 	}
3726 	if (kern_lognosys == 2 || kern_lognosys == 3) {
3727 		printf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
3728 		    td->td_sa.code);
3729 	}
3730 	return (ENOSYS);
3731 }
3732 
3733 /*
3734  * Send a SIGIO or SIGURG signal to a process or process group using stored
3735  * credentials rather than those of the current process.
3736  */
3737 void
3738 pgsigio(struct sigio **sigiop, int sig, int checkctty)
3739 {
3740 	ksiginfo_t ksi;
3741 	struct sigio *sigio;
3742 
3743 	ksiginfo_init(&ksi);
3744 	ksi.ksi_signo = sig;
3745 	ksi.ksi_code = SI_KERNEL;
3746 
3747 	SIGIO_LOCK();
3748 	sigio = *sigiop;
3749 	if (sigio == NULL) {
3750 		SIGIO_UNLOCK();
3751 		return;
3752 	}
3753 	if (sigio->sio_pgid > 0) {
3754 		PROC_LOCK(sigio->sio_proc);
3755 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3756 			kern_psignal(sigio->sio_proc, sig);
3757 		PROC_UNLOCK(sigio->sio_proc);
3758 	} else if (sigio->sio_pgid < 0) {
3759 		struct proc *p;
3760 
3761 		PGRP_LOCK(sigio->sio_pgrp);
3762 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3763 			PROC_LOCK(p);
3764 			if (p->p_state == PRS_NORMAL &&
3765 			    CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3766 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3767 				kern_psignal(p, sig);
3768 			PROC_UNLOCK(p);
3769 		}
3770 		PGRP_UNLOCK(sigio->sio_pgrp);
3771 	}
3772 	SIGIO_UNLOCK();
3773 }
3774 
3775 static int
3776 filt_sigattach(struct knote *kn)
3777 {
3778 	struct proc *p = curproc;
3779 
3780 	kn->kn_ptr.p_proc = p;
3781 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3782 
3783 	knlist_add(p->p_klist, kn, 0);
3784 
3785 	return (0);
3786 }
3787 
3788 static void
3789 filt_sigdetach(struct knote *kn)
3790 {
3791 	struct proc *p = kn->kn_ptr.p_proc;
3792 
3793 	knlist_remove(p->p_klist, kn, 0);
3794 }
3795 
3796 /*
3797  * signal knotes are shared with proc knotes, so we apply a mask to
3798  * the hint in order to differentiate them from process hints.  This
3799  * could be avoided by using a signal-specific knote list, but probably
3800  * isn't worth the trouble.
3801  */
3802 static int
3803 filt_signal(struct knote *kn, long hint)
3804 {
3805 
3806 	if (hint & NOTE_SIGNAL) {
3807 		hint &= ~NOTE_SIGNAL;
3808 
3809 		if (kn->kn_id == hint)
3810 			kn->kn_data++;
3811 	}
3812 	return (kn->kn_data != 0);
3813 }
3814 
3815 struct sigacts *
3816 sigacts_alloc(void)
3817 {
3818 	struct sigacts *ps;
3819 
3820 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3821 	refcount_init(&ps->ps_refcnt, 1);
3822 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3823 	return (ps);
3824 }
3825 
3826 void
3827 sigacts_free(struct sigacts *ps)
3828 {
3829 
3830 	if (refcount_release(&ps->ps_refcnt) == 0)
3831 		return;
3832 	mtx_destroy(&ps->ps_mtx);
3833 	free(ps, M_SUBPROC);
3834 }
3835 
3836 struct sigacts *
3837 sigacts_hold(struct sigacts *ps)
3838 {
3839 
3840 	refcount_acquire(&ps->ps_refcnt);
3841 	return (ps);
3842 }
3843 
3844 void
3845 sigacts_copy(struct sigacts *dest, struct sigacts *src)
3846 {
3847 
3848 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3849 	mtx_lock(&src->ps_mtx);
3850 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3851 	mtx_unlock(&src->ps_mtx);
3852 }
3853 
3854 int
3855 sigacts_shared(struct sigacts *ps)
3856 {
3857 
3858 	return (ps->ps_refcnt > 1);
3859 }
3860