1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 #include "opt_ddb.h" 34 #include "opt_ktrace.h" 35 #include "opt_kstack_pages.h" 36 #include "opt_stack.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/bitstring.h> 41 #include <sys/elf.h> 42 #include <sys/eventhandler.h> 43 #include <sys/exec.h> 44 #include <sys/fcntl.h> 45 #include <sys/jail.h> 46 #include <sys/kernel.h> 47 #include <sys/limits.h> 48 #include <sys/lock.h> 49 #include <sys/loginclass.h> 50 #include <sys/malloc.h> 51 #include <sys/mman.h> 52 #include <sys/mount.h> 53 #include <sys/mutex.h> 54 #include <sys/namei.h> 55 #include <sys/proc.h> 56 #include <sys/ptrace.h> 57 #include <sys/refcount.h> 58 #include <sys/resourcevar.h> 59 #include <sys/rwlock.h> 60 #include <sys/sbuf.h> 61 #include <sys/sysent.h> 62 #include <sys/sched.h> 63 #include <sys/smp.h> 64 #include <sys/stack.h> 65 #include <sys/stat.h> 66 #include <sys/dtrace_bsd.h> 67 #include <sys/sysctl.h> 68 #include <sys/filedesc.h> 69 #include <sys/tty.h> 70 #include <sys/signalvar.h> 71 #include <sys/sdt.h> 72 #include <sys/sx.h> 73 #include <sys/user.h> 74 #include <sys/vnode.h> 75 #include <sys/wait.h> 76 #ifdef KTRACE 77 #include <sys/ktrace.h> 78 #endif 79 80 #ifdef DDB 81 #include <ddb/ddb.h> 82 #endif 83 84 #include <vm/vm.h> 85 #include <vm/vm_param.h> 86 #include <vm/vm_extern.h> 87 #include <vm/pmap.h> 88 #include <vm/vm_map.h> 89 #include <vm/vm_object.h> 90 #include <vm/vm_page.h> 91 #include <vm/uma.h> 92 93 #include <fs/devfs/devfs.h> 94 95 #ifdef COMPAT_FREEBSD32 96 #include <compat/freebsd32/freebsd32.h> 97 #include <compat/freebsd32/freebsd32_util.h> 98 #endif 99 100 SDT_PROVIDER_DEFINE(proc); 101 102 MALLOC_DEFINE(M_SESSION, "session", "session header"); 103 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 104 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 105 106 static void doenterpgrp(struct proc *, struct pgrp *); 107 static void orphanpg(struct pgrp *pg); 108 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 109 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 110 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 111 int preferthread); 112 static void pgdelete(struct pgrp *); 113 static int pgrp_init(void *mem, int size, int flags); 114 static int proc_ctor(void *mem, int size, void *arg, int flags); 115 static void proc_dtor(void *mem, int size, void *arg); 116 static int proc_init(void *mem, int size, int flags); 117 static void proc_fini(void *mem, int size); 118 static void pargs_free(struct pargs *pa); 119 120 /* 121 * Other process lists 122 */ 123 struct pidhashhead *pidhashtbl = NULL; 124 struct sx *pidhashtbl_lock; 125 u_long pidhash; 126 u_long pidhashlock; 127 struct pgrphashhead *pgrphashtbl; 128 u_long pgrphash; 129 struct proclist allproc = LIST_HEAD_INITIALIZER(allproc); 130 struct sx __exclusive_cache_line allproc_lock; 131 struct sx __exclusive_cache_line proctree_lock; 132 struct mtx __exclusive_cache_line ppeers_lock; 133 struct mtx __exclusive_cache_line procid_lock; 134 uma_zone_t proc_zone; 135 uma_zone_t pgrp_zone; 136 137 /* 138 * The offset of various fields in struct proc and struct thread. 139 * These are used by kernel debuggers to enumerate kernel threads and 140 * processes. 141 */ 142 const int proc_off_p_pid = offsetof(struct proc, p_pid); 143 const int proc_off_p_comm = offsetof(struct proc, p_comm); 144 const int proc_off_p_list = offsetof(struct proc, p_list); 145 const int proc_off_p_hash = offsetof(struct proc, p_hash); 146 const int proc_off_p_threads = offsetof(struct proc, p_threads); 147 const int thread_off_td_tid = offsetof(struct thread, td_tid); 148 const int thread_off_td_name = offsetof(struct thread, td_name); 149 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu); 150 const int thread_off_td_pcb = offsetof(struct thread, td_pcb); 151 const int thread_off_td_plist = offsetof(struct thread, td_plist); 152 153 EVENTHANDLER_LIST_DEFINE(process_ctor); 154 EVENTHANDLER_LIST_DEFINE(process_dtor); 155 EVENTHANDLER_LIST_DEFINE(process_init); 156 EVENTHANDLER_LIST_DEFINE(process_fini); 157 EVENTHANDLER_LIST_DEFINE(process_exit); 158 EVENTHANDLER_LIST_DEFINE(process_fork); 159 EVENTHANDLER_LIST_DEFINE(process_exec); 160 161 int kstack_pages = KSTACK_PAGES; 162 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 163 &kstack_pages, 0, 164 "Kernel stack size in pages"); 165 static int vmmap_skip_res_cnt = 0; 166 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW, 167 &vmmap_skip_res_cnt, 0, 168 "Skip calculation of the pages resident count in kern.proc.vmmap"); 169 170 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 171 #ifdef COMPAT_FREEBSD32 172 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 173 #endif 174 175 /* 176 * Initialize global process hashing structures. 