1 /*- 2 * Copyright (c) 2013-2015 Gleb Smirnoff <glebius@FreeBSD.org> 3 * Copyright (c) 1998, David Greenman. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_kern_tls.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/capsicum.h> 38 #include <sys/kernel.h> 39 #include <sys/lock.h> 40 #include <sys/ktls.h> 41 #include <sys/mutex.h> 42 #include <sys/malloc.h> 43 #include <sys/mman.h> 44 #include <sys/mount.h> 45 #include <sys/mbuf.h> 46 #include <sys/proc.h> 47 #include <sys/protosw.h> 48 #include <sys/rwlock.h> 49 #include <sys/sf_buf.h> 50 #include <sys/socket.h> 51 #include <sys/socketvar.h> 52 #include <sys/syscallsubr.h> 53 #include <sys/sysctl.h> 54 #include <sys/sysproto.h> 55 #include <sys/vnode.h> 56 57 #include <net/vnet.h> 58 #include <netinet/in.h> 59 #include <netinet/tcp.h> 60 61 #include <security/audit/audit.h> 62 #include <security/mac/mac_framework.h> 63 64 #include <vm/vm.h> 65 #include <vm/vm_object.h> 66 #include <vm/vm_pager.h> 67 68 static MALLOC_DEFINE(M_SENDFILE, "sendfile", "sendfile dynamic memory"); 69 70 #define EXT_FLAG_SYNC EXT_FLAG_VENDOR1 71 #define EXT_FLAG_NOCACHE EXT_FLAG_VENDOR2 72 #define EXT_FLAG_CACHE_LAST EXT_FLAG_VENDOR3 73 74 /* 75 * Structure describing a single sendfile(2) I/O, which may consist of 76 * several underlying pager I/Os. 77 * 78 * The syscall context allocates the structure and initializes 'nios' 79 * to 1. As sendfile_swapin() runs through pages and starts asynchronous 80 * paging operations, it increments 'nios'. 81 * 82 * Every I/O completion calls sendfile_iodone(), which decrements the 'nios', 83 * and the syscall also calls sendfile_iodone() after allocating all mbufs, 84 * linking them and sending to socket. Whoever reaches zero 'nios' is 85 * responsible to * call pru_ready on the socket, to notify it of readyness 86 * of the data. 87 */ 88 struct sf_io { 89 volatile u_int nios; 90 u_int error; 91 int npages; 92 struct socket *so; 93 struct mbuf *m; 94 vm_object_t obj; 95 vm_pindex_t pindex0; 96 #ifdef KERN_TLS 97 struct ktls_session *tls; 98 #endif 99 vm_page_t pa[]; 100 }; 101 102 /* 103 * Structure used to track requests with SF_SYNC flag. 104 */ 105 struct sendfile_sync { 106 struct mtx mtx; 107 struct cv cv; 108 unsigned count; 109 bool waiting; 110 }; 111 112 static void 113 sendfile_sync_destroy(struct sendfile_sync *sfs) 114 { 115 KASSERT(sfs->count == 0, ("sendfile sync %p still busy", sfs)); 116 117 cv_destroy(&sfs->cv); 118 mtx_destroy(&sfs->mtx); 119 free(sfs, M_SENDFILE); 120 } 121 122 static void 123 sendfile_sync_signal(struct sendfile_sync *sfs) 124 { 125 mtx_lock(&sfs->mtx); 126 KASSERT(sfs->count > 0, ("sendfile sync %p not busy", sfs)); 127 if (--sfs->count == 0) { 128 if (!sfs->waiting) { 129 /* The sendfile() waiter was interrupted by a signal. */ 130 sendfile_sync_destroy(sfs); 131 return; 132 } else { 133 cv_signal(&sfs->cv); 134 } 135 } 136 mtx_unlock(&sfs->mtx); 137 } 138 139 counter_u64_t sfstat[sizeof(struct sfstat) / sizeof(uint64_t)]; 140 141 static void 142 sfstat_init(const void *unused) 143 { 144 145 COUNTER_ARRAY_ALLOC(sfstat, sizeof(struct sfstat) / sizeof(uint64_t), 146 M_WAITOK); 147 } 148 SYSINIT(sfstat, SI_SUB_MBUF, SI_ORDER_FIRST, sfstat_init, NULL); 149 150 static int 151 sfstat_sysctl(SYSCTL_HANDLER_ARGS) 152 { 153 struct sfstat s; 154 155 COUNTER_ARRAY_COPY(sfstat, &s, sizeof(s) / sizeof(uint64_t)); 156 if (req->newptr) 157 COUNTER_ARRAY_ZERO(sfstat, sizeof(s) / sizeof(uint64_t)); 158 return (SYSCTL_OUT(req, &s, sizeof(s))); 159 } 160 SYSCTL_PROC(_kern_ipc, OID_AUTO, sfstat, 161 CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0, 162 sfstat_sysctl, "I", 163 "sendfile statistics"); 164 165 static void 166 sendfile_free_mext(struct mbuf *m) 167 { 168 struct sf_buf *sf; 169 vm_page_t pg; 170 int flags; 171 172 KASSERT(m->m_flags & M_EXT && m->m_ext.ext_type == EXT_SFBUF, 173 ("%s: m %p !M_EXT or !EXT_SFBUF", __func__, m)); 174 175 sf = m->m_ext.ext_arg1; 176 pg = sf_buf_page(sf); 177 flags = (m->m_ext.ext_flags & EXT_FLAG_NOCACHE) != 0 ? VPR_TRYFREE : 0; 178 179 sf_buf_free(sf); 180 vm_page_release(pg, flags); 181 182 if (m->m_ext.ext_flags & EXT_FLAG_SYNC) { 183 struct sendfile_sync *sfs = m->m_ext.ext_arg2; 184 sendfile_sync_signal(sfs); 185 } 186 } 187 188 static void 189 sendfile_free_mext_pg(struct mbuf *m) 190 { 191 vm_page_t pg; 192 int flags, i; 193 bool cache_last; 194 195 M_ASSERTEXTPG(m); 196 197 cache_last = m->m_ext.ext_flags & EXT_FLAG_CACHE_LAST; 198 flags = (m->m_ext.ext_flags & EXT_FLAG_NOCACHE) != 0 ? VPR_TRYFREE : 0; 199 200 for (i = 0; i < m->m_epg_npgs; i++) { 201 if (cache_last && i == m->m_epg_npgs - 1) 202 flags = 0; 203 pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]); 204 vm_page_release(pg, flags); 205 } 206 207 if (m->m_ext.ext_flags & EXT_FLAG_SYNC) { 208 struct sendfile_sync *sfs = m->m_ext.ext_arg1; 209 sendfile_sync_signal(sfs); 210 } 211 } 212 213 /* 214 * Helper function to calculate how much data to put into page i of n. 215 * Only first and last pages are special. 