1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_ddb.h" 37 #include "opt_ktrace.h" 38 #include "opt_kstack_pages.h" 39 #include "opt_stack.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/elf.h> 44 #include <sys/exec.h> 45 #include <sys/kernel.h> 46 #include <sys/limits.h> 47 #include <sys/lock.h> 48 #include <sys/loginclass.h> 49 #include <sys/malloc.h> 50 #include <sys/mman.h> 51 #include <sys/mount.h> 52 #include <sys/mutex.h> 53 #include <sys/proc.h> 54 #include <sys/ptrace.h> 55 #include <sys/refcount.h> 56 #include <sys/resourcevar.h> 57 #include <sys/rwlock.h> 58 #include <sys/sbuf.h> 59 #include <sys/sysent.h> 60 #include <sys/sched.h> 61 #include <sys/smp.h> 62 #include <sys/stack.h> 63 #include <sys/stat.h> 64 #include <sys/sysctl.h> 65 #include <sys/filedesc.h> 66 #include <sys/tty.h> 67 #include <sys/signalvar.h> 68 #include <sys/sdt.h> 69 #include <sys/sx.h> 70 #include <sys/user.h> 71 #include <sys/jail.h> 72 #include <sys/vnode.h> 73 #include <sys/eventhandler.h> 74 75 #ifdef DDB 76 #include <ddb/ddb.h> 77 #endif 78 79 #include <vm/vm.h> 80 #include <vm/vm_param.h> 81 #include <vm/vm_extern.h> 82 #include <vm/pmap.h> 83 #include <vm/vm_map.h> 84 #include <vm/vm_object.h> 85 #include <vm/vm_page.h> 86 #include <vm/uma.h> 87 88 #ifdef COMPAT_FREEBSD32 89 #include <compat/freebsd32/freebsd32.h> 90 #include <compat/freebsd32/freebsd32_util.h> 91 #endif 92 93 SDT_PROVIDER_DEFINE(proc); 94 SDT_PROBE_DEFINE4(proc, kernel, ctor, entry, "struct proc *", "int", 95 "void *", "int"); 96 SDT_PROBE_DEFINE4(proc, kernel, ctor, return, "struct proc *", "int", 97 "void *", "int"); 98 SDT_PROBE_DEFINE4(proc, kernel, dtor, entry, "struct proc *", "int", 99 "void *", "struct thread *"); 100 SDT_PROBE_DEFINE3(proc, kernel, dtor, return, "struct proc *", "int", 101 "void *"); 102 SDT_PROBE_DEFINE3(proc, kernel, init, entry, "struct proc *", "int", 103 "int"); 104 SDT_PROBE_DEFINE3(proc, kernel, init, return, "struct proc *", "int", 105 "int"); 106 107 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 108 MALLOC_DEFINE(M_SESSION, "session", "session header"); 109 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 110 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 111 112 static void doenterpgrp(struct proc *, struct pgrp *); 113 static void orphanpg(struct pgrp *pg); 114 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 115 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 116 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 117 int preferthread); 118 static void pgadjustjobc(struct pgrp *pgrp, int entering); 119 static void pgdelete(struct pgrp *); 120 static int proc_ctor(void *mem, int size, void *arg, int flags); 121 static void proc_dtor(void *mem, int size, void *arg); 122 static int proc_init(void *mem, int size, int flags); 123 static void proc_fini(void *mem, int size); 124 static void pargs_free(struct pargs *pa); 125 static struct proc *zpfind_locked(pid_t pid); 126 127 /* 128 * Other process lists 129 */ 130 struct pidhashhead *pidhashtbl; 131 u_long pidhash; 132 struct pgrphashhead *pgrphashtbl; 133 u_long pgrphash; 134 struct proclist allproc; 135 struct proclist zombproc; 136 struct sx allproc_lock; 137 struct sx proctree_lock; 138 struct mtx ppeers_lock; 139 uma_zone_t proc_zone; 140 141 int kstack_pages = KSTACK_PAGES; 142 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 143 "Kernel stack size in pages"); 144 static int vmmap_skip_res_cnt = 0; 145 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW, 146 &vmmap_skip_res_cnt, 0, 147 "Skip calculation of the pages resident count in kern.proc.vmmap"); 148 149 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 150 #ifdef COMPAT_FREEBSD32 151 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 152 #endif 153 154 /* 155 * Initialize global process hashing structures. 156 */ 157 void 158 procinit() 159 { 160 161 sx_init(&allproc_lock, "allproc"); 162 sx_init(&proctree_lock, "proctree"); 163 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 164 LIST_INIT(&allproc); 165 LIST_INIT(&zombproc); 166 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 167 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 168 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 169 proc_ctor, proc_dtor, proc_init, proc_fini, 170 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 171 uihashinit(); 172 } 173 174 /* 175 * Prepare a proc for use. 176 */ 177 static int 178 proc_ctor(void *mem, int size, void *arg, int flags) 179 { 180 struct proc *p; 181 182 p = (struct proc *)mem; 183 SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0); 184 EVENTHANDLER_INVOKE(process_ctor, p); 185 SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0); 186 return (0); 187 } 188 189 /* 190 * Reclaim a proc after use. 191 */ 192 static void 193 proc_dtor(void *mem, int size, void *arg) 194 { 195 struct proc *p; 196 struct thread *td; 197 198 /* INVARIANTS checks go here */ 199 p = (struct proc *)mem; 200 td = FIRST_THREAD_IN_PROC(p); 201 SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0); 202 if (td != NULL) { 203 #ifdef INVARIANTS 204 KASSERT((p->p_numthreads == 1), 205 ("bad number of threads in exiting process")); 206 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 207 #endif 208 /* Free all OSD associated to this thread. */ 209 osd_thread_exit(td); 210 } 211 EVENTHANDLER_INVOKE(process_dtor, p); 212 if (p->p_ksi != NULL) 213 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 214 SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0); 215 } 216 217 /* 218 * Initialize type-stable parts of a proc (when newly created). 219 */ 220 static int 221 proc_init(void *mem, int size, int flags) 222 { 223 struct proc *p; 224 225 p = (struct proc *)mem; 226 SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0); 227 p->p_sched = (struct p_sched *)&p[1]; 228 bzero(&p->p_mtx, sizeof(struct mtx)); 229 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 230 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE); 231 cv_init(&p->p_pwait, "ppwait"); 232 cv_init(&p->p_dbgwait, "dbgwait"); 233 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 234 EVENTHANDLER_INVOKE(process_init, p); 235 p->p_stats = pstats_alloc(); 236 SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0); 237 return (0); 238 } 239 240 /* 241 * UMA should ensure that this function is never called. 242 * Freeing a proc structure would violate type stability. 243 */ 244 static void 245 proc_fini(void *mem, int size) 246 { 247 #ifdef notnow 248 struct proc *p; 249 250 p = (struct proc *)mem; 251 EVENTHANDLER_INVOKE(process_fini, p); 252 pstats_free(p->p_stats); 253 thread_free(FIRST_THREAD_IN_PROC(p)); 254 mtx_destroy(&p->p_mtx); 255 if (p->p_ksi != NULL) 256 ksiginfo_free(p->p_ksi); 257 #else 258 panic("proc reclaimed"); 259 #endif 260 } 261 262 /* 263 * Is p an inferior of the current process? 264 */ 265 int 266 inferior(struct proc *p) 267 { 268 269 sx_assert(&proctree_lock, SX_LOCKED); 270 PROC_LOCK_ASSERT(p, MA_OWNED); 271 for (; p != curproc; p = proc_realparent(p)) { 272 if (p->p_pid == 0) 273 return (0); 274 } 275 return (1); 276 } 277 278 struct proc * 279 pfind_locked(pid_t pid) 280 { 281 struct proc *p; 282 283 sx_assert(&allproc_lock, SX_LOCKED); 284 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 285 if (p->p_pid == pid) { 286 PROC_LOCK(p); 287 if (p->p_state == PRS_NEW) { 288 PROC_UNLOCK(p); 289 p = NULL; 290 } 291 break; 292 } 293 } 294 return (p); 295 } 296 297 /* 298 * Locate a process by number; return only "live" processes -- i.e., neither 299 * zombies nor newly born but incompletely initialized processes. By not 300 * returning processes in the PRS_NEW state, we allow callers to avoid 301 * testing for that condition to avoid dereferencing p_ucred, et al. 302 */ 303 struct proc * 304 pfind(pid_t pid) 305 { 306 struct proc *p; 307 308 sx_slock(&allproc_lock); 309 p = pfind_locked(pid); 310 sx_sunlock(&allproc_lock); 311 return (p); 312 } 313 314 static struct proc * 315 pfind_tid_locked(pid_t tid) 316 { 317 struct proc *p; 318 struct thread *td; 319 320 sx_assert(&allproc_lock, SX_LOCKED); 321 FOREACH_PROC_IN_SYSTEM(p) { 322 PROC_LOCK(p); 323 if (p->p_state == PRS_NEW) { 324 PROC_UNLOCK(p); 325 continue; 326 } 327 FOREACH_THREAD_IN_PROC(p, td) { 328 if (td->td_tid == tid) 329 goto found; 330 } 331 PROC_UNLOCK(p); 332 } 333 found: 334 return (p); 335 } 336 337 /* 338 * Locate a process group by number. 339 * The caller must hold proctree_lock. 340 */ 341 struct pgrp * 342 pgfind(pgid) 343 register pid_t pgid; 344 { 345 register struct pgrp *pgrp; 346 347 sx_assert(&proctree_lock, SX_LOCKED); 348 349 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 350 if (pgrp->pg_id == pgid) { 351 PGRP_LOCK(pgrp); 352 return (pgrp); 353 } 354 } 355 return (NULL); 356 } 357 358 /* 359 * Locate process and do additional manipulations, depending on flags. 360 */ 361 int 362 pget(pid_t pid, int flags, struct proc **pp) 363 { 364 struct proc *p; 365 int error; 366 367 sx_slock(&allproc_lock); 368 if (pid <= PID_MAX) { 369 p = pfind_locked(pid); 370 if (p == NULL && (flags & PGET_NOTWEXIT) == 0) 371 p = zpfind_locked(pid); 372 } else if ((flags & PGET_NOTID) == 0) { 373 p = pfind_tid_locked(pid); 374 } else { 375 p = NULL; 376 } 377 sx_sunlock(&allproc_lock); 378 if (p == NULL) 379 return (ESRCH); 380 if ((flags & PGET_CANSEE) != 0) { 381 error = p_cansee(curthread, p); 382 if (error != 0) 383 goto errout; 384 } 385 if ((flags & PGET_CANDEBUG) != 0) { 386 error = p_candebug(curthread, p); 387 if (error != 0) 388 goto errout; 389 } 390 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 391 error = EPERM; 392 goto errout; 393 } 394 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 395 error = ESRCH; 396 goto errout; 397 } 398 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 399 /* 400 * XXXRW: Not clear ESRCH is the right error during proc 401 * execve(). 