177 */ 178 void 179 procinit(void) 180 { 181 u_long i; 182 183 sx_init(&allproc_lock, "allproc"); 184 sx_init(&proctree_lock, "proctree"); 185 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 186 mtx_init(&procid_lock, "procid", NULL, MTX_DEF); 187 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 188 pidhashlock = (pidhash + 1) / 64; 189 if (pidhashlock > 0) 190 pidhashlock--; 191 pidhashtbl_lock = malloc(sizeof(*pidhashtbl_lock) * (pidhashlock + 1), 192 M_PROC, M_WAITOK | M_ZERO); 193 for (i = 0; i < pidhashlock + 1; i++) 194 sx_init_flags(&pidhashtbl_lock[i], "pidhash", SX_DUPOK); 195 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 196 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 197 proc_ctor, proc_dtor, proc_init, proc_fini, 198 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 199 pgrp_zone = uma_zcreate("PGRP", sizeof(struct pgrp), NULL, NULL, 200 pgrp_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 201 uihashinit(); 202 } 203 204 /* 205 * Prepare a proc for use. 206 */ 207 static int 208 proc_ctor(void *mem, int size, void *arg, int flags) 209 { 210 struct proc *p; 211 struct thread *td; 212 213 p = (struct proc *)mem; 214 #ifdef KDTRACE_HOOKS 215 kdtrace_proc_ctor(p); 216 #endif 217 EVENTHANDLER_DIRECT_INVOKE(process_ctor, p); 218 td = FIRST_THREAD_IN_PROC(p); 219 if (td != NULL) { 220 /* Make sure all thread constructors are executed */ 221 EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td); 222 } 223 return (0); 224 } 225 226 /* 227 * Reclaim a proc after use. 228 */ 229 static void 230 proc_dtor(void *mem, int size, void *arg) 231 { 232 struct proc *p; 233 struct thread *td; 234 235 /* INVARIANTS checks go here */ 236 p = (struct proc *)mem; 237 td = FIRST_THREAD_IN_PROC(p); 238 if (td != NULL) { 239 #ifdef INVARIANTS 240 KASSERT((p->p_numthreads == 1), 241 ("bad number of threads in exiting process")); 242 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 243 #endif 244 /* Free all OSD associated to this thread. */ 245 osd_thread_exit(td); 246 ast_kclear(td); 247 248 /* Make sure all thread destructors are executed */ 249 EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td); 250 } 251 EVENTHANDLER_DIRECT_INVOKE(process_dtor, p); 252 #ifdef KDTRACE_HOOKS 253 kdtrace_proc_dtor(p); 254 #endif 255 if (p->p_ksi != NULL) 256 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 257 } 258 259 /* 260 * Initialize type-stable parts of a proc (when newly created). 261 */ 262 static int 263 proc_init(void *mem, int size, int flags) 264 { 265 struct proc *p; 266 267 p = (struct proc *)mem; 268 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW); 269 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW); 270 mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW); 271 mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW); 272 mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW); 273 cv_init(&p->p_pwait, "ppwait"); 274 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 275 EVENTHANDLER_DIRECT_INVOKE(process_init, p); 276 p->p_stats = pstats_alloc(); 277 p->p_pgrp = NULL; 278 TAILQ_INIT(&p->p_kqtim_stop); 279 return (0); 280 } 281 282 /* 283 * UMA should ensure that this function is never called. 284 * Freeing a proc structure would violate type stability. 285 */ 286 static void 287 proc_fini(void *mem, int size) 288 { 289 #ifdef notnow 290 struct proc *p; 291 292 p = (struct proc *)mem; 293 EVENTHANDLER_DIRECT_INVOKE(process_fini, p); 294 pstats_free(p->p_stats); 295 thread_free(FIRST_THREAD_IN_PROC(p)); 296 mtx_destroy(&p->p_mtx); 297 if (p->p_ksi != NULL) 298 ksiginfo_free(p->p_ksi); 299 #else 300 panic("proc reclaimed"); 301 #endif 302 } 303 304 static int 305 pgrp_init(void *mem, int size, int flags) 306 { 307 struct pgrp *pg; 308 309 pg = mem; 310 mtx_init(&pg->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 311 sx_init(&pg->pg_killsx, "killpg racer"); 312 return (0); 313 } 314 315 /* 316 * PID space management. 317 * 318 * These bitmaps are used by fork_findpid. 319 */ 320 bitstr_t bit_decl(proc_id_pidmap, PID_MAX); 321 bitstr_t bit_decl(proc_id_grpidmap, PID_MAX); 322 bitstr_t bit_decl(proc_id_sessidmap, PID_MAX); 323 bitstr_t bit_decl(proc_id_reapmap, PID_MAX); 324 325 static bitstr_t *proc_id_array[] = { 326 proc_id_pidmap, 327 proc_id_grpidmap, 328 proc_id_sessidmap, 329 proc_id_reapmap, 330 }; 331 332 void 333 proc_id_set(int type, pid_t id) 334 { 335 336 KASSERT(type >= 0 && type < nitems(proc_id_array), 337 ("invalid type %d\n", type)); 338 mtx_lock(&procid_lock); 339 KASSERT(bit_test(proc_id_array[type], id) == 0, 340 ("bit %d already set in %d\n", id, type)); 341 bit_set(proc_id_array[type], id); 342 mtx_unlock(&procid_lock); 343 } 344 345 void 346 proc_id_set_cond(int type, pid_t id) 347 { 348 349 KASSERT(type >= 0 && type < nitems(proc_id_array), 350 ("invalid type %d\n", type)); 351 if (bit_test(proc_id_array[type], id)) 352 return; 353 mtx_lock(&procid_lock); 354 bit_set(proc_id_array[type], id); 355 mtx_unlock(&procid_lock); 356 } 357 358 void 359 proc_id_clear(int type, pid_t id) 360 { 361 362 KASSERT(type >= 0 && type < nitems(proc_id_array), 363 ("invalid type %d\n", type)); 364 mtx_lock(&procid_lock); 365 KASSERT(bit_test(proc_id_array[type], id) != 0, 366 ("bit %d not set in %d\n", id, type)); 367 bit_clear(proc_id_array[type], id); 368 mtx_unlock(&procid_lock); 369 } 370 371 /* 372 * Is p an inferior of the current process? 373 */ 374 int 375 inferior(struct proc *p) 376 { 377 378 sx_assert(&proctree_lock, SX_LOCKED); 379 PROC_LOCK_ASSERT(p, MA_OWNED); 380 for (; p != curproc; p = proc_realparent(p)) { 381 if (p->p_pid == 0) 382 return (0); 383 } 384 return (1); 385 } 386 387 /* 388 * Shared lock all the pid hash lists. 389 */ 390 void 391 pidhash_slockall(void) 392 { 393 u_long i; 394 395 for (i = 0; i < pidhashlock + 1; i++) 396 sx_slock(&pidhashtbl_lock[i]); 397 } 398 399 /* 400 * Shared unlock all the pid hash lists. 401 */ 402 void 403 pidhash_sunlockall(void) 404 { 405 u_long i; 406 407 for (i = 0; i < pidhashlock + 1; i++) 408 sx_sunlock(&pidhashtbl_lock[i]); 409 } 410 411 /* 412 * Similar to pfind_any(), this function finds zombies. 413 */ 414 struct proc * 415 pfind_any_locked(pid_t pid) 416 { 417 struct proc *p; 418 419 sx_assert(PIDHASHLOCK(pid), SX_LOCKED); 420 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 421 if (p->p_pid == pid) { 422 PROC_LOCK(p); 423 if (p->p_state == PRS_NEW) { 424 PROC_UNLOCK(p); 425 p = NULL; 426 } 427 break; 428 } 429 } 430 return (p); 431 } 432 433 /* 434 * Locate a process by number. 