216 */ 217 static inline off_t 218 xfsize(int i, int n, off_t off, off_t len) 219 { 220 221 if (i == 0) 222 return (omin(PAGE_SIZE - (off & PAGE_MASK), len)); 223 224 if (i == n - 1 && ((off + len) & PAGE_MASK) > 0) 225 return ((off + len) & PAGE_MASK); 226 227 return (PAGE_SIZE); 228 } 229 230 /* 231 * Helper function to get offset within object for i page. 232 */ 233 static inline vm_ooffset_t 234 vmoff(int i, off_t off) 235 { 236 237 if (i == 0) 238 return ((vm_ooffset_t)off); 239 240 return (trunc_page(off + i * PAGE_SIZE)); 241 } 242 243 /* 244 * Helper function used when allocation of a page or sf_buf failed. 245 * Pretend as if we don't have enough space, subtract xfsize() of 246 * all pages that failed. 247 */ 248 static inline void 249 fixspace(int old, int new, off_t off, int *space) 250 { 251 252 KASSERT(old > new, ("%s: old %d new %d", __func__, old, new)); 253 254 /* Subtract last one. */ 255 *space -= xfsize(old - 1, old, off, *space); 256 old--; 257 258 if (new == old) 259 /* There was only one page. */ 260 return; 261 262 /* Subtract first one. */ 263 if (new == 0) { 264 *space -= xfsize(0, old, off, *space); 265 new++; 266 } 267 268 /* Rest of pages are full sized. */ 269 *space -= (old - new) * PAGE_SIZE; 270 271 KASSERT(*space >= 0, ("%s: space went backwards", __func__)); 272 } 273 274 /* 275 * Wait for all in-flight ios to complete, we must not unwire pages 276 * under them. 277 */ 278 static void 279 sendfile_iowait(struct sf_io *sfio, const char *wmesg) 280 { 281 while (atomic_load_int(&sfio->nios) != 1) 282 pause(wmesg, 1); 283 } 284 285 /* 286 * I/O completion callback. 287 */ 288 static void 289 sendfile_iodone(void *arg, vm_page_t *pa, int count, int error) 290 { 291 struct sf_io *sfio = arg; 292 struct socket *so; 293 int i; 294 295 if (error != 0) 296 sfio->error = error; 297 298 /* 299 * Restore the valid page pointers. They are already 300 * unbusied, but still wired. 301 * 302 * XXXKIB since pages are only wired, and we do not 303 * own the object lock, other users might have 304 * invalidated them in meantime. Similarly, after we 305 * unbusied the swapped-in pages, they can become 306 * invalid under us. 307 */ 308 MPASS(count == 0 || pa[0] != bogus_page); 309 for (i = 0; i < count; i++) { 310 if (pa[i] == bogus_page) { 311 sfio->pa[(pa[0]->pindex - sfio->pindex0) + i] = 312 pa[i] = vm_page_relookup(sfio->obj, 313 pa[0]->pindex + i); 314 KASSERT(pa[i] != NULL, 315 ("%s: page %p[%d] disappeared", 316 __func__, pa, i)); 317 } else { 318 vm_page_xunbusy_unchecked(pa[i]); 319 } 320 } 321 322 if (!refcount_release(&sfio->nios)) 323 return; 324 325 #ifdef INVARIANTS 326 for (i = 1; i < sfio->npages; i++) { 327 if (sfio->pa[i] == NULL) 328 break; 329 KASSERT(vm_page_wired(sfio->pa[i]), 330 ("sfio %p page %d %p not wired", sfio, i, sfio->pa[i])); 331 if (i == 0) 332 continue; 333 KASSERT(sfio->pa[0]->object == sfio->pa[i]->object, 334 ("sfio %p page %d %p wrong owner %p %p", sfio, i, 335 sfio->pa[i], sfio->pa[0]->object, sfio->pa[i]->object)); 336 KASSERT(sfio->pa[0]->pindex + i == sfio->pa[i]->pindex, 337 ("sfio %p page %d %p wrong index %jx %jx", sfio, i, 338 sfio->pa[i], (uintmax_t)sfio->pa[0]->pindex, 339 (uintmax_t)sfio->pa[i]->pindex)); 340 } 341 #endif 342 343 vm_object_pip_wakeup(sfio->obj); 344 345 if (sfio->m == NULL) { 346 /* 347 * Either I/O operation failed, or we failed to allocate 348 * buffers, or we bailed out on first busy page, or we 349 * succeeded filling the request without any I/Os. Anyway, 350 * pru_send hadn't been executed - nothing had been sent 351 * to the socket yet. 352 */ 353 MPASS((curthread->td_pflags & TDP_KTHREAD) == 0); 354 free(sfio, M_SENDFILE); 355 return; 356 } 357 358 #if defined(KERN_TLS) && defined(INVARIANTS) 359 if ((sfio->m->m_flags & M_EXTPG) != 0) 360 KASSERT(sfio->tls == sfio->m->m_epg_tls, 361 ("TLS session mismatch")); 362 else 363 KASSERT(sfio->tls == NULL, 364 ("non-ext_pgs mbuf with TLS session")); 365 #endif 366 so = sfio->so; 367 CURVNET_SET(so->so_vnet); 368 if (__predict_false(sfio->error)) { 369 /* 370 * I/O operation failed. The state of data in the socket 371 * is now inconsistent, and all what we can do is to tear 372 * it down. Protocol abort method would tear down protocol 373 * state, free all ready mbufs and detach not ready ones. 374 * We will free the mbufs corresponding to this I/O manually. 