xref: /freebsd/sys/kern/kern_proc.c (revision cec50dea12481dc578c0805c887ab2097e1c06c5)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
30  * $FreeBSD$
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include "opt_ktrace.h"
37 #include "opt_kstack_pages.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/mutex.h>
45 #include <sys/proc.h>
46 #include <sys/sysent.h>
47 #include <sys/sched.h>
48 #include <sys/smp.h>
49 #include <sys/sysctl.h>
50 #include <sys/filedesc.h>
51 #include <sys/tty.h>
52 #include <sys/signalvar.h>
53 #include <sys/sx.h>
54 #include <sys/user.h>
55 #include <sys/jail.h>
56 #ifdef KTRACE
57 #include <sys/uio.h>
58 #include <sys/ktrace.h>
59 #endif
60 
61 #include <vm/vm.h>
62 #include <vm/vm_extern.h>
63 #include <vm/pmap.h>
64 #include <vm/vm_map.h>
65 #include <vm/uma.h>
66 #include <machine/critical.h>
67 
68 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
69 MALLOC_DEFINE(M_SESSION, "session", "session header");
70 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
71 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
72 
73 static void doenterpgrp(struct proc *, struct pgrp *);
74 static void orphanpg(struct pgrp *pg);
75 static void pgadjustjobc(struct pgrp *pgrp, int entering);
76 static void pgdelete(struct pgrp *);
77 static int proc_ctor(void *mem, int size, void *arg, int flags);
78 static void proc_dtor(void *mem, int size, void *arg);
79 static int proc_init(void *mem, int size, int flags);
80 static void proc_fini(void *mem, int size);
81 
82 /*
83  * Other process lists
84  */
85 struct pidhashhead *pidhashtbl;
86 u_long pidhash;
87 struct pgrphashhead *pgrphashtbl;
88 u_long pgrphash;
89 struct proclist allproc;
90 struct proclist zombproc;
91 struct sx allproc_lock;
92 struct sx proctree_lock;
93 struct mtx pargs_ref_lock;
94 struct mtx ppeers_lock;
95 uma_zone_t proc_zone;
96 uma_zone_t ithread_zone;
97 
98 int kstack_pages = KSTACK_PAGES;
99 int uarea_pages = UAREA_PAGES;
100 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, "");
101 SYSCTL_INT(_kern, OID_AUTO, uarea_pages, CTLFLAG_RD, &uarea_pages, 0, "");
102 
103 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
104 
105 /*
106  * Initialize global process hashing structures.
107  */
108 void
109 procinit()
110 {
111 
112 	sx_init(&allproc_lock, "allproc");
113 	sx_init(&proctree_lock, "proctree");
114 	mtx_init(&pargs_ref_lock, "struct pargs.ref", NULL, MTX_DEF);
115 	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
116 	LIST_INIT(&allproc);
117 	LIST_INIT(&zombproc);
118 	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
119 	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
120 	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
121 	    proc_ctor, proc_dtor, proc_init, proc_fini,
122 	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
123 	uihashinit();
124 }
125 
126 /*
127  * Prepare a proc for use.
128  */
129 static int
130 proc_ctor(void *mem, int size, void *arg, int flags)
131 {
132 	struct proc *p;
133 
134 	p = (struct proc *)mem;
135 	return (0);
136 }
137 
138 /*
139  * Reclaim a proc after use.
140  */
141 static void
142 proc_dtor(void *mem, int size, void *arg)
143 {
144 	struct proc *p;
145 	struct thread *td;
146 #ifdef INVARIANTS
147 	struct ksegrp *kg;
148 #endif
149 
150 	/* INVARIANTS checks go here */
151 	p = (struct proc *)mem;
152         td = FIRST_THREAD_IN_PROC(p);
153 #ifdef INVARIANTS
154 	KASSERT((p->p_numthreads == 1),
155 	    ("bad number of threads in exiting process"));
156 	KASSERT((td != NULL), ("proc_dtor: bad thread pointer"));
157         kg = FIRST_KSEGRP_IN_PROC(p);
158 	KASSERT((kg != NULL), ("proc_dtor: bad kg pointer"));
159 #endif
160 
161 	/* Dispose of an alternate kstack, if it exists.
162 	 * XXX What if there are more than one thread in the proc?
163 	 *     The first thread in the proc is special and not
164 	 *     freed, so you gotta do this here.
165 	 */
166 	if (((p->p_flag & P_KTHREAD) != 0) && (td->td_altkstack != 0))
167 		vm_thread_dispose_altkstack(td);
168 }
169 
170 /*
171  * Initialize type-stable parts of a proc (when newly created).
