xref: /freebsd/sys/kern/kern_prot.c (revision 5bb3134a8c21cb87b30e135ef168483f0333dabb)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1990, 1991, 1993
5  *	The Regents of the University of California.
6  * (c) UNIX System Laboratories, Inc.
7  * Copyright (c) 2000-2001 Robert N. M. Watson.
8  * All rights reserved.
9  *
10  * All or some portions of this file are derived from material licensed
11  * to the University of California by American Telephone and Telegraph
12  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
13  * the permission of UNIX System Laboratories, Inc.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  *	@(#)kern_prot.c	8.6 (Berkeley) 1/21/94
40  */
41 
42 /*
43  * System calls related to processes and protection
44  */
45 
46 #include <sys/cdefs.h>
47 __FBSDID("$FreeBSD$");
48 
49 #include "opt_inet.h"
50 #include "opt_inet6.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/acct.h>
55 #include <sys/kdb.h>
56 #include <sys/kernel.h>
57 #include <sys/lock.h>
58 #include <sys/loginclass.h>
59 #include <sys/malloc.h>
60 #include <sys/mutex.h>
61 #include <sys/refcount.h>
62 #include <sys/sx.h>
63 #include <sys/priv.h>
64 #include <sys/proc.h>
65 #include <sys/sysent.h>
66 #include <sys/sysproto.h>
67 #include <sys/jail.h>
68 #include <sys/racct.h>
69 #include <sys/rctl.h>
70 #include <sys/resourcevar.h>
71 #include <sys/socket.h>
72 #include <sys/socketvar.h>
73 #include <sys/syscallsubr.h>
74 #include <sys/sysctl.h>
75 
76 #ifdef REGRESSION
77 FEATURE(regression,
78     "Kernel support for interfaces necessary for regression testing (SECURITY RISK!)");
79 #endif
80 
81 #include <security/audit/audit.h>
82 #include <security/mac/mac_framework.h>
83 
84 static MALLOC_DEFINE(M_CRED, "cred", "credentials");
85 
86 SYSCTL_NODE(_security, OID_AUTO, bsd, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
87     "BSD security policy");
88 
89 static void crfree_final(struct ucred *cr);
90 static void crsetgroups_locked(struct ucred *cr, int ngrp,
91     gid_t *groups);
92 
93 #ifndef _SYS_SYSPROTO_H_
94 struct getpid_args {
95 	int	dummy;
96 };
97 #endif
98 /* ARGSUSED */
99 int
100 sys_getpid(struct thread *td, struct getpid_args *uap)
101 {
102 	struct proc *p = td->td_proc;
103 
104 	td->td_retval[0] = p->p_pid;
105 #if defined(COMPAT_43)
106 	if (SV_PROC_FLAG(p, SV_AOUT))
107 		td->td_retval[1] = kern_getppid(td);
108 #endif
109 	return (0);
110 }
111 
112 #ifndef _SYS_SYSPROTO_H_
113 struct getppid_args {
114         int     dummy;
115 };
116 #endif
117 /* ARGSUSED */
118 int
119 sys_getppid(struct thread *td, struct getppid_args *uap)
120 {
121 
122 	td->td_retval[0] = kern_getppid(td);
123 	return (0);
124 }
125 
126 int
127 kern_getppid(struct thread *td)
128 {
129 	struct proc *p = td->td_proc;
130 
131 	return (p->p_oppid);
132 }
133 
134 /*
135  * Get process group ID; note that POSIX getpgrp takes no parameter.
136  */
137 #ifndef _SYS_SYSPROTO_H_
138 struct getpgrp_args {
139         int     dummy;
140 };
141 #endif
142 int
143 sys_getpgrp(struct thread *td, struct getpgrp_args *uap)
144 {
145 	struct proc *p = td->td_proc;
146 
147 	PROC_LOCK(p);
148 	td->td_retval[0] = p->p_pgrp->pg_id;
149 	PROC_UNLOCK(p);
150 	return (0);
151 }
152 
153 /* Get an arbitrary pid's process group id */
154 #ifndef _SYS_SYSPROTO_H_
155 struct getpgid_args {
156 	pid_t	pid;
157 };
158 #endif
159 int
160 sys_getpgid(struct thread *td, struct getpgid_args *uap)
161 {
162 	struct proc *p;
163 	int error;
164 
165 	if (uap->pid == 0) {
166 		p = td->td_proc;
167 		PROC_LOCK(p);
168 	} else {
169 		p = pfind(uap->pid);
170 		if (p == NULL)
171 			return (ESRCH);
172 		error = p_cansee(td, p);
173 		if (error) {
174 			PROC_UNLOCK(p);
175 			return (error);
176 		}
177 	}
178 	td->td_retval[0] = p->p_pgrp->pg_id;
179 	PROC_UNLOCK(p);
180 	return (0);
181 }
182 
183 /*
184  * Get an arbitrary pid's session id.
185  */
186 #ifndef _SYS_SYSPROTO_H_
187 struct getsid_args {
188 	pid_t	pid;
189 };
190 #endif
191 int
192 sys_getsid(struct thread *td, struct getsid_args *uap)
193 {
194 
195 	return (kern_getsid(td, uap->pid));
196 }
197 
198 int
199 kern_getsid(struct thread *td, pid_t pid)
200 {
201 	struct proc *p;
202 	int error;
203 
204 	if (pid == 0) {
205 		p = td->td_proc;
206 		PROC_LOCK(p);
207 	} else {
208 		p = pfind(pid);
209 		if (p == NULL)
210 			return (ESRCH);
211 		error = p_cansee(td, p);
212 		if (error) {
213 			PROC_UNLOCK(p);
214 			return (error);
215 		}
216 	}
217 	td->td_retval[0] = p->p_session->s_sid;
218 	PROC_UNLOCK(p);
219 	return (0);
220 }
221 
222 #ifndef _SYS_SYSPROTO_H_
223 struct getuid_args {
224         int     dummy;
225 };
226 #endif
227 /* ARGSUSED */
228 int
229 sys_getuid(struct thread *td, struct getuid_args *uap)
230 {
231 
232 	td->td_retval[0] = td->td_ucred->cr_ruid;
233 #if defined(COMPAT_43)
234 	td->td_retval[1] = td->td_ucred->cr_uid;
235 #endif
236 	return (0);
237 }
238 
239 #ifndef _SYS_SYSPROTO_H_
240 struct geteuid_args {
241         int     dummy;
242 };
243 #endif
244 /* ARGSUSED */
245 int
246 sys_geteuid(struct thread *td, struct geteuid_args *uap)
247 {
248 
249 	td->td_retval[0] = td->td_ucred->cr_uid;
250 	return (0);
251 }
252 
253 #ifndef _SYS_SYSPROTO_H_
254 struct getgid_args {
255         int     dummy;
256 };
257 #endif
258 /* ARGSUSED */
259 int
260 sys_getgid(struct thread *td, struct getgid_args *uap)
261 {
262 
263 	td->td_retval[0] = td->td_ucred->cr_rgid;
264 #if defined(COMPAT_43)
265 	td->td_retval[1] = td->td_ucred->cr_groups[0];
266 #endif
267 	return (0);
268 }
269 
270 /*
271  * Get effective group ID.  The "egid" is groups[0], and could be obtained
272  * via getgroups.  This syscall exists because it is somewhat painful to do
273  * correctly in a library function.
274  */
275 #ifndef _SYS_SYSPROTO_H_
276 struct getegid_args {
277         int     dummy;
278 };
279 #endif
280 /* ARGSUSED */
281 int
282 sys_getegid(struct thread *td, struct getegid_args *uap)
283 {
284 
285 	td->td_retval[0] = td->td_ucred->cr_groups[0];
286 	return (0);
287 }
288 
289 #ifndef _SYS_SYSPROTO_H_
290 struct getgroups_args {
291 	int	gidsetsize;
292 	gid_t	*gidset;
293 };
294 #endif
295 int
296 sys_getgroups(struct thread *td, struct getgroups_args *uap)
297 {
298 	struct ucred *cred;
299 	int ngrp, error;
300 
301 	cred = td->td_ucred;
302 	ngrp = cred->cr_ngroups;
303 
304 	if (uap->gidsetsize == 0) {
305 		error = 0;
306 		goto out;
307 	}
308 	if (uap->gidsetsize < ngrp)
309 		return (EINVAL);
310 
311 	error = copyout(cred->cr_groups, uap->gidset, ngrp * sizeof(gid_t));
312 out:
313 	td->td_retval[0] = ngrp;
314 	return (error);
315 }
316 
317 #ifndef _SYS_SYSPROTO_H_
318 struct setsid_args {
319         int     dummy;
320 };
321 #endif
322 /* ARGSUSED */
323 int
324 sys_setsid(struct thread *td, struct setsid_args *uap)
325 {
326 	struct pgrp *pgrp;
327 	int error;
328 	struct proc *p = td->td_proc;
329 	struct pgrp *newpgrp;
330 	struct session *newsess;
331 
332 	error = 0;
333 	pgrp = NULL;
334 
335 	newpgrp = uma_zalloc(pgrp_zone, M_WAITOK);
336 	newsess = malloc(sizeof(struct session), M_SESSION, M_WAITOK | M_ZERO);
337 
338 	sx_xlock(&proctree_lock);
339 
340 	if (p->p_pgid == p->p_pid || (pgrp = pgfind(p->p_pid)) != NULL) {
341 		if (pgrp != NULL)
342 			PGRP_UNLOCK(pgrp);
343 		error = EPERM;
344 	} else {
345 		(void)enterpgrp(p, p->p_pid, newpgrp, newsess);
346 		td->td_retval[0] = p->p_pid;
347 		newpgrp = NULL;
348 		newsess = NULL;
349 	}
350 
351 	sx_xunlock(&proctree_lock);
352 
353 	uma_zfree(pgrp_zone, newpgrp);
354 	free(newsess, M_SESSION);
355 
356 	return (error);
357 }
358 
359 /*
360  * set process group (setpgid/old setpgrp)
361  *
362  * caller does setpgid(targpid, targpgid)
363  *
364  * pid must be caller or child of caller (ESRCH)
365  * if a child
366  *	pid must be in same session (EPERM)
367  *	pid can't have done an exec (EACCES)
368  * if pgid != pid
369  * 	there must exist some pid in same session having pgid (EPERM)
370  * pid must not be session leader (EPERM)
371  */
372 #ifndef _SYS_SYSPROTO_H_
373 struct setpgid_args {
374 	int	pid;		/* target process id */
375 	int	pgid;		/* target pgrp id */
376 };
377 #endif
378 /* ARGSUSED */
379 int
380 sys_setpgid(struct thread *td, struct setpgid_args *uap)
381 {
382 	struct proc *curp = td->td_proc;
383 	struct proc *targp;	/* target process */
384 	struct pgrp *pgrp;	/* target pgrp */
385 	int error;
386 	struct pgrp *newpgrp;
387 
388 	if (uap->pgid < 0)
389 		return (EINVAL);
390 
391 	error = 0;
392 
393 	newpgrp = uma_zalloc(pgrp_zone, M_WAITOK);
394 
395 	sx_xlock(&proctree_lock);
396 	if (uap->pid != 0 && uap->pid != curp->p_pid) {
397 		if ((targp = pfind(uap->pid)) == NULL) {
398 			error = ESRCH;
399 			goto done;
400 		}
401 		if (!inferior(targp)) {
402 			PROC_UNLOCK(targp);
403 			error = ESRCH;
404 			goto done;
405 		}
406 		if ((error = p_cansee(td, targp))) {
407 			PROC_UNLOCK(targp);
408 			goto done;
409 		}
410 		if (targp->p_pgrp == NULL ||
411 		    targp->p_session != curp->p_session) {
412 			PROC_UNLOCK(targp);
413 			error = EPERM;
414 			goto done;
415 		}
416 		if (targp->p_flag & P_EXEC) {
417 			PROC_UNLOCK(targp);
418 			error = EACCES;
419 			goto done;
420 		}
421 		PROC_UNLOCK(targp);
422 	} else
423 		targp = curp;
424 	if (SESS_LEADER(targp)) {
425 		error = EPERM;
426 		goto done;
427 	}
428 	if (uap->pgid == 0)
429 		uap->pgid = targp->p_pid;
430 	if ((pgrp = pgfind(uap->pgid)) == NULL) {
431 		if (uap->pgid == targp->p_pid) {
432 			error = enterpgrp(targp, uap->pgid, newpgrp,
433 			    NULL);
434 			if (error == 0)
435 				newpgrp = NULL;
436 		} else
437 			error = EPERM;
438 	} else {
439 		if (pgrp == targp->p_pgrp) {
440 			PGRP_UNLOCK(pgrp);
441 			goto done;
442 		}
443 		if (pgrp->pg_id != targp->p_pid &&
444 		    pgrp->pg_session != curp->p_session) {
445 			PGRP_UNLOCK(pgrp);
446 			error = EPERM;
447 			goto done;
448 		}
449 		PGRP_UNLOCK(pgrp);
450 		error = enterthispgrp(targp, pgrp);
451 	}
452 done:
453 	sx_xunlock(&proctree_lock);
454 	KASSERT((error == 0) || (newpgrp != NULL),
455 	    ("setpgid failed and newpgrp is NULL"));
456 	uma_zfree(pgrp_zone, newpgrp);
457 	return (error);
458 }
459 
460 /*
461  * Use the clause in B.4.2.2 that allows setuid/setgid to be 4.2/4.3BSD
462  * compatible.  It says that setting the uid/gid to euid/egid is a special
463  * case of "appropriate privilege".  Once the rules are expanded out, this
464  * basically means that setuid(nnn) sets all three id's, in all permitted
465  * cases unless _POSIX_SAVED_IDS is enabled.  In that case, setuid(getuid())
466  * does not set the saved id - this is dangerous for traditional BSD
467  * programs.  For this reason, we *really* do not want to set
468  * _POSIX_SAVED_IDS and do not want to clear POSIX_APPENDIX_B_4_2_2.