375 * 376 * The socket would be marked with EIO and made available 377 * for read, so that application receives EIO on next 378 * syscall and eventually closes the socket. 379 */ 380 so->so_proto->pr_abort(so); 381 so->so_error = EIO; 382 383 mb_free_notready(sfio->m, sfio->npages); 384 #ifdef KERN_TLS 385 } else if (sfio->tls != NULL && sfio->tls->mode == TCP_TLS_MODE_SW) { 386 /* 387 * I/O operation is complete, but we still need to 388 * encrypt. We cannot do this in the interrupt thread 389 * of the disk controller, so forward the mbufs to a 390 * different thread. 391 * 392 * Donate the socket reference from sfio to rather 393 * than explicitly invoking soref(). 394 */ 395 ktls_enqueue(sfio->m, so, sfio->npages); 396 goto out_with_ref; 397 #endif 398 } else 399 (void)so->so_proto->pr_ready(so, sfio->m, sfio->npages); 400 401 sorele(so); 402 #ifdef KERN_TLS 403 out_with_ref: 404 #endif 405 CURVNET_RESTORE(); 406 free(sfio, M_SENDFILE); 407 } 408 409 /* 410 * Iterate through pages vector and request paging for non-valid pages. 411 */ 412 static int 413 sendfile_swapin(vm_object_t obj, struct sf_io *sfio, int *nios, off_t off, 414 off_t len, int rhpages, int flags) 415 { 416 vm_page_t *pa; 417 int a, count, count1, grabbed, i, j, npages, rv; 418 419 pa = sfio->pa; 420 npages = sfio->npages; 421 *nios = 0; 422 flags = (flags & SF_NODISKIO) ? VM_ALLOC_NOWAIT : 0; 423 sfio->pindex0 = OFF_TO_IDX(off); 424 425 /* 426 * First grab all the pages and wire them. Note that we grab 427 * only required pages. Readahead pages are dealt with later. 428 */ 429 grabbed = vm_page_grab_pages_unlocked(obj, OFF_TO_IDX(off), 430 VM_ALLOC_NORMAL | VM_ALLOC_WIRED | flags, pa, npages); 431 if (grabbed < npages) { 432 for (int i = grabbed; i < npages; i++) 433 pa[i] = NULL; 434 npages = grabbed; 435 rhpages = 0; 436 } 437 438 for (i = 0; i < npages;) { 439 /* Skip valid pages. */ 440 if (vm_page_is_valid(pa[i], vmoff(i, off) & PAGE_MASK, 441 xfsize(i, npages, off, len))) { 442 vm_page_xunbusy(pa[i]); 443 SFSTAT_INC(sf_pages_valid); 444 i++; 445 continue; 446 } 447 448 /* 449 * Next page is invalid. Check if it belongs to pager. It 450 * may not be there, which is a regular situation for shmem 451 * pager. For vnode pager this happens only in case of 452 * a sparse file. 453 * 454 * Important feature of vm_pager_has_page() is the hint 455 * stored in 'a', about how many pages we can pagein after 456 * this page in a single I/O. 457 */ 458 VM_OBJECT_RLOCK(obj); 459 if (!vm_pager_has_page(obj, OFF_TO_IDX(vmoff(i, off)), NULL, 460 &a)) { 461 VM_OBJECT_RUNLOCK(obj); 462 pmap_zero_page(pa[i]); 463 vm_page_valid(pa[i]); 464 MPASS(pa[i]->dirty == 0); 465 vm_page_xunbusy(pa[i]); 466 i++; 467 continue; 468 } 469 VM_OBJECT_RUNLOCK(obj); 470 471 /* 472 * We want to pagein as many pages as possible, limited only 473 * by the 'a' hint and actual request. 474 */ 475 count = min(a + 1, npages - i); 476 477 /* 478 * We should not pagein into a valid page because 479 * there might be still unfinished write tracked by 480 * e.g. a buffer, thus we substitute any valid pages 481 * with the bogus one. 482 * 483 * We must not leave around xbusy pages which are not 484 * part of the run passed to vm_pager_getpages(), 485 * otherwise pager might deadlock waiting for the busy 486 * status of the page, e.g. if it constitues the 487 * buffer needed to validate other page. 488 * 489 * First trim the end of the run consisting of the 490 * valid pages, then replace the rest of the valid 491 * with bogus. 492 */ 493 count1 = count; 494 for (j = i + count - 1; j > i; j--) { 495 if (vm_page_is_valid(pa[j], vmoff(j, off) & PAGE_MASK, 496 xfsize(j, npages, off, len))) { 497 vm_page_xunbusy(pa[j]); 498 SFSTAT_INC(sf_pages_valid); 499 count--; 500 } else { 501 break; 502 } 503 } 504 505 /* 506 * The last page in the run pa[i + count - 1] is 507 * guaranteed to be invalid by the trim above, so it 508 * is not replaced with bogus, thus -1 in the loop end 509 * condition. 