172  */
173 static int
174 proc_init(void *mem, int size, int flags)
175 {
176 	struct proc *p;
177 	struct thread *td;
178 	struct ksegrp *kg;
179 
180 	p = (struct proc *)mem;
181 	p->p_sched = (struct p_sched *)&p[1];
182 	vm_proc_new(p);
183 	td = thread_alloc();
184 	kg = ksegrp_alloc();
185 	bzero(&p->p_mtx, sizeof(struct mtx));
186 	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
187 	proc_linkup(p, kg, td);
188 	sched_newproc(p, kg, td);
189 	return (0);
190 }
191 
192 /*
193  * Tear down type-stable parts of a proc (just before being discarded)
194  */
195 static void
196 proc_fini(void *mem, int size)
197 {
198 	struct proc *p;
199 	struct thread *td;
200 	struct ksegrp *kg;
201 
202 	p = (struct proc *)mem;
203 	KASSERT((p->p_numthreads == 1),
204 	    ("bad number of threads in freeing process"));
205         td = FIRST_THREAD_IN_PROC(p);
206 	KASSERT((td != NULL), ("proc_fini: bad thread pointer"));
207         kg = FIRST_KSEGRP_IN_PROC(p);
208 	KASSERT((kg != NULL), ("proc_fini: bad kg pointer"));
209 	vm_proc_dispose(p);
210 	sched_destroyproc(p);
211 	thread_free(td);
212 	ksegrp_free(kg);
213 	mtx_destroy(&p->p_mtx);
214 }
215 
216 /*
217  * Is p an inferior of the current process?
218  */
219 int
220 inferior(p)
221 	register struct proc *p;
222 {
223 
224 	sx_assert(&proctree_lock, SX_LOCKED);
225 	for (; p != curproc; p = p->p_pptr)
226 		if (p->p_pid == 0)
227 			return (0);
228 	return (1);
229 }
230 
231 /*
232  * Locate a process by number; return only "live" processes -- i.e., neither
233  * zombies nor newly born but incompletely initialized processes.  By not
234  * returning processes in the PRS_NEW state, we allow callers to avoid
235  * testing for that condition to avoid dereferencing p_ucred, et al.
236  */
237 struct proc *
238 pfind(pid)
239 	register pid_t pid;
240 {
241 	register struct proc *p;
242 
243 	sx_slock(&allproc_lock);
244 	LIST_FOREACH(p, PIDHASH(pid), p_hash)
245 		if (p->p_pid == pid) {
246 			if (p->p_state == PRS_NEW) {
247 				p = NULL;
248 				break;
249 			}
250 			PROC_LOCK(p);
251 			break;
252 		}
253 	sx_sunlock(&allproc_lock);
254 	return (p);
255 }
256 
257 /*
258  * Locate a process group by number.
259  * The caller must hold proctree_lock.
260  */
261 struct pgrp *
262 pgfind(pgid)
263 	register pid_t pgid;
264 {
265 	register struct pgrp *pgrp;
266 
267 	sx_assert(&proctree_lock, SX_LOCKED);
268 
269 	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
270 		if (pgrp->pg_id == pgid) {
271 			PGRP_LOCK(pgrp);
272 			return (pgrp);
273 		}
274 	}
275 	return (NULL);
276 }
277 
278 /*
279  * Create a new process group.
280  * pgid must be equal to the pid of p.
281  * Begin a new session if required.
282  */
283 int
284 enterpgrp(p, pgid, pgrp, sess)
285 	register struct proc *p;
286 	pid_t pgid;
287 	struct pgrp *pgrp;
288 	struct session *sess;
289 {
290 	struct pgrp *pgrp2;
291 
292 	sx_assert(&proctree_lock, SX_XLOCKED);
293 
294 	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
295 	KASSERT(p->p_pid == pgid,
296 	    ("enterpgrp: new pgrp and pid != pgid"));
297 
298 	pgrp2 = pgfind(pgid);
299 
300 	KASSERT(pgrp2 == NULL,
301 	    ("enterpgrp: pgrp with pgid exists"));
302 	KASSERT(!SESS_LEADER(p),
303 	    ("enterpgrp: session leader attempted setpgrp"));
304 
305 	mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
306 
307 	if (sess != NULL) {
308 		/*
309 		 * new session
310 		 */
311 		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
312 		PROC_LOCK(p);
313 		p->p_flag &= ~P_CONTROLT;
314 		PROC_UNLOCK(p);
315 		PGRP_LOCK(pgrp);
316 		sess->s_leader = p;
317 		sess->s_sid = p->p_pid;
318 		sess->s_count = 1;
319 		sess->s_ttyvp = NULL;
320 		sess->s_ttyp = NULL;
321 		bcopy(p->p_session->s_login, sess->s_login,
322 			    sizeof(sess->s_login));
323 		pgrp->pg_session = sess;
324 		KASSERT(p == curproc,
325 		    ("enterpgrp: mksession and p != curproc"));
326 	} else {
327 		pgrp->pg_session = p->p_session;
328 		SESS_LOCK(pgrp->pg_session);
329 		pgrp->pg_session->s_count++;
330 		SESS_UNLOCK(pgrp->pg_session);
331 		PGRP_LOCK(pgrp);
332 	}
333 	pgrp->pg_id = pgid;
334 	LIST_INIT(&pgrp->pg_members);
335 
336 	/*
337 	 * As we have an exclusive lock of proctree_lock,
338 	 * this should not deadlock.