469  */
470 #define POSIX_APPENDIX_B_4_2_2
471 
472 #ifndef _SYS_SYSPROTO_H_
473 struct setuid_args {
474 	uid_t	uid;
475 };
476 #endif
477 /* ARGSUSED */
478 int
479 sys_setuid(struct thread *td, struct setuid_args *uap)
480 {
481 	struct proc *p = td->td_proc;
482 	struct ucred *newcred, *oldcred;
483 	uid_t uid;
484 	struct uidinfo *uip;
485 	int error;
486 
487 	uid = uap->uid;
488 	AUDIT_ARG_UID(uid);
489 	newcred = crget();
490 	uip = uifind(uid);
491 	PROC_LOCK(p);
492 	/*
493 	 * Copy credentials so other references do not see our changes.
494 	 */
495 	oldcred = crcopysafe(p, newcred);
496 
497 #ifdef MAC
498 	error = mac_cred_check_setuid(oldcred, uid);
499 	if (error)
500 		goto fail;
501 #endif
502 
503 	/*
504 	 * See if we have "permission" by POSIX 1003.1 rules.
505 	 *
506 	 * Note that setuid(geteuid()) is a special case of
507 	 * "appropriate privileges" in appendix B.4.2.2.  We need
508 	 * to use this clause to be compatible with traditional BSD
509 	 * semantics.  Basically, it means that "setuid(xx)" sets all
510 	 * three id's (assuming you have privs).
511 	 *
512 	 * Notes on the logic.  We do things in three steps.
513 	 * 1: We determine if the euid is going to change, and do EPERM
514 	 *    right away.  We unconditionally change the euid later if this
515 	 *    test is satisfied, simplifying that part of the logic.
516 	 * 2: We determine if the real and/or saved uids are going to
517 	 *    change.  Determined by compile options.
518 	 * 3: Change euid last. (after tests in #2 for "appropriate privs")
519 	 */
520 	if (uid != oldcred->cr_ruid &&		/* allow setuid(getuid()) */
521 #ifdef _POSIX_SAVED_IDS
522 	    uid != oldcred->cr_svuid &&		/* allow setuid(saved gid) */
523 #endif
524 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use BSD-compat clause from B.4.2.2 */
525 	    uid != oldcred->cr_uid &&		/* allow setuid(geteuid()) */
526 #endif
527 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETUID)) != 0)
528 		goto fail;
529 
530 #ifdef _POSIX_SAVED_IDS
531 	/*
532 	 * Do we have "appropriate privileges" (are we root or uid == euid)
533 	 * If so, we are changing the real uid and/or saved uid.
534 	 */
535 	if (
536 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use the clause from B.4.2.2 */
537 	    uid == oldcred->cr_uid ||
538 #endif
539 	    /* We are using privs. */
540 	    priv_check_cred(oldcred, PRIV_CRED_SETUID) == 0)
541 #endif
542 	{
543 		/*
544 		 * Set the real uid and transfer proc count to new user.
545 		 */
546 		if (uid != oldcred->cr_ruid) {
547 			change_ruid(newcred, uip);
548 			setsugid(p);
549 		}
550 		/*
551 		 * Set saved uid
552 		 *
553 		 * XXX always set saved uid even if not _POSIX_SAVED_IDS, as
554 		 * the security of seteuid() depends on it.  B.4.2.2 says it
555 		 * is important that we should do this.
556 		 */
557 		if (uid != oldcred->cr_svuid) {
558 			change_svuid(newcred, uid);
559 			setsugid(p);
560 		}
561 	}
562 
563 	/*
564 	 * In all permitted cases, we are changing the euid.
565 	 */
566 	if (uid != oldcred->cr_uid) {
567 		change_euid(newcred, uip);
568 		setsugid(p);
569 	}
570 	proc_set_cred(p, newcred);
571 #ifdef RACCT
572 	racct_proc_ucred_changed(p, oldcred, newcred);
573 	crhold(newcred);
574 #endif
575 	PROC_UNLOCK(p);
576 #ifdef RCTL
577 	rctl_proc_ucred_changed(p, newcred);
578 	crfree(newcred);
579 #endif
580 	uifree(uip);
581 	crfree(oldcred);
582 	return (0);
583 
584 fail:
585 	PROC_UNLOCK(p);
586 	uifree(uip);
587 	crfree(newcred);
588 	return (error);
589 }
590 
591 #ifndef _SYS_SYSPROTO_H_
592 struct seteuid_args {
593 	uid_t	euid;
594 };
595 #endif
596 /* ARGSUSED */
597 int
598 sys_seteuid(struct thread *td, struct seteuid_args *uap)
599 {
600 	struct proc *p = td->td_proc;
601 	struct ucred *newcred, *oldcred;
602 	uid_t euid;
603 	struct uidinfo *euip;
604 	int error;
605 
606 	euid = uap->euid;
607 	AUDIT_ARG_EUID(euid);
608 	newcred = crget();
609 	euip = uifind(euid);
610 	PROC_LOCK(p);
611 	/*
612 	 * Copy credentials so other references do not see our changes.
613 	 */
614 	oldcred = crcopysafe(p, newcred);
615 
616 #ifdef MAC
617 	error = mac_cred_check_seteuid(oldcred, euid);
618 	if (error)
619 		goto fail;
620 #endif
621 
622 	if (euid != oldcred->cr_ruid &&		/* allow seteuid(getuid()) */
623 	    euid != oldcred->cr_svuid &&	/* allow seteuid(saved uid) */
624 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETEUID)) != 0)
625 		goto fail;
626 
627 	/*
628 	 * Everything's okay, do it.
629 	 */
630 	if (oldcred->cr_uid != euid) {
631 		change_euid(newcred, euip);
632 		setsugid(p);
633 	}
634 	proc_set_cred(p, newcred);
635 	PROC_UNLOCK(p);
636 	uifree(euip);
637 	crfree(oldcred);
638 	return (0);
639 
640 fail:
641 	PROC_UNLOCK(p);
642 	uifree(euip);
643 	crfree(newcred);
644 	return (error);
645 }
646 
647 #ifndef _SYS_SYSPROTO_H_
648 struct setgid_args {
649 	gid_t	gid;
650 };
651 #endif
652 /* ARGSUSED */
653 int
654 sys_setgid(struct thread *td, struct setgid_args *uap)
655 {
656 	struct proc *p = td->td_proc;
657 	struct ucred *newcred, *oldcred;
658 	gid_t gid;
659 	int error;
660 
661 	gid = uap->gid;
662 	AUDIT_ARG_GID(gid);
663 	newcred = crget();
664 	PROC_LOCK(p);
665 	oldcred = crcopysafe(p, newcred);
666 
667 #ifdef MAC
668 	error = mac_cred_check_setgid(oldcred, gid);
669 	if (error)
670 		goto fail;
671 #endif
672 
673 	/*
674 	 * See if we have "permission" by POSIX 1003.1 rules.
675 	 *
676 	 * Note that setgid(getegid()) is a special case of
677 	 * "appropriate privileges" in appendix B.4.2.2.  We need
678 	 * to use this clause to be compatible with traditional BSD
679 	 * semantics.  Basically, it means that "setgid(xx)" sets all
680 	 * three id's (assuming you have privs).
681 	 *
682 	 * For notes on the logic here, see setuid() above.
683 	 */
684 	if (gid != oldcred->cr_rgid &&		/* allow setgid(getgid()) */
685 #ifdef _POSIX_SAVED_IDS
686 	    gid != oldcred->cr_svgid &&		/* allow setgid(saved gid) */
687 #endif
688 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use BSD-compat clause from B.4.2.2 */
689 	    gid != oldcred->cr_groups[0] && /* allow setgid(getegid()) */
690 #endif
691 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETGID)) != 0)
692 		goto fail;
693 
694 #ifdef _POSIX_SAVED_IDS
695 	/*
696 	 * Do we have "appropriate privileges" (are we root or gid == egid)
697 	 * If so, we are changing the real uid and saved gid.