402 */ 403 error = ESRCH; 404 goto errout; 405 } 406 if ((flags & PGET_HOLD) != 0) { 407 _PHOLD(p); 408 PROC_UNLOCK(p); 409 } 410 *pp = p; 411 return (0); 412 errout: 413 PROC_UNLOCK(p); 414 return (error); 415 } 416 417 /* 418 * Create a new process group. 419 * pgid must be equal to the pid of p. 420 * Begin a new session if required. 421 */ 422 int 423 enterpgrp(p, pgid, pgrp, sess) 424 register struct proc *p; 425 pid_t pgid; 426 struct pgrp *pgrp; 427 struct session *sess; 428 { 429 430 sx_assert(&proctree_lock, SX_XLOCKED); 431 432 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 433 KASSERT(p->p_pid == pgid, 434 ("enterpgrp: new pgrp and pid != pgid")); 435 KASSERT(pgfind(pgid) == NULL, 436 ("enterpgrp: pgrp with pgid exists")); 437 KASSERT(!SESS_LEADER(p), 438 ("enterpgrp: session leader attempted setpgrp")); 439 440 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 441 442 if (sess != NULL) { 443 /* 444 * new session 445 */ 446 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 447 PROC_LOCK(p); 448 p->p_flag &= ~P_CONTROLT; 449 PROC_UNLOCK(p); 450 PGRP_LOCK(pgrp); 451 sess->s_leader = p; 452 sess->s_sid = p->p_pid; 453 refcount_init(&sess->s_count, 1); 454 sess->s_ttyvp = NULL; 455 sess->s_ttydp = NULL; 456 sess->s_ttyp = NULL; 457 bcopy(p->p_session->s_login, sess->s_login, 458 sizeof(sess->s_login)); 459 pgrp->pg_session = sess; 460 KASSERT(p == curproc, 461 ("enterpgrp: mksession and p != curproc")); 462 } else { 463 pgrp->pg_session = p->p_session; 464 sess_hold(pgrp->pg_session); 465 PGRP_LOCK(pgrp); 466 } 467 pgrp->pg_id = pgid; 468 LIST_INIT(&pgrp->pg_members); 469 470 /* 471 * As we have an exclusive lock of proctree_lock, 472 * this should not deadlock. 473 */ 474 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 475 pgrp->pg_jobc = 0; 476 SLIST_INIT(&pgrp->pg_sigiolst); 477 PGRP_UNLOCK(pgrp); 478 479 doenterpgrp(p, pgrp); 480 481 return (0); 482 } 483 484 /* 485 * Move p to an existing process group 486 */ 487 int 488 enterthispgrp(p, pgrp) 489 register struct proc *p; 490 struct pgrp *pgrp; 491 { 492 493 sx_assert(&proctree_lock, SX_XLOCKED); 494 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 495 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 496 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 497 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 498 KASSERT(pgrp->pg_session == p->p_session, 499 ("%s: pgrp's session %p, p->p_session %p.\n", 500 __func__, 501 pgrp->pg_session, 502 p->p_session)); 503 KASSERT(pgrp != p->p_pgrp, 504 ("%s: p belongs to pgrp.", __func__)); 505 506 doenterpgrp(p, pgrp); 507 508 return (0); 509 } 510 511 /* 512 * Move p to a process group 513 */ 514 static void 515 doenterpgrp(p, pgrp) 516 struct proc *p; 517 struct pgrp *pgrp; 518 { 519 struct pgrp *savepgrp; 520 521 sx_assert(&proctree_lock, SX_XLOCKED); 522 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 523 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 524 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 525 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 526 527 savepgrp = p->p_pgrp; 528 529 /* 530 * Adjust eligibility of affected pgrps to participate in job control. 531 * Increment eligibility counts before decrementing, otherwise we 532 * could reach 0 spuriously during the first call. 533 */ 534 fixjobc(p, pgrp, 1); 535 fixjobc(p, p->p_pgrp, 0); 536 537 PGRP_LOCK(pgrp); 538 PGRP_LOCK(savepgrp); 539 PROC_LOCK(p); 540 LIST_REMOVE(p, p_pglist); 541 p->p_pgrp = pgrp; 542 PROC_UNLOCK(p); 543 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 544 PGRP_UNLOCK(savepgrp); 545 PGRP_UNLOCK(pgrp); 546 if (LIST_EMPTY(&savepgrp->pg_members)) 547 pgdelete(savepgrp); 548 } 549 550 /* 551 * remove process from process group 552 */ 553 int 554 leavepgrp(p) 555 register struct proc *p; 556 { 557 struct pgrp *savepgrp; 558 559 sx_assert(&proctree_lock, SX_XLOCKED); 560 savepgrp = p->p_pgrp; 561 PGRP_LOCK(savepgrp); 562 PROC_LOCK(p); 563 LIST_REMOVE(p, p_pglist); 564 p->p_pgrp = NULL; 565 PROC_UNLOCK(p); 566 PGRP_UNLOCK(savepgrp); 567 if (LIST_EMPTY(&savepgrp->pg_members)) 568 pgdelete(savepgrp); 569 return (0); 570 } 571 572 /* 573 * delete a process group 574 */ 575 static void 576 pgdelete(pgrp) 577 register struct pgrp *pgrp; 578 { 579 struct session *savesess; 580 struct tty *tp; 581 582 sx_assert(&proctree_lock, SX_XLOCKED); 583 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 584 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 585 586 /* 587 * Reset any sigio structures pointing to us as a result of 588 * F_SETOWN with our pgid. 589 */ 590 funsetownlst(&pgrp->pg_sigiolst); 591 592 PGRP_LOCK(pgrp); 593 tp = pgrp->pg_session->s_ttyp; 594 LIST_REMOVE(pgrp, pg_hash); 595 savesess = pgrp->pg_session; 596 PGRP_UNLOCK(pgrp); 597 598 /* Remove the reference to the pgrp before deallocating it. */ 599 if (tp != NULL) { 600 tty_lock(tp); 601 tty_rel_pgrp(tp, pgrp); 602 } 603 604 mtx_destroy(&pgrp->pg_mtx); 605 free(pgrp, M_PGRP); 606 sess_release(savesess); 607 } 608 609 static void 610 pgadjustjobc(pgrp, entering) 611 struct pgrp *pgrp; 612 int entering; 613 { 614 615 PGRP_LOCK(pgrp); 616 if (entering) 617 pgrp->pg_jobc++; 618 else { 619 --pgrp->pg_jobc; 620 if (pgrp->pg_jobc == 0) 621 orphanpg(pgrp); 622 } 623 PGRP_UNLOCK(pgrp); 624 } 625 626 /* 627 * Adjust pgrp jobc counters when specified process changes process group. 628 * We count the number of processes in each process group that "qualify" 629 * the group for terminal job control (those with a parent in a different 630 * process group of the same session). If that count reaches zero, the 631 * process group becomes orphaned. Check both the specified process' 632 * process group and that of its children. 633 * entering == 0 => p is leaving specified group. 634 * entering == 1 => p is entering specified group. 635 */ 636 void 637 fixjobc(p, pgrp, entering) 638 register struct proc *p; 639 register struct pgrp *pgrp; 640 int entering; 641 { 642 register struct pgrp *hispgrp; 643 register struct session *mysession; 644 645 sx_assert(&proctree_lock, SX_LOCKED); 646 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 647 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 648 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 649 650 /* 651 * Check p's parent to see whether p qualifies its own process 652 * group; if so, adjust count for p's process group. 653 */ 654 mysession = pgrp->pg_session; 655 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 656 hispgrp->pg_session == mysession) 657 pgadjustjobc(pgrp, entering); 658 659 /* 660 * Check this process' children to see whether they qualify 661 * their process groups; if so, adjust counts for children's 662 * process groups. 663 */ 664 LIST_FOREACH(p, &p->p_children, p_sibling) { 665 hispgrp = p->p_pgrp; 666 if (hispgrp == pgrp || 667 hispgrp->pg_session != mysession) 668 continue; 669 PROC_LOCK(p); 670 if (p->p_state == PRS_ZOMBIE) { 671 PROC_UNLOCK(p); 672 continue; 673 } 674 PROC_UNLOCK(p); 675 pgadjustjobc(hispgrp, entering); 676 } 677 } 678 679 /* 680 * A process group has become orphaned; 681 * if there are any stopped processes in the group, 682 * hang-up all process in that group. 683 */ 684 static void 685 orphanpg(pg) 686 struct pgrp *pg; 687 { 688 register struct proc *p; 689 690 PGRP_LOCK_ASSERT(pg, MA_OWNED); 691 692 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 693 PROC_LOCK(p); 694 if (P_SHOULDSTOP(p)) { 695 PROC_UNLOCK(p); 696 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 697 PROC_LOCK(p); 698 kern_psignal(p, SIGHUP); 699 kern_psignal(p, SIGCONT); 700 PROC_UNLOCK(p); 701 } 702 return; 703 } 704 PROC_UNLOCK(p); 705 } 706 } 707 708 void 709 sess_hold(struct session *s) 710 { 711 712 refcount_acquire(&s->s_count); 713 } 714 715 void 716 sess_release(struct session *s) 717 { 718 719 if (refcount_release(&s->s_count)) { 720 if (s->s_ttyp != NULL) { 721 tty_lock(s->s_ttyp); 722 tty_rel_sess(s->s_ttyp, s); 723 } 724 mtx_destroy(&s->s_mtx); 725 free(s, M_SESSION); 726 } 727 } 728 729 #ifdef DDB 730 731 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 732 { 733 register struct pgrp *pgrp; 734 register struct proc *p; 735 register int i; 736 737 for (i = 0; i <= pgrphash; i++) { 738 if (!LIST_EMPTY(&pgrphashtbl[i])) { 739 printf("\tindx %d\n", i); 740 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 741 printf( 742 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 743 (void *)pgrp, (long)pgrp->pg_id, 744 (void *)pgrp->pg_session, 745 pgrp->pg_session->s_count, 746 (void *)LIST_FIRST(&pgrp->pg_members)); 747 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 748 printf("\t\tpid %ld addr %p pgrp %p\n", 749 (long)p->p_pid, (void *)p, 750 (void *)p->p_pgrp); 751 } 752 } 753 } 754 } 755 } 756 #endif /* DDB */ 757 758 /* 759 * Calculate the kinfo_proc members which contain process-wide 760 * informations. 761 * Must be called with the target process locked. 762 */ 763 static void 764 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 765 { 766 struct thread *td; 767 768 PROC_LOCK_ASSERT(p, MA_OWNED); 769 770 kp->ki_estcpu = 0; 771 kp->ki_pctcpu = 0; 772 FOREACH_THREAD_IN_PROC(p, td) { 773 thread_lock(td); 774 kp->ki_pctcpu += sched_pctcpu(td); 775 kp->ki_estcpu += td->td_estcpu; 776 thread_unlock(td); 777 } 778 } 779 780 /* 781 * Clear kinfo_proc and fill in any information that is common 782 * to all threads in the process. 