339 	 */
340 	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
341 	pgrp->pg_jobc = 0;
342 	SLIST_INIT(&pgrp->pg_sigiolst);
343 	PGRP_UNLOCK(pgrp);
344 
345 	doenterpgrp(p, pgrp);
346 
347 	return (0);
348 }
349 
350 /*
351  * Move p to an existing process group
352  */
353 int
354 enterthispgrp(p, pgrp)
355 	register struct proc *p;
356 	struct pgrp *pgrp;
357 {
358 
359 	sx_assert(&proctree_lock, SX_XLOCKED);
360 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
361 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
362 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
363 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
364 	KASSERT(pgrp->pg_session == p->p_session,
365 		("%s: pgrp's session %p, p->p_session %p.\n",
366 		__func__,
367 		pgrp->pg_session,
368 		p->p_session));
369 	KASSERT(pgrp != p->p_pgrp,
370 		("%s: p belongs to pgrp.", __func__));
371 
372 	doenterpgrp(p, pgrp);
373 
374 	return (0);
375 }
376 
377 /*
378  * Move p to a process group
379  */
380 static void
381 doenterpgrp(p, pgrp)
382 	struct proc *p;
383 	struct pgrp *pgrp;
384 {
385 	struct pgrp *savepgrp;
386 
387 	sx_assert(&proctree_lock, SX_XLOCKED);
388 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
389 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
390 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
391 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
392 
393 	savepgrp = p->p_pgrp;
394 
395 	/*
396 	 * Adjust eligibility of affected pgrps to participate in job control.
397 	 * Increment eligibility counts before decrementing, otherwise we
398 	 * could reach 0 spuriously during the first call.
399 	 */
400 	fixjobc(p, pgrp, 1);
401 	fixjobc(p, p->p_pgrp, 0);
402 
403 	PGRP_LOCK(pgrp);
404 	PGRP_LOCK(savepgrp);
405 	PROC_LOCK(p);
406 	LIST_REMOVE(p, p_pglist);
407 	p->p_pgrp = pgrp;
408 	PROC_UNLOCK(p);
409 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
410 	PGRP_UNLOCK(savepgrp);
411 	PGRP_UNLOCK(pgrp);
412 	if (LIST_EMPTY(&savepgrp->pg_members))
413 		pgdelete(savepgrp);
414 }
415 
416 /*
417  * remove process from process group
418  */
419 int
420 leavepgrp(p)
421 	register struct proc *p;
422 {
423 	struct pgrp *savepgrp;
424 
425 	sx_assert(&proctree_lock, SX_XLOCKED);
426 	savepgrp = p->p_pgrp;
427 	PGRP_LOCK(savepgrp);
428 	PROC_LOCK(p);
429 	LIST_REMOVE(p, p_pglist);
430 	p->p_pgrp = NULL;
431 	PROC_UNLOCK(p);
432 	PGRP_UNLOCK(savepgrp);
433 	if (LIST_EMPTY(&savepgrp->pg_members))
434 		pgdelete(savepgrp);
435 	return (0);
436 }
437 
438 /*
439  * delete a process group
440  */
441 static void
442 pgdelete(pgrp)
443 	register struct pgrp *pgrp;
444 {
445 	struct session *savesess;
446 	int i;
447 
448 	sx_assert(&proctree_lock, SX_XLOCKED);
449 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
450 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
451 
452 	/*
453 	 * Reset any sigio structures pointing to us as a result of
454 	 * F_SETOWN with our pgid.
455 	 */
456 	funsetownlst(&pgrp->pg_sigiolst);
457 
458 	PGRP_LOCK(pgrp);
459 	if (pgrp->pg_session->s_ttyp != NULL &&
460 	    pgrp->pg_session->s_ttyp->t_pgrp == pgrp)
461 		pgrp->pg_session->s_ttyp->t_pgrp = NULL;
462 	LIST_REMOVE(pgrp, pg_hash);
463 	savesess = pgrp->pg_session;
464 	SESS_LOCK(savesess);
465 	i = --savesess->s_count;
466 	SESS_UNLOCK(savesess);
467 	PGRP_UNLOCK(pgrp);
468 	if (i == 0) {
469 		if (savesess->s_ttyp != NULL)
470 			ttyrel(savesess->s_ttyp);
471 		mtx_destroy(&savesess->s_mtx);
472 		FREE(savesess, M_SESSION);
473 	}
474 	mtx_destroy(&pgrp->pg_mtx);
475 	FREE(pgrp, M_PGRP);
476 }
477 
478 static void
479 pgadjustjobc(pgrp, entering)
480 	struct pgrp *pgrp;
481 	int entering;
482 {
483 
484 	PGRP_LOCK(pgrp);
485 	if (entering)
486 		pgrp->pg_jobc++;
487 	else {
488 		--pgrp->pg_jobc;
489 		if (pgrp->pg_jobc == 0)
490 			orphanpg(pgrp);
491 	}
492 	PGRP_UNLOCK(pgrp);
493 }
494 
495 /*
496  * Adjust pgrp jobc counters when specified process changes process group.
497  * We count the number of processes in each process group that "qualify"
498  * the group for terminal job control (those with a parent in a different
499  * process group of the same session).  If that count reaches zero, the
500  * process group becomes orphaned.  Check both the specified process'
501  * process group and that of its children.
502  * entering == 0 => p is leaving specified group.
503  * entering == 1 => p is entering specified group.