698 	 */
699 	if (
700 #ifdef POSIX_APPENDIX_B_4_2_2	/* use the clause from B.4.2.2 */
701 	    gid == oldcred->cr_groups[0] ||
702 #endif
703 	    /* We are using privs. */
704 	    priv_check_cred(oldcred, PRIV_CRED_SETGID) == 0)
705 #endif
706 	{
707 		/*
708 		 * Set real gid
709 		 */
710 		if (oldcred->cr_rgid != gid) {
711 			change_rgid(newcred, gid);
712 			setsugid(p);
713 		}
714 		/*
715 		 * Set saved gid
716 		 *
717 		 * XXX always set saved gid even if not _POSIX_SAVED_IDS, as
718 		 * the security of setegid() depends on it.  B.4.2.2 says it
719 		 * is important that we should do this.
720 		 */
721 		if (oldcred->cr_svgid != gid) {
722 			change_svgid(newcred, gid);
723 			setsugid(p);
724 		}
725 	}
726 	/*
727 	 * In all cases permitted cases, we are changing the egid.
728 	 * Copy credentials so other references do not see our changes.
729 	 */
730 	if (oldcred->cr_groups[0] != gid) {
731 		change_egid(newcred, gid);
732 		setsugid(p);
733 	}
734 	proc_set_cred(p, newcred);
735 	PROC_UNLOCK(p);
736 	crfree(oldcred);
737 	return (0);
738 
739 fail:
740 	PROC_UNLOCK(p);
741 	crfree(newcred);
742 	return (error);
743 }
744 
745 #ifndef _SYS_SYSPROTO_H_
746 struct setegid_args {
747 	gid_t	egid;
748 };
749 #endif
750 /* ARGSUSED */
751 int
752 sys_setegid(struct thread *td, struct setegid_args *uap)
753 {
754 	struct proc *p = td->td_proc;
755 	struct ucred *newcred, *oldcred;
756 	gid_t egid;
757 	int error;
758 
759 	egid = uap->egid;
760 	AUDIT_ARG_EGID(egid);
761 	newcred = crget();
762 	PROC_LOCK(p);
763 	oldcred = crcopysafe(p, newcred);
764 
765 #ifdef MAC
766 	error = mac_cred_check_setegid(oldcred, egid);
767 	if (error)
768 		goto fail;
769 #endif
770 
771 	if (egid != oldcred->cr_rgid &&		/* allow setegid(getgid()) */
772 	    egid != oldcred->cr_svgid &&	/* allow setegid(saved gid) */
773 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETEGID)) != 0)
774 		goto fail;
775 
776 	if (oldcred->cr_groups[0] != egid) {
777 		change_egid(newcred, egid);
778 		setsugid(p);
779 	}
780 	proc_set_cred(p, newcred);
781 	PROC_UNLOCK(p);
782 	crfree(oldcred);
783 	return (0);
784 
785 fail:
786 	PROC_UNLOCK(p);
787 	crfree(newcred);
788 	return (error);
789 }
790 
791 #ifndef _SYS_SYSPROTO_H_
792 struct setgroups_args {
793 	int	gidsetsize;
794 	gid_t	*gidset;
795 };
796 #endif
797 /* ARGSUSED */
798 int
799 sys_setgroups(struct thread *td, struct setgroups_args *uap)
800 {
801 	gid_t smallgroups[XU_NGROUPS];
802 	gid_t *groups;
803 	int gidsetsize, error;
804 
805 	gidsetsize = uap->gidsetsize;
806 	if (gidsetsize > ngroups_max + 1 || gidsetsize < 0)
807 		return (EINVAL);
808 
809 	if (gidsetsize > XU_NGROUPS)
810 		groups = malloc(gidsetsize * sizeof(gid_t), M_TEMP, M_WAITOK);
811 	else
812 		groups = smallgroups;
813 
814 	error = copyin(uap->gidset, groups, gidsetsize * sizeof(gid_t));
815 	if (error == 0)
816 		error = kern_setgroups(td, gidsetsize, groups);
817 
818 	if (gidsetsize > XU_NGROUPS)
819 		free(groups, M_TEMP);
820 	return (error);
821 }
822 
823 int
824 kern_setgroups(struct thread *td, u_int ngrp, gid_t *groups)
825 {
826 	struct proc *p = td->td_proc;
827 	struct ucred *newcred, *oldcred;
828 	int error;
829 
830 	MPASS(ngrp <= ngroups_max + 1);
831 	AUDIT_ARG_GROUPSET(groups, ngrp);
832 	newcred = crget();
833 	crextend(newcred, ngrp);
834 	PROC_LOCK(p);
835 	oldcred = crcopysafe(p, newcred);
836 
837 #ifdef MAC
838 	error = mac_cred_check_setgroups(oldcred, ngrp, groups);
839 	if (error)
840 		goto fail;
841 #endif
842 
843 	error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS);
844 	if (error)
845 		goto fail;
846 
847 	if (ngrp == 0) {
848 		/*
849 		 * setgroups(0, NULL) is a legitimate way of clearing the
850 		 * groups vector on non-BSD systems (which generally do not
851 		 * have the egid in the groups[0]).  We risk security holes
852 		 * when running non-BSD software if we do not do the same.
853 		 */
854 		newcred->cr_ngroups = 1;
855 	} else {
856 		crsetgroups_locked(newcred, ngrp, groups);
857 	}
858 	setsugid(p);
859 	proc_set_cred(p, newcred);
860 	PROC_UNLOCK(p);
861 	crfree(oldcred);
862 	return (0);
863 
864 fail:
865 	PROC_UNLOCK(p);
866 	crfree(newcred);
867 	return (error);
868 }
869 
870 #ifndef _SYS_SYSPROTO_H_
871 struct setreuid_args {
872 	uid_t	ruid;
873 	uid_t	euid;
874 };
875 #endif
876 /* ARGSUSED */
877 int
878 sys_setreuid(struct thread *td, struct setreuid_args *uap)
879 {
880 	struct proc *p = td->td_proc;
881 	struct ucred *newcred, *oldcred;
882 	uid_t euid, ruid;
883 	struct uidinfo *euip, *ruip;
884 	int error;
885 
886 	euid = uap->euid;
887 	ruid = uap->ruid;
888 	AUDIT_ARG_EUID(euid);
889 	AUDIT_ARG_RUID(ruid);
890 	newcred = crget();
891 	euip = uifind(euid);
892 	ruip = uifind(ruid);
893 	PROC_LOCK(p);
894 	oldcred = crcopysafe(p, newcred);
895 
896 #ifdef MAC
897 	error = mac_cred_check_setreuid(oldcred, ruid, euid);
898 	if (error)
899 		goto fail;
900 #endif
901 
902 	if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
903 	      ruid != oldcred->cr_svuid) ||
904 	     (euid != (uid_t)-1 && euid != oldcred->cr_uid &&
905 	      euid != oldcred->cr_ruid && euid != oldcred->cr_svuid)) &&
906 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETREUID)) != 0)
907 		goto fail;
908 
909 	if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
910 		change_euid(newcred, euip);
911 		setsugid(p);
912 	}
913 	if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
914 		change_ruid(newcred, ruip);
915 		setsugid(p);
916 	}
917 	if ((ruid != (uid_t)-1 || newcred->cr_uid != newcred->cr_ruid) &&
918 	    newcred->cr_svuid != newcred->cr_uid) {
919 		change_svuid(newcred, newcred->cr_uid);
920 		setsugid(p);
921 	}
922 	proc_set_cred(p, newcred);
923 #ifdef RACCT
924 	racct_proc_ucred_changed(p, oldcred, newcred);
925 	crhold(newcred);
926 #endif
927 	PROC_UNLOCK(p);
928 #ifdef RCTL
929 	rctl_proc_ucred_changed(p, newcred);
930 	crfree(newcred);
931 #endif
932 	uifree(ruip);
933 	uifree(euip);
934 	crfree(oldcred);
935 	return (0);
936 
937 fail:
938 	PROC_UNLOCK(p);
939 	uifree(ruip);
940 	uifree(euip);
941 	crfree(newcred);
942 	return (error);
943 }
944 
945 #ifndef _SYS_SYSPROTO_H_
946 struct setregid_args {
947 	gid_t	rgid;
948 	gid_t	egid;
949 };
950 #endif
951 /* ARGSUSED */
952 int
953 sys_setregid(struct thread *td, struct setregid_args *uap)
954 {
955 	struct proc *p = td->td_proc;
956 	struct ucred *newcred, *oldcred;
957 	gid_t egid, rgid;
958 	int error;
959 
960 	egid = uap->egid;
961 	rgid = uap->rgid;
962 	AUDIT_ARG_EGID(egid);
963 	AUDIT_ARG_RGID(rgid);
964 	newcred = crget();
965 	PROC_LOCK(p);
966 	oldcred = crcopysafe(p, newcred);
967 
968 #ifdef MAC
969 	error = mac_cred_check_setregid(oldcred, rgid, egid);
970 	if (error)
971 		goto fail;
972 #endif
973 
974 	if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
975 	    rgid != oldcred->cr_svgid) ||
976 	     (egid != (gid_t)-1 && egid != oldcred->cr_groups[0] &&
977 	     egid != oldcred->cr_rgid && egid != oldcred->cr_svgid)) &&
978 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETREGID)) != 0)
979 		goto fail;
980 
981 	if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
982 		change_egid(newcred, egid);
983 		setsugid(p);
984 	}
985 	if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
986 		change_rgid(newcred, rgid);
987 		setsugid(p);
988 	}
989 	if ((rgid != (gid_t)-1 || newcred->cr_groups[0] != newcred->cr_rgid) &&
990 	    newcred->cr_svgid != newcred->cr_groups[0]) {
991 		change_svgid(newcred, newcred->cr_groups[0]);
992 		setsugid(p);
993 	}
994 	proc_set_cred(p, newcred);
995 	PROC_UNLOCK(p);
996 	crfree(oldcred);
997 	return (0);
998 
999 fail:
1000 	PROC_UNLOCK(p);
1001 	crfree(newcred);
1002 	return (error);
1003 }
1004 
1005 /*
1006  * setresuid(ruid, euid, suid) is like setreuid except control over the saved
1007  * uid is explicit.