510 */ 511 MPASS(pa[i + count - 1]->valid != VM_PAGE_BITS_ALL); 512 for (j = i + 1; j < i + count - 1; j++) { 513 if (vm_page_is_valid(pa[j], vmoff(j, off) & PAGE_MASK, 514 xfsize(j, npages, off, len))) { 515 vm_page_xunbusy(pa[j]); 516 SFSTAT_INC(sf_pages_valid); 517 SFSTAT_INC(sf_pages_bogus); 518 pa[j] = bogus_page; 519 } 520 } 521 522 refcount_acquire(&sfio->nios); 523 rv = vm_pager_get_pages_async(obj, pa + i, count, NULL, 524 i + count == npages ? &rhpages : NULL, 525 &sendfile_iodone, sfio); 526 if (__predict_false(rv != VM_PAGER_OK)) { 527 sendfile_iowait(sfio, "sferrio"); 528 529 /* 530 * Do remaining pages recovery before returning EIO. 531 * Pages from 0 to npages are wired. 532 * Pages from (i + count1) to npages are busied. 533 */ 534 for (j = 0; j < npages; j++) { 535 if (j >= i + count1) 536 vm_page_xunbusy(pa[j]); 537 KASSERT(pa[j] != NULL && pa[j] != bogus_page, 538 ("%s: page %p[%d] I/O recovery failure", 539 __func__, pa, j)); 540 vm_page_unwire(pa[j], PQ_INACTIVE); 541 pa[j] = NULL; 542 } 543 return (EIO); 544 } 545 546 SFSTAT_INC(sf_iocnt); 547 SFSTAT_ADD(sf_pages_read, count); 548 if (i + count == npages) 549 SFSTAT_ADD(sf_rhpages_read, rhpages); 550 551 i += count1; 552 (*nios)++; 553 } 554 555 if (*nios == 0 && npages != 0) 556 SFSTAT_INC(sf_noiocnt); 557 558 return (0); 559 } 560 561 static int 562 sendfile_getobj(struct thread *td, struct file *fp, vm_object_t *obj_res, 563 struct vnode **vp_res, struct shmfd **shmfd_res, off_t *obj_size, 564 int *bsize) 565 { 566 struct vattr va; 567 vm_object_t obj; 568 struct vnode *vp; 569 struct shmfd *shmfd; 570 int error; 571 572 error = 0; 573 vp = *vp_res = NULL; 574 obj = NULL; 575 shmfd = *shmfd_res = NULL; 576 *bsize = 0; 577 578 /* 579 * The file descriptor must be a regular file and have a 580 * backing VM object. 581 */ 582 if (fp->f_type == DTYPE_VNODE) { 583 vp = fp->f_vnode; 584 vn_lock(vp, LK_SHARED | LK_RETRY); 585 if (vp->v_type != VREG) { 586 error = EINVAL; 587 goto out; 588 } 589 *bsize = vp->v_mount->mnt_stat.f_iosize; 590 obj = vp->v_object; 591 if (obj == NULL) { 592 error = EINVAL; 593 goto out; 594 } 595 596 /* 597 * Use the pager size when available to simplify synchronization 598 * with filesystems, which otherwise must atomically update both 599 * the vnode pager size and file size. 600 */ 601 if (obj->type == OBJT_VNODE) { 602 VM_OBJECT_RLOCK(obj); 603 *obj_size = obj->un_pager.vnp.vnp_size; 604 } else { 605 error = VOP_GETATTR(vp, &va, td->td_ucred); 606 if (error != 0) 607 goto out; 608 *obj_size = va.va_size; 609 VM_OBJECT_RLOCK(obj); 610 } 611 } else if (fp->f_type == DTYPE_SHM) { 612 shmfd = fp->f_data; 613 obj = shmfd->shm_object; 614 VM_OBJECT_RLOCK(obj); 615 *obj_size = shmfd->shm_size; 616 } else { 617 error = EINVAL; 618 goto out; 619 } 620 621 if ((obj->flags & OBJ_DEAD) != 0) { 622 VM_OBJECT_RUNLOCK(obj); 623 error = EBADF; 624 goto out; 625 } 626 627 /* 628 * Temporarily increase the backing VM object's reference 629 * count so that a forced reclamation of its vnode does not 630 * immediately destroy it. 631 */ 632 vm_object_reference_locked(obj); 633 VM_OBJECT_RUNLOCK(obj); 634 *obj_res = obj; 635 *vp_res = vp; 636 *shmfd_res = shmfd; 637 638 out: 639 if (vp != NULL) 640 VOP_UNLOCK(vp); 641 return (error); 642 } 643 644 static int 645 sendfile_getsock(struct thread *td, int s, struct file **sock_fp, 646 struct socket **so) 647 { 648 int error; 649 650 *sock_fp = NULL; 651 *so = NULL; 652 653 /* 654 * The socket must be a stream socket and connected. 655 */ 656 error = getsock(td, s, &cap_send_rights, sock_fp); 657 if (error != 0) 658 return (error); 659 *so = (*sock_fp)->f_data; 660 if ((*so)->so_type != SOCK_STREAM) 661 return (EINVAL); 662 /* 663 * SCTP one-to-one style sockets currently don't work with 664 * sendfile(). So indicate EINVAL for now. 665 */ 666 if ((*so)->so_proto->pr_protocol == IPPROTO_SCTP) 667 return (EINVAL); 668 return (0); 669 } 670 671 int 672 vn_sendfile(struct file *fp, int sockfd, struct uio *hdr_uio, 673 struct uio *trl_uio, off_t offset, size_t nbytes, off_t *sent, int flags, 674 struct thread *td) 675 { 676 struct file *sock_fp; 677 struct vnode *vp; 678 struct vm_object *obj; 679 vm_page_t pga; 680 struct socket *so; 681 #ifdef KERN_TLS 682 struct ktls_session *tls; 683 #endif 684 struct mbuf *m, *mh, *mhtail; 685 struct sf_buf *sf; 686 struct shmfd *shmfd; 687 struct sendfile_sync *sfs; 688 struct vattr va; 689 off_t off, sbytes, rem, obj_size, nobj_size; 690 int bsize, error, ext_pgs_idx, hdrlen, max_pgs, softerr; 691 #ifdef KERN_TLS 692 int tls_enq_cnt; 693 #endif 