504  */
505 void
506 fixjobc(p, pgrp, entering)
507 	register struct proc *p;
508 	register struct pgrp *pgrp;
509 	int entering;
510 {
511 	register struct pgrp *hispgrp;
512 	register struct session *mysession;
513 
514 	sx_assert(&proctree_lock, SX_LOCKED);
515 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
516 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
517 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
518 
519 	/*
520 	 * Check p's parent to see whether p qualifies its own process
521 	 * group; if so, adjust count for p's process group.
522 	 */
523 	mysession = pgrp->pg_session;
524 	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
525 	    hispgrp->pg_session == mysession)
526 		pgadjustjobc(pgrp, entering);
527 
528 	/*
529 	 * Check this process' children to see whether they qualify
530 	 * their process groups; if so, adjust counts for children's
531 	 * process groups.
532 	 */
533 	LIST_FOREACH(p, &p->p_children, p_sibling) {
534 		hispgrp = p->p_pgrp;
535 		if (hispgrp == pgrp ||
536 		    hispgrp->pg_session != mysession)
537 			continue;
538 		PROC_LOCK(p);
539 		if (p->p_state == PRS_ZOMBIE) {
540 			PROC_UNLOCK(p);
541 			continue;
542 		}
543 		PROC_UNLOCK(p);
544 		pgadjustjobc(hispgrp, entering);
545 	}
546 }
547 
548 /*
549  * A process group has become orphaned;
550  * if there are any stopped processes in the group,
551  * hang-up all process in that group.
552  */
553 static void
554 orphanpg(pg)
555 	struct pgrp *pg;
556 {
557 	register struct proc *p;
558 
559 	PGRP_LOCK_ASSERT(pg, MA_OWNED);
560 
561 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
562 		PROC_LOCK(p);
563 		if (P_SHOULDSTOP(p)) {
564 			PROC_UNLOCK(p);
565 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
566 				PROC_LOCK(p);
567 				psignal(p, SIGHUP);
568 				psignal(p, SIGCONT);
569 				PROC_UNLOCK(p);
570 			}
571 			return;
572 		}
573 		PROC_UNLOCK(p);
574 	}
575 }
576 
577 #include "opt_ddb.h"
578 #ifdef DDB
579 #include <ddb/ddb.h>
580 
581 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
582 {
583 	register struct pgrp *pgrp;
584 	register struct proc *p;
585 	register int i;
586 
587 	for (i = 0; i <= pgrphash; i++) {
588 		if (!LIST_EMPTY(&pgrphashtbl[i])) {
589 			printf("\tindx %d\n", i);
590 			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
591 				printf(
592 			"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
593 				    (void *)pgrp, (long)pgrp->pg_id,
594 				    (void *)pgrp->pg_session,
595 				    pgrp->pg_session->s_count,
596 				    (void *)LIST_FIRST(&pgrp->pg_members));
597 				LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
598 					printf("\t\tpid %ld addr %p pgrp %p\n",
599 					    (long)p->p_pid, (void *)p,
600 					    (void *)p->p_pgrp);
601 				}
602 			}
603 		}
604 	}
605 }
606 #endif /* DDB */
607 void
608 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp);
609 
610 /*
611  * Fill in a kinfo_proc structure for the specified process.
612  * Must be called with the target process locked.
613  */
614 void
615 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
616 {
617 	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp);
618 }
619 
620 void
621 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp)
622 {
623 	struct proc *p;
624 	struct thread *td0;
625 	struct ksegrp *kg;
626 	struct tty *tp;
627 	struct session *sp;
628 	struct timeval tv;
629 	struct sigacts *ps;
630 
631 	p = td->td_proc;
632 
633 	bzero(kp, sizeof(*kp));
634 
635 	kp->ki_structsize = sizeof(*kp);
636 	kp->ki_paddr = p;
637 	PROC_LOCK_ASSERT(p, MA_OWNED);
638 	kp->ki_addr =/* p->p_addr; */0; /* XXXKSE */
639 	kp->ki_args = p->p_args;
640 	kp->ki_textvp = p->p_textvp;
641 #ifdef KTRACE
642 	kp->ki_tracep = p->p_tracevp;
643 	mtx_lock(&ktrace_mtx);
644 	kp->ki_traceflag = p->p_traceflag;
645 	mtx_unlock(&ktrace_mtx);
646 #endif
647 	kp->ki_fd = p->p_fd;
648 	kp->ki_vmspace = p->p_vmspace;
649 	if (p->p_ucred) {
650 		kp->ki_uid = p->p_ucred->cr_uid;
651 		kp->ki_ruid = p->p_ucred->cr_ruid;
652 		kp->ki_svuid = p->p_ucred->cr_svuid;
653 		/* XXX bde doesn't like KI_NGROUPS */
654 		kp->ki_ngroups = min(p->p_ucred->cr_ngroups, KI_NGROUPS);
655 		bcopy(p->p_ucred->cr_groups, kp->ki_groups,
656 		    kp->ki_ngroups * sizeof(gid_t));