1008  */
1009 #ifndef _SYS_SYSPROTO_H_
1010 struct setresuid_args {
1011 	uid_t	ruid;
1012 	uid_t	euid;
1013 	uid_t	suid;
1014 };
1015 #endif
1016 /* ARGSUSED */
1017 int
1018 sys_setresuid(struct thread *td, struct setresuid_args *uap)
1019 {
1020 	struct proc *p = td->td_proc;
1021 	struct ucred *newcred, *oldcred;
1022 	uid_t euid, ruid, suid;
1023 	struct uidinfo *euip, *ruip;
1024 	int error;
1025 
1026 	euid = uap->euid;
1027 	ruid = uap->ruid;
1028 	suid = uap->suid;
1029 	AUDIT_ARG_EUID(euid);
1030 	AUDIT_ARG_RUID(ruid);
1031 	AUDIT_ARG_SUID(suid);
1032 	newcred = crget();
1033 	euip = uifind(euid);
1034 	ruip = uifind(ruid);
1035 	PROC_LOCK(p);
1036 	oldcred = crcopysafe(p, newcred);
1037 
1038 #ifdef MAC
1039 	error = mac_cred_check_setresuid(oldcred, ruid, euid, suid);
1040 	if (error)
1041 		goto fail;
1042 #endif
1043 
1044 	if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
1045 	     ruid != oldcred->cr_svuid &&
1046 	      ruid != oldcred->cr_uid) ||
1047 	     (euid != (uid_t)-1 && euid != oldcred->cr_ruid &&
1048 	    euid != oldcred->cr_svuid &&
1049 	      euid != oldcred->cr_uid) ||
1050 	     (suid != (uid_t)-1 && suid != oldcred->cr_ruid &&
1051 	    suid != oldcred->cr_svuid &&
1052 	      suid != oldcred->cr_uid)) &&
1053 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETRESUID)) != 0)
1054 		goto fail;
1055 
1056 	if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
1057 		change_euid(newcred, euip);
1058 		setsugid(p);
1059 	}
1060 	if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
1061 		change_ruid(newcred, ruip);
1062 		setsugid(p);
1063 	}
1064 	if (suid != (uid_t)-1 && oldcred->cr_svuid != suid) {
1065 		change_svuid(newcred, suid);
1066 		setsugid(p);
1067 	}
1068 	proc_set_cred(p, newcred);
1069 #ifdef RACCT
1070 	racct_proc_ucred_changed(p, oldcred, newcred);
1071 	crhold(newcred);
1072 #endif
1073 	PROC_UNLOCK(p);
1074 #ifdef RCTL
1075 	rctl_proc_ucred_changed(p, newcred);
1076 	crfree(newcred);
1077 #endif
1078 	uifree(ruip);
1079 	uifree(euip);
1080 	crfree(oldcred);
1081 	return (0);
1082 
1083 fail:
1084 	PROC_UNLOCK(p);
1085 	uifree(ruip);
1086 	uifree(euip);
1087 	crfree(newcred);
1088 	return (error);
1089 
1090 }
1091 
1092 /*
1093  * setresgid(rgid, egid, sgid) is like setregid except control over the saved
1094  * gid is explicit.
1095  */
1096 #ifndef _SYS_SYSPROTO_H_
1097 struct setresgid_args {
1098 	gid_t	rgid;
1099 	gid_t	egid;
1100 	gid_t	sgid;
1101 };
1102 #endif
1103 /* ARGSUSED */
1104 int
1105 sys_setresgid(struct thread *td, struct setresgid_args *uap)
1106 {
1107 	struct proc *p = td->td_proc;
1108 	struct ucred *newcred, *oldcred;
1109 	gid_t egid, rgid, sgid;
1110 	int error;
1111 
1112 	egid = uap->egid;
1113 	rgid = uap->rgid;
1114 	sgid = uap->sgid;
1115 	AUDIT_ARG_EGID(egid);
1116 	AUDIT_ARG_RGID(rgid);
1117 	AUDIT_ARG_SGID(sgid);
1118 	newcred = crget();
1119 	PROC_LOCK(p);
1120 	oldcred = crcopysafe(p, newcred);
1121 
1122 #ifdef MAC
1123 	error = mac_cred_check_setresgid(oldcred, rgid, egid, sgid);
1124 	if (error)
1125 		goto fail;
1126 #endif
1127 
1128 	if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
1129 	      rgid != oldcred->cr_svgid &&
1130 	      rgid != oldcred->cr_groups[0]) ||
1131 	     (egid != (gid_t)-1 && egid != oldcred->cr_rgid &&
1132 	      egid != oldcred->cr_svgid &&
1133 	      egid != oldcred->cr_groups[0]) ||
1134 	     (sgid != (gid_t)-1 && sgid != oldcred->cr_rgid &&
1135 	      sgid != oldcred->cr_svgid &&
1136 	      sgid != oldcred->cr_groups[0])) &&
1137 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETRESGID)) != 0)
1138 		goto fail;
1139 
1140 	if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
1141 		change_egid(newcred, egid);
1142 		setsugid(p);
1143 	}
1144 	if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
1145 		change_rgid(newcred, rgid);
1146 		setsugid(p);
1147 	}
1148 	if (sgid != (gid_t)-1 && oldcred->cr_svgid != sgid) {
1149 		change_svgid(newcred, sgid);
1150 		setsugid(p);
1151 	}
1152 	proc_set_cred(p, newcred);
1153 	PROC_UNLOCK(p);
1154 	crfree(oldcred);
1155 	return (0);
1156 
1157 fail:
1158 	PROC_UNLOCK(p);
1159 	crfree(newcred);
1160 	return (error);
1161 }
1162 
1163 #ifndef _SYS_SYSPROTO_H_
1164 struct getresuid_args {
1165 	uid_t	*ruid;
1166 	uid_t	*euid;
1167 	uid_t	*suid;
1168 };
1169 #endif
1170 /* ARGSUSED */
1171 int
1172 sys_getresuid(struct thread *td, struct getresuid_args *uap)
1173 {
1174 	struct ucred *cred;
1175 	int error1 = 0, error2 = 0, error3 = 0;
1176 
1177 	cred = td->td_ucred;
1178 	if (uap->ruid)
1179 		error1 = copyout(&cred->cr_ruid,
1180 		    uap->ruid, sizeof(cred->cr_ruid));
1181 	if (uap->euid)
1182 		error2 = copyout(&cred->cr_uid,
1183 		    uap->euid, sizeof(cred->cr_uid));
1184 	if (uap->suid)
1185 		error3 = copyout(&cred->cr_svuid,
1186 		    uap->suid, sizeof(cred->cr_svuid));
1187 	return (error1 ? error1 : error2 ? error2 : error3);
1188 }
1189 
1190 #ifndef _SYS_SYSPROTO_H_
1191 struct getresgid_args {
1192 	gid_t	*rgid;
1193 	gid_t	*egid;
1194 	gid_t	*sgid;
1195 };
1196 #endif
1197 /* ARGSUSED */
1198 int
1199 sys_getresgid(struct thread *td, struct getresgid_args *uap)
1200 {
1201 	struct ucred *cred;
1202 	int error1 = 0, error2 = 0, error3 = 0;
1203 
1204 	cred = td->td_ucred;
1205 	if (uap->rgid)
1206 		error1 = copyout(&cred->cr_rgid,
1207 		    uap->rgid, sizeof(cred->cr_rgid));
1208 	if (uap->egid)
1209 		error2 = copyout(&cred->cr_groups[0],
1210 		    uap->egid, sizeof(cred->cr_groups[0]));
1211 	if (uap->sgid)
1212 		error3 = copyout(&cred->cr_svgid,
1213 		    uap->sgid, sizeof(cred->cr_svgid));
1214 	return (error1 ? error1 : error2 ? error2 : error3);
1215 }
1216 
1217 #ifndef _SYS_SYSPROTO_H_
1218 struct issetugid_args {
1219 	int dummy;
1220 };
1221 #endif
1222 /* ARGSUSED */
1223 int
1224 sys_issetugid(struct thread *td, struct issetugid_args *uap)
1225 {
1226 	struct proc *p = td->td_proc;
1227 
1228 	/*
1229 	 * Note: OpenBSD sets a P_SUGIDEXEC flag set at execve() time,
1230 	 * we use P_SUGID because we consider changing the owners as
1231 	 * "tainting" as well.
1232 	 * This is significant for procs that start as root and "become"
1233 	 * a user without an exec - programs cannot know *everything*
1234 	 * that libc *might* have put in their data segment.
1235 	 */
1236 	td->td_retval[0] = (p->p_flag & P_SUGID) ? 1 : 0;
1237 	return (0);
1238 }
1239 
1240 int
1241 sys___setugid(struct thread *td, struct __setugid_args *uap)
1242 {
1243 #ifdef REGRESSION
1244 	struct proc *p;
1245 
1246 	p = td->td_proc;
1247 	switch (uap->flag) {
1248 	case 0:
1249 		PROC_LOCK(p);
1250 		p->p_flag &= ~P_SUGID;
1251 		PROC_UNLOCK(p);
1252 		return (0);
1253 	case 1:
1254 		PROC_LOCK(p);
1255 		p->p_flag |= P_SUGID;
1256 		PROC_UNLOCK(p);
1257 		return (0);
1258 	default:
1259 		return (EINVAL);
1260 	}
1261 #else /* !REGRESSION */
1262 
1263 	return (ENOSYS);
1264 #endif /* REGRESSION */
1265 }
1266 
1267 /*
1268  * Check if gid is a member of the group set.
1269  */
1270 int
1271 groupmember(gid_t gid, struct ucred *cred)
1272 {
1273 	int l;
1274 	int h;
1275 	int m;
1276 
1277 	if (cred->cr_groups[0] == gid)
1278 		return(1);
1279 
1280 	/*
1281 	 * If gid was not our primary group, perform a binary search
1282 	 * of the supplemental groups.  This is possible because we
1283 	 * sort the groups in crsetgroups().
1284 	 */
1285 	l = 1;
1286 	h = cred->cr_ngroups;
1287 	while (l < h) {
1288 		m = l + ((h - l) / 2);
1289 		if (cred->cr_groups[m] < gid)
1290 			l = m + 1;
1291 		else
1292 			h = m;
1293 	}
1294 	if ((l < cred->cr_ngroups) && (cred->cr_groups[l] == gid))
1295 		return (1);
1296 
1297 	return (0);
1298 }
1299 
1300 /*
1301  * Test the active securelevel against a given level.  securelevel_gt()
1302  * implements (securelevel > level).  securelevel_ge() implements
1303  * (securelevel >= level).  Note that the logic is inverted -- these
1304  * functions return EPERM on "success" and 0 on "failure".
1305  *
1306  * Due to care taken when setting the securelevel, we know that no jail will
1307  * be less secure that its parent (or the physical system), so it is sufficient
1308  * to test the current jail only.
1309  *
1310  * XXXRW: Possibly since this has to do with privilege, it should move to
1311  * kern_priv.c.
1312  */
1313 int
1314 securelevel_gt(struct ucred *cr, int level)
1315 {
1316 
1317 	return (cr->cr_prison->pr_securelevel > level ? EPERM : 0);
1318 }
1319 
1320 int
1321 securelevel_ge(struct ucred *cr, int level)
1322 {
1323 
1324 	return (cr->cr_prison->pr_securelevel >= level ? EPERM : 0);
1325 }
1326 
1327 /*
1328  * 'see_other_uids' determines whether or not visibility of processes
1329  * and sockets with credentials holding different real uids is possible
1330  * using a variety of system MIBs.