435 * 436 * By not returning processes in the PRS_NEW state, we allow callers to avoid 437 * testing for that condition to avoid dereferencing p_ucred, et al. 438 */ 439 static __always_inline struct proc * 440 _pfind(pid_t pid, bool zombie) 441 { 442 struct proc *p; 443 444 p = curproc; 445 if (p->p_pid == pid) { 446 PROC_LOCK(p); 447 return (p); 448 } 449 sx_slock(PIDHASHLOCK(pid)); 450 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 451 if (p->p_pid == pid) { 452 PROC_LOCK(p); 453 if (p->p_state == PRS_NEW || 454 (!zombie && p->p_state == PRS_ZOMBIE)) { 455 PROC_UNLOCK(p); 456 p = NULL; 457 } 458 break; 459 } 460 } 461 sx_sunlock(PIDHASHLOCK(pid)); 462 return (p); 463 } 464 465 struct proc * 466 pfind(pid_t pid) 467 { 468 469 return (_pfind(pid, false)); 470 } 471 472 /* 473 * Same as pfind but allow zombies. 474 */ 475 struct proc * 476 pfind_any(pid_t pid) 477 { 478 479 return (_pfind(pid, true)); 480 } 481 482 /* 483 * Locate a process group by number. 484 * The caller must hold proctree_lock. 485 */ 486 struct pgrp * 487 pgfind(pid_t pgid) 488 { 489 struct pgrp *pgrp; 490 491 sx_assert(&proctree_lock, SX_LOCKED); 492 493 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 494 if (pgrp->pg_id == pgid) { 495 PGRP_LOCK(pgrp); 496 return (pgrp); 497 } 498 } 499 return (NULL); 500 } 501 502 /* 503 * Locate process and do additional manipulations, depending on flags. 504 */ 505 int 506 pget(pid_t pid, int flags, struct proc **pp) 507 { 508 struct proc *p; 509 struct thread *td1; 510 int error; 511 512 p = curproc; 513 if (p->p_pid == pid) { 514 PROC_LOCK(p); 515 } else { 516 p = NULL; 517 if (pid <= PID_MAX) { 518 if ((flags & PGET_NOTWEXIT) == 0) 519 p = pfind_any(pid); 520 else 521 p = pfind(pid); 522 } else if ((flags & PGET_NOTID) == 0) { 523 td1 = tdfind(pid, -1); 524 if (td1 != NULL) 525 p = td1->td_proc; 526 } 527 if (p == NULL) 528 return (ESRCH); 529 if ((flags & PGET_CANSEE) != 0) { 530 error = p_cansee(curthread, p); 531 if (error != 0) 532 goto errout; 533 } 534 } 535 if ((flags & PGET_CANDEBUG) != 0) { 536 error = p_candebug(curthread, p); 537 if (error != 0) 538 goto errout; 539 } 540 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 541 error = EPERM; 542 goto errout; 543 } 544 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 545 error = ESRCH; 546 goto errout; 547 } 548 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 549 /* 550 * XXXRW: Not clear ESRCH is the right error during proc 551 * execve(). 552 */ 553 error = ESRCH; 554 goto errout; 555 } 556 if ((flags & PGET_HOLD) != 0) { 557 _PHOLD(p); 558 PROC_UNLOCK(p); 559 } 560 *pp = p; 561 return (0); 562 errout: 563 PROC_UNLOCK(p); 564 return (error); 565 } 566 567 /* 568 * Create a new process group. 569 * pgid must be equal to the pid of p. 570 * Begin a new session if required. 571 */ 572 int 573 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess) 574 { 575 struct pgrp *old_pgrp; 576 577 sx_assert(&proctree_lock, SX_XLOCKED); 578 579 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 580 KASSERT(p->p_pid == pgid, 581 ("enterpgrp: new pgrp and pid != pgid")); 582 KASSERT(pgfind(pgid) == NULL, 583 ("enterpgrp: pgrp with pgid exists")); 584 KASSERT(!SESS_LEADER(p), 585 ("enterpgrp: session leader attempted setpgrp")); 586 587 old_pgrp = p->p_pgrp; 588 if (!sx_try_xlock(&old_pgrp->pg_killsx)) { 589 sx_xunlock(&proctree_lock); 590 sx_xlock(&old_pgrp->pg_killsx); 591 sx_xunlock(&old_pgrp->pg_killsx); 592 return (ERESTART); 593 } 594 MPASS(old_pgrp == p->p_pgrp); 595 596 if (sess != NULL) { 597 /* 598 * new session 599 */ 600 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 601 PROC_LOCK(p); 602 p->p_flag &= ~P_CONTROLT; 603 PROC_UNLOCK(p); 604 PGRP_LOCK(pgrp); 605 sess->s_leader = p; 606 sess->s_sid = p->p_pid; 607 proc_id_set(PROC_ID_SESSION, p->p_pid); 608 refcount_init(&sess->s_count, 1); 609 sess->s_ttyvp = NULL; 610 sess->s_ttydp = NULL; 611 sess->s_ttyp = NULL; 612 bcopy(p->p_session->s_login, sess->s_login, 613 sizeof(sess->s_login)); 614 pgrp->pg_session = sess; 615 KASSERT(p == curproc, 616 ("enterpgrp: mksession and p != curproc")); 617 } else { 618 pgrp->pg_session = p->p_session; 619 sess_hold(pgrp->pg_session); 620 PGRP_LOCK(pgrp); 621 } 622 pgrp->pg_id = pgid; 623 proc_id_set(PROC_ID_GROUP, p->p_pid); 624 LIST_INIT(&pgrp->pg_members); 625 pgrp->pg_flags = 0; 626 627 /* 628 * As we have an exclusive lock of proctree_lock, 629 * this should not deadlock. 630 */ 631 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 632 SLIST_INIT(&pgrp->pg_sigiolst); 633 PGRP_UNLOCK(pgrp); 634 635 doenterpgrp(p, pgrp); 636 637 sx_xunlock(&old_pgrp->pg_killsx); 638 return (0); 639 } 640 641 /* 642 * Move p to an existing process group 643 */ 644 int 645 enterthispgrp(struct proc *p, struct pgrp *pgrp) 646 { 647 struct pgrp *old_pgrp; 648 649 sx_assert(&proctree_lock, SX_XLOCKED); 650 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 651 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 652 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 653 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 654 KASSERT(pgrp->pg_session == p->p_session, 655 ("%s: pgrp's session %p, p->p_session %p proc %p\n", 656 __func__, pgrp->pg_session, p->p_session, p)); 657 KASSERT(pgrp != p->p_pgrp, 658 ("%s: p %p belongs to pgrp %p", __func__, p, pgrp)); 659 660 old_pgrp = p->p_pgrp; 661 if (!sx_try_xlock(&old_pgrp->pg_killsx)) { 662 sx_xunlock(&proctree_lock); 663 sx_xlock(&old_pgrp->pg_killsx); 664 sx_xunlock(&old_pgrp->pg_killsx); 665 return (ERESTART); 666 } 667 MPASS(old_pgrp == p->p_pgrp); 668 if (!sx_try_xlock(&pgrp->pg_killsx)) { 669 sx_xunlock(&old_pgrp->pg_killsx); 670 sx_xunlock(&proctree_lock); 671 sx_xlock(&pgrp->pg_killsx); 672 sx_xunlock(&pgrp->pg_killsx); 673 return (ERESTART); 674 } 675 676 doenterpgrp(p, pgrp); 677 678 sx_xunlock(&pgrp->pg_killsx); 679 sx_xunlock(&old_pgrp->pg_killsx); 680 return (0); 681 } 682 683 /* 684 * If true, any child of q which belongs to group pgrp, qualifies the 685 * process group pgrp as not orphaned. 