783 * Must be called with the target process locked. 784 */ 785 static void 786 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 787 { 788 struct thread *td0; 789 struct tty *tp; 790 struct session *sp; 791 struct ucred *cred; 792 struct sigacts *ps; 793 794 /* For proc_realparent. */ 795 sx_assert(&proctree_lock, SX_LOCKED); 796 PROC_LOCK_ASSERT(p, MA_OWNED); 797 bzero(kp, sizeof(*kp)); 798 799 kp->ki_structsize = sizeof(*kp); 800 kp->ki_paddr = p; 801 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 802 kp->ki_args = p->p_args; 803 kp->ki_textvp = p->p_textvp; 804 #ifdef KTRACE 805 kp->ki_tracep = p->p_tracevp; 806 kp->ki_traceflag = p->p_traceflag; 807 #endif 808 kp->ki_fd = p->p_fd; 809 kp->ki_vmspace = p->p_vmspace; 810 kp->ki_flag = p->p_flag; 811 kp->ki_flag2 = p->p_flag2; 812 cred = p->p_ucred; 813 if (cred) { 814 kp->ki_uid = cred->cr_uid; 815 kp->ki_ruid = cred->cr_ruid; 816 kp->ki_svuid = cred->cr_svuid; 817 kp->ki_cr_flags = 0; 818 if (cred->cr_flags & CRED_FLAG_CAPMODE) 819 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 820 /* XXX bde doesn't like KI_NGROUPS */ 821 if (cred->cr_ngroups > KI_NGROUPS) { 822 kp->ki_ngroups = KI_NGROUPS; 823 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 824 } else 825 kp->ki_ngroups = cred->cr_ngroups; 826 bcopy(cred->cr_groups, kp->ki_groups, 827 kp->ki_ngroups * sizeof(gid_t)); 828 kp->ki_rgid = cred->cr_rgid; 829 kp->ki_svgid = cred->cr_svgid; 830 /* If jailed(cred), emulate the old P_JAILED flag. */ 831 if (jailed(cred)) { 832 kp->ki_flag |= P_JAILED; 833 /* If inside the jail, use 0 as a jail ID. */ 834 if (cred->cr_prison != curthread->td_ucred->cr_prison) 835 kp->ki_jid = cred->cr_prison->pr_id; 836 } 837 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 838 sizeof(kp->ki_loginclass)); 839 } 840 ps = p->p_sigacts; 841 if (ps) { 842 mtx_lock(&ps->ps_mtx); 843 kp->ki_sigignore = ps->ps_sigignore; 844 kp->ki_sigcatch = ps->ps_sigcatch; 845 mtx_unlock(&ps->ps_mtx); 846 } 847 if (p->p_state != PRS_NEW && 848 p->p_state != PRS_ZOMBIE && 849 p->p_vmspace != NULL) { 850 struct vmspace *vm = p->p_vmspace; 851 852 kp->ki_size = vm->vm_map.size; 853 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 854 FOREACH_THREAD_IN_PROC(p, td0) { 855 if (!TD_IS_SWAPPED(td0)) 856 kp->ki_rssize += td0->td_kstack_pages; 857 } 858 kp->ki_swrss = vm->vm_swrss; 859 kp->ki_tsize = vm->vm_tsize; 860 kp->ki_dsize = vm->vm_dsize; 861 kp->ki_ssize = vm->vm_ssize; 862 } else if (p->p_state == PRS_ZOMBIE) 863 kp->ki_stat = SZOMB; 864 if (kp->ki_flag & P_INMEM) 865 kp->ki_sflag = PS_INMEM; 866 else 867 kp->ki_sflag = 0; 868 /* Calculate legacy swtime as seconds since 'swtick'. */ 869 kp->ki_swtime = (ticks - p->p_swtick) / hz; 870 kp->ki_pid = p->p_pid; 871 kp->ki_nice = p->p_nice; 872 kp->ki_fibnum = p->p_fibnum; 873 kp->ki_start = p->p_stats->p_start; 874 timevaladd(&kp->ki_start, &boottime); 875 PROC_SLOCK(p); 876 rufetch(p, &kp->ki_rusage); 877 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 878 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 879 PROC_SUNLOCK(p); 880 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 881 /* Some callers want child times in a single value. */ 882 kp->ki_childtime = kp->ki_childstime; 883 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 884 885 FOREACH_THREAD_IN_PROC(p, td0) 886 kp->ki_cow += td0->td_cow; 887 888 tp = NULL; 889 if (p->p_pgrp) { 890 kp->ki_pgid = p->p_pgrp->pg_id; 891 kp->ki_jobc = p->p_pgrp->pg_jobc; 892 sp = p->p_pgrp->pg_session; 893 894 if (sp != NULL) { 895 kp->ki_sid = sp->s_sid; 896 SESS_LOCK(sp); 897 strlcpy(kp->ki_login, sp->s_login, 898 sizeof(kp->ki_login)); 899 if (sp->s_ttyvp) 900 kp->ki_kiflag |= KI_CTTY; 901 if (SESS_LEADER(p)) 902 kp->ki_kiflag |= KI_SLEADER; 903 /* XXX proctree_lock */ 904 tp = sp->s_ttyp; 905 SESS_UNLOCK(sp); 906 } 907 } 908 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 909 kp->ki_tdev = tty_udev(tp); 910 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 911 if (tp->t_session) 912 kp->ki_tsid = tp->t_session->s_sid; 913 } else 914 kp->ki_tdev = NODEV; 915 if (p->p_comm[0] != '\0') 916 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 917 if (p->p_sysent && p->p_sysent->sv_name != NULL && 918 p->p_sysent->sv_name[0] != '\0') 919 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 920 kp->ki_siglist = p->p_siglist; 921 kp->ki_xstat = p->p_xstat; 922 kp->ki_acflag = p->p_acflag; 923 kp->ki_lock = p->p_lock; 924 if (p->p_pptr) { 925 kp->ki_ppid = proc_realparent(p)->p_pid; 926 if (p->p_flag & P_TRACED) 927 kp->ki_tracer = p->p_pptr->p_pid; 928 } 929 } 930 931 /* 932 * Fill in information that is thread specific. Must be called with 933 * target process locked. If 'preferthread' is set, overwrite certain 934 * process-related fields that are maintained for both threads and 935 * processes. 936 */ 937 static void 938 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 939 { 940 struct proc *p; 941 942 p = td->td_proc; 943 kp->ki_tdaddr = td; 944 PROC_LOCK_ASSERT(p, MA_OWNED); 945 946 if (preferthread) 947 PROC_SLOCK(p); 948 thread_lock(td); 949 if (td->td_wmesg != NULL) 950 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 951 else 952 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 953 strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)); 954 if (TD_ON_LOCK(td)) { 955 kp->ki_kiflag |= KI_LOCKBLOCK; 956 strlcpy(kp->ki_lockname, td->td_lockname, 957 sizeof(kp->ki_lockname)); 958 } else { 959 kp->ki_kiflag &= ~KI_LOCKBLOCK; 960 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 961 } 962 963 if (p->p_state == PRS_NORMAL) { /* approximate. */ 964 if (TD_ON_RUNQ(td) || 965 TD_CAN_RUN(td) || 966 TD_IS_RUNNING(td)) { 967 kp->ki_stat = SRUN; 968 } else if (P_SHOULDSTOP(p)) { 969 kp->ki_stat = SSTOP; 970 } else if (TD_IS_SLEEPING(td)) { 971 kp->ki_stat = SSLEEP; 972 } else if (TD_ON_LOCK(td)) { 973 kp->ki_stat = SLOCK; 974 } else { 975 kp->ki_stat = SWAIT; 976 } 977 } else if (p->p_state == PRS_ZOMBIE) { 978 kp->ki_stat = SZOMB; 979 } else { 980 kp->ki_stat = SIDL; 981 } 982 983 /* Things in the thread */ 984 kp->ki_wchan = td->td_wchan; 985 kp->ki_pri.pri_level = td->td_priority; 986 kp->ki_pri.pri_native = td->td_base_pri; 987 988 /* 989 * Note: legacy fields; clamp at the old NOCPU value and/or 990 * the maximum u_char CPU value. 991 */ 992 if (td->td_lastcpu == NOCPU) 993 kp->ki_lastcpu_old = NOCPU_OLD; 994 else if (td->td_lastcpu > MAXCPU_OLD) 995 kp->ki_lastcpu_old = MAXCPU_OLD; 996 else 997 kp->ki_lastcpu_old = td->td_lastcpu; 998 999 if (td->td_oncpu == NOCPU) 1000 kp->ki_oncpu_old = NOCPU_OLD; 1001 else if (td->td_oncpu > MAXCPU_OLD) 1002 kp->ki_oncpu_old = MAXCPU_OLD; 1003 else 1004 kp->ki_oncpu_old = td->td_oncpu; 1005 1006 kp->ki_lastcpu = td->td_lastcpu; 1007 kp->ki_oncpu = td->td_oncpu; 1008 kp->ki_tdflags = td->td_flags; 1009 kp->ki_tid = td->td_tid; 1010 kp->ki_numthreads = p->p_numthreads; 1011 kp->ki_pcb = td->td_pcb; 1012 kp->ki_kstack = (void *)td->td_kstack; 1013 kp->ki_slptime = (ticks - td->td_slptick) / hz; 1014 kp->ki_pri.pri_class = td->td_pri_class; 1015 kp->ki_pri.pri_user = td->td_user_pri; 1016 1017 if (preferthread) { 1018 rufetchtd(td, &kp->ki_rusage); 1019 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 1020 kp->ki_pctcpu = sched_pctcpu(td); 1021 kp->ki_estcpu = td->td_estcpu; 1022 kp->ki_cow = td->td_cow; 1023 } 1024 1025 /* We can't get this anymore but ps etc never used it anyway. */ 1026 kp->ki_rqindex = 0; 1027 1028 if (preferthread) 1029 kp->ki_siglist = td->td_siglist; 1030 kp->ki_sigmask = td->td_sigmask; 1031 thread_unlock(td); 1032 if (preferthread) 1033 PROC_SUNLOCK(p); 1034 } 1035 1036 /* 1037 * Fill in a kinfo_proc structure for the specified process. 1038 * Must be called with the target process locked. 1039 */ 1040 void 1041 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1042 { 1043 1044 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1045 1046 fill_kinfo_proc_only(p, kp); 1047 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1048 fill_kinfo_aggregate(p, kp); 1049 } 1050 1051 struct pstats * 1052 pstats_alloc(void) 1053 { 1054 1055 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1056 } 1057 1058 /* 1059 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1060 */ 1061 void 1062 pstats_fork(struct pstats *src, struct pstats *dst) 1063 { 1064 1065 bzero(&dst->pstat_startzero, 1066 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1067 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1068 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1069 } 1070 1071 void 1072 pstats_free(struct pstats *ps) 1073 { 1074 1075 free(ps, M_SUBPROC); 1076 } 1077 1078 static struct proc * 1079 zpfind_locked(pid_t pid) 1080 { 1081 struct proc *p; 1082 1083 sx_assert(&allproc_lock, SX_LOCKED); 1084 LIST_FOREACH(p, &zombproc, p_list) { 1085 if (p->p_pid == pid) { 1086 PROC_LOCK(p); 1087 break; 1088 } 1089 } 1090 return (p); 1091 } 1092 1093 /* 1094 * Locate a zombie process by number 1095 */ 1096 struct proc * 1097 zpfind(pid_t pid) 1098 { 1099 struct proc *p; 1100 1101 sx_slock(&allproc_lock); 1102 p = zpfind_locked(pid); 1103 sx_sunlock(&allproc_lock); 1104 return (p); 1105 } 1106 1107 #ifdef COMPAT_FREEBSD32 1108 1109 /* 1110 * This function is typically used to copy out the kernel address, so 1111 * it can be replaced by assignment of zero. 1112 */ 1113 static inline uint32_t 1114 ptr32_trim(void *ptr) 1115 { 1116 uintptr_t uptr; 1117 1118 uptr = (uintptr_t)ptr; 1119 return ((uptr > UINT_MAX) ? 