1331  * XXX: data declarations should be together near the beginning of the file.
1332  */
1333 static int	see_other_uids = 1;
1334 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_uids, CTLFLAG_RW,
1335     &see_other_uids, 0,
1336     "Unprivileged processes may see subjects/objects with different real uid");
1337 
1338 /*-
1339  * Determine if u1 "can see" the subject specified by u2, according to the
1340  * 'see_other_uids' policy.
1341  * Returns: 0 for permitted, ESRCH otherwise
1342  * Locks: none
1343  * References: *u1 and *u2 must not change during the call
1344  *             u1 may equal u2, in which case only one reference is required
1345  */
1346 int
1347 cr_canseeotheruids(struct ucred *u1, struct ucred *u2)
1348 {
1349 
1350 	if (!see_other_uids && u1->cr_ruid != u2->cr_ruid) {
1351 		if (priv_check_cred(u1, PRIV_SEEOTHERUIDS) != 0)
1352 			return (ESRCH);
1353 	}
1354 	return (0);
1355 }
1356 
1357 /*
1358  * 'see_other_gids' determines whether or not visibility of processes
1359  * and sockets with credentials holding different real gids is possible
1360  * using a variety of system MIBs.
1361  * XXX: data declarations should be together near the beginning of the file.
1362  */
1363 static int	see_other_gids = 1;
1364 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_gids, CTLFLAG_RW,
1365     &see_other_gids, 0,
1366     "Unprivileged processes may see subjects/objects with different real gid");
1367 
1368 /*
1369  * Determine if u1 can "see" the subject specified by u2, according to the
1370  * 'see_other_gids' policy.
1371  * Returns: 0 for permitted, ESRCH otherwise
1372  * Locks: none
1373  * References: *u1 and *u2 must not change during the call
1374  *             u1 may equal u2, in which case only one reference is required
1375  */
1376 int
1377 cr_canseeothergids(struct ucred *u1, struct ucred *u2)
1378 {
1379 	int i, match;
1380 
1381 	if (!see_other_gids) {
1382 		match = 0;
1383 		for (i = 0; i < u1->cr_ngroups; i++) {
1384 			if (groupmember(u1->cr_groups[i], u2))
1385 				match = 1;
1386 			if (match)
1387 				break;
1388 		}
1389 		if (!match) {
1390 			if (priv_check_cred(u1, PRIV_SEEOTHERGIDS) != 0)
1391 				return (ESRCH);
1392 		}
1393 	}
1394 	return (0);
1395 }
1396 
1397 /*
1398  * 'see_jail_proc' determines whether or not visibility of processes and
1399  * sockets with credentials holding different jail ids is possible using a
1400  * variety of system MIBs.
1401  *
1402  * XXX: data declarations should be together near the beginning of the file.
1403  */
1404 
1405 static int	see_jail_proc = 1;
1406 SYSCTL_INT(_security_bsd, OID_AUTO, see_jail_proc, CTLFLAG_RW,
1407     &see_jail_proc, 0,
1408     "Unprivileged processes may see subjects/objects with different jail ids");
1409 
1410 /*-
1411  * Determine if u1 "can see" the subject specified by u2, according to the
1412  * 'see_jail_proc' policy.
1413  * Returns: 0 for permitted, ESRCH otherwise
1414  * Locks: none
1415  * References: *u1 and *u2 must not change during the call
1416  *             u1 may equal u2, in which case only one reference is required
1417  */
1418 int
1419 cr_canseejailproc(struct ucred *u1, struct ucred *u2)
1420 {
1421 	if (u1->cr_uid == 0)
1422 		return (0);
1423 	return (!see_jail_proc && u1->cr_prison != u2->cr_prison ? ESRCH : 0);
1424 }
1425 
1426 /*-
1427  * Determine if u1 "can see" the subject specified by u2.
1428  * Returns: 0 for permitted, an errno value otherwise
1429  * Locks: none
1430  * References: *u1 and *u2 must not change during the call
1431  *             u1 may equal u2, in which case only one reference is required
1432  */
1433 int
1434 cr_cansee(struct ucred *u1, struct ucred *u2)
1435 {
1436 	int error;
1437 
1438 	if ((error = prison_check(u1, u2)))
1439 		return (error);
1440 #ifdef MAC
1441 	if ((error = mac_cred_check_visible(u1, u2)))
1442 		return (error);
1443 #endif
1444 	if ((error = cr_canseeotheruids(u1, u2)))
1445 		return (error);
1446 	if ((error = cr_canseeothergids(u1, u2)))
1447 		return (error);
1448 	if ((error = cr_canseejailproc(u1, u2)))
1449 		return (error);
1450 	return (0);
1451 }
1452 
1453 /*-
1454  * Determine if td "can see" the subject specified by p.
1455  * Returns: 0 for permitted, an errno value otherwise
1456  * Locks: Sufficient locks to protect p->p_ucred must be held.  td really
1457  *        should be curthread.
1458  * References: td and p must be valid for the lifetime of the call
1459  */
1460 int
1461 p_cansee(struct thread *td, struct proc *p)
1462 {
1463 
1464 	/* Wrap cr_cansee() for all functionality. */
1465 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1466 	PROC_LOCK_ASSERT(p, MA_OWNED);
1467 	return (cr_cansee(td->td_ucred, p->p_ucred));
1468 }
1469 
1470 /*
1471  * 'conservative_signals' prevents the delivery of a broad class of
1472  * signals by unprivileged processes to processes that have changed their
1473  * credentials since the last invocation of execve().  This can prevent
1474  * the leakage of cached information or retained privileges as a result
1475  * of a common class of signal-related vulnerabilities.  However, this
1476  * may interfere with some applications that expect to be able to
1477  * deliver these signals to peer processes after having given up
1478  * privilege.
1479  */
1480 static int	conservative_signals = 1;
1481 SYSCTL_INT(_security_bsd, OID_AUTO, conservative_signals, CTLFLAG_RW,
1482     &conservative_signals, 0, "Unprivileged processes prevented from "
1483     "sending certain signals to processes whose credentials have changed");
1484 /*-
1485  * Determine whether cred may deliver the specified signal to proc.
1486  * Returns: 0 for permitted, an errno value otherwise.
1487  * Locks: A lock must be held for proc.
1488  * References: cred and proc must be valid for the lifetime of the call.
1489  */
1490 int
1491 cr_cansignal(struct ucred *cred, struct proc *proc, int signum)
1492 {
1493 	int error;
1494 
1495 	PROC_LOCK_ASSERT(proc, MA_OWNED);
1496 	/*
1497 	 * Jail semantics limit the scope of signalling to proc in the
1498 	 * same jail as cred, if cred is in jail.
1499 	 */
1500 	error = prison_check(cred, proc->p_ucred);
1501 	if (error)
1502 		return (error);
1503 #ifdef MAC
1504 	if ((error = mac_proc_check_signal(cred, proc, signum)))
1505 		return (error);
1506 #endif
1507 	if ((error = cr_canseeotheruids(cred, proc->p_ucred)))
1508 		return (error);
1509 	if ((error = cr_canseeothergids(cred, proc->p_ucred)))
1510 		return (error);
1511 
1512 	/*
1513 	 * UNIX signal semantics depend on the status of the P_SUGID
1514 	 * bit on the target process.  If the bit is set, then additional
1515 	 * restrictions are placed on the set of available signals.
1516 	 */
1517 	if (conservative_signals && (proc->p_flag & P_SUGID)) {
1518 		switch (signum) {
1519 		case 0:
1520 		case SIGKILL:
1521 		case SIGINT:
1522 		case SIGTERM:
1523 		case SIGALRM:
1524 		case SIGSTOP:
1525 		case SIGTTIN:
1526 		case SIGTTOU:
1527 		case SIGTSTP:
1528 		case SIGHUP:
1529 		case SIGUSR1:
1530 		case SIGUSR2:
1531 			/*
1532 			 * Generally, permit job and terminal control
1533 			 * signals.
1534 			 */
1535 			break;
1536 		default:
1537 			/* Not permitted without privilege. */
1538 			error = priv_check_cred(cred, PRIV_SIGNAL_SUGID);
1539 			if (error)
1540 				return (error);
1541 		}
1542 	}
1543 
1544 	/*
1545 	 * Generally, the target credential's ruid or svuid must match the
1546 	 * subject credential's ruid or euid.
1547 	 */
1548 	if (cred->cr_ruid != proc->p_ucred->cr_ruid &&
1549 	    cred->cr_ruid != proc->p_ucred->cr_svuid &&
1550 	    cred->cr_uid != proc->p_ucred->cr_ruid &&
1551 	    cred->cr_uid != proc->p_ucred->cr_svuid) {
1552 		error = priv_check_cred(cred, PRIV_SIGNAL_DIFFCRED);
1553 		if (error)
1554 			return (error);
1555 	}
1556 
1557 	return (0);
1558 }
1559 
1560 /*-
1561  * Determine whether td may deliver the specified signal to p.
1562  * Returns: 0 for permitted, an errno value otherwise
1563  * Locks: Sufficient locks to protect various components of td and p
1564  *        must be held.  td must be curthread, and a lock must be
1565  *        held for p.
1566  * References: td and p must be valid for the lifetime of the call
1567  */
1568 int
1569 p_cansignal(struct thread *td, struct proc *p, int signum)
1570 {
1571 
1572 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1573 	PROC_LOCK_ASSERT(p, MA_OWNED);
1574 	if (td->td_proc == p)
1575 		return (0);
1576 
1577 	/*
1578 	 * UNIX signalling semantics require that processes in the same
1579 	 * session always be able to deliver SIGCONT to one another,
1580 	 * overriding the remaining protections.
1581 	 */
1582 	/* XXX: This will require an additional lock of some sort. */
1583 	if (signum == SIGCONT && td->td_proc->p_session == p->p_session)
1584 		return (0);
1585 	/*
1586 	 * Some compat layers use SIGTHR and higher signals for
1587 	 * communication between different kernel threads of the same
1588 	 * process, so that they expect that it's always possible to
1589 	 * deliver them, even for suid applications where cr_cansignal() can
1590 	 * deny such ability for security consideration.  It should be
1591 	 * pretty safe to do since the only way to create two processes
1592 	 * with the same p_leader is via rfork(2).
1593 	 */
1594 	if (td->td_proc->p_leader != NULL && signum >= SIGTHR &&
1595 	    signum < SIGTHR + 4 && td->td_proc->p_leader == p->p_leader)
1596 		return (0);
1597 
1598 	return (cr_cansignal(td->td_ucred, p, signum));
1599 }
1600 
1601 /*-
1602  * Determine whether td may reschedule p.