686 */ 687 static bool 688 isjobproc(struct proc *q, struct pgrp *pgrp) 689 { 690 sx_assert(&proctree_lock, SX_LOCKED); 691 692 return (q->p_pgrp != pgrp && 693 q->p_pgrp->pg_session == pgrp->pg_session); 694 } 695 696 static struct proc * 697 jobc_reaper(struct proc *p) 698 { 699 struct proc *pp; 700 701 sx_assert(&proctree_lock, SA_LOCKED); 702 703 for (pp = p;;) { 704 pp = pp->p_reaper; 705 if (pp->p_reaper == pp || 706 (pp->p_treeflag & P_TREE_GRPEXITED) == 0) 707 return (pp); 708 } 709 } 710 711 static struct proc * 712 jobc_parent(struct proc *p, struct proc *p_exiting) 713 { 714 struct proc *pp; 715 716 sx_assert(&proctree_lock, SA_LOCKED); 717 718 pp = proc_realparent(p); 719 if (pp->p_pptr == NULL || pp == p_exiting || 720 (pp->p_treeflag & P_TREE_GRPEXITED) == 0) 721 return (pp); 722 return (jobc_reaper(pp)); 723 } 724 725 static int 726 pgrp_calc_jobc(struct pgrp *pgrp) 727 { 728 struct proc *q; 729 int cnt; 730 731 #ifdef INVARIANTS 732 if (!mtx_owned(&pgrp->pg_mtx)) 733 sx_assert(&proctree_lock, SA_LOCKED); 734 #endif 735 736 cnt = 0; 737 LIST_FOREACH(q, &pgrp->pg_members, p_pglist) { 738 if ((q->p_treeflag & P_TREE_GRPEXITED) != 0 || 739 q->p_pptr == NULL) 740 continue; 741 if (isjobproc(jobc_parent(q, NULL), pgrp)) 742 cnt++; 743 } 744 return (cnt); 745 } 746 747 /* 748 * Move p to a process group 749 */ 750 static void 751 doenterpgrp(struct proc *p, struct pgrp *pgrp) 752 { 753 struct pgrp *savepgrp; 754 struct proc *pp; 755 756 sx_assert(&proctree_lock, SX_XLOCKED); 757 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 758 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 759 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 760 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 761 762 savepgrp = p->p_pgrp; 763 pp = jobc_parent(p, NULL); 764 765 PGRP_LOCK(pgrp); 766 PGRP_LOCK(savepgrp); 767 if (isjobproc(pp, savepgrp) && pgrp_calc_jobc(savepgrp) == 1) 768 orphanpg(savepgrp); 769 PROC_LOCK(p); 770 LIST_REMOVE(p, p_pglist); 771 p->p_pgrp = pgrp; 772 PROC_UNLOCK(p); 773 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 774 if (isjobproc(pp, pgrp)) 775 pgrp->pg_flags &= ~PGRP_ORPHANED; 776 PGRP_UNLOCK(savepgrp); 777 PGRP_UNLOCK(pgrp); 778 if (LIST_EMPTY(&savepgrp->pg_members)) 779 pgdelete(savepgrp); 780 } 781 782 /* 783 * remove process from process group 784 */ 785 int 786 leavepgrp(struct proc *p) 787 { 788 struct pgrp *savepgrp; 789 790 sx_assert(&proctree_lock, SX_XLOCKED); 791 savepgrp = p->p_pgrp; 792 PGRP_LOCK(savepgrp); 793 PROC_LOCK(p); 794 LIST_REMOVE(p, p_pglist); 795 p->p_pgrp = NULL; 796 PROC_UNLOCK(p); 797 PGRP_UNLOCK(savepgrp); 798 if (LIST_EMPTY(&savepgrp->pg_members)) 799 pgdelete(savepgrp); 800 return (0); 801 } 802 803 /* 804 * delete a process group 805 */ 806 static void 807 pgdelete(struct pgrp *pgrp) 808 { 809 struct session *savesess; 810 struct tty *tp; 811 812 sx_assert(&proctree_lock, SX_XLOCKED); 813 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 814 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 815 816 /* 817 * Reset any sigio structures pointing to us as a result of 818 * F_SETOWN with our pgid. The proctree lock ensures that 819 * new sigio structures will not be added after this point. 820 */ 821 funsetownlst(&pgrp->pg_sigiolst); 822 823 PGRP_LOCK(pgrp); 824 tp = pgrp->pg_session->s_ttyp; 825 LIST_REMOVE(pgrp, pg_hash); 826 savesess = pgrp->pg_session; 827 PGRP_UNLOCK(pgrp); 828 829 /* Remove the reference to the pgrp before deallocating it. */ 830 if (tp != NULL) { 831 tty_lock(tp); 832 tty_rel_pgrp(tp, pgrp); 833 } 834 835 proc_id_clear(PROC_ID_GROUP, pgrp->pg_id); 836 uma_zfree(pgrp_zone, pgrp); 837 sess_release(savesess); 838 } 839 840 841 static void 842 fixjobc_kill(struct proc *p) 843 { 844 struct proc *q; 845 struct pgrp *pgrp; 846 847 sx_assert(&proctree_lock, SX_LOCKED); 848 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 849 pgrp = p->p_pgrp; 850 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 851 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 852 853 /* 854 * p no longer affects process group orphanage for children. 855 * It is marked by the flag because p is only physically 856 * removed from its process group on wait(2). 857 */ 858 MPASS((p->p_treeflag & P_TREE_GRPEXITED) == 0); 859 p->p_treeflag |= P_TREE_GRPEXITED; 860 861 /* 862 * Check if exiting p orphans its own group. 863 */ 864 pgrp = p->p_pgrp; 865 if (isjobproc(jobc_parent(p, NULL), pgrp)) { 866 PGRP_LOCK(pgrp); 867 if (pgrp_calc_jobc(pgrp) == 0) 868 orphanpg(pgrp); 869 PGRP_UNLOCK(pgrp); 870 } 871 872 /* 873 * Check this process' children to see whether they qualify 874 * their process groups after reparenting to reaper. 