0 : uptr); 1120 } 1121 1122 #define PTRTRIM_CP(src,dst,fld) \ 1123 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1124 1125 static void 1126 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1127 { 1128 int i; 1129 1130 bzero(ki32, sizeof(struct kinfo_proc32)); 1131 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1132 CP(*ki, *ki32, ki_layout); 1133 PTRTRIM_CP(*ki, *ki32, ki_args); 1134 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1135 PTRTRIM_CP(*ki, *ki32, ki_addr); 1136 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1137 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1138 PTRTRIM_CP(*ki, *ki32, ki_fd); 1139 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1140 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1141 CP(*ki, *ki32, ki_pid); 1142 CP(*ki, *ki32, ki_ppid); 1143 CP(*ki, *ki32, ki_pgid); 1144 CP(*ki, *ki32, ki_tpgid); 1145 CP(*ki, *ki32, ki_sid); 1146 CP(*ki, *ki32, ki_tsid); 1147 CP(*ki, *ki32, ki_jobc); 1148 CP(*ki, *ki32, ki_tdev); 1149 CP(*ki, *ki32, ki_siglist); 1150 CP(*ki, *ki32, ki_sigmask); 1151 CP(*ki, *ki32, ki_sigignore); 1152 CP(*ki, *ki32, ki_sigcatch); 1153 CP(*ki, *ki32, ki_uid); 1154 CP(*ki, *ki32, ki_ruid); 1155 CP(*ki, *ki32, ki_svuid); 1156 CP(*ki, *ki32, ki_rgid); 1157 CP(*ki, *ki32, ki_svgid); 1158 CP(*ki, *ki32, ki_ngroups); 1159 for (i = 0; i < KI_NGROUPS; i++) 1160 CP(*ki, *ki32, ki_groups[i]); 1161 CP(*ki, *ki32, ki_size); 1162 CP(*ki, *ki32, ki_rssize); 1163 CP(*ki, *ki32, ki_swrss); 1164 CP(*ki, *ki32, ki_tsize); 1165 CP(*ki, *ki32, ki_dsize); 1166 CP(*ki, *ki32, ki_ssize); 1167 CP(*ki, *ki32, ki_xstat); 1168 CP(*ki, *ki32, ki_acflag); 1169 CP(*ki, *ki32, ki_pctcpu); 1170 CP(*ki, *ki32, ki_estcpu); 1171 CP(*ki, *ki32, ki_slptime); 1172 CP(*ki, *ki32, ki_swtime); 1173 CP(*ki, *ki32, ki_cow); 1174 CP(*ki, *ki32, ki_runtime); 1175 TV_CP(*ki, *ki32, ki_start); 1176 TV_CP(*ki, *ki32, ki_childtime); 1177 CP(*ki, *ki32, ki_flag); 1178 CP(*ki, *ki32, ki_kiflag); 1179 CP(*ki, *ki32, ki_traceflag); 1180 CP(*ki, *ki32, ki_stat); 1181 CP(*ki, *ki32, ki_nice); 1182 CP(*ki, *ki32, ki_lock); 1183 CP(*ki, *ki32, ki_rqindex); 1184 CP(*ki, *ki32, ki_oncpu); 1185 CP(*ki, *ki32, ki_lastcpu); 1186 1187 /* XXX TODO: wrap cpu value as appropriate */ 1188 CP(*ki, *ki32, ki_oncpu_old); 1189 CP(*ki, *ki32, ki_lastcpu_old); 1190 1191 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1192 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1193 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1194 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1195 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1196 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1197 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1198 CP(*ki, *ki32, ki_tracer); 1199 CP(*ki, *ki32, ki_flag2); 1200 CP(*ki, *ki32, ki_fibnum); 1201 CP(*ki, *ki32, ki_cr_flags); 1202 CP(*ki, *ki32, ki_jid); 1203 CP(*ki, *ki32, ki_numthreads); 1204 CP(*ki, *ki32, ki_tid); 1205 CP(*ki, *ki32, ki_pri); 1206 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1207 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1208 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1209 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1210 PTRTRIM_CP(*ki, *ki32, ki_udata); 1211 CP(*ki, *ki32, ki_sflag); 1212 CP(*ki, *ki32, ki_tdflags); 1213 } 1214 #endif 1215 1216 int 1217 kern_proc_out(struct proc *p, struct sbuf *sb, int flags) 1218 { 1219 struct thread *td; 1220 struct kinfo_proc ki; 1221 #ifdef COMPAT_FREEBSD32 1222 struct kinfo_proc32 ki32; 1223 #endif 1224 int error; 1225 1226 PROC_LOCK_ASSERT(p, MA_OWNED); 1227 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1228 1229 error = 0; 1230 fill_kinfo_proc(p, &ki); 1231 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1232 #ifdef COMPAT_FREEBSD32 1233 if ((flags & KERN_PROC_MASK32) != 0) { 1234 freebsd32_kinfo_proc_out(&ki, &ki32); 1235 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1236 error = ENOMEM; 1237 } else 1238 #endif 1239 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1240 error = ENOMEM; 1241 } else { 1242 FOREACH_THREAD_IN_PROC(p, td) { 1243 fill_kinfo_thread(td, &ki, 1); 1244 #ifdef COMPAT_FREEBSD32 1245 if ((flags & KERN_PROC_MASK32) != 0) { 1246 freebsd32_kinfo_proc_out(&ki, &ki32); 1247 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1248 error = ENOMEM; 1249 } else 1250 #endif 1251 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1252 error = ENOMEM; 1253 if (error != 0) 1254 break; 1255 } 1256 } 1257 PROC_UNLOCK(p); 1258 return (error); 1259 } 1260 1261 static int 1262 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags, 1263 int doingzomb) 1264 { 1265 struct sbuf sb; 1266 struct kinfo_proc ki; 1267 struct proc *np; 1268 int error, error2; 1269 pid_t pid; 1270 1271 pid = p->p_pid; 1272 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); 1273 error = kern_proc_out(p, &sb, flags); 1274 error2 = sbuf_finish(&sb); 1275 sbuf_delete(&sb); 1276 if (error != 0) 1277 return (error); 1278 else if (error2 != 0) 1279 return (error2); 1280 if (doingzomb) 1281 np = zpfind(pid); 1282 else { 1283 if (pid == 0) 1284 return (0); 1285 np = pfind(pid); 1286 } 1287 if (np == NULL) 1288 return (ESRCH); 1289 if (np != p) { 1290 PROC_UNLOCK(np); 1291 return (ESRCH); 1292 } 1293 PROC_UNLOCK(np); 1294 return (0); 1295 } 1296 1297 static int 1298 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1299 { 1300 int *name = (int *)arg1; 1301 u_int namelen = arg2; 1302 struct proc *p; 1303 int flags, doingzomb, oid_number; 1304 int error = 0; 1305 1306 oid_number = oidp->oid_number; 1307 if (oid_number != KERN_PROC_ALL && 1308 (oid_number & KERN_PROC_INC_THREAD) == 0) 1309 flags = KERN_PROC_NOTHREADS; 1310 else { 1311 flags = 0; 1312 oid_number &= ~KERN_PROC_INC_THREAD; 1313 } 1314 #ifdef COMPAT_FREEBSD32 1315 if (req->flags & SCTL_MASK32) 1316 flags |= KERN_PROC_MASK32; 1317 #endif 1318 if (oid_number == KERN_PROC_PID) { 1319 if (namelen != 1) 1320 return (EINVAL); 1321 error = sysctl_wire_old_buffer(req, 0); 1322 if (error) 1323 return (error); 1324 sx_slock(&proctree_lock); 1325 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1326 if (error == 0) 1327 error = sysctl_out_proc(p, req, flags, 0); 1328 sx_sunlock(&proctree_lock); 1329 return (error); 1330 } 1331 1332 switch (oid_number) { 1333 case KERN_PROC_ALL: 1334 if (namelen != 0) 1335 return (EINVAL); 1336 break; 1337 case KERN_PROC_PROC: 1338 if (namelen != 0 && namelen != 1) 1339 return (EINVAL); 1340 break; 1341 default: 1342 if (namelen != 1) 1343 return (EINVAL); 1344 break; 1345 } 1346 1347 if (!req->oldptr) { 1348 /* overestimate by 5 procs */ 1349 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1350 if (error) 1351 return (error); 1352 } 1353 error = sysctl_wire_old_buffer(req, 0); 1354 if (error != 0) 1355 return (error); 1356 sx_slock(&proctree_lock); 1357 sx_slock(&allproc_lock); 1358 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1359 if (!doingzomb) 1360 p = LIST_FIRST(&allproc); 1361 else 1362 p = LIST_FIRST(&zombproc); 1363 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1364 /* 1365 * Skip embryonic processes. 1366 */ 1367 PROC_LOCK(p); 1368 if (p->p_state == PRS_NEW) { 1369 PROC_UNLOCK(p); 1370 continue; 1371 } 1372 KASSERT(p->p_ucred != NULL, 1373 ("process credential is NULL for non-NEW proc")); 1374 /* 1375 * Show a user only appropriate processes. 1376 */ 1377 if (p_cansee(curthread, p)) { 1378 PROC_UNLOCK(p); 1379 continue; 1380 } 1381 /* 1382 * TODO - make more efficient (see notes below). 1383 * do by session. 1384 */ 1385 switch (oid_number) { 1386 1387 case KERN_PROC_GID: 1388 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1389 PROC_UNLOCK(p); 1390 continue; 1391 } 1392 break; 1393 1394 case KERN_PROC_PGRP: 1395 /* could do this by traversing pgrp */ 1396 if (p->p_pgrp == NULL || 1397 p->p_pgrp->pg_id != (pid_t)name[0]) { 1398 PROC_UNLOCK(p); 1399 continue; 1400 } 1401 break; 1402 1403 case KERN_PROC_RGID: 1404 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1405 PROC_UNLOCK(p); 1406 continue; 1407 } 1408 break; 1409 1410 case KERN_PROC_SESSION: 1411 if (p->p_session == NULL || 1412 p->p_session->s_sid != (pid_t)name[0]) { 1413 PROC_UNLOCK(p); 1414 continue; 1415 } 1416 break; 1417 1418 case KERN_PROC_TTY: 1419 if ((p->p_flag & P_CONTROLT) == 0 || 1420 p->p_session == NULL) { 1421 PROC_UNLOCK(p); 1422 continue; 1423 } 1424 /* XXX proctree_lock */ 1425 SESS_LOCK(p->p_session); 1426 if (p->p_session->s_ttyp == NULL || 1427 tty_udev(p->p_session->s_ttyp) != 1428 (dev_t)name[0]) { 1429 SESS_UNLOCK(p->p_session); 1430 PROC_UNLOCK(p); 1431 continue; 1432 } 1433 SESS_UNLOCK(p->p_session); 1434 break; 1435 1436 case KERN_PROC_UID: 1437 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1438 PROC_UNLOCK(p); 1439 continue; 1440 } 1441 break; 1442 1443 case KERN_PROC_RUID: 1444 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1445 PROC_UNLOCK(p); 1446 continue; 1447 } 1448 break; 1449 1450 case KERN_PROC_PROC: 1451 break; 1452 1453 default: 1454 break; 1455 1456 } 1457 1458 error = sysctl_out_proc(p, req, flags, doingzomb); 1459 if (error) { 1460 sx_sunlock(&allproc_lock); 1461 sx_sunlock(&proctree_lock); 1462 return (error); 1463 } 1464 } 1465 } 1466 sx_sunlock(&allproc_lock); 1467 sx_sunlock(&proctree_lock); 1468 return (0); 1469 } 1470 1471 struct pargs * 1472 pargs_alloc(int len) 1473 { 1474 struct pargs *pa; 1475 1476 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1477 M_WAITOK); 1478 refcount_init(&pa->ar_ref, 1); 1479 pa->ar_length = len; 1480 return (pa); 1481 } 1482 1483 static void 1484 pargs_free(struct pargs *pa) 1485 { 1486 1487 free(pa, M_PARGS); 1488 } 1489 1490 void 1491 pargs_hold(struct pargs *pa) 1492 { 1493 1494 if (pa == NULL) 1495 return; 1496 refcount_acquire(&pa->ar_ref); 1497 } 1498 1499 void 1500 pargs_drop(struct