1603  * Returns: 0 for permitted, an errno value otherwise
1604  * Locks: Sufficient locks to protect various components of td and p
1605  *        must be held.  td must be curthread, and a lock must
1606  *        be held for p.
1607  * References: td and p must be valid for the lifetime of the call
1608  */
1609 int
1610 p_cansched(struct thread *td, struct proc *p)
1611 {
1612 	int error;
1613 
1614 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1615 	PROC_LOCK_ASSERT(p, MA_OWNED);
1616 	if (td->td_proc == p)
1617 		return (0);
1618 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1619 		return (error);
1620 #ifdef MAC
1621 	if ((error = mac_proc_check_sched(td->td_ucred, p)))
1622 		return (error);
1623 #endif
1624 	if ((error = cr_canseeotheruids(td->td_ucred, p->p_ucred)))
1625 		return (error);
1626 	if ((error = cr_canseeothergids(td->td_ucred, p->p_ucred)))
1627 		return (error);
1628 	if (td->td_ucred->cr_ruid != p->p_ucred->cr_ruid &&
1629 	    td->td_ucred->cr_uid != p->p_ucred->cr_ruid) {
1630 		error = priv_check(td, PRIV_SCHED_DIFFCRED);
1631 		if (error)
1632 			return (error);
1633 	}
1634 	return (0);
1635 }
1636 
1637 /*
1638  * Handle getting or setting the prison's unprivileged_proc_debug
1639  * value.
1640  */
1641 static int
1642 sysctl_unprivileged_proc_debug(SYSCTL_HANDLER_ARGS)
1643 {
1644 	int error, val;
1645 
1646 	val = prison_allow(req->td->td_ucred, PR_ALLOW_UNPRIV_DEBUG);
1647 	error = sysctl_handle_int(oidp, &val, 0, req);
1648 	if (error != 0 || req->newptr == NULL)
1649 		return (error);
1650 	if (val != 0 && val != 1)
1651 		return (EINVAL);
1652 	prison_set_allow(req->td->td_ucred, PR_ALLOW_UNPRIV_DEBUG, val);
1653 	return (0);
1654 }
1655 
1656 /*
1657  * The 'unprivileged_proc_debug' flag may be used to disable a variety of
1658  * unprivileged inter-process debugging services, including some procfs
1659  * functionality, ptrace(), and ktrace().  In the past, inter-process
1660  * debugging has been involved in a variety of security problems, and sites
1661  * not requiring the service might choose to disable it when hardening
1662  * systems.
1663  */
1664 SYSCTL_PROC(_security_bsd, OID_AUTO, unprivileged_proc_debug,
1665     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_SECURE |
1666     CTLFLAG_MPSAFE, 0, 0, sysctl_unprivileged_proc_debug, "I",
1667     "Unprivileged processes may use process debugging facilities");
1668 
1669 /*-
1670  * Determine whether td may debug p.
1671  * Returns: 0 for permitted, an errno value otherwise
1672  * Locks: Sufficient locks to protect various components of td and p
1673  *        must be held.  td must be curthread, and a lock must
1674  *        be held for p.
1675  * References: td and p must be valid for the lifetime of the call
1676  */
1677 int
1678 p_candebug(struct thread *td, struct proc *p)
1679 {
1680 	int credentialchanged, error, grpsubset, i, uidsubset;
1681 
1682 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1683 	PROC_LOCK_ASSERT(p, MA_OWNED);
1684 	if ((error = priv_check(td, PRIV_DEBUG_UNPRIV)))
1685 		return (error);
1686 	if (td->td_proc == p)
1687 		return (0);
1688 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1689 		return (error);
1690 #ifdef MAC
1691 	if ((error = mac_proc_check_debug(td->td_ucred, p)))
1692 		return (error);
1693 #endif
1694 	if ((error = cr_canseeotheruids(td->td_ucred, p->p_ucred)))
1695 		return (error);
1696 	if ((error = cr_canseeothergids(td->td_ucred, p->p_ucred)))
1697 		return (error);
1698 
1699 	/*
1700 	 * Is p's group set a subset of td's effective group set?  This
1701 	 * includes p's egid, group access list, rgid, and svgid.
1702 	 */
1703 	grpsubset = 1;
1704 	for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
1705 		if (!groupmember(p->p_ucred->cr_groups[i], td->td_ucred)) {
1706 			grpsubset = 0;
1707 			break;
1708 		}
1709 	}
1710 	grpsubset = grpsubset &&
1711 	    groupmember(p->p_ucred->cr_rgid, td->td_ucred) &&
1712 	    groupmember(p->p_ucred->cr_svgid, td->td_ucred);
1713 
1714 	/*
1715 	 * Are the uids present in p's credential equal to td's
1716 	 * effective uid?  This includes p's euid, svuid, and ruid.
1717 	 */
1718 	uidsubset = (td->td_ucred->cr_uid == p->p_ucred->cr_uid &&
1719 	    td->td_ucred->cr_uid == p->p_ucred->cr_svuid &&
1720 	    td->td_ucred->cr_uid == p->p_ucred->cr_ruid);
1721 
1722 	/*
1723 	 * Has the credential of the process changed since the last exec()?
1724 	 */
1725 	credentialchanged = (p->p_flag & P_SUGID);
1726 
1727 	/*
1728 	 * If p's gids aren't a subset, or the uids aren't a subset,
1729 	 * or the credential has changed, require appropriate privilege
1730 	 * for td to debug p.
1731 	 */
1732 	if (!grpsubset || !uidsubset) {
1733 		error = priv_check(td, PRIV_DEBUG_DIFFCRED);
1734 		if (error)
1735 			return (error);
1736 	}
1737 
1738 	if (credentialchanged) {
1739 		error = priv_check(td, PRIV_DEBUG_SUGID);
1740 		if (error)
1741 			return (error);
1742 	}
1743 
1744 	/* Can't trace init when securelevel > 0. */
1745 	if (p == initproc) {
1746 		error = securelevel_gt(td->td_ucred, 0);
1747 		if (error)
1748 			return (error);
1749 	}
1750 
1751 	/*
1752 	 * Can't trace a process that's currently exec'ing.
1753 	 *
1754 	 * XXX: Note, this is not a security policy decision, it's a
1755 	 * basic correctness/functionality decision.  Therefore, this check
1756 	 * should be moved to the caller's of p_candebug().
1757 	 */
1758 	if ((p->p_flag & P_INEXEC) != 0)
1759 		return (EBUSY);
1760 
1761 	/* Denied explicitely */
1762 	if ((p->p_flag2 & P2_NOTRACE) != 0) {
1763 		error = priv_check(td, PRIV_DEBUG_DENIED);
1764 		if (error != 0)
1765 			return (error);
1766 	}
1767 
1768 	return (0);
1769 }
1770 
1771 /*-
1772  * Determine whether the subject represented by cred can "see" a socket.
1773  * Returns: 0 for permitted, ENOENT otherwise.
1774  */
1775 int
1776 cr_canseesocket(struct ucred *cred, struct socket *so)
1777 {
1778 	int error;
1779 
1780 	error = prison_check(cred, so->so_cred);
1781 	if (error)
1782 		return (ENOENT);
1783 #ifdef MAC
1784 	error = mac_socket_check_visible(cred, so);
1785 	if (error)
1786 		return (error);
1787 #endif
1788 	if (cr_canseeotheruids(cred, so->so_cred))
1789 		return (ENOENT);
1790 	if (cr_canseeothergids(cred, so->so_cred))
1791 		return (ENOENT);
1792 
1793 	return (0);
1794 }
1795 
1796 /*-
1797  * Determine whether td can wait for the exit of p.
1798  * Returns: 0 for permitted, an errno value otherwise
1799  * Locks: Sufficient locks to protect various components of td and p
1800  *        must be held.  td must be curthread, and a lock must
1801  *        be held for p.
1802  * References: td and p must be valid for the lifetime of the call
1803 
1804  */
1805 int
1806 p_canwait(struct thread *td, struct proc *p)
1807 {
1808 	int error;
1809 
1810 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1811 	PROC_LOCK_ASSERT(p, MA_OWNED);
1812 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1813 		return (error);
1814 #ifdef MAC
1815 	if ((error = mac_proc_check_wait(td->td_ucred, p)))
1816 		return (error);
1817 #endif
1818 #if 0
1819 	/* XXXMAC: This could have odd effects on some shells. */
1820 	if ((error = cr_canseeotheruids(td->td_ucred, p->p_ucred)))
1821 		return (error);
1822 #endif
1823 
1824 	return (0);
1825 }
1826 
1827 /*
1828  * Credential management.
1829  *
1830  * struct ucred objects are rarely allocated but gain and lose references all
1831  * the time (e.g., on struct file alloc/dealloc) turning refcount updates into
1832  * a significant source of cache-line ping ponging. Common cases are worked
1833  * around by modifying thread-local counter instead if the cred to operate on
1834  * matches td_realucred.
1835  *
1836  * The counter is split into 2 parts:
1837  * - cr_users -- total count of all struct proc and struct thread objects
1838  *   which have given cred in p_ucred and td_ucred respectively
1839  * - cr_ref -- the actual ref count, only valid if cr_users == 0
1840  *
1841  * If users == 0 then cr_ref behaves similarly to refcount(9), in particular if
1842  * the count reaches 0 the object is freeable.
1843  * If users > 0 and curthread->td_realucred == cred, then updates are performed
1844  * against td_ucredref.
1845  * In other cases updates are performed against cr_ref.
1846  *
1847  * Changing td_realucred into something else decrements cr_users and transfers
1848  * accumulated updates.