875 */ 876 LIST_FOREACH(q, &p->p_children, p_sibling) { 877 pgrp = q->p_pgrp; 878 PGRP_LOCK(pgrp); 879 if (pgrp_calc_jobc(pgrp) == 0) { 880 /* 881 * We want to handle exactly the children that 882 * has p as realparent. Then, when calculating 883 * jobc_parent for children, we should ignore 884 * P_TREE_GRPEXITED flag already set on p. 885 */ 886 if (jobc_parent(q, p) == p && isjobproc(p, pgrp)) 887 orphanpg(pgrp); 888 } else 889 pgrp->pg_flags &= ~PGRP_ORPHANED; 890 PGRP_UNLOCK(pgrp); 891 } 892 LIST_FOREACH(q, &p->p_orphans, p_orphan) { 893 pgrp = q->p_pgrp; 894 PGRP_LOCK(pgrp); 895 if (pgrp_calc_jobc(pgrp) == 0) { 896 if (isjobproc(p, pgrp)) 897 orphanpg(pgrp); 898 } else 899 pgrp->pg_flags &= ~PGRP_ORPHANED; 900 PGRP_UNLOCK(pgrp); 901 } 902 } 903 904 void 905 killjobc(void) 906 { 907 struct session *sp; 908 struct tty *tp; 909 struct proc *p; 910 struct vnode *ttyvp; 911 912 p = curproc; 913 MPASS(p->p_flag & P_WEXIT); 914 sx_assert(&proctree_lock, SX_LOCKED); 915 916 if (SESS_LEADER(p)) { 917 sp = p->p_session; 918 919 /* 920 * s_ttyp is not zero'd; we use this to indicate that 921 * the session once had a controlling terminal. (for 922 * logging and informational purposes) 923 */ 924 SESS_LOCK(sp); 925 ttyvp = sp->s_ttyvp; 926 tp = sp->s_ttyp; 927 sp->s_ttyvp = NULL; 928 sp->s_ttydp = NULL; 929 sp->s_leader = NULL; 930 SESS_UNLOCK(sp); 931 932 /* 933 * Signal foreground pgrp and revoke access to 934 * controlling terminal if it has not been revoked 935 * already. 936 * 937 * Because the TTY may have been revoked in the mean 938 * time and could already have a new session associated 939 * with it, make sure we don't send a SIGHUP to a 940 * foreground process group that does not belong to this 941 * session. 942 */ 943 944 if (tp != NULL) { 945 tty_lock(tp); 946 if (tp->t_session == sp) 947 tty_signal_pgrp(tp, SIGHUP); 948 tty_unlock(tp); 949 } 950 951 if (ttyvp != NULL) { 952 sx_xunlock(&proctree_lock); 953 if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) { 954 VOP_REVOKE(ttyvp, REVOKEALL); 955 VOP_UNLOCK(ttyvp); 956 } 957 devfs_ctty_unref(ttyvp); 958 sx_xlock(&proctree_lock); 959 } 960 } 961 fixjobc_kill(p); 962 } 963 964 /* 965 * A process group has become orphaned, mark it as such for signal 966 * delivery code. If there are any stopped processes in the group, 967 * hang-up all process in that group. 968 */ 969 static void 970 orphanpg(struct pgrp *pg) 971 { 972 struct proc *p; 973 974 PGRP_LOCK_ASSERT(pg, MA_OWNED); 975 976 pg->pg_flags |= PGRP_ORPHANED; 977 978 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 979 PROC_LOCK(p); 980 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) { 981 PROC_UNLOCK(p); 982 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 983 PROC_LOCK(p); 984 kern_psignal(p, SIGHUP); 985 kern_psignal(p, SIGCONT); 986 PROC_UNLOCK(p); 987 } 988 return; 989 } 990 PROC_UNLOCK(p); 991 } 992 } 993 994 void 995 sess_hold(struct session *s) 996 { 997 998 refcount_acquire(&s->s_count); 999 } 1000 1001 void 1002 sess_release(struct session *s) 1003 { 1004 1005 if (refcount_release(&s->s_count)) { 1006 if (s->s_ttyp != NULL) { 1007 tty_lock(s->s_ttyp); 1008 tty_rel_sess(s->s_ttyp, s); 1009 } 1010 proc_id_clear(PROC_ID_SESSION, s->s_sid); 1011 mtx_destroy(&s->s_mtx); 1012 free(s, M_SESSION); 1013 } 1014 } 1015 1016 #ifdef DDB 1017 1018 static void 1019 db_print_pgrp_one(struct pgrp *pgrp, struct proc *p) 1020 { 1021 db_printf( 1022 " pid %d at %p pr %d pgrp %p e %d jc %d\n", 1023 p->p_pid, p, p->p_pptr == NULL ? -1 : p->p_pptr->p_pid, 1024 p->p_pgrp, (p->p_treeflag & P_TREE_GRPEXITED) != 0, 1025 p->p_pptr == NULL ? 0 : isjobproc(p->p_pptr, pgrp)); 1026 } 1027 1028 DB_SHOW_COMMAND_FLAGS(pgrpdump, pgrpdump, DB_CMD_MEMSAFE) 1029 { 1030 struct pgrp *pgrp; 1031 struct proc *p; 1032 int i; 1033 1034 for (i = 0; i <= pgrphash; i++) { 1035 if (!LIST_EMPTY(&pgrphashtbl[i])) { 1036 db_printf("indx %d\n", i); 1037 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 1038 db_printf( 1039 " pgrp %p, pgid %d, sess %p, sesscnt %d, mem %p\n", 1040 pgrp, (int)pgrp->pg_id, pgrp->pg_session, 1041 pgrp->pg_session->s_count, 1042 LIST_FIRST(&pgrp->pg_members)); 1043 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) 1044 db_print_pgrp_one(pgrp, p); 1045 } 1046 } 1047 } 1048 } 1049 #endif /* DDB */ 1050 1051 /* 1052 * Calculate the kinfo_proc members which contain process-wide 1053 * informations. 1054 * Must be called with the target process locked. 1055 */ 1056 static void 1057 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 1058 { 1059 struct thread *td; 1060 1061 PROC_LOCK_ASSERT(p, MA_OWNED); 1062 1063 kp->ki_estcpu = 0; 1064 kp->ki_pctcpu = 0; 1065 FOREACH_THREAD_IN_PROC(p, td) { 1066 thread_lock(td); 1067 kp->ki_pctcpu += sched_pctcpu(td); 1068 kp->ki_estcpu += sched_estcpu(td); 1069 thread_unlock(td); 1070 } 1071 } 1072 1073 /* 1074 * Fill in any information that is common to all threads in the process. 1075 * Must be called with the target process locked. 1076 */ 1077 static void 1078 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 1079 { 1080 struct thread *td0; 1081 struct ucred *cred; 1082 struct sigacts *ps; 1083 struct timeval boottime; 1084 1085 PROC_LOCK_ASSERT(p, MA_OWNED); 1086 1087 kp->ki_structsize = sizeof(*kp); 1088 kp->ki_paddr = p; 1089 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 1090 kp->ki_args = p->p_args; 1091 kp->ki_textvp = p->p_textvp; 1092 #ifdef KTRACE 1093 kp->ki_tracep = ktr_get_tracevp(p, false); 1094 kp->ki_traceflag = p->p_traceflag; 1095 #endif 1096 kp->ki_fd = p->p_fd; 1097 kp->ki_pd = p->p_pd; 1098 kp->ki_vmspace = p->p_vmspace; 1099 kp->ki_flag = p->p_flag; 1100 kp->ki_flag2 = p->p_flag2; 1101 cred = p->p_ucred; 1102 if (cred) { 1103 kp->ki_uid = cred->cr_uid; 1104 kp->ki_ruid = cred->cr_ruid; 1105 kp->ki_svuid = cred->cr_svuid; 1106 kp->ki_cr_flags = 0; 1107 if (cred->cr_flags & CRED_FLAG_CAPMODE) 1108 