pargs *pa) 1501 { 1502 1503 if (pa == NULL) 1504 return; 1505 if (refcount_release(&pa->ar_ref)) 1506 pargs_free(pa); 1507 } 1508 1509 static int 1510 proc_read_mem(struct thread *td, struct proc *p, vm_offset_t offset, void* buf, 1511 size_t len) 1512 { 1513 struct iovec iov; 1514 struct uio uio; 1515 1516 iov.iov_base = (caddr_t)buf; 1517 iov.iov_len = len; 1518 uio.uio_iov = &iov; 1519 uio.uio_iovcnt = 1; 1520 uio.uio_offset = offset; 1521 uio.uio_resid = (ssize_t)len; 1522 uio.uio_segflg = UIO_SYSSPACE; 1523 uio.uio_rw = UIO_READ; 1524 uio.uio_td = td; 1525 1526 return (proc_rwmem(p, &uio)); 1527 } 1528 1529 static int 1530 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1531 size_t len) 1532 { 1533 size_t i; 1534 int error; 1535 1536 error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, len); 1537 /* 1538 * Reading the chunk may validly return EFAULT if the string is shorter 1539 * than the chunk and is aligned at the end of the page, assuming the 1540 * next page is not mapped. So if EFAULT is returned do a fallback to 1541 * one byte read loop. 1542 */ 1543 if (error == EFAULT) { 1544 for (i = 0; i < len; i++, buf++, sptr++) { 1545 error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, 1); 1546 if (error != 0) 1547 return (error); 1548 if (*buf == '\0') 1549 break; 1550 } 1551 error = 0; 1552 } 1553 return (error); 1554 } 1555 1556 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1557 1558 enum proc_vector_type { 1559 PROC_ARG, 1560 PROC_ENV, 1561 PROC_AUX, 1562 }; 1563 1564 #ifdef COMPAT_FREEBSD32 1565 static int 1566 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1567 size_t *vsizep, enum proc_vector_type type) 1568 { 1569 struct freebsd32_ps_strings pss; 1570 Elf32_Auxinfo aux; 1571 vm_offset_t vptr, ptr; 1572 uint32_t *proc_vector32; 1573 char **proc_vector; 1574 size_t vsize, size; 1575 int i, error; 1576 1577 error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings), 1578 &pss, sizeof(pss)); 1579 if (error != 0) 1580 return (error); 1581 switch (type) { 1582 case PROC_ARG: 1583 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1584 vsize = pss.ps_nargvstr; 1585 if (vsize > ARG_MAX) 1586 return (ENOEXEC); 1587 size = vsize * sizeof(int32_t); 1588 break; 1589 case PROC_ENV: 1590 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1591 vsize = pss.ps_nenvstr; 1592 if (vsize > ARG_MAX) 1593 return (ENOEXEC); 1594 size = vsize * sizeof(int32_t); 1595 break; 1596 case PROC_AUX: 1597 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1598 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1599 if (vptr % 4 != 0) 1600 return (ENOEXEC); 1601 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1602 error = proc_read_mem(td, p, ptr, &aux, sizeof(aux)); 1603 if (error != 0) 1604 return (error); 1605 if (aux.a_type == AT_NULL) 1606 break; 1607 ptr += sizeof(aux); 1608 } 1609 if (aux.a_type != AT_NULL) 1610 return (ENOEXEC); 1611 vsize = i + 1; 1612 size = vsize * sizeof(aux); 1613 break; 1614 default: 1615 KASSERT(0, ("Wrong proc vector type: %d", type)); 1616 return (EINVAL); 1617 } 1618 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1619 error = proc_read_mem(td, p, vptr, proc_vector32, size); 1620 if (error != 0) 1621 goto done; 1622 if (type == PROC_AUX) { 1623 *proc_vectorp = (char **)proc_vector32; 1624 *vsizep = vsize; 1625 return (0); 1626 } 1627 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1628 for (i = 0; i < (int)vsize; i++) 1629 proc_vector[i] = PTRIN(proc_vector32[i]); 1630 *proc_vectorp = proc_vector; 1631 *vsizep = vsize; 1632 done: 1633 free(proc_vector32, M_TEMP); 1634 return (error); 1635 } 1636 #endif 1637 1638 static int 1639 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1640 size_t *vsizep, enum proc_vector_type type) 1641 { 1642 struct ps_strings pss; 1643 Elf_Auxinfo aux; 1644 vm_offset_t vptr, ptr; 1645 char **proc_vector; 1646 size_t vsize, size; 1647 int error, i; 1648 1649 #ifdef COMPAT_FREEBSD32 1650 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1651 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1652 #endif 1653 error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings), 1654 &pss, sizeof(pss)); 1655 if (error != 0) 1656 return (error); 1657 switch (type) { 1658 case PROC_ARG: 1659 vptr = (vm_offset_t)pss.ps_argvstr; 1660 vsize = pss.ps_nargvstr; 1661 if (vsize > ARG_MAX) 1662 return (ENOEXEC); 1663 size = vsize * sizeof(char *); 1664 break; 1665 case PROC_ENV: 1666 vptr = (vm_offset_t)pss.ps_envstr; 1667 vsize = pss.ps_nenvstr; 1668 if (vsize > ARG_MAX) 1669 return (ENOEXEC); 1670 size = vsize * sizeof(char *); 1671 break; 1672 case PROC_AUX: 1673 /* 1674 * The aux array is just above env array on the stack. Check 1675 * that the address is naturally aligned. 1676 */ 1677 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1678 * sizeof(char *); 1679 #if __ELF_WORD_SIZE == 64 1680 if (vptr % sizeof(uint64_t) != 0) 1681 #else 1682 if (vptr % sizeof(uint32_t) != 0) 1683 #endif 1684 return (ENOEXEC); 1685 /* 1686 * We count the array size reading the aux vectors from the 1687 * stack until AT_NULL vector is returned. So (to keep the code 1688 * simple) we read the process stack twice: the first time here 1689 * to find the size and the second time when copying the vectors 1690 * to the allocated proc_vector. 1691 */ 1692 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1693 error = proc_read_mem(td, p, ptr, &aux, sizeof(aux)); 1694 if (error != 0) 1695 return (error); 1696 if (aux.a_type == AT_NULL) 1697 break; 1698 ptr += sizeof(aux); 1699 } 1700 /* 1701 * If the PROC_AUXV_MAX entries are iterated over, and we have 1702 * not reached AT_NULL, it is most likely we are reading wrong 1703 * data: either the process doesn't have auxv array or data has 1704 * been modified. Return the error in this case. 1705 */ 1706 if (aux.a_type != AT_NULL) 1707 return (ENOEXEC); 1708 vsize = i + 1; 1709 size = vsize * sizeof(aux); 1710 break; 1711 default: 1712 KASSERT(0, ("Wrong proc vector type: %d", type)); 1713 return (EINVAL); /* In case we are built without INVARIANTS. */ 1714 } 1715 proc_vector = malloc(size, M_TEMP, M_WAITOK); 1716 if (proc_vector == NULL) 1717 return (ENOMEM); 1718 error = proc_read_mem(td, p, vptr, proc_vector, size); 1719 if (error != 0) { 1720 free(proc_vector, M_TEMP); 1721 return (error); 1722 } 1723 *proc_vectorp = proc_vector; 1724 *vsizep = vsize; 1725 1726 return (0); 1727 } 1728 1729 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 1730 1731 static int 1732 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 1733 enum proc_vector_type type) 1734 { 1735 size_t done, len, nchr, vsize; 1736 int error, i; 1737 char **proc_vector, *sptr; 1738 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 1739 1740 PROC_ASSERT_HELD(p); 1741 1742 /* 1743 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 1744 */ 1745 nchr = 2 * (PATH_MAX + ARG_MAX); 1746 1747 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 1748 if (error != 0) 1749 return (error); 1750 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 1751 /* 1752 * The program may have scribbled into its argv array, e.g. to 1753 * remove some arguments. If that has happened, break out 1754 * before trying to read from NULL. 1755 */ 1756 if (proc_vector[i] == NULL) 1757 break; 1758 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 1759 error = proc_read_string(td, p, sptr, pss_string, 1760 sizeof(pss_string)); 1761 if (error != 0) 1762 goto done; 1763 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 1764 if (done + len >= nchr) 1765 len = nchr - done - 1; 1766 sbuf_bcat(sb, pss_string, len); 1767 if (len != GET_PS_STRINGS_CHUNK_SZ) 1768 break; 1769 done += GET_PS_STRINGS_CHUNK_SZ; 1770 } 1771 sbuf_bcat(sb, "", 1); 1772 done += len + 1; 1773 } 1774 done: 1775 free(proc_vector, M_TEMP); 1776 return (error); 1777 } 1778 1779 int 1780 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 1781 { 1782 1783 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 1784 } 1785 1786 int 1787 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 1788 { 1789 1790 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 1791 } 1792 1793 int 1794 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) 1795 { 1796 size_t vsize, size; 1797 char **auxv; 1798 int error; 1799 1800 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); 1801 if (error == 0) { 1802 #ifdef COMPAT_FREEBSD32 1803 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1804 size = vsize * sizeof(Elf32_Auxinfo); 1805 else 1806 #endif 1807 size = vsize * sizeof(Elf_Auxinfo); 1808 if (sbuf_bcat(sb, auxv, size) != 0) 1809 error = ENOMEM; 1810 free(auxv, M_TEMP); 1811 } 1812 return (error); 1813 } 1814 1815 /* 1816 * This sysctl allows a process to retrieve the argument list or process 1817 * title for another process without groping around in the address space 1818 * of the other process. It also allow a process to set its own "process 1819 * title to a string of its own choice. 