1849  */
1850 struct ucred *
1851 crcowget(struct ucred *cr)
1852 {
1853 
1854 	mtx_lock(&cr->cr_mtx);
1855 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
1856 	    __func__, cr->cr_users, cr));
1857 	cr->cr_users++;
1858 	cr->cr_ref++;
1859 	mtx_unlock(&cr->cr_mtx);
1860 	return (cr);
1861 }
1862 
1863 static struct ucred *
1864 crunuse(struct thread *td)
1865 {
1866 	struct ucred *cr, *crold;
1867 
1868 	MPASS(td->td_realucred == td->td_ucred);
1869 	cr = td->td_realucred;
1870 	mtx_lock(&cr->cr_mtx);
1871 	cr->cr_ref += td->td_ucredref;
1872 	td->td_ucredref = 0;
1873 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
1874 	    __func__, cr->cr_users, cr));
1875 	cr->cr_users--;
1876 	if (cr->cr_users == 0) {
1877 		KASSERT(cr->cr_ref > 0, ("%s: ref %d not > 0 on cred %p",
1878 		    __func__, cr->cr_ref, cr));
1879 		crold = cr;
1880 	} else {
1881 		cr->cr_ref--;
1882 		crold = NULL;
1883 	}
1884 	mtx_unlock(&cr->cr_mtx);
1885 	td->td_realucred = NULL;
1886 	return (crold);
1887 }
1888 
1889 static void
1890 crunusebatch(struct ucred *cr, int users, int ref)
1891 {
1892 
1893 	KASSERT(users > 0, ("%s: passed users %d not > 0 ; cred %p",
1894 	    __func__, users, cr));
1895 	mtx_lock(&cr->cr_mtx);
1896 	KASSERT(cr->cr_users >= users, ("%s: users %d not > %d on cred %p",
1897 	    __func__, cr->cr_users, users, cr));
1898 	cr->cr_users -= users;
1899 	cr->cr_ref += ref;
1900 	cr->cr_ref -= users;
1901 	if (cr->cr_users > 0) {
1902 		mtx_unlock(&cr->cr_mtx);
1903 		return;
1904 	}
1905 	KASSERT(cr->cr_ref >= 0, ("%s: ref %d not >= 0 on cred %p",
1906 	    __func__, cr->cr_ref, cr));
1907 	if (cr->cr_ref > 0) {
1908 		mtx_unlock(&cr->cr_mtx);
1909 		return;
1910 	}
1911 	crfree_final(cr);
1912 }
1913 
1914 void
1915 crcowfree(struct thread *td)
1916 {
1917 	struct ucred *cr;
1918 
1919 	cr = crunuse(td);
1920 	if (cr != NULL)
1921 		crfree(cr);
1922 }
1923 
1924 struct ucred *
1925 crcowsync(void)
1926 {
1927 	struct thread *td;
1928 	struct proc *p;
1929 	struct ucred *crnew, *crold;
1930 
1931 	td = curthread;
1932 	p = td->td_proc;
1933 	PROC_LOCK_ASSERT(p, MA_OWNED);
1934 
1935 	MPASS(td->td_realucred == td->td_ucred);
1936 	if (td->td_realucred == p->p_ucred)
1937 		return (NULL);
1938 
1939 	crnew = crcowget(p->p_ucred);
1940 	crold = crunuse(td);
1941 	td->td_realucred = crnew;
1942 	td->td_ucred = td->td_realucred;
1943 	return (crold);
1944 }
1945 
1946 /*
1947  * Batching.
1948  */
1949 void
1950 credbatch_add(struct credbatch *crb, struct thread *td)
1951 {
1952 	struct ucred *cr;
1953 
1954 	MPASS(td->td_realucred != NULL);
1955 	MPASS(td->td_realucred == td->td_ucred);
1956 	MPASS(TD_GET_STATE(td) == TDS_INACTIVE);
1957 	cr = td->td_realucred;
1958 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
1959 	    __func__, cr->cr_users, cr));
1960 	if (crb->cred != cr) {
1961 		if (crb->users > 0) {
1962 			MPASS(crb->cred != NULL);
1963 			crunusebatch(crb->cred, crb->users, crb->ref);
1964 			crb->users = 0;
1965 			crb->ref = 0;
1966 		}
1967 	}
1968 	crb->cred = cr;
1969 	crb->users++;
1970 	crb->ref += td->td_ucredref;
1971 	td->td_ucredref = 0;
1972 	td->td_realucred = NULL;
1973 }
1974 
1975 void
1976 credbatch_final(struct credbatch *crb)
1977 {
1978 
1979 	MPASS(crb->cred != NULL);
1980 	MPASS(crb->users > 0);
1981 	crunusebatch(crb->cred, crb->users, crb->ref);
1982 }
1983 
1984 /*
1985  * Allocate a zeroed cred structure.
1986  */
1987 struct ucred *
1988 crget(void)
1989 {
1990 	struct ucred *cr;
1991 
1992 	cr = malloc(sizeof(*cr), M_CRED, M_WAITOK | M_ZERO);
1993 	mtx_init(&cr->cr_mtx, "cred", NULL, MTX_DEF);
1994 	cr->cr_ref = 1;
1995 #ifdef AUDIT
1996 	audit_cred_init(cr);
1997 #endif
1998 #ifdef MAC
1999 	mac_cred_init(cr);
2000 #endif
2001 	cr->cr_groups = cr->cr_smallgroups;
2002 	cr->cr_agroups =
2003 	    sizeof(cr->cr_smallgroups) / sizeof(cr->cr_smallgroups[0]);
2004 	return (cr);
2005 }
2006 
2007 /*
2008  * Claim another reference to a ucred structure.
2009  */
2010 struct ucred *
2011 crhold(struct ucred *cr)
2012 {
2013 	struct thread *td;
2014 
2015 	td = curthread;
2016 	if (__predict_true(td->td_realucred == cr)) {
2017 		KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2018 		    __func__, cr->cr_users, cr));
2019 		td->td_ucredref++;
2020 		return (cr);
2021 	}
2022 	mtx_lock(&cr->cr_mtx);
2023 	cr->cr_ref++;
2024 	mtx_unlock(&cr->cr_mtx);
2025 	return (cr);
2026 }
2027 
2028 /*
2029  * Free a cred structure.  Throws away space when ref count gets to 0.
2030  */
2031 void
2032 crfree(struct ucred *cr)
2033 {
2034 	struct thread *td;
2035 
2036 	td = curthread;
2037 	if (__predict_true(td->td_realucred == cr)) {
2038 		KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2039 		    __func__, cr->cr_users, cr));
2040 		td->td_ucredref--;
2041 		return;
2042 	}
2043 	mtx_lock(&cr->cr_mtx);
2044 	KASSERT(cr->cr_users >= 0, ("%s: users %d not >= 0 on cred %p",
2045 	    __func__, cr->cr_users, cr));
2046 	cr->cr_ref--;
2047 	if (cr->cr_users > 0) {
2048 		mtx_unlock(&cr->cr_mtx);
2049 		return;
2050 	}
2051 	KASSERT(cr->cr_ref >= 0, ("%s: ref %d not >= 0 on cred %p",
2052 	    __func__, cr->cr_ref, cr));
2053 	if (cr->cr_ref > 0) {
2054 		mtx_unlock(&cr->cr_mtx);
2055 		return;
2056 	}
2057 	crfree_final(cr);
2058 }
2059 
2060 static void
2061 crfree_final(struct ucred *cr)
2062 {
2063 
2064 	KASSERT(cr->cr_users == 0, ("%s: users %d not == 0 on cred %p",
2065 	    __func__, cr->cr_users, cr));
2066 	KASSERT(cr->cr_ref == 0, ("%s: ref %d not == 0 on cred %p",
2067 	    __func__, cr->cr_ref, cr));
2068 
2069 	/*
2070 	 * Some callers of crget(), such as nfs_statfs(), allocate a temporary
2071 	 * credential, but don't allocate a uidinfo structure.
2072 	 */
2073 	if (cr->cr_uidinfo != NULL)
2074 		uifree(cr->cr_uidinfo);
2075 	if (cr->cr_ruidinfo != NULL)
2076 		uifree(cr->cr_ruidinfo);
2077 	if (cr->cr_prison != NULL)
2078 		prison_free(cr->cr_prison);
2079 	if (cr->cr_loginclass != NULL)
2080 		loginclass_free(cr->cr_loginclass);
2081 #ifdef AUDIT
2082 	audit_cred_destroy(cr);
2083 #endif
2084 #ifdef MAC
2085 	mac_cred_destroy(cr);
2086 #endif
2087 	mtx_destroy(&cr->cr_mtx);
2088 	if (cr->cr_groups != cr->cr_smallgroups)
2089 		free(cr->cr_groups, M_CRED);
2090 	free(cr, M_CRED);
2091 }
2092 
2093 /*
2094  * Copy a ucred's contents from a template.  Does not block.
2095  */
2096 void
2097 crcopy(struct ucred *dest, struct ucred *src)
2098 {
2099 
2100 	KASSERT(dest->cr_ref == 1, ("crcopy of shared ucred"));
2101 	bcopy(&src->cr_startcopy, &dest->cr_startcopy,
2102 	    (unsigned)((caddr_t)&src->cr_endcopy -
2103 		(caddr_t)&src->cr_startcopy));
2104 	crsetgroups(dest, src->cr_ngroups, src->cr_groups);
2105 	uihold(dest->cr_uidinfo);
2106 	uihold(dest->cr_ruidinfo);
2107 	prison_hold(dest->cr_prison);
2108 	loginclass_hold(dest->cr_loginclass);
2109 #ifdef AUDIT
2110 	audit_cred_copy(src, dest);
2111 #endif
2112 #ifdef MAC
2113 	mac_cred_copy(src, dest);
2114 #endif
2115 }
2116 
2117 /*
2118  * Dup cred struct to a new held one.
2119  */
2120 struct ucred *
2121 crdup(struct ucred *cr)
2122 {
2123 	struct ucred *newcr;
2124 
2125 	newcr = crget();
2126 	crcopy(newcr, cr);
2127 	return (newcr);
2128 }
2129 
2130 /*
2131  * Fill in a struct xucred based on a struct ucred.
2132  */
2133 void
2134 cru2x(struct ucred *cr, struct xucred *xcr)
2135 {
2136 	int ngroups;
2137 
2138 	bzero(xcr, sizeof(*xcr));
2139 	xcr->cr_version = XUCRED_VERSION;
2140 	xcr->cr_uid = cr->cr_uid;
2141 
2142 	ngroups = MIN(cr->cr_ngroups, XU_NGROUPS);
2143 	xcr->cr_ngroups = ngroups;
2144 	bcopy(cr->cr_groups, xcr->cr_groups,
2145 	    ngroups * sizeof(*cr->cr_groups));
2146 }
2147 
2148 void
2149 cru2xt(struct thread *td, struct xucred *xcr)
2150 {
2151 
2152 	cru2x(td->td_ucred, xcr);
2153 	xcr->cr_pid = td->td_proc->p_pid;
2154 }
2155 
2156 /*
2157  * Set initial process credentials.
2158  * Callers are responsible for providing the reference for provided credentials.
2159  */
2160 void
2161 proc_set_cred_init(struct proc *p, struct ucred *newcred)
2162 {
2163 
2164 	p->p_ucred = crcowget(newcred);
2165 }
2166 
2167 /*
2168  * Change process credentials.
2169  * Callers are responsible for providing the reference for passed credentials
2170  * and for freeing old ones.
2171  *
2172  * Process has to be locked except when it does not have credentials (as it
2173  * should not be visible just yet) or when newcred is NULL (as this can be
2174  * only used when the process is about to be freed, at which point it should
2175  * not be visible anymore).