694 bool use_ext_pgs; 695 696 obj = NULL; 697 so = NULL; 698 m = mh = NULL; 699 sfs = NULL; 700 #ifdef KERN_TLS 701 tls = NULL; 702 #endif 703 hdrlen = sbytes = 0; 704 softerr = 0; 705 use_ext_pgs = false; 706 707 error = sendfile_getobj(td, fp, &obj, &vp, &shmfd, &obj_size, &bsize); 708 if (error != 0) 709 return (error); 710 711 error = sendfile_getsock(td, sockfd, &sock_fp, &so); 712 if (error != 0) 713 goto out; 714 715 #ifdef MAC 716 error = mac_socket_check_send(td->td_ucred, so); 717 if (error != 0) 718 goto out; 719 #endif 720 721 SFSTAT_INC(sf_syscalls); 722 SFSTAT_ADD(sf_rhpages_requested, SF_READAHEAD(flags)); 723 724 if (flags & SF_SYNC) { 725 sfs = malloc(sizeof(*sfs), M_SENDFILE, M_WAITOK | M_ZERO); 726 mtx_init(&sfs->mtx, "sendfile", NULL, MTX_DEF); 727 cv_init(&sfs->cv, "sendfile"); 728 sfs->waiting = true; 729 } 730 731 rem = nbytes ? omin(nbytes, obj_size - offset) : obj_size - offset; 732 733 /* 734 * Protect against multiple writers to the socket. 735 * 736 * XXXRW: Historically this has assumed non-interruptibility, so now 737 * we implement that, but possibly shouldn't. 738 */ 739 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT | SBL_NOINTR); 740 if (error != 0) 741 goto out; 742 #ifdef KERN_TLS 743 tls = ktls_hold(so->so_snd.sb_tls_info); 744 #endif 745 746 /* 747 * Loop through the pages of the file, starting with the requested 748 * offset. Get a file page (do I/O if necessary), map the file page 749 * into an sf_buf, attach an mbuf header to the sf_buf, and queue 750 * it on the socket. 751 * This is done in two loops. The inner loop turns as many pages 752 * as it can, up to available socket buffer space, without blocking 753 * into mbufs to have it bulk delivered into the socket send buffer. 754 * The outer loop checks the state and available space of the socket 755 * and takes care of the overall progress. 756 */ 757 for (off = offset; rem > 0; ) { 758 struct sf_io *sfio; 759 vm_page_t *pa; 760 struct mbuf *m0, *mtail; 761 int nios, space, npages, rhpages; 762 763 mtail = NULL; 764 /* 765 * Check the socket state for ongoing connection, 766 * no errors and space in socket buffer. 767 * If space is low allow for the remainder of the 768 * file to be processed if it fits the socket buffer. 769 * Otherwise block in waiting for sufficient space 770 * to proceed, or if the socket is nonblocking, return 771 * to userland with EAGAIN while reporting how far 772 * we've come. 773 * We wait until the socket buffer has significant free 774 * space to do bulk sends. This makes good use of file 775 * system read ahead and allows packet segmentation 776 * offloading hardware to take over lots of work. If 777 * we were not careful here we would send off only one 778 * sfbuf at a time. 779 */ 780 SOCKBUF_LOCK(&so->so_snd); 781 if (so->so_snd.sb_lowat < so->so_snd.sb_hiwat / 2) 782 so->so_snd.sb_lowat = so->so_snd.sb_hiwat / 2; 783 retry_space: 784 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 785 error = EPIPE; 786 SOCKBUF_UNLOCK(&so->so_snd); 787 goto done; 788 } else if (so->so_error) { 789 error = so->so_error; 790 so->so_error = 0; 791 SOCKBUF_UNLOCK(&so->so_snd); 792 goto done; 793 } 794 if ((so->so_state & SS_ISCONNECTED) == 0) { 795 SOCKBUF_UNLOCK(&so->so_snd); 796 error = ENOTCONN; 797 goto done; 798 } 799 800 space = sbspace(&so->so_snd); 801 if (space < rem && 802 (space <= 0 || 803 space < so->so_snd.sb_lowat)) { 804 if (so->so_state & SS_NBIO) { 805 SOCKBUF_UNLOCK(&so->so_snd); 806 error = EAGAIN; 807 goto done; 808 } 809 /* 810 * sbwait drops the lock while sleeping. 811 * When we loop back to retry_space the 812 * state may have changed and we retest 813 * for it. 814 */ 815 error = sbwait(so, SO_SND); 816 /* 817 * An error from sbwait usually indicates that we've 818 * been interrupted by a signal. If we've sent anything 819 * then return bytes sent, otherwise return the error. 820 */ 821 if (error != 0) { 822 SOCKBUF_UNLOCK(&so->so_snd); 823 goto done; 824 } 825 goto retry_space; 826 } 827 SOCKBUF_UNLOCK(&so->so_snd); 828 829 /* 830 * At the beginning of the first loop check if any headers 831 * are specified and copy them into mbufs. Reduce space in 832 * the socket buffer by the size of the header mbuf chain. 