1820 */ 1821 static int 1822 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1823 { 1824 int *name = (int *)arg1; 1825 u_int namelen = arg2; 1826 struct pargs *newpa, *pa; 1827 struct proc *p; 1828 struct sbuf sb; 1829 int flags, error = 0, error2; 1830 1831 if (namelen != 1) 1832 return (EINVAL); 1833 1834 flags = PGET_CANSEE; 1835 if (req->newptr != NULL) 1836 flags |= PGET_ISCURRENT; 1837 error = pget((pid_t)name[0], flags, &p); 1838 if (error) 1839 return (error); 1840 1841 pa = p->p_args; 1842 if (pa != NULL) { 1843 pargs_hold(pa); 1844 PROC_UNLOCK(p); 1845 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1846 pargs_drop(pa); 1847 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 1848 _PHOLD(p); 1849 PROC_UNLOCK(p); 1850 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1851 error = proc_getargv(curthread, p, &sb); 1852 error2 = sbuf_finish(&sb); 1853 PRELE(p); 1854 sbuf_delete(&sb); 1855 if (error == 0 && error2 != 0) 1856 error = error2; 1857 } else { 1858 PROC_UNLOCK(p); 1859 } 1860 if (error != 0 || req->newptr == NULL) 1861 return (error); 1862 1863 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1864 return (ENOMEM); 1865 newpa = pargs_alloc(req->newlen); 1866 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1867 if (error != 0) { 1868 pargs_free(newpa); 1869 return (error); 1870 } 1871 PROC_LOCK(p); 1872 pa = p->p_args; 1873 p->p_args = newpa; 1874 PROC_UNLOCK(p); 1875 pargs_drop(pa); 1876 return (0); 1877 } 1878 1879 /* 1880 * This sysctl allows a process to retrieve environment of another process. 1881 */ 1882 static int 1883 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 1884 { 1885 int *name = (int *)arg1; 1886 u_int namelen = arg2; 1887 struct proc *p; 1888 struct sbuf sb; 1889 int error, error2; 1890 1891 if (namelen != 1) 1892 return (EINVAL); 1893 1894 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1895 if (error != 0) 1896 return (error); 1897 if ((p->p_flag & P_SYSTEM) != 0) { 1898 PRELE(p); 1899 return (0); 1900 } 1901 1902 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1903 error = proc_getenvv(curthread, p, &sb); 1904 error2 = sbuf_finish(&sb); 1905 PRELE(p); 1906 sbuf_delete(&sb); 1907 return (error != 0 ? error : error2); 1908 } 1909 1910 /* 1911 * This sysctl allows a process to retrieve ELF auxiliary vector of 1912 * another process. 1913 */ 1914 static int 1915 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 1916 { 1917 int *name = (int *)arg1; 1918 u_int namelen = arg2; 1919 struct proc *p; 1920 struct sbuf sb; 1921 int error, error2; 1922 1923 if (namelen != 1) 1924 return (EINVAL); 1925 1926 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1927 if (error != 0) 1928 return (error); 1929 if ((p->p_flag & P_SYSTEM) != 0) { 1930 PRELE(p); 1931 return (0); 1932 } 1933 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1934 error = proc_getauxv(curthread, p, &sb); 1935 error2 = sbuf_finish(&sb); 1936 PRELE(p); 1937 sbuf_delete(&sb); 1938 return (error != 0 ? error : error2); 1939 } 1940 1941 /* 1942 * This sysctl allows a process to retrieve the path of the executable for 1943 * itself or another process. 1944 */ 1945 static int 1946 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1947 { 1948 pid_t *pidp = (pid_t *)arg1; 1949 unsigned int arglen = arg2; 1950 struct proc *p; 1951 struct vnode *vp; 1952 char *retbuf, *freebuf; 1953 int error; 1954 1955 if (arglen != 1) 1956 return (EINVAL); 1957 if (*pidp == -1) { /* -1 means this process */ 1958 p = req->td->td_proc; 1959 } else { 1960 error = pget(*pidp, PGET_CANSEE, &p); 1961 if (error != 0) 1962 return (error); 1963 } 1964 1965 vp = p->p_textvp; 1966 if (vp == NULL) { 1967 if (*pidp != -1) 1968 PROC_UNLOCK(p); 1969 return (0); 1970 } 1971 vref(vp); 1972 if (*pidp != -1) 1973 PROC_UNLOCK(p); 1974 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1975 vrele(vp); 1976 if (error) 1977 return (error); 1978 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1979 free(freebuf, M_TEMP); 1980 return (error); 1981 } 1982 1983 static int 1984 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1985 { 1986 struct proc *p; 1987 char *sv_name; 1988 int *name; 1989 int namelen; 1990 int error; 1991 1992 namelen = arg2; 1993 if (namelen != 1) 1994 return (EINVAL); 1995 1996 name = (int *)arg1; 1997 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1998 if (error != 0) 1999 return (error); 2000 sv_name = p->p_sysent->sv_name; 2001 PROC_UNLOCK(p); 2002 return (sysctl_handle_string(oidp, sv_name, 0, req)); 2003 } 2004 2005 #ifdef KINFO_OVMENTRY_SIZE 2006 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 2007 #endif 2008 2009 #ifdef COMPAT_FREEBSD7 2010 static int 2011 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 2012 { 2013 vm_map_entry_t entry, tmp_entry; 2014 unsigned int last_timestamp; 2015 char *fullpath, *freepath; 2016 struct kinfo_ovmentry *kve; 2017 struct vattr va; 2018 struct ucred *cred; 2019 int error, *name; 2020 struct vnode *vp; 2021 struct proc *p; 2022 vm_map_t map; 2023 struct vmspace *vm; 2024 2025 name = (int *)arg1; 2026 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2027 if (error != 0) 2028 return (error); 2029 vm = vmspace_acquire_ref(p); 2030 if (vm == NULL) { 2031 PRELE(p); 2032 return (ESRCH); 2033 } 2034 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2035 2036 map = &vm->vm_map; 2037 vm_map_lock_read(map); 2038 for (entry = map->header.next; entry != &map->header; 2039 entry = entry->next) { 2040 vm_object_t obj, tobj, lobj; 2041 vm_offset_t addr; 2042 2043 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2044 continue; 2045 2046 bzero(kve, sizeof(*kve)); 2047 kve->kve_structsize = sizeof(*kve); 2048 2049 kve->kve_private_resident = 0; 2050 obj = entry->object.vm_object; 2051 if (obj != NULL) { 2052 VM_OBJECT_RLOCK(obj); 2053 if (obj->shadow_count == 1) 2054 kve->kve_private_resident = 2055 obj->resident_page_count; 2056 } 2057 kve->kve_resident = 0; 2058 addr = entry->start; 2059 while (addr < entry->end) { 2060 if (pmap_extract(map->pmap, addr)) 2061 kve->kve_resident++; 2062 addr += PAGE_SIZE; 2063 } 2064 2065 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2066 if (tobj != obj) 2067 VM_OBJECT_RLOCK(tobj); 2068 if (lobj != obj) 2069 VM_OBJECT_RUNLOCK(lobj); 2070 lobj = tobj; 2071 } 2072 2073 kve->kve_start = (void*)entry->start; 2074 kve->kve_end = (void*)entry->end; 2075 kve->kve_offset = (off_t)entry->offset; 2076 2077 if (entry->protection & VM_PROT_READ) 2078 kve->kve_protection |= KVME_PROT_READ; 2079 if (entry->protection & VM_PROT_WRITE) 2080 kve->kve_protection |= KVME_PROT_WRITE; 2081 if (entry->protection & VM_PROT_EXECUTE) 2082 kve->kve_protection |= KVME_PROT_EXEC; 2083 2084 if (entry->eflags & MAP_ENTRY_COW) 2085 kve->kve_flags |= KVME_FLAG_COW; 2086 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2087 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2088 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2089 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2090 2091 last_timestamp = map->timestamp; 2092 vm_map_unlock_read(map); 2093 2094 kve->kve_fileid = 0; 2095 kve->kve_fsid = 0; 2096 freepath = NULL; 2097 fullpath = ""; 2098 if (lobj) { 2099 vp = NULL; 2100 switch (lobj->type) { 2101 case OBJT_DEFAULT: 2102 kve->kve_type = KVME_TYPE_DEFAULT; 2103 break; 2104 case OBJT_VNODE: 2105 kve->kve_type = KVME_TYPE_VNODE; 2106 vp = lobj->handle; 2107 vref(vp); 2108 break; 2109 case OBJT_SWAP: 2110 kve->kve_type = KVME_TYPE_SWAP; 2111 break; 2112 case OBJT_DEVICE: 2113 kve->kve_type = KVME_TYPE_DEVICE; 2114 break; 2115 case OBJT_PHYS: 2116 kve->kve_type = KVME_TYPE_PHYS; 2117 break; 2118 case OBJT_DEAD: 2119 kve->kve_type = KVME_TYPE_DEAD; 2120 break; 2121 case OBJT_SG: 2122 kve->kve_type = KVME_TYPE_SG; 2123 break; 2124 default: 2125 kve->kve_type = KVME_TYPE_UNKNOWN; 2126 break; 2127 } 2128 if (lobj != obj) 2129 VM_OBJECT_RUNLOCK(lobj); 2130 2131 kve->kve_ref_count = obj->ref_count; 2132 kve->kve_shadow_count = obj->shadow_count; 2133 VM_OBJECT_RUNLOCK(obj); 2134 if (vp != NULL) { 2135 vn_fullpath(curthread, vp, &fullpath, 2136 &freepath); 2137 cred = curthread->td_ucred; 2138 vn_lock(vp, LK_SHARED | LK_RETRY); 2139 if (VOP_GETATTR(vp, &va, cred) == 0) { 2140 kve->kve_fileid = va.va_fileid; 2141 kve->kve_fsid = va.va_fsid; 2142 } 2143 vput(vp); 2144 } 2145 } else { 2146 kve->kve_type = KVME_TYPE_NONE; 2147 kve->kve_ref_count = 0; 2148 kve->kve_shadow_count = 0; 2149 } 2150 2151 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2152 if (freepath != NULL) 2153 free(freepath, M_TEMP); 2154 2155 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2156 vm_map_lock_read(map); 2157 if (error) 2158 break; 2159 if (last_timestamp != map->timestamp) { 2160 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2161 entry = tmp_entry; 2162 } 2163 } 2164 vm_map_unlock_read(map); 2165 vmspace_free(vm); 2166 PRELE(p); 2167 free(kve, M_TEMP); 2168 return (error); 2169 } 2170 #endif /* COMPAT_FREEBSD7 */ 2171 2172 #ifdef KINFO_VMENTRY_SIZE 2173 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2174 #endif 2175 2176 static void 2177 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, 2178 struct kinfo_vmentry *kve) 2179 { 2180 vm_object_t obj, tobj; 2181 vm_page_t m, m_adv; 2182 vm_offset_t addr; 2183 vm_paddr_t locked_pa; 2184 vm_pindex_t pi, pi_adv, pindex; 2185 2186 locked_pa = 0; 2187 obj = entry->object.vm_object; 2188 addr = entry->start; 2189 m_adv = NULL; 2190 pi = OFF_TO_IDX(entry->offset); 2191 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) { 2192 if (m_adv != NULL) { 2193 m = m_adv; 2194 } else { 2195 pi_adv = OFF_TO_IDX(entry->end - addr); 2196 pindex = pi; 2197 for (tobj = obj;; tobj = tobj->backing_object) { 2198 m = vm_page_find_least(tobj, pindex); 2199 if (m != NULL) { 2200 if (m->pindex == pindex) 2201 break; 2202 if (pi_adv > m->pindex - pindex) { 2203 pi_adv = m->pindex - pindex; 2204 m_adv = m; 2205 } 2206 } 2207 if (tobj->backing_object == NULL) 2208 goto next; 2209 pindex += OFF_TO_IDX(tobj-> 2210 backing_object_offset); 2211 } 2212 } 2213 m_adv = NULL; 2214 if (m->psind != 0 && addr + pagesizes[1] <= entry->end && 2215 (addr & (pagesizes[1] - 1)) == 0 && 2216 (pmap_mincore(map->pmap, addr, &locked_pa) & 2217 MINCORE_SUPER) != 0) { 2218 kve->kve_flags |= KVME_FLAG_SUPER; 2219 pi_adv = OFF_TO_IDX(pagesizes[1]); 2220 } else { 2221 /* 2222 * We do not test the found page on validity. 