657 		kp->ki_rgid = p->p_ucred->cr_rgid;
658 		kp->ki_svgid = p->p_ucred->cr_svgid;
659 	}
660 	if (p->p_sigacts) {
661 		ps = p->p_sigacts;
662 		mtx_lock(&ps->ps_mtx);
663 		kp->ki_sigignore = ps->ps_sigignore;
664 		kp->ki_sigcatch = ps->ps_sigcatch;
665 		mtx_unlock(&ps->ps_mtx);
666 	}
667 	mtx_lock_spin(&sched_lock);
668 	if (p->p_state != PRS_NEW &&
669 	    p->p_state != PRS_ZOMBIE &&
670 	    p->p_vmspace != NULL) {
671 		struct vmspace *vm = p->p_vmspace;
672 
673 		kp->ki_size = vm->vm_map.size;
674 		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
675 		if (p->p_sflag & PS_INMEM)
676 			kp->ki_rssize += UAREA_PAGES;
677 		FOREACH_THREAD_IN_PROC(p, td0) {
678 			if (!TD_IS_SWAPPED(td0))
679 				kp->ki_rssize += td0->td_kstack_pages;
680 			if (td0->td_altkstack_obj != NULL)
681 				kp->ki_rssize += td0->td_altkstack_pages;
682 		}
683 		kp->ki_swrss = vm->vm_swrss;
684 		kp->ki_tsize = vm->vm_tsize;
685 		kp->ki_dsize = vm->vm_dsize;
686 		kp->ki_ssize = vm->vm_ssize;
687 	}
688 	if ((p->p_sflag & PS_INMEM) && p->p_stats) {
689 		kp->ki_start = p->p_stats->p_start;
690 		timevaladd(&kp->ki_start, &boottime);
691 		kp->ki_rusage = p->p_stats->p_ru;
692 		calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime,
693 		    NULL);
694 		kp->ki_childstime = p->p_stats->p_cru.ru_stime;
695 		kp->ki_childutime = p->p_stats->p_cru.ru_utime;
696 		/* Some callers want child-times in a single value */
697 		kp->ki_childtime = kp->ki_childstime;
698 		timevaladd(&kp->ki_childtime, &kp->ki_childutime);
699 	}
700 	kp->ki_sflag = p->p_sflag;
701 	kp->ki_swtime = p->p_swtime;
702 	kp->ki_pid = p->p_pid;
703 	kp->ki_nice = p->p_nice;
704 	bintime2timeval(&p->p_runtime, &tv);
705 	kp->ki_runtime = tv.tv_sec * (u_int64_t)1000000 + tv.tv_usec;
706 	if (p->p_state != PRS_ZOMBIE) {
707 #if 0
708 		if (td == NULL) {
709 			/* XXXKSE: This should never happen. */
710 			printf("fill_kinfo_proc(): pid %d has no threads!\n",
711 			    p->p_pid);
712 			mtx_unlock_spin(&sched_lock);
713 			return;
714 		}
715 #endif
716 		if (td->td_wmesg != NULL) {
717 			strlcpy(kp->ki_wmesg, td->td_wmesg,
718 			    sizeof(kp->ki_wmesg));
719 		}
720 		if (TD_ON_LOCK(td)) {
721 			kp->ki_kiflag |= KI_LOCKBLOCK;
722 			strlcpy(kp->ki_lockname, td->td_lockname,
723 			    sizeof(kp->ki_lockname));
724 		}
725 
726 		if (p->p_state == PRS_NORMAL) { /*  XXXKSE very approximate */
727 			if (TD_ON_RUNQ(td) ||
728 			    TD_CAN_RUN(td) ||
729 			    TD_IS_RUNNING(td)) {
730 				kp->ki_stat = SRUN;
731 			} else if (P_SHOULDSTOP(p)) {
732 				kp->ki_stat = SSTOP;
733 			} else if (TD_IS_SLEEPING(td)) {
734 				kp->ki_stat = SSLEEP;
735 			} else if (TD_ON_LOCK(td)) {
736 				kp->ki_stat = SLOCK;
737 			} else {
738 				kp->ki_stat = SWAIT;
739 			}
740 		} else {
741 			kp->ki_stat = SIDL;
742 		}
743 
744 		kg = td->td_ksegrp;
745 
746 		/* things in the KSE GROUP */
747 		kp->ki_estcpu = kg->kg_estcpu;
748 		kp->ki_slptime = kg->kg_slptime;
749 		kp->ki_pri.pri_user = kg->kg_user_pri;
750 		kp->ki_pri.pri_class = kg->kg_pri_class;
751 
752 		/* Things in the thread */
753 		kp->ki_wchan = td->td_wchan;
754 		kp->ki_pri.pri_level = td->td_priority;
755 		kp->ki_pri.pri_native = td->td_base_pri;
756 		kp->ki_lastcpu = td->td_lastcpu;
757 		kp->ki_oncpu = td->td_oncpu;
758 		kp->ki_tdflags = td->td_flags;
759 		kp->ki_tid = td->td_tid;
760 		kp->ki_numthreads = p->p_numthreads;
761 		kp->ki_pcb = td->td_pcb;
762 		kp->ki_kstack = (void *)td->td_kstack;
763 		kp->ki_pctcpu = sched_pctcpu(td);
764 
765 		/* We can't get this anymore but ps etc never used it anyway. */
766 		kp->ki_rqindex = 0;
767 
768 	} else {
769 		kp->ki_stat = SZOMB;
770 	}
771 	mtx_unlock_spin(&sched_lock);
772 	sp = NULL;
773 	tp = NULL;
774 	if (p->p_pgrp) {
775 		kp->ki_pgid = p->p_pgrp->pg_id;
776 		kp->ki_jobc = p->p_pgrp->pg_jobc;
777 		sp = p->p_pgrp->pg_session;
778 
779 		if (sp != NULL) {
780 			kp->ki_sid = sp->s_sid;
781 			SESS_LOCK(sp);
782 			strlcpy(kp->ki_login, sp->s_login,
783 			    sizeof(kp->ki_login));
784 			if (sp->s_ttyvp)
785 				kp->ki_kiflag |= KI_CTTY;
786 			if (SESS_LEADER(p))
787 				kp->ki_kiflag |= KI_SLEADER;
788 			tp = sp->s_ttyp;
789 			SESS_UNLOCK(sp);
790 		}
791 	}
792 	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