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 1109 /* XXX bde doesn't like KI_NGROUPS */ 1110 if (cred->cr_ngroups > KI_NGROUPS) { 1111 kp->ki_ngroups = KI_NGROUPS; 1112 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 1113 } else 1114 kp->ki_ngroups = cred->cr_ngroups; 1115 bcopy(cred->cr_groups, kp->ki_groups, 1116 kp->ki_ngroups * sizeof(gid_t)); 1117 kp->ki_rgid = cred->cr_rgid; 1118 kp->ki_svgid = cred->cr_svgid; 1119 /* If jailed(cred), emulate the old P_JAILED flag. */ 1120 if (jailed(cred)) { 1121 kp->ki_flag |= P_JAILED; 1122 /* If inside the jail, use 0 as a jail ID. */ 1123 if (cred->cr_prison != curthread->td_ucred->cr_prison) 1124 kp->ki_jid = cred->cr_prison->pr_id; 1125 } 1126 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 1127 sizeof(kp->ki_loginclass)); 1128 } 1129 ps = p->p_sigacts; 1130 if (ps) { 1131 mtx_lock(&ps->ps_mtx); 1132 kp->ki_sigignore = ps->ps_sigignore; 1133 kp->ki_sigcatch = ps->ps_sigcatch; 1134 mtx_unlock(&ps->ps_mtx); 1135 } 1136 if (p->p_state != PRS_NEW && 1137 p->p_state != PRS_ZOMBIE && 1138 p->p_vmspace != NULL) { 1139 struct vmspace *vm = p->p_vmspace; 1140 1141 kp->ki_size = vm->vm_map.size; 1142 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 1143 FOREACH_THREAD_IN_PROC(p, td0) { 1144 if (!TD_IS_SWAPPED(td0)) 1145 kp->ki_rssize += td0->td_kstack_pages; 1146 } 1147 kp->ki_swrss = vm->vm_swrss; 1148 kp->ki_tsize = vm->vm_tsize; 1149 kp->ki_dsize = vm->vm_dsize; 1150 kp->ki_ssize = vm->vm_ssize; 1151 } else if (p->p_state == PRS_ZOMBIE) 1152 kp->ki_stat = SZOMB; 1153 if (kp->ki_flag & P_INMEM) 1154 kp->ki_sflag = PS_INMEM; 1155 else 1156 kp->ki_sflag = 0; 1157 /* Calculate legacy swtime as seconds since 'swtick'. */ 1158 kp->ki_swtime = (ticks - p->p_swtick) / hz; 1159 kp->ki_pid = p->p_pid; 1160 kp->ki_nice = p->p_nice; 1161 kp->ki_fibnum = p->p_fibnum; 1162 kp->ki_start = p->p_stats->p_start; 1163 getboottime(&boottime); 1164 timevaladd(&kp->ki_start, &boottime); 1165 PROC_STATLOCK(p); 1166 rufetch(p, &kp->ki_rusage); 1167 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 1168 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 1169 PROC_STATUNLOCK(p); 1170 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 1171 /* Some callers want child times in a single value. */ 1172 kp->ki_childtime = kp->ki_childstime; 1173 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 1174 1175 FOREACH_THREAD_IN_PROC(p, td0) 1176 kp->ki_cow += td0->td_cow; 1177 1178 if (p->p_comm[0] != '\0') 1179 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 1180 if (p->p_sysent && p->p_sysent->sv_name != NULL && 1181 p->p_sysent->sv_name[0] != '\0') 1182 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 1183 kp->ki_siglist = p->p_siglist; 1184 kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig); 1185 kp->ki_acflag = p->p_acflag; 1186 kp->ki_lock = p->p_lock; 1187 if (p->p_pptr) { 1188 kp->ki_ppid = p->p_oppid; 1189 if (p->p_flag & P_TRACED) 1190 kp->ki_tracer = p->p_pptr->p_pid; 1191 } 1192 } 1193 1194 /* 1195 * Fill job-related process information. 1196 */ 1197 static void 1198 fill_kinfo_proc_pgrp(struct proc *p, struct kinfo_proc *kp) 1199 { 1200 struct tty *tp; 1201 struct session *sp; 1202 struct pgrp *pgrp; 1203 1204 sx_assert(&proctree_lock, SA_LOCKED); 1205 PROC_LOCK_ASSERT(p, MA_OWNED); 1206 1207 pgrp = p->p_pgrp; 1208 if (pgrp == NULL) 1209 return; 1210 1211 kp->ki_pgid = pgrp->pg_id; 1212 kp->ki_jobc = pgrp_calc_jobc(pgrp); 1213 1214 sp = pgrp->pg_session; 1215 tp = NULL; 1216 1217 if (sp != NULL) { 1218 kp->ki_sid = sp->s_sid; 1219 SESS_LOCK(sp); 1220 strlcpy(kp->ki_login, sp->s_login, sizeof(kp->ki_login)); 1221 if (sp->s_ttyvp) 1222 kp->ki_kiflag |= KI_CTTY; 1223 if (SESS_LEADER(p)) 1224 kp->ki_kiflag |= KI_SLEADER; 1225 tp = sp->s_ttyp; 1226 SESS_UNLOCK(sp); 1227 } 1228 1229 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 1230 kp->ki_tdev = tty_udev(tp); 1231 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1232 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 1233 if (tp->t_session) 1234 kp->ki_tsid = tp->t_session->s_sid; 1235 } else { 1236 kp->ki_tdev = NODEV; 1237 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1238 } 1239 } 1240 1241 /* 1242 * Fill in information that is thread specific. Must be called with 1243 * target process locked. If 'preferthread' is set, overwrite certain 1244 * process-related fields that are maintained for both threads and 1245 * processes. 1246 */ 1247 static void 1248 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 1249 { 1250 struct proc *p; 1251 1252 p = td->td_proc; 1253 kp->ki_tdaddr = td; 1254 PROC_LOCK_ASSERT(p, MA_OWNED); 1255 1256 if (preferthread) 1257 PROC_STATLOCK(p); 1258 thread_lock(td); 1259 if (td->td_wmesg != NULL) 1260 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 1261 else 1262 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 1263 if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >= 1264 sizeof(kp->ki_tdname)) { 1265 strlcpy(kp->ki_moretdname, 1266 td->td_name + sizeof(kp->ki_tdname) - 1, 1267 sizeof(kp->ki_moretdname)); 1268 } else { 1269 bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname)); 1270 } 1271 if (TD_ON_LOCK(td)) { 1272 kp->ki_kiflag |= KI_LOCKBLOCK; 1273 strlcpy(kp->ki_lockname, td->td_lockname, 1274 sizeof(kp->ki_lockname)); 1275 } else { 1276 kp->ki_kiflag &= ~KI_LOCKBLOCK; 1277 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 1278 } 1279 1280 if (p->p_state == PRS_NORMAL) { /* approximate. */ 1281 if (TD_ON_RUNQ(td) || 1282 TD_CAN_RUN(td) || 1283 TD_IS_RUNNING(td)) { 1284 kp->ki_stat = SRUN; 1285 } else if (P_SHOULDSTOP(p)) { 1286 kp->ki_stat = SSTOP; 1287 } else if (TD_IS_SLEEPING(td)) { 1288 kp->ki_stat = SSLEEP; 1289 } else if (TD_ON_LOCK(td)) { 1290 kp->ki_stat = SLOCK; 1291 } else { 1292 kp->ki_stat = SWAIT; 1293 } 1294 } else if (p->p_state == PRS_ZOMBIE) { 1295 kp->ki_stat = SZOMB; 1296 } else { 1297 kp->ki_stat = SIDL; 1298 } 1299 1300 /* Things in the thread */ 1301 kp->ki_wchan = td->td_wchan; 1302 kp->ki_pri.pri_level = td->td_priority; 1303 kp->ki_pri.pri_native = td->td_base_pri; 1304 1305 /* 1306 * Note: legacy fields; clamp at the old NOCPU value and/or 1307 * the maximum u_char CPU value. 