833 * Clear hdr_uio here and hdrlen at the end of the first loop. 834 */ 835 if (hdr_uio != NULL && hdr_uio->uio_resid > 0) { 836 hdr_uio->uio_td = td; 837 hdr_uio->uio_rw = UIO_WRITE; 838 #ifdef KERN_TLS 839 if (tls != NULL) 840 mh = m_uiotombuf(hdr_uio, M_WAITOK, space, 841 tls->params.max_frame_len, M_EXTPG); 842 else 843 #endif 844 mh = m_uiotombuf(hdr_uio, M_WAITOK, 845 space, 0, 0); 846 hdrlen = m_length(mh, &mhtail); 847 space -= hdrlen; 848 /* 849 * If header consumed all the socket buffer space, 850 * don't waste CPU cycles and jump to the end. 851 */ 852 if (space == 0) { 853 sfio = NULL; 854 nios = 0; 855 goto prepend_header; 856 } 857 hdr_uio = NULL; 858 } 859 860 if (vp != NULL) { 861 error = vn_lock(vp, LK_SHARED); 862 if (error != 0) 863 goto done; 864 865 /* 866 * Check to see if the file size has changed. 867 */ 868 if (obj->type == OBJT_VNODE) { 869 VM_OBJECT_RLOCK(obj); 870 nobj_size = obj->un_pager.vnp.vnp_size; 871 VM_OBJECT_RUNLOCK(obj); 872 } else { 873 error = VOP_GETATTR(vp, &va, td->td_ucred); 874 if (error != 0) { 875 VOP_UNLOCK(vp); 876 goto done; 877 } 878 nobj_size = va.va_size; 879 } 880 if (off >= nobj_size) { 881 VOP_UNLOCK(vp); 882 goto done; 883 } 884 if (nobj_size != obj_size) { 885 obj_size = nobj_size; 886 rem = nbytes ? omin(nbytes + offset, obj_size) : 887 obj_size; 888 rem -= off; 889 } 890 } 891 892 if (space > rem) 893 space = rem; 894 else if (space > PAGE_SIZE) { 895 /* 896 * Use page boundaries when possible for large 897 * requests. 898 */ 899 if (off & PAGE_MASK) 900 space -= (PAGE_SIZE - (off & PAGE_MASK)); 901 space = trunc_page(space); 902 if (off & PAGE_MASK) 903 space += (PAGE_SIZE - (off & PAGE_MASK)); 904 } 905 906 npages = howmany(space + (off & PAGE_MASK), PAGE_SIZE); 907 908 /* 909 * Calculate maximum allowed number of pages for readahead 910 * at this iteration. If SF_USER_READAHEAD was set, we don't 911 * do any heuristics and use exactly the value supplied by 912 * application. Otherwise, we allow readahead up to "rem". 913 * If application wants more, let it be, but there is no 914 * reason to go above maxphys. Also check against "obj_size", 915 * since vm_pager_has_page() can hint beyond EOF. 916 */ 917 if (flags & SF_USER_READAHEAD) { 918 rhpages = SF_READAHEAD(flags); 919 } else { 920 rhpages = howmany(rem + (off & PAGE_MASK), PAGE_SIZE) - 921 npages; 922 rhpages += SF_READAHEAD(flags); 923 } 924 rhpages = min(howmany(maxphys, PAGE_SIZE), rhpages); 925 rhpages = min(howmany(obj_size - trunc_page(off), PAGE_SIZE) - 926 npages, rhpages); 927 928 sfio = malloc(sizeof(struct sf_io) + 929 npages * sizeof(vm_page_t), M_SENDFILE, M_WAITOK); 930 refcount_init(&sfio->nios, 1); 931 sfio->obj = obj; 932 sfio->error = 0; 933 sfio->m = NULL; 934 sfio->npages = npages; 935 #ifdef KERN_TLS 936 /* 937 * This doesn't use ktls_hold() because sfio->m will 938 * also have a reference on 'tls' that will be valid 939 * for all of sfio's lifetime. 940 */ 941 sfio->tls = tls; 942 #endif 943 vm_object_pip_add(obj, 1); 944 error = sendfile_swapin(obj, sfio, &nios, off, space, rhpages, 945 flags); 946 if (error != 0) { 947 if (vp != NULL) 948 VOP_UNLOCK(vp); 949 sendfile_iodone(sfio, NULL, 0, error); 950 goto done; 951 } 952 953 /* 954 * Loop and construct maximum sized mbuf chain to be bulk 955 * dumped into socket buffer. 956 */ 957 pa = sfio->pa; 958 959 /* 960 * Use unmapped mbufs if enabled for TCP. Unmapped 961 * bufs are restricted to TCP as that is what has been 962 * tested. In particular, unmapped mbufs have not 963 * been tested with UNIX-domain sockets. 964 * 965 * TLS frames always require unmapped mbufs. 966 */ 967 if ((mb_use_ext_pgs && 968 so->so_proto->pr_protocol == IPPROTO_TCP) 969 #ifdef KERN_TLS 970 || tls != NULL 971 #endif 972 ) { 973 use_ext_pgs = true; 974 #ifdef KERN_TLS 975 if (tls != NULL) 976 max_pgs = num_pages(tls->params.max_frame_len); 977 else 978 #endif 979 max_pgs = MBUF_PEXT_MAX_PGS; 980 981 /* Start at last index, to wrap on first use. */ 982 ext_pgs_idx = max_pgs - 1; 983 } 984 985 for (int i = 0; i < npages; i++) { 986 /* 987 * If a page wasn't grabbed successfully, then 988 * trim the array. Can happen only with SF_NODISKIO. 