793 		kp->ki_tdev = dev2udev(tp->t_dev);
794 		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
795 		if (tp->t_session)
796 			kp->ki_tsid = tp->t_session->s_sid;
797 	} else
798 		kp->ki_tdev = NODEV;
799 	if (p->p_comm[0] != '\0') {
800 		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
801 		strlcpy(kp->ki_ocomm, p->p_comm, sizeof(kp->ki_ocomm));
802 	}
803 	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
804 	    p->p_sysent->sv_name[0] != '\0')
805 		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
806 	kp->ki_siglist = p->p_siglist;
807         SIGSETOR(kp->ki_siglist, td->td_siglist);
808 	kp->ki_sigmask = td->td_sigmask;
809 	kp->ki_xstat = p->p_xstat;
810 	kp->ki_acflag = p->p_acflag;
811 	kp->ki_flag = p->p_flag;
812 	/* If jailed(p->p_ucred), emulate the old P_JAILED flag. */
813 	if (jailed(p->p_ucred))
814 		kp->ki_flag |= P_JAILED;
815 	kp->ki_lock = p->p_lock;
816 	if (p->p_pptr)
817 		kp->ki_ppid = p->p_pptr->p_pid;
818 }
819 
820 /*
821  * Locate a zombie process by number
822  */
823 struct proc *
824 zpfind(pid_t pid)
825 {
826 	struct proc *p;
827 
828 	sx_slock(&allproc_lock);
829 	LIST_FOREACH(p, &zombproc, p_list)
830 		if (p->p_pid == pid) {
831 			PROC_LOCK(p);
832 			break;
833 		}
834 	sx_sunlock(&allproc_lock);
835 	return (p);
836 }
837 
838 #define KERN_PROC_ZOMBMASK	0x3
839 #define KERN_PROC_NOTHREADS	0x4
840 
841 /*
842  * Must be called with the process locked and will return with it unlocked.
843  */
844 static int
845 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
846 {
847 	struct thread *td;
848 	struct kinfo_proc kinfo_proc;
849 	int error = 0;
850 	struct proc *np;
851 	pid_t pid = p->p_pid;
852 
853 	PROC_LOCK_ASSERT(p, MA_OWNED);
854 
855 	if (flags & KERN_PROC_NOTHREADS) {
856 		fill_kinfo_proc(p, &kinfo_proc);
857 		PROC_UNLOCK(p);
858 		error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc,
859 				   sizeof(kinfo_proc));
860 		PROC_LOCK(p);
861 	} else {
862 		_PHOLD(p);
863 		FOREACH_THREAD_IN_PROC(p, td) {
864 			fill_kinfo_thread(td, &kinfo_proc);
865 			PROC_UNLOCK(p);
866 			error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc,
867 					   sizeof(kinfo_proc));
868 			PROC_LOCK(p);
869 			if (error)
870 				break;
871 		}
872 		_PRELE(p);
873 	}
874 	PROC_UNLOCK(p);
875 	if (error)
876 		return (error);
877 	if (flags & KERN_PROC_ZOMBMASK)
878 		np = zpfind(pid);
879 	else {
880 		if (pid == 0)
881 			return (0);
882 		np = pfind(pid);
883 	}
884 	if (np == NULL)
885 		return EAGAIN;
886 	if (np != p) {
887 		PROC_UNLOCK(np);
888 		return EAGAIN;
889 	}
890 	PROC_UNLOCK(np);
891 	return (0);
892 }
893 
894 static int
895 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
896 {
897 	int *name = (int*) arg1;
898 	u_int namelen = arg2;
899 	struct proc *p;
900 	int flags, doingzomb, oid_number;
901 	int error = 0;
902 
903 	oid_number = oidp->oid_number;
904 	if (oid_number != KERN_PROC_ALL &&
905 	    (oid_number & KERN_PROC_INC_THREAD) == 0)
906 		flags = KERN_PROC_NOTHREADS;
907 	else {
908 		flags = 0;
909 		oid_number &= ~KERN_PROC_INC_THREAD;
910 	}
911 	if (oid_number == KERN_PROC_PID) {
912 		if (namelen != 1)
913 			return (EINVAL);
914 		p = pfind((pid_t)name[0]);
915 		if (!p)
916 			return (ESRCH);
917 		if ((error = p_cansee(curthread, p))) {
918 			PROC_UNLOCK(p);
919 			return (error);
920 		}
921 		error = sysctl_out_proc(p, req, flags);
922 		return (error);
923 	}
924 
925 	switch (oid_number) {
926 	case KERN_PROC_ALL:
927 		if (namelen != 0)
928 			return (EINVAL);
929 		break;
930 	case KERN_PROC_PROC:
931 		if (namelen != 0 && namelen != 1)
932 			return (EINVAL);
933 		break;
934 	default:
935 		if (namelen != 1)
936 			return (EINVAL);
937 		break;
938 	}
939 
940 	if (!req->oldptr) {
941 		/* overestimate by 5 procs */
942 		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
943 		if (error)
944 			return (error);
945 	}
946 	error = sysctl_wire_old_buffer(req, 0);
947 	if (error != 0)
948 		return (error);
949 	sx_slock(&allproc_lock);
950 	for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
951 		if (!doingzomb)
952 			p = LIST_FIRST(&allproc);
953 		else
954 			p = LIST_FIRST(&zombproc);
955 		for (; p != 0; p = LIST_NEXT(p, p_list)) {
956 			/*
957 			 * Skip embryonic processes.