1308 */ 1309 if (td->td_lastcpu == NOCPU) 1310 kp->ki_lastcpu_old = NOCPU_OLD; 1311 else if (td->td_lastcpu > MAXCPU_OLD) 1312 kp->ki_lastcpu_old = MAXCPU_OLD; 1313 else 1314 kp->ki_lastcpu_old = td->td_lastcpu; 1315 1316 if (td->td_oncpu == NOCPU) 1317 kp->ki_oncpu_old = NOCPU_OLD; 1318 else if (td->td_oncpu > MAXCPU_OLD) 1319 kp->ki_oncpu_old = MAXCPU_OLD; 1320 else 1321 kp->ki_oncpu_old = td->td_oncpu; 1322 1323 kp->ki_lastcpu = td->td_lastcpu; 1324 kp->ki_oncpu = td->td_oncpu; 1325 kp->ki_tdflags = td->td_flags; 1326 kp->ki_tid = td->td_tid; 1327 kp->ki_numthreads = p->p_numthreads; 1328 kp->ki_pcb = td->td_pcb; 1329 kp->ki_kstack = (void *)td->td_kstack; 1330 kp->ki_slptime = (ticks - td->td_slptick) / hz; 1331 kp->ki_pri.pri_class = td->td_pri_class; 1332 kp->ki_pri.pri_user = td->td_user_pri; 1333 1334 if (preferthread) { 1335 rufetchtd(td, &kp->ki_rusage); 1336 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 1337 kp->ki_pctcpu = sched_pctcpu(td); 1338 kp->ki_estcpu = sched_estcpu(td); 1339 kp->ki_cow = td->td_cow; 1340 } 1341 1342 /* We can't get this anymore but ps etc never used it anyway. */ 1343 kp->ki_rqindex = 0; 1344 1345 if (preferthread) 1346 kp->ki_siglist = td->td_siglist; 1347 kp->ki_sigmask = td->td_sigmask; 1348 thread_unlock(td); 1349 if (preferthread) 1350 PROC_STATUNLOCK(p); 1351 } 1352 1353 /* 1354 * Fill in a kinfo_proc structure for the specified process. 1355 * Must be called with the target process locked. 1356 */ 1357 void 1358 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1359 { 1360 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1361 1362 bzero(kp, sizeof(*kp)); 1363 1364 fill_kinfo_proc_pgrp(p,kp); 1365 fill_kinfo_proc_only(p, kp); 1366 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1367 fill_kinfo_aggregate(p, kp); 1368 } 1369 1370 struct pstats * 1371 pstats_alloc(void) 1372 { 1373 1374 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1375 } 1376 1377 /* 1378 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1379 */ 1380 void 1381 pstats_fork(struct pstats *src, struct pstats *dst) 1382 { 1383 1384 bzero(&dst->pstat_startzero, 1385 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1386 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1387 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1388 } 1389 1390 void 1391 pstats_free(struct pstats *ps) 1392 { 1393 1394 free(ps, M_SUBPROC); 1395 } 1396 1397 #ifdef COMPAT_FREEBSD32 1398 1399 /* 1400 * This function is typically used to copy out the kernel address, so 1401 * it can be replaced by assignment of zero. 1402 */ 1403 static inline uint32_t 1404 ptr32_trim(const void *ptr) 1405 { 1406 uintptr_t uptr; 1407 1408 uptr = (uintptr_t)ptr; 1409 return ((uptr > UINT_MAX) ? 0 : uptr); 1410 } 1411 1412 #define PTRTRIM_CP(src,dst,fld) \ 1413 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1414 1415 static void 1416 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1417 { 1418 int i; 1419 1420 bzero(ki32, sizeof(struct kinfo_proc32)); 1421 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1422 CP(*ki, *ki32, ki_layout); 1423 PTRTRIM_CP(*ki, *ki32, ki_args); 1424 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1425 PTRTRIM_CP(*ki, *ki32, ki_addr); 1426 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1427 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1428 PTRTRIM_CP(*ki, *ki32, ki_fd); 1429 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1430 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1431 CP(*ki, *ki32, ki_pid); 1432 CP(*ki, *ki32, ki_ppid); 1433 CP(*ki, *ki32, ki_pgid); 1434 CP(*ki, *ki32, ki_tpgid); 1435 CP(*ki, *ki32, ki_sid); 1436 CP(*ki, *ki32, ki_tsid); 1437 CP(*ki, *ki32, ki_jobc); 1438 CP(*ki, *ki32, ki_tdev); 1439 CP(*ki, *ki32, ki_tdev_freebsd11); 1440 CP(*ki, *ki32, ki_siglist); 1441 CP(*ki, *ki32, ki_sigmask); 1442 CP(*ki, *ki32, ki_sigignore); 1443 CP(*ki, *ki32, ki_sigcatch); 1444 CP(*ki, *ki32, ki_uid); 1445 CP(*ki, *ki32, ki_ruid); 1446 CP(*ki, *ki32, ki_svuid); 1447 CP(*ki, *ki32, ki_rgid); 1448 CP(*ki, *ki32, ki_svgid); 1449 CP(*ki, *ki32, ki_ngroups); 1450 for (i = 0; i < KI_NGROUPS; i++) 1451 CP(*ki, *ki32, ki_groups[i]); 1452 CP(*ki, *ki32, ki_size); 1453 CP(*ki, *ki32, ki_rssize); 1454 CP(*ki, *ki32, ki_swrss); 1455 CP(*ki, *ki32, ki_tsize); 1456 CP(*ki, *ki32, ki_dsize); 1457 CP(*ki, *ki32, ki_ssize); 1458 CP(*ki, *ki32, ki_xstat); 1459 CP(*ki, *ki32, ki_acflag); 1460 CP(*ki, *ki32, ki_pctcpu); 1461 CP(*ki, *ki32, ki_estcpu); 1462 CP(*ki, *ki32, ki_slptime); 1463 CP(*ki, *ki32, ki_swtime); 1464 CP(*ki, *ki32, ki_cow); 1465 CP(*ki, *ki32, ki_runtime); 1466 TV_CP(*ki, *ki32, ki_start); 1467 TV_CP(*ki, *ki32, ki_childtime); 1468 CP(*ki, *ki32, ki_flag); 1469 CP(*ki, *ki32, ki_kiflag); 1470 CP(*ki, *ki32, ki_traceflag); 1471 CP(*ki, *ki32, ki_stat); 1472 CP(*ki, *ki32, ki_nice); 1473 CP(*ki, *ki32, ki_lock); 1474 CP(*ki, *ki32, ki_rqindex); 1475 CP(*ki, *ki32, ki_oncpu); 1476 CP(*ki, *ki32, ki_lastcpu); 1477 1478 /* XXX TODO: wrap cpu value