989 */ 990 if (pa[i] == NULL) { 991 SFSTAT_INC(sf_busy); 992 fixspace(npages, i, off, &space); 993 sfio->npages = i; 994 softerr = EBUSY; 995 break; 996 } 997 pga = pa[i]; 998 if (pga == bogus_page) 999 pga = vm_page_relookup(obj, sfio->pindex0 + i); 1000 1001 if (use_ext_pgs) { 1002 off_t xfs; 1003 1004 ext_pgs_idx++; 1005 if (ext_pgs_idx == max_pgs) { 1006 m0 = mb_alloc_ext_pgs(M_WAITOK, 1007 sendfile_free_mext_pg); 1008 1009 if (flags & SF_NOCACHE) { 1010 m0->m_ext.ext_flags |= 1011 EXT_FLAG_NOCACHE; 1012 1013 /* 1014 * See comment below regarding 1015 * ignoring SF_NOCACHE for the 1016 * last page. 1017 */ 1018 if ((npages - i <= max_pgs) && 1019 ((off + space) & PAGE_MASK) && 1020 (rem > space || rhpages > 0)) 1021 m0->m_ext.ext_flags |= 1022 EXT_FLAG_CACHE_LAST; 1023 } 1024 if (sfs != NULL) { 1025 m0->m_ext.ext_flags |= 1026 EXT_FLAG_SYNC; 1027 m0->m_ext.ext_arg1 = sfs; 1028 mtx_lock(&sfs->mtx); 1029 sfs->count++; 1030 mtx_unlock(&sfs->mtx); 1031 } 1032 ext_pgs_idx = 0; 1033 1034 /* Append to mbuf chain. */ 1035 if (mtail != NULL) 1036 mtail->m_next = m0; 1037 else 1038 m = m0; 1039 mtail = m0; 1040 m0->m_epg_1st_off = 1041 vmoff(i, off) & PAGE_MASK; 1042 } 1043 if (nios) { 1044 mtail->m_flags |= M_NOTREADY; 1045 m0->m_epg_nrdy++; 1046 } 1047 1048 m0->m_epg_pa[ext_pgs_idx] = VM_PAGE_TO_PHYS(pga); 1049 m0->m_epg_npgs++; 1050 xfs = xfsize(i, npages, off, space); 1051 m0->m_epg_last_len = xfs; 1052 MBUF_EXT_PGS_ASSERT_SANITY(m0); 1053 mtail->m_len += xfs; 1054 mtail->m_ext.ext_size += PAGE_SIZE; 1055 continue; 1056 } 1057 1058 /* 1059 * Get a sendfile buf. When allocating the 1060 * first buffer for mbuf chain, we usually 1061 * wait as long as necessary, but this wait 1062 * can be interrupted. For consequent 1063 * buffers, do not sleep, since several 1064 * threads might exhaust the buffers and then 1065 * deadlock. 1066 */ 1067 sf = sf_buf_alloc(pga, 1068 m != NULL ? SFB_NOWAIT : SFB_CATCH); 1069 if (sf == NULL) { 1070 SFSTAT_INC(sf_allocfail); 1071 sendfile_iowait(sfio, "sfnosf"); 1072 for (int j = i; j < npages; j++) { 1073 vm_page_unwire(pa[j], PQ_INACTIVE); 1074 pa[j] = NULL; 1075 } 1076 if (m == NULL) 1077 softerr = ENOBUFS; 1078 fixspace(npages, i, off, &space); 1079 sfio->npages = i; 1080 break; 1081 } 1082 1083 m0 = m_get(M_WAITOK, MT_DATA); 1084 m0->m_ext.ext_buf = (char *)sf_buf_kva(sf); 1085 m0->m_ext.ext_size = PAGE_SIZE; 1086 m0->m_ext.ext_arg1 = sf; 1087 m0->m_ext.ext_type = EXT_SFBUF; 1088 m0->m_ext.ext_flags = EXT_FLAG_EMBREF; 1089 m0->m_ext.ext_free = sendfile_free_mext; 1090 /* 1091 * SF_NOCACHE sets the page as being freed upon send. 1092 * However, we ignore it for the last page in 'space', 1093 * if the page is truncated, and we got more data to 1094 * send (rem > space), or if we have readahead 1095 * configured (rhpages > 0). 1096 */ 1097 if ((flags & SF_NOCACHE) && 1098 (i != npages - 1 || 1099 !((off + space) & PAGE_MASK) || 1100 !(rem > space || rhpages > 0))) 1101 m0->m_ext.ext_flags |= EXT_FLAG_NOCACHE; 1102 if (sfs != NULL) { 1103 m0->m_ext.ext_flags |= EXT_FLAG_SYNC; 1104 m0->m_ext.ext_arg2 = sfs; 1105 mtx_lock(&sfs->mtx); 1106 sfs->count++; 1107 mtx_unlock(&sfs->mtx); 1108 } 1109 m0->m_ext.ext_count = 1; 1110 m0->m_flags |= (M_EXT | M_RDONLY); 1111 if (nios) 1112 m0->m_flags |= M_NOTREADY; 1113 m0->m_data = (char *)sf_buf_kva(sf) + 1114 (vmoff(i, off) & PAGE_MASK); 1115 m0->m_len = xfsize(i, npages, off, space); 1116 1117 /* Append to mbuf chain. */ 1118 if (mtail != NULL) 1119 mtail->m_next = m0; 1120 else 1121 m = m0; 1122 mtail = m0; 1123 } 1124 1125 if (vp != NULL) 1126 VOP_UNLOCK(vp); 1127 1128 /* Keep track of bytes processed. */ 1129 off += space; 1130 rem -= space; 1131 1132 /* 1133 * Prepend header, if any. Save pointer to first mbuf 1134 * with a page. 1135 */ 1136 if (hdrlen) { 1137 prepend_header: 1138 m0 = mhtail->m_next = m; 1139 m = mh; 1140 mh = NULL; 1141 } else 1142 m0 = m; 1143 1144 if (m == NULL) { 1145 KASSERT(softerr, ("%s: m NULL, no error", __func__)); 1146 error = softerr; 1147 sendfile_iodone(sfio, NULL, 0, 0); 1148 goto done; 1149 } 1150 1151 /* Add the buffer chain to the socket buffer. */ 1152 KASSERT(m_length(m, NULL) == space + hdrlen, 1153 ("%s: mlen %u space %d hdrlen %d", 1154 __func__, m_length(m, NULL), space, hdrlen)); 1155 1156 CURVNET_SET(so->so_vnet); 1157 #ifdef KERN_TLS 1158 if (tls != NULL) 1159 ktls_frame(m, tls, &tls_enq_cnt, TLS_RLTYPE_APP); 1160 #endif 1161 if (nios == 0) { 1162 /* 1163 * If sendfile_swapin() didn't initiate any I/Os, 1164 * which happens if all data is cached in VM, or if 1165 * the header consumed all socket buffer space and 1166 * sfio is NULL, then we can send data right now 1167 * without the PRUS_NOTREADY flag. 1168 */ 1169 if (sfio != NULL) 1170 sendfile_iodone(sfio, NULL, 0, 0); 1171 #ifdef KERN_TLS 1172 if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) { 1173 error = so->so_proto->pr_send(so, 1174 PRUS_NOTREADY, m, NULL, NULL, td); 1175 if (error != 0) { 1176 m_freem(m); 1177 } else { 1178 soref(so); 1179 ktls_enqueue(m, so, tls_enq_cnt); 1180 } 1181 } else 1182 #endif 1183 error = so->so_proto->pr_send(so, 0, m, NULL, 1184 NULL, td); 1185 } else { 1186 sfio->so = so; 1187 sfio->m = m0; 1188 soref(so); 1189 error = so->so_proto->pr_send(so, PRUS_NOTREADY, m, 1190 NULL, NULL, td); 1191 sendfile_iodone(sfio, NULL, 0, error); 1192 } 1193 CURVNET_RESTORE(); 1194 1195 m = NULL; 1196 if (error) 1197 goto done; 1198 sbytes += space + hdrlen; 1199 if (hdrlen) 1200 hdrlen = 0; 1201 if (softerr) { 1202 error = softerr; 1203 goto done; 1204 } 1205 } 1206 1207 /* 1208 * Send trailers. Wimp out and use writev(2). 