958 			 */
959 			mtx_lock_spin(&sched_lock);
960 			if (p->p_state == PRS_NEW) {
961 				mtx_unlock_spin(&sched_lock);
962 				continue;
963 			}
964 			mtx_unlock_spin(&sched_lock);
965 			PROC_LOCK(p);
966 			/*
967 			 * Show a user only appropriate processes.
968 			 */
969 			if (p_cansee(curthread, p)) {
970 				PROC_UNLOCK(p);
971 				continue;
972 			}
973 			/*
974 			 * TODO - make more efficient (see notes below).
975 			 * do by session.
976 			 */
977 			switch (oid_number) {
978 
979 			case KERN_PROC_GID:
980 				if (p->p_ucred == NULL ||
981 				    p->p_ucred->cr_gid != (gid_t)name[0]) {
982 					PROC_UNLOCK(p);
983 					continue;
984 				}
985 				break;
986 
987 			case KERN_PROC_PGRP:
988 				/* could do this by traversing pgrp */
989 				if (p->p_pgrp == NULL ||
990 				    p->p_pgrp->pg_id != (pid_t)name[0]) {
991 					PROC_UNLOCK(p);
992 					continue;
993 				}
994 				break;
995 
996 			case KERN_PROC_RGID:
997 				if (p->p_ucred == NULL ||
998 				    p->p_ucred->cr_rgid != (gid_t)name[0]) {
999 					PROC_UNLOCK(p);
1000 					continue;
1001 				}
1002 				break;
1003 
1004 			case KERN_PROC_SESSION:
1005 				if (p->p_session == NULL ||
1006 				    p->p_session->s_sid != (pid_t)name[0]) {
1007 					PROC_UNLOCK(p);
1008 					continue;
1009 				}
1010 				break;
1011 
1012 			case KERN_PROC_TTY:
1013 				if ((p->p_flag & P_CONTROLT) == 0 ||
1014 				    p->p_session == NULL) {
1015 					PROC_UNLOCK(p);
1016 					continue;
1017 				}
1018 				SESS_LOCK(p->p_session);
1019 				if (p->p_session->s_ttyp == NULL ||
1020 				    dev2udev(p->p_session->s_ttyp->t_dev) !=
1021 				    (dev_t)name[0]) {
1022 					SESS_UNLOCK(p->p_session);
1023 					PROC_UNLOCK(p);
1024 					continue;
1025 				}
1026 				SESS_UNLOCK(p->p_session);
1027 				break;
1028 
1029 			case KERN_PROC_UID:
1030 				if (p->p_ucred == NULL ||
1031 				    p->p_ucred->cr_uid != (uid_t)name[0]) {
1032 					PROC_UNLOCK(p);
1033 					continue;
1034 				}
1035 				break;
1036 
1037 			case KERN_PROC_RUID:
1038 				if (p->p_ucred == NULL ||
1039 				    p->p_ucred->cr_ruid != (uid_t)name[0]) {
1040 					PROC_UNLOCK(p);
1041 					continue;
1042 				}
1043 				break;
1044 
1045 			case KERN_PROC_PROC:
1046 				break;
1047 
1048 			default:
1049 				break;
1050 
1051 			}
1052 
1053 			error = sysctl_out_proc(p, req, flags | doingzomb);
1054 			if (error) {
1055 				sx_sunlock(&allproc_lock);
1056 				return (error);
1057 			}
1058 		}
1059 	}
1060 	sx_sunlock(&allproc_lock);
1061 	return (0);
1062 }
1063 
1064 struct pargs *
1065 pargs_alloc(int len)
1066 {
1067 	struct pargs *pa;
1068 
1069 	MALLOC(pa, struct pargs *, sizeof(struct pargs) + len, M_PARGS,
1070 		M_WAITOK);
1071 	pa->ar_ref = 1;
1072 	pa->ar_length = len;
1073 	return (pa);
1074 }
1075 
1076 void
1077 pargs_free(struct pargs *pa)
1078 {
1079 
1080 	FREE(pa, M_PARGS);
1081 }
1082 
1083 void
1084 pargs_hold(struct pargs *pa)
1085 {
1086 
1087 	if (pa == NULL)
1088 		return;
1089 	PARGS_LOCK(pa);
1090 	pa->ar_ref++;
1091 	PARGS_UNLOCK(pa);
1092 }
1093 
1094 void
1095 pargs_drop(struct pargs *pa)
1096 {
1097 
1098 	if (pa == NULL)
1099 		return;
1100 	PARGS_LOCK(pa);
1101 	if (--pa->ar_ref == 0) {
1102 		PARGS_UNLOCK(pa);
1103 		pargs_free(pa);
1104 	} else
1105 		PARGS_UNLOCK(pa);
1106 }
1107 
1108 /*
1109  * This sysctl allows a process to retrieve the argument list or process
1110  * title for another process without groping around in the address space
1111  * of the other process.  It also allow a process to set its own "process
1112  * title to a string of its own choice.