2223 * Either the page is busy and being paged in, 2224 * or it was invalidated. The first case 2225 * should be counted as resident, the second 2226 * is not so clear; we do account both. 2227 */ 2228 pi_adv = 1; 2229 } 2230 kve->kve_resident += pi_adv; 2231 next:; 2232 } 2233 PA_UNLOCK_COND(locked_pa); 2234 } 2235 2236 /* 2237 * Must be called with the process locked and will return unlocked. 2238 */ 2239 int 2240 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb) 2241 { 2242 vm_map_entry_t entry, tmp_entry; 2243 struct vattr va; 2244 vm_map_t map; 2245 vm_object_t obj, tobj, lobj; 2246 char *fullpath, *freepath; 2247 struct kinfo_vmentry *kve; 2248 struct ucred *cred; 2249 struct vnode *vp; 2250 struct vmspace *vm; 2251 vm_offset_t addr; 2252 unsigned int last_timestamp; 2253 int error; 2254 2255 PROC_LOCK_ASSERT(p, MA_OWNED); 2256 2257 _PHOLD(p); 2258 PROC_UNLOCK(p); 2259 vm = vmspace_acquire_ref(p); 2260 if (vm == NULL) { 2261 PRELE(p); 2262 return (ESRCH); 2263 } 2264 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2265 2266 error = 0; 2267 map = &vm->vm_map; 2268 vm_map_lock_read(map); 2269 for (entry = map->header.next; entry != &map->header; 2270 entry = entry->next) { 2271 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2272 continue; 2273 2274 addr = entry->end; 2275 bzero(kve, sizeof(*kve)); 2276 obj = entry->object.vm_object; 2277 if (obj != NULL) { 2278 for (tobj = obj; tobj != NULL; 2279 tobj = tobj->backing_object) { 2280 VM_OBJECT_RLOCK(tobj); 2281 lobj = tobj; 2282 } 2283 if (obj->backing_object == NULL) 2284 kve->kve_private_resident = 2285 obj->resident_page_count; 2286 if (!vmmap_skip_res_cnt) 2287 kern_proc_vmmap_resident(map, entry, kve); 2288 for (tobj = obj; tobj != NULL; 2289 tobj = tobj->backing_object) { 2290 if (tobj != obj && tobj != lobj) 2291 VM_OBJECT_RUNLOCK(tobj); 2292 } 2293 } else { 2294 lobj = NULL; 2295 } 2296 2297 kve->kve_start = entry->start; 2298 kve->kve_end = entry->end; 2299 kve->kve_offset = entry->offset; 2300 2301 if (entry->protection & VM_PROT_READ) 2302 kve->kve_protection |= KVME_PROT_READ; 2303 if (entry->protection & VM_PROT_WRITE) 2304 kve->kve_protection |= KVME_PROT_WRITE; 2305 if (entry->protection & VM_PROT_EXECUTE) 2306 kve->kve_protection |= KVME_PROT_EXEC; 2307 2308 if (entry->eflags & MAP_ENTRY_COW) 2309 kve->kve_flags |= KVME_FLAG_COW; 2310 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2311 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2312 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2313 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2314 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2315 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2316 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2317 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2318 2319 last_timestamp = map->timestamp; 2320 vm_map_unlock_read(map); 2321 2322 freepath = NULL; 2323 fullpath = ""; 2324 if (lobj != NULL) { 2325 vp = NULL; 2326 switch (lobj->type) { 2327 case OBJT_DEFAULT: 2328 kve->kve_type = KVME_TYPE_DEFAULT; 2329 break; 2330 case OBJT_VNODE: 2331 kve->kve_type = KVME_TYPE_VNODE; 2332 vp = lobj->handle; 2333 vref(vp); 2334 break; 2335 case OBJT_SWAP: 2336 kve->kve_type = KVME_TYPE_SWAP; 2337 break; 2338 case OBJT_DEVICE: 2339 kve->kve_type = KVME_TYPE_DEVICE; 2340 break; 2341 case OBJT_PHYS: 2342 kve->kve_type = KVME_TYPE_PHYS; 2343 break; 2344 case OBJT_DEAD: 2345 kve->kve_type = KVME_TYPE_DEAD; 2346 break; 2347 case OBJT_SG: 2348 kve->kve_type = KVME_TYPE_SG; 2349 break; 2350 case OBJT_MGTDEVICE: 2351 kve->kve_type = KVME_TYPE_MGTDEVICE; 2352 break; 2353 default: 2354 kve->kve_type = KVME_TYPE_UNKNOWN; 2355 break; 2356 } 2357 if (lobj != obj) 2358 VM_OBJECT_RUNLOCK(lobj); 2359 2360 kve->kve_ref_count = obj->ref_count; 2361 kve->kve_shadow_count = obj->shadow_count; 2362 VM_OBJECT_RUNLOCK(obj); 2363 if (vp != NULL) { 2364 vn_fullpath(curthread, vp, &fullpath, 2365 &freepath); 2366 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2367 cred = curthread->td_ucred; 2368 vn_lock(vp, LK_SHARED | LK_RETRY); 2369 if (VOP_GETATTR(vp, &va, cred) == 0) { 2370 kve->kve_vn_fileid = va.va_fileid; 2371 kve->kve_vn_fsid = va.va_fsid; 2372 kve->kve_vn_mode = 2373 MAKEIMODE(va.va_type, va.va_mode); 2374 kve->kve_vn_size = va.va_size; 2375 kve->kve_vn_rdev = va.va_rdev; 2376 kve->kve_status = KF_ATTR_VALID; 2377 } 2378 vput(vp); 2379 } 2380 } else { 2381 kve->kve_type = KVME_TYPE_NONE; 2382 kve->kve_ref_count = 0; 2383 kve->kve_shadow_count = 0; 2384 } 2385 2386 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2387 if (freepath != NULL) 2388 free(freepath, M_TEMP); 2389 2390 /* Pack record size down */ 2391 kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) + 2392 strlen(kve->kve_path) + 1; 2393 kve->kve_structsize = roundup(kve->kve_structsize, 2394 sizeof(uint64_t)); 2395 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0) 2396 error = ENOMEM; 2397 vm_map_lock_read(map); 2398 if (error != 0) 2399 break; 2400 if (last_timestamp != map->timestamp) { 2401 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2402 entry = tmp_entry; 2403 } 2404 } 2405 vm_map_unlock_read(map); 2406 vmspace_free(vm); 2407 PRELE(p); 2408 free(kve, M_TEMP); 2409 return (error); 2410 } 2411 2412 static int 2413 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2414 { 2415 struct proc *p; 2416 struct sbuf sb; 2417 int error, error2, *name; 2418 2419 name = (int *)arg1; 2420 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); 2421 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 2422 if (error != 0) { 2423 sbuf_delete(&sb); 2424 return (error); 2425 } 2426 error = kern_proc_vmmap_out(p, &sb); 2427 error2 = sbuf_finish(&sb); 2428 sbuf_delete(&sb); 2429 return (error != 0 ? error : error2); 2430 } 2431 2432 #if defined(STACK) || defined(DDB) 2433 static int 2434 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2435 { 2436 struct kinfo_kstack *kkstp; 2437 int error, i, *name, numthreads; 2438 lwpid_t *lwpidarray; 2439 struct thread *td; 2440 struct stack *st; 2441 struct sbuf sb; 2442 struct proc *p; 2443 2444 name = (int *)arg1; 2445 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2446 if (error != 0) 2447 return (error); 2448 2449 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2450 st = stack_create(); 2451 2452 lwpidarray = NULL; 2453 numthreads = 0; 2454 PROC_LOCK(p); 2455 repeat: 2456 if (numthreads < p->p_numthreads) { 2457 if (lwpidarray != NULL) { 2458 free(lwpidarray, M_TEMP); 2459 lwpidarray = NULL; 2460 } 2461 numthreads = p->p_numthreads; 2462 PROC_UNLOCK(p); 2463 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2464 M_WAITOK | M_ZERO); 2465 PROC_LOCK(p); 2466 goto repeat; 2467 } 2468 i = 0; 2469 2470 /* 2471 * XXXRW: During the below loop, execve(2) and countless other sorts 2472 * of changes could have taken place. Should we check to see if the 2473 * vmspace has been replaced, or the like, in order to prevent 2474 * giving a snapshot that spans, say, execve(2), with some threads 2475 * before and some after? Among other things, the credentials could 2476 * have changed, in which case the right to extract debug info might 2477 * no longer be assured. 2478 */ 2479 FOREACH_THREAD_IN_PROC(p, td) { 2480 KASSERT(i < numthreads, 2481 ("sysctl_kern_proc_kstack: numthreads")); 2482 lwpidarray[i] = td->td_tid; 2483 i++; 2484 } 2485 numthreads = i; 2486 for (i = 0; i < numthreads; i++) { 2487 td = thread_find(p, lwpidarray[i]); 2488 if (td == NULL) { 2489 continue; 2490 } 2491 bzero(kkstp, sizeof(*kkstp)); 2492 (void)sbuf_new(&sb, kkstp->kkst_trace, 2493 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2494 thread_lock(td); 2495 kkstp->kkst_tid = td->td_tid; 2496 if (TD_IS_SWAPPED(td)) 2497 kkstp->kkst_state = KKST_STATE_SWAPPED; 2498 else if (TD_IS_RUNNING(td)) 2499 kkstp->kkst_state = KKST_STATE_RUNNING; 2500 else { 2501 kkstp->kkst_state = KKST_STATE_STACKOK; 2502 stack_save_td(st, td); 2503 } 2504 thread_unlock(td); 2505 PROC_UNLOCK(p); 2506 stack_sbuf_print(&sb, st); 2507 sbuf_finish(&sb); 2508 sbuf_delete(&sb); 2509 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2510 PROC_LOCK(p); 2511 if (error) 2512 break; 2513 } 2514 _PRELE(p); 2515 PROC_UNLOCK(p); 2516 if (lwpidarray != NULL) 2517 free(lwpidarray, M_TEMP); 2518 stack_destroy(st); 2519 free(kkstp, M_TEMP); 2520 return (error); 2521 } 2522 #endif 2523 2524 /* 2525 * This sysctl allows a process to retrieve the full list of groups from 2526 * itself or another process. 2527 */ 2528 static int 2529 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2530 { 2531 pid_t *pidp = (pid_t *)arg1; 2532 unsigned int arglen = arg2; 2533 struct proc *p; 2534 struct ucred *cred; 2535 int error; 2536 2537 if (arglen != 1) 2538 return (EINVAL); 2539 if (*pidp == -1) { /* -1 means this process */ 2540 p = req->td->td_proc; 2541 PROC_LOCK(p); 2542 } else { 2543 error = pget(*pidp, PGET_CANSEE, &p); 2544 if (error != 0) 2545 return (error); 2546 } 2547 2548 cred = crhold(p->p_ucred); 2549 PROC_UNLOCK(p); 2550 2551 error = SYSCTL_OUT(req, cred->cr_groups, 2552 cred->cr_ngroups * sizeof(gid_t)); 2553 crfree(cred); 2554 return (error); 2555 } 2556 2557 /* 2558 * This sysctl allows a process to retrieve or/and set the resource limit for 2559 * another process. 