1209 */ 1210 if (trl_uio != NULL) { 1211 SOCK_IO_SEND_UNLOCK(so); 1212 error = kern_writev(td, sockfd, trl_uio); 1213 if (error == 0) 1214 sbytes += td->td_retval[0]; 1215 goto out; 1216 } 1217 1218 done: 1219 SOCK_IO_SEND_UNLOCK(so); 1220 out: 1221 /* 1222 * If there was no error we have to clear td->td_retval[0] 1223 * because it may have been set by writev. 1224 */ 1225 if (error == 0) { 1226 td->td_retval[0] = 0; 1227 } 1228 if (sent != NULL) { 1229 (*sent) = sbytes; 1230 } 1231 if (obj != NULL) 1232 vm_object_deallocate(obj); 1233 if (so) 1234 fdrop(sock_fp, td); 1235 if (m) 1236 m_freem(m); 1237 if (mh) 1238 m_freem(mh); 1239 1240 if (sfs != NULL) { 1241 mtx_lock(&sfs->mtx); 1242 if (sfs->count != 0) 1243 error = cv_wait_sig(&sfs->cv, &sfs->mtx); 1244 if (sfs->count == 0) { 1245 sendfile_sync_destroy(sfs); 1246 } else { 1247 sfs->waiting = false; 1248 mtx_unlock(&sfs->mtx); 1249 } 1250 } 1251 #ifdef KERN_TLS 1252 if (tls != NULL) 1253 ktls_free(tls); 1254 #endif 1255 1256 if (error == ERESTART) 1257 error = EINTR; 1258 1259 return (error); 1260 } 1261 1262 static int 1263 sendfile(struct thread *td, struct sendfile_args *uap, int compat) 1264 { 1265 struct sf_hdtr hdtr; 1266 struct uio *hdr_uio, *trl_uio; 1267 struct file *fp; 1268 off_t sbytes; 1269 int error; 1270 1271 /* 1272 * File offset must be positive. If it goes beyond EOF 1273 * we send only the header/trailer and no payload data. 1274 */ 1275 if (uap->offset < 0) 1276 return (EINVAL); 1277 1278 sbytes = 0; 1279 hdr_uio = trl_uio = NULL; 1280 1281 if (uap->hdtr != NULL) { 1282 error = copyin(uap->hdtr, &hdtr, sizeof(hdtr)); 1283 if (error != 0) 1284 goto out; 1285 if (hdtr.headers != NULL) { 1286 error = copyinuio(hdtr.headers, hdtr.hdr_cnt, 1287 &hdr_uio); 1288 if (error != 0) 1289 goto out; 1290 #ifdef COMPAT_FREEBSD4 1291 /* 1292 * In FreeBSD < 5.0 the nbytes to send also included 1293 * the header. If compat is specified subtract the 1294 * header size from nbytes. 1295 */ 1296 if (compat) { 1297 if (uap->nbytes > hdr_uio->uio_resid) 1298 uap->nbytes -= hdr_uio->uio_resid; 1299 else 1300 uap->nbytes = 0; 1301 } 1302 #endif 1303 } 1304 if (hdtr.trailers != NULL) { 1305 error = copyinuio(hdtr.trailers, hdtr.trl_cnt, 1306 &trl_uio); 1307 if (error != 0) 1308 goto out; 1309 } 1310 } 1311 1312 AUDIT_ARG_FD(uap->fd); 1313 1314 /* 1315 * sendfile(2) can start at any offset within a file so we require 1316 * CAP_READ+CAP_SEEK = CAP_PREAD. 1317 */ 1318 if ((error = fget_read(td, uap->fd, &cap_pread_rights, &fp)) != 0) 1319 goto out; 1320 1321 error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, uap->offset, 1322 uap->nbytes, &sbytes, uap->flags, td); 1323 fdrop(fp, td); 1324 1325 if (uap->sbytes != NULL) 1326 copyout(&sbytes, uap->sbytes, sizeof(off_t)); 1327 1328 out: 1329 free(hdr_uio, M_IOV); 1330 free(trl_uio, M_IOV); 1331 return (error); 1332 } 1333 1334 /* 1335 * sendfile(2) 1336 * 1337 * int sendfile(int fd, int s, off_t offset, size_t nbytes, 1338 * struct sf_hdtr *hdtr, off_t *sbytes, int flags) 1339 * 1340 * Send a file specified by 'fd' and starting at 'offset' to a socket 1341 * specified by 's'. Send only 'nbytes' of the file or until EOF if nbytes == 1342 * 0. Optionally add a header and/or trailer to the socket output. If 1343 * specified, write the total number of bytes sent into *sbytes. 1344 */ 1345 int 1346 sys_sendfile(struct thread *td, struct sendfile_args *uap) 1347 { 1348 1349 return (sendfile(td, uap, 0)); 1350 } 1351 1352 #ifdef COMPAT_FREEBSD4 1353 int 1354 freebsd4_sendfile(struct thread *td, struct freebsd4_sendfile_args *uap) 1355 { 1356 struct sendfile_args args; 1357 1358 args.fd = uap->fd; 1359 args.s = uap->s; 1360 args.offset = uap->offset; 1361 args.nbytes = uap->nbytes; 1362 args.hdtr = uap->hdtr; 1363 args.sbytes = uap->sbytes; 1364 args.flags = uap->flags; 1365 1366 return (sendfile(td, &args, 1)); 1367 } 1368 #endif /* COMPAT_FREEBSD4 */ 1369