1113  */
1114 static int
1115 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1116 {
1117 	int *name = (int*) arg1;
1118 	u_int namelen = arg2;
1119 	struct pargs *newpa, *pa;
1120 	struct proc *p;
1121 	int error = 0;
1122 
1123 	if (namelen != 1)
1124 		return (EINVAL);
1125 
1126 	p = pfind((pid_t)name[0]);
1127 	if (!p)
1128 		return (ESRCH);
1129 
1130 	if ((error = p_cansee(curthread, p)) != 0) {
1131 		PROC_UNLOCK(p);
1132 		return (error);
1133 	}
1134 
1135 	if (req->newptr && curproc != p) {
1136 		PROC_UNLOCK(p);
1137 		return (EPERM);
1138 	}
1139 
1140 	pa = p->p_args;
1141 	pargs_hold(pa);
1142 	PROC_UNLOCK(p);
1143 	if (req->oldptr != NULL && pa != NULL)
1144 		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1145 	pargs_drop(pa);
1146 	if (error != 0 || req->newptr == NULL)
1147 		return (error);
1148 
1149 	if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
1150 		return (ENOMEM);
1151 	newpa = pargs_alloc(req->newlen);
1152 	error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
1153 	if (error != 0) {
1154 		pargs_free(newpa);
1155 		return (error);
1156 	}
1157 	PROC_LOCK(p);
1158 	pa = p->p_args;
1159 	p->p_args = newpa;
1160 	PROC_UNLOCK(p);
1161 	pargs_drop(pa);
1162 	return (0);
1163 }
1164 
1165 static int
1166 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
1167 {
1168 	struct proc *p;
1169 	char *sv_name;
1170 	int *name;
1171 	int namelen;
1172 	int error;
1173 
1174 	namelen = arg2;
1175 	if (namelen != 1)
1176 		return (EINVAL);
1177 
1178 	name = (int *)arg1;
1179 	if ((p = pfind((pid_t)name[0])) == NULL)
1180 		return (ESRCH);
1181 	if ((error = p_cansee(curthread, p))) {
1182 		PROC_UNLOCK(p);
1183 		return (error);
1184 	}
1185 	sv_name = p->p_sysent->sv_name;
1186 	PROC_UNLOCK(p);
1187 	return (sysctl_handle_string(oidp, sv_name, 0, req));
1188 }
1189 
1190 
1191 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
1192 
1193 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT,
1194 	0, 0, sysctl_kern_proc, "S,proc", "Return entire process table");
1195 
1196 SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD,
1197 	sysctl_kern_proc, "Process table");
1198 
1199 SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD,
1200 	sysctl_kern_proc, "Process table");
1201 
1202 SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD,
1203 	sysctl_kern_proc, "Process table");
1204 
1205 SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD,
1206 	sysctl_kern_proc, "Process table");
1207 
1208 SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD,
1209 	sysctl_kern_proc, "Process table");
1210 
1211 SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD,
1212 	sysctl_kern_proc, "Process table");
1213 
1214 SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD,
1215 	sysctl_kern_proc, "Process table");
1216 
1217 SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD,
1218 	sysctl_kern_proc, "Process table");
1219 
1220 SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD,
1221 	sysctl_kern_proc, "Return process table, no threads");
1222 
1223 SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_ANYBODY,
1224 	sysctl_kern_proc_args, "Process argument list");
1225 
1226 SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD,
1227 	sysctl_kern_proc_sv_name, "Process syscall vector name (ABI type)");
1228 
1229 SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
1230 	CTLFLAG_RD, sysctl_kern_proc, "Process table");
1231 
1232 SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
1233 	CTLFLAG_RD, sysctl_kern_proc, "Process table");
1234 
1235 SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
1236 	CTLFLAG_RD, sysctl_kern_proc, "Process table");
1237 
1238 SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), sid_td,
1239 	CTLFLAG_RD, sysctl_kern_proc, "Process table");
1240 
1241 SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
1242 	CTLFLAG_RD, sysctl_kern_proc, "Process table");
1243 
1244 SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
1245 	CTLFLAG_RD, sysctl_kern_proc, "Process table");
1246 
1247 SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
1248 	CTLFLAG_RD, sysctl_kern_proc, "Process table");
1249 
1250 SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
1251 	CTLFLAG_RD, sysctl_kern_proc, "Process table");
1252 
1253 SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
1254 	CTLFLAG_RD, sysctl_kern_proc, "Return process table, no threads");
1255