2560 */ 2561 static int 2562 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2563 { 2564 int *name = (int *)arg1; 2565 u_int namelen = arg2; 2566 struct rlimit rlim; 2567 struct proc *p; 2568 u_int which; 2569 int flags, error; 2570 2571 if (namelen != 2) 2572 return (EINVAL); 2573 2574 which = (u_int)name[1]; 2575 if (which >= RLIM_NLIMITS) 2576 return (EINVAL); 2577 2578 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2579 return (EINVAL); 2580 2581 flags = PGET_HOLD | PGET_NOTWEXIT; 2582 if (req->newptr != NULL) 2583 flags |= PGET_CANDEBUG; 2584 else 2585 flags |= PGET_CANSEE; 2586 error = pget((pid_t)name[0], flags, &p); 2587 if (error != 0) 2588 return (error); 2589 2590 /* 2591 * Retrieve limit. 2592 */ 2593 if (req->oldptr != NULL) { 2594 PROC_LOCK(p); 2595 lim_rlimit(p, which, &rlim); 2596 PROC_UNLOCK(p); 2597 } 2598 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2599 if (error != 0) 2600 goto errout; 2601 2602 /* 2603 * Set limit. 2604 */ 2605 if (req->newptr != NULL) { 2606 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2607 if (error == 0) 2608 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2609 } 2610 2611 errout: 2612 PRELE(p); 2613 return (error); 2614 } 2615 2616 /* 2617 * This sysctl allows a process to retrieve ps_strings structure location of 2618 * another process. 2619 */ 2620 static int 2621 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2622 { 2623 int *name = (int *)arg1; 2624 u_int namelen = arg2; 2625 struct proc *p; 2626 vm_offset_t ps_strings; 2627 int error; 2628 #ifdef COMPAT_FREEBSD32 2629 uint32_t ps_strings32; 2630 #endif 2631 2632 if (namelen != 1) 2633 return (EINVAL); 2634 2635 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2636 if (error != 0) 2637 return (error); 2638 #ifdef COMPAT_FREEBSD32 2639 if ((req->flags & SCTL_MASK32) != 0) { 2640 /* 2641 * We return 0 if the 32 bit emulation request is for a 64 bit 2642 * process. 2643 */ 2644 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2645 PTROUT(p->p_sysent->sv_psstrings) : 0; 2646 PROC_UNLOCK(p); 2647 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2648 return (error); 2649 } 2650 #endif 2651 ps_strings = p->p_sysent->sv_psstrings; 2652 PROC_UNLOCK(p); 2653 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2654 return (error); 2655 } 2656 2657 /* 2658 * This sysctl allows a process to retrieve umask of another process. 2659 */ 2660 static int 2661 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 2662 { 2663 int *name = (int *)arg1; 2664 u_int namelen = arg2; 2665 struct proc *p; 2666 int error; 2667 u_short fd_cmask; 2668 2669 if (namelen != 1) 2670 return (EINVAL); 2671 2672 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2673 if (error != 0) 2674 return (error); 2675 2676 FILEDESC_SLOCK(p->p_fd); 2677 fd_cmask = p->p_fd->fd_cmask; 2678 FILEDESC_SUNLOCK(p->p_fd); 2679 PRELE(p); 2680 error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); 2681 return (error); 2682 } 2683 2684 /* 2685 * This sysctl allows a process to set and retrieve binary osreldate of 2686 * another process. 2687 */ 2688 static int 2689 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 2690 { 2691 int *name = (int *)arg1; 2692 u_int namelen = arg2; 2693 struct proc *p; 2694 int flags, error, osrel; 2695 2696 if (namelen != 1) 2697 return (EINVAL); 2698 2699 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 2700 return (EINVAL); 2701 2702 flags = PGET_HOLD | PGET_NOTWEXIT; 2703 if (req->newptr != NULL) 2704 flags |= PGET_CANDEBUG; 2705 else 2706 flags |= PGET_CANSEE; 2707 error = pget((pid_t)name[0], flags, &p); 2708 if (error != 0) 2709 return (error); 2710 2711 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 2712 if (error != 0) 2713 goto errout; 2714 2715 if (req->newptr != NULL) { 2716 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 2717 if (error != 0) 2718 goto errout; 2719 if (osrel < 0) { 2720 error = EINVAL; 2721 goto errout; 2722 } 2723 p->p_osrel = osrel; 2724 } 2725 errout: 2726 PRELE(p); 2727 return (error); 2728 } 2729 2730 static int 2731 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS) 2732 { 2733 int *name = (int *)arg1; 2734 u_int namelen = arg2; 2735 struct proc *p; 2736 struct kinfo_sigtramp kst; 2737 const struct sysentvec *sv; 2738 int error; 2739 #ifdef COMPAT_FREEBSD32 2740 struct kinfo_sigtramp32 kst32; 2741 #endif 2742 2743 if (namelen != 1) 2744 return (EINVAL); 2745 2746 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2747 if (error != 0) 2748 return (error); 2749 sv = p->p_sysent; 2750 #ifdef COMPAT_FREEBSD32 2751 if ((req->flags & SCTL_MASK32) != 0) { 2752 bzero(&kst32, sizeof(kst32)); 2753 if (SV_PROC_FLAG(p, SV_ILP32)) { 2754 if (sv->sv_sigcode_base != 0) { 2755 kst32.ksigtramp_start = sv->sv_sigcode_base; 2756 kst32.ksigtramp_end = sv->sv_sigcode_base + 2757 *sv->sv_szsigcode; 2758 } else { 2759 kst32.ksigtramp_start = sv->sv_psstrings - 2760 *sv->sv_szsigcode; 2761 kst32.ksigtramp_end = sv->sv_psstrings; 2762 } 2763 } 2764 PROC_UNLOCK(p); 2765 error = SYSCTL_OUT(req, &kst32, sizeof(kst32)); 2766 return (error); 2767 } 2768 #endif 2769 bzero(&kst, sizeof(kst)); 2770 if (sv->sv_sigcode_base != 0) { 2771 kst.ksigtramp_start = (char *)sv->sv_sigcode_base; 2772 kst.ksigtramp_end = (char *)sv->sv_sigcode_base + 2773 *sv->sv_szsigcode; 2774 } else { 2775 kst.ksigtramp_start = (char *)sv->sv_psstrings - 2776 *sv->sv_szsigcode; 2777 kst.ksigtramp_end = (char *)sv->sv_psstrings; 2778 } 2779 PROC_UNLOCK(p); 2780 error = SYSCTL_OUT(req, &kst, sizeof(kst)); 2781 return (error); 2782 } 2783 2784 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 2785 2786 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 2787 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 2788 "Return entire process table"); 2789 2790 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2791 sysctl_kern_proc, "Process table"); 2792 2793 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 2794 sysctl_kern_proc, "Process table"); 2795 2796 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2797 sysctl_kern_proc, "Process table"); 2798 2799 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 2800 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2801 2802 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 2803 sysctl_kern_proc, "Process table"); 2804 2805 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2806 sysctl_kern_proc, "Process table"); 2807 2808 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2809 sysctl_kern_proc, "Process table"); 2810 2811 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2812 sysctl_kern_proc, "Process table"); 2813 2814 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 2815 sysctl_kern_proc, "Return process table, no threads"); 2816 2817 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 2818 CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 2819 sysctl_kern_proc_args, "Process argument list"); 2820 2821 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 2822 sysctl_kern_proc_env, "Process environment"); 2823 2824 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 2825 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 2826 2827 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 2828 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 2829 2830 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 2831 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 2832 "Process syscall vector name (ABI type)"); 2833 2834 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 2835 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2836 2837 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 2838 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2839 2840 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 2841 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2842 2843 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 2844 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2845 2846 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 2847 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2848 2849 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 2850 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2851 2852 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 2853 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2854 2855 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 2856 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2857 2858 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 2859 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 2860 "Return process table, no threads"); 2861 2862 #ifdef COMPAT_FREEBSD7 2863 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 2864 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 2865 #endif 2866 2867 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 2868 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 2869 2870 #if defined(STACK) || defined(DDB) 2871 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 2872 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 2873 #endif 2874 2875 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 2876 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 2877 2878 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 2879 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 2880 "Process resource limits"); 2881 2882 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 2883 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 2884 "Process ps_strings location"); 2885 2886 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 2887 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 2888 2889 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 2890 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 2891 "Process binary osreldate"); 2892 2893 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD | 2894 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp, 2895 "Process signal trampoline location"); 2896