2176  */
2177 void
2178 proc_set_cred(struct proc *p, struct ucred *newcred)
2179 {
2180 	struct ucred *cr;
2181 
2182 	cr = p->p_ucred;
2183 	MPASS(cr != NULL);
2184 	PROC_LOCK_ASSERT(p, MA_OWNED);
2185 	KASSERT(newcred->cr_users == 0, ("%s: users %d not 0 on cred %p",
2186 	    __func__, newcred->cr_users, newcred));
2187 	mtx_lock(&cr->cr_mtx);
2188 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2189 	    __func__, cr->cr_users, cr));
2190 	cr->cr_users--;
2191 	mtx_unlock(&cr->cr_mtx);
2192 	p->p_ucred = newcred;
2193 	newcred->cr_users = 1;
2194 	PROC_UPDATE_COW(p);
2195 }
2196 
2197 void
2198 proc_unset_cred(struct proc *p)
2199 {
2200 	struct ucred *cr;
2201 
2202 	MPASS(p->p_state == PRS_ZOMBIE || p->p_state == PRS_NEW);
2203 	cr = p->p_ucred;
2204 	p->p_ucred = NULL;
2205 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2206 	    __func__, cr->cr_users, cr));
2207 	mtx_lock(&cr->cr_mtx);
2208 	cr->cr_users--;
2209 	if (cr->cr_users == 0)
2210 		KASSERT(cr->cr_ref > 0, ("%s: ref %d not > 0 on cred %p",
2211 		    __func__, cr->cr_ref, cr));
2212 	mtx_unlock(&cr->cr_mtx);
2213 	crfree(cr);
2214 }
2215 
2216 struct ucred *
2217 crcopysafe(struct proc *p, struct ucred *cr)
2218 {
2219 	struct ucred *oldcred;
2220 	int groups;
2221 
2222 	PROC_LOCK_ASSERT(p, MA_OWNED);
2223 
2224 	oldcred = p->p_ucred;
2225 	while (cr->cr_agroups < oldcred->cr_agroups) {
2226 		groups = oldcred->cr_agroups;
2227 		PROC_UNLOCK(p);
2228 		crextend(cr, groups);
2229 		PROC_LOCK(p);
2230 		oldcred = p->p_ucred;
2231 	}
2232 	crcopy(cr, oldcred);
2233 
2234 	return (oldcred);
2235 }
2236 
2237 /*
2238  * Extend the passed in credential to hold n items.
2239  */
2240 void
2241 crextend(struct ucred *cr, int n)
2242 {
2243 	int cnt;
2244 
2245 	/* Truncate? */
2246 	if (n <= cr->cr_agroups)
2247 		return;
2248 
2249 	/*
2250 	 * We extend by 2 each time since we're using a power of two
2251 	 * allocator until we need enough groups to fill a page.
2252 	 * Once we're allocating multiple pages, only allocate as many
2253 	 * as we actually need.  The case of processes needing a
2254 	 * non-power of two number of pages seems more likely than
2255 	 * a real world process that adds thousands of groups one at a
2256 	 * time.
2257 	 */
2258 	if ( n < PAGE_SIZE / sizeof(gid_t) ) {
2259 		if (cr->cr_agroups == 0)
2260 			cnt = MAX(1, MINALLOCSIZE / sizeof(gid_t));
2261 		else
2262 			cnt = cr->cr_agroups * 2;
2263 
2264 		while (cnt < n)
2265 			cnt *= 2;
2266 	} else
2267 		cnt = roundup2(n, PAGE_SIZE / sizeof(gid_t));
2268 
2269 	/* Free the old array. */
2270 	if (cr->cr_groups != cr->cr_smallgroups)
2271 		free(cr->cr_groups, M_CRED);
2272 
2273 	cr->cr_groups = malloc(cnt * sizeof(gid_t), M_CRED, M_WAITOK | M_ZERO);
2274 	cr->cr_agroups = cnt;
2275 }
2276 
2277 /*
2278  * Copy groups in to a credential, preserving any necessary invariants.
2279  * Currently this includes the sorting of all supplemental gids.
2280  * crextend() must have been called before hand to ensure sufficient
2281  * space is available.
2282  */
2283 static void
2284 crsetgroups_locked(struct ucred *cr, int ngrp, gid_t *groups)
2285 {
2286 	int i;
2287 	int j;
2288 	gid_t g;
2289 
2290 	KASSERT(cr->cr_agroups >= ngrp, ("cr_ngroups is too small"));
2291 
2292 	bcopy(groups, cr->cr_groups, ngrp * sizeof(gid_t));
2293 	cr->cr_ngroups = ngrp;
2294 
2295 	/*
2296 	 * Sort all groups except cr_groups[0] to allow groupmember to
2297 	 * perform a binary search.
2298 	 *
2299 	 * XXX: If large numbers of groups become common this should
2300 	 * be replaced with shell sort like linux uses or possibly
2301 	 * heap sort.
2302 	 */
2303 	for (i = 2; i < ngrp; i++) {
2304 		g = cr->cr_groups[i];
2305 		for (j = i-1; j >= 1 && g < cr->cr_groups[j]; j--)
2306 			cr->cr_groups[j + 1] = cr->cr_groups[j];
2307 		cr->cr_groups[j + 1] = g;
2308 	}
2309 }
2310 
2311 /*
2312  * Copy groups in to a credential after expanding it if required.
2313  * Truncate the list to (ngroups_max + 1) if it is too large.
2314  */
2315 void
2316 crsetgroups(struct ucred *cr, int ngrp, gid_t *groups)
2317 {
2318 
2319 	if (ngrp > ngroups_max + 1)
2320 		ngrp = ngroups_max + 1;
2321 
2322 	crextend(cr, ngrp);
2323 	crsetgroups_locked(cr, ngrp, groups);
2324 }
2325 
2326 /*
2327  * Get login name, if available.
2328  */
2329 #ifndef _SYS_SYSPROTO_H_
2330 struct getlogin_args {
2331 	char	*namebuf;
2332 	u_int	namelen;
2333 };
2334 #endif
2335 /* ARGSUSED */
2336 int
2337 sys_getlogin(struct thread *td, struct getlogin_args *uap)
2338 {
2339 	char login[MAXLOGNAME];
2340 	struct proc *p = td->td_proc;
2341 	size_t len;
2342 
2343 	if (uap->namelen > MAXLOGNAME)
2344 		uap->namelen = MAXLOGNAME;
2345 	PROC_LOCK(p);
2346 	SESS_LOCK(p->p_session);
2347 	len = strlcpy(login, p->p_session->s_login, uap->namelen) + 1;
2348 	SESS_UNLOCK(p->p_session);
2349 	PROC_UNLOCK(p);
2350 	if (len > uap->namelen)
2351 		return (ERANGE);
2352 	return (copyout(login, uap->namebuf, len));
2353 }
2354 
2355 /*
2356  * Set login name.
2357  */
2358 #ifndef _SYS_SYSPROTO_H_
2359 struct setlogin_args {
2360 	char	*namebuf;
2361 };
2362 #endif
2363 /* ARGSUSED */
2364 int
2365 sys_setlogin(struct thread *td, struct setlogin_args *uap)
2366 {
2367 	struct proc *p = td->td_proc;
2368 	int error;
2369 	char logintmp[MAXLOGNAME];
2370 
2371 	CTASSERT(sizeof(p->p_session->s_login) >= sizeof(logintmp));
2372 
2373 	error = priv_check(td, PRIV_PROC_SETLOGIN);
2374 	if (error)
2375 		return (error);
2376 	error = copyinstr(uap->namebuf, logintmp, sizeof(logintmp), NULL);
2377 	if (error != 0) {
2378 		if (error == ENAMETOOLONG)
2379 			error = EINVAL;
2380 		return (error);
2381 	}
2382 	AUDIT_ARG_LOGIN(logintmp);
2383 	PROC_LOCK(p);
2384 	SESS_LOCK(p->p_session);
2385 	strcpy(p->p_session->s_login, logintmp);
2386 	SESS_UNLOCK(p->p_session);
2387 	PROC_UNLOCK(p);
2388 	return (0);
2389 }
2390 
2391 void
2392 setsugid(struct proc *p)
2393 {
2394 
2395 	PROC_LOCK_ASSERT(p, MA_OWNED);
2396 	p->p_flag |= P_SUGID;
2397 }
2398 
2399 /*-
2400  * Change a process's effective uid.
2401  * Side effects: newcred->cr_uid and newcred->cr_uidinfo will be modified.
2402  * References: newcred must be an exclusive credential reference for the
2403  *             duration of the call.
2404  */
2405 void
2406 change_euid(struct ucred *newcred, struct uidinfo *euip)
2407 {
2408 
2409 	newcred->cr_uid = euip->ui_uid;
2410 	uihold(euip);
2411 	uifree(newcred->cr_uidinfo);
2412 	newcred->cr_uidinfo = euip;
2413 }
2414 
2415 /*-
2416  * Change a process's effective gid.
2417  * Side effects: newcred->cr_gid will be modified.
2418  * References: newcred must be an exclusive credential reference for the
2419  *             duration of the call.
2420  */
2421 void
2422 change_egid(struct ucred *newcred, gid_t egid)
2423 {
2424 
2425 	newcred->cr_groups[0] = egid;
2426 }
2427 
2428 /*-
2429  * Change a process's real uid.
2430  * Side effects: newcred->cr_ruid will be updated, newcred->cr_ruidinfo
2431  *               will be updated, and the old and new cr_ruidinfo proc
2432  *               counts will be updated.
2433  * References: newcred must be an exclusive credential reference for the
2434  *             duration of the call.
2435  */
2436 void
2437 change_ruid(struct ucred *newcred, struct uidinfo *ruip)
2438 {
2439 
2440 	(void)chgproccnt(newcred->cr_ruidinfo, -1, 0);
2441 	newcred->cr_ruid = ruip->ui_uid;
2442 	uihold(ruip);
2443 	uifree(newcred->cr_ruidinfo);
2444 	newcred->cr_ruidinfo = ruip;
2445 	(void)chgproccnt(newcred->cr_ruidinfo, 1, 0);
2446 }
2447 
2448 /*-
2449  * Change a process's real gid.
2450  * Side effects: newcred->cr_rgid will be updated.
2451  * References: newcred must be an exclusive credential reference for the
2452  *             duration of the call.
2453  */
2454 void
2455 change_rgid(struct ucred *newcred, gid_t rgid)
2456 {
2457 
2458 	newcred->cr_rgid = rgid;
2459 }
2460 
2461 /*-
2462  * Change a process's saved uid.
2463  * Side effects: newcred->cr_svuid will be updated.
2464  * References: newcred must be an exclusive credential reference for the
2465  *             duration of the call.
2466  */
2467 void
2468 change_svuid(struct ucred *newcred, uid_t svuid)
2469 {
2470 
2471 	newcred->cr_svuid = svuid;
2472 }
2473 
2474 /*-
2475  * Change a process's saved gid.
2476  * Side effects: newcred->cr_svgid will be updated.
2477  * References: newcred must be an exclusive credential reference for the
2478  *             duration of the call.
2479  */
2480 void
2481 change_svgid(struct ucred *newcred, gid_t svgid)
2482 {
2483 
2484 	newcred->cr_svgid = svgid;
2485 }
2486