as appropriate */ 1479 CP(*ki, *ki32, ki_oncpu_old); 1480 CP(*ki, *ki32, ki_lastcpu_old); 1481 1482 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1483 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1484 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1485 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1486 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1487 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1488 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1489 bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1); 1490 CP(*ki, *ki32, ki_tracer); 1491 CP(*ki, *ki32, ki_flag2); 1492 CP(*ki, *ki32, ki_fibnum); 1493 CP(*ki, *ki32, ki_cr_flags); 1494 CP(*ki, *ki32, ki_jid); 1495 CP(*ki, *ki32, ki_numthreads); 1496 CP(*ki, *ki32, ki_tid); 1497 CP(*ki, *ki32, ki_pri); 1498 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1499 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1500 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1501 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1502 PTRTRIM_CP(*ki, *ki32, ki_udata); 1503 PTRTRIM_CP(*ki, *ki32, ki_tdaddr); 1504 CP(*ki, *ki32, ki_sflag); 1505 CP(*ki, *ki32, ki_tdflags); 1506 } 1507 #endif 1508 1509 static ssize_t 1510 kern_proc_out_size(struct proc *p, int flags) 1511 { 1512 ssize_t size = 0; 1513 1514 PROC_LOCK_ASSERT(p, MA_OWNED); 1515 1516 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1517 #ifdef COMPAT_FREEBSD32 1518 if ((flags & KERN_PROC_MASK32) != 0) { 1519 size += sizeof(struct kinfo_proc32); 1520 } else 1521 #endif 1522 size += sizeof(struct kinfo_proc); 1523 } else { 1524 #ifdef COMPAT_FREEBSD32 1525 if ((flags & KERN_PROC_MASK32) != 0) 1526 size += sizeof(struct kinfo_proc32) * p->p_numthreads; 1527 else 1528 #endif 1529 size += sizeof(struct kinfo_proc) * p->p_numthreads; 1530 } 1531 PROC_UNLOCK(p); 1532 return (size); 1533 } 1534 1535 int 1536 kern_proc_out(struct proc *p, struct sbuf *sb, int flags) 1537 { 1538 struct thread *td; 1539 struct kinfo_proc ki; 1540 #ifdef COMPAT_FREEBSD32 1541 struct kinfo_proc32 ki32; 1542 #endif 1543 int error; 1544 1545 PROC_LOCK_ASSERT(p, MA_OWNED); 1546 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1547 1548 error = 0; 1549 fill_kinfo_proc(p, &ki); 1550 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1551 #ifdef COMPAT_FREEBSD32 1552 if ((flags & KERN_PROC_MASK32) != 0) { 1553 freebsd32_kinfo_proc_out(&ki, &ki32); 1554 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1555 error = ENOMEM; 1556 } else 1557 #endif 1558 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1559 error = ENOMEM; 1560 } else { 1561 FOREACH_THREAD_IN_PROC(p, td) { 1562 fill_kinfo_thread(td, &ki, 1); 1563 #ifdef COMPAT_FREEBSD32 1564 if ((flags & KERN_PROC_MASK32) != 0) { 1565 freebsd32_kinfo_proc_out(&ki, &ki32); 1566 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1567 error = ENOMEM; 1568 } else 1569 #endif 1570 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1571 error = ENOMEM; 1572 if (error != 0) 1573 break; 1574 } 1575 } 1576 PROC_UNLOCK(p); 1577 return (error); 1578 } 1579 1580 static int 1581 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 1582 { 1583 struct sbuf sb; 1584 struct kinfo_proc ki; 1585 int error, error2; 1586 1587 if (req->oldptr == NULL) 1588 return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags))); 1589 1590 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); 1591 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1592 error = kern_proc_out(p, &sb, flags); 1593 error2 = sbuf_finish(&sb); 1594 sbuf_delete(&sb); 1595 if (error != 0) 1596 return (error); 1597 else if (error2 != 0) 1598 return (error2); 1599 return (0); 1600 } 1601 1602 int 1603 proc_iterate(int (*cb)(struct proc *, void *), void *cbarg) 1604 { 1605 struct proc *p; 1606 int error, i, j; 1607 1608 for (i = 0; i < pidhashlock + 1; i++) { 1609 sx_slock(&proctree_lock); 1610 sx_slock(&pidhashtbl_lock[i]); 1611 for (j = i; j <= pidhash; j += pidhashlock + 1) { 1612 LIST_FOREACH(p, &pidhashtbl[j], p_hash) { 1613 if (p->p_state == PRS_NEW) 1614 continue; 1615 error = cb(p, cbarg); 1616 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 1617 if (error != 0) { 1618 sx_sunlock(&pidhashtbl_lock[i]); 1619 sx_sunlock(&proctree_lock); 1620 return (error); 1621 } 1622 } 1623 } 1624 sx_sunlock(&pidhashtbl_lock[i]); 1625 sx_sunlock(&proctree_lock); 1626 } 1627 return (0); 1628 } 1629 1630 struct kern_proc_out_args { 1631 struct sysctl_req *req; 1632 int flags; 1633 int oid_number; 1634 int *name; 1635 }; 1636 1637 static int 1638 sysctl_kern_proc_iterate(struct proc *p, void *origarg) 1639 { 1640 struct kern_proc_out_args *arg = origarg; 1641 int *name = arg->name; 1642 int oid_number = arg->oid_number; 1643 int flags = arg->flags; 1644 struct sysctl_req *req = arg->req; 1645 int error = 0; 1646 1647 PROC_LOCK(p); 1648 1649 KASSERT(p->p_ucred != NULL, 1650 ("process credential is NULL for non-NEW proc")); 1651 /* 1652 * Show a user only appropriate processes. 1653 */ 1654 if (p_cansee(curthread, p)) 1655 goto skip; 1656 /* 1657 * TODO - make more efficient (see notes below). 1658 * do by session. 1659 */ 1660 switch (oid_number) { 1661 case KERN_PROC_GID: 1662 if (p->p_ucred->cr_gid != (gid_t)name[0]) 1663 goto skip; 1664 break; 1665 1666 case KERN_PROC_PGRP: 1667 /* could do this by traversing pgrp */ 1668 if (p->p_pgrp == NULL || 1669 p->p_pgrp->pg_id != (pid_t)name[0]) 1670 goto skip; 1671 break; 1672 1673 case KERN_PROC_RGID: 1674 if (p->p_ucred->cr_rgid != (gid_t)name[0]) 1675 goto skip; 1676 break; 1677 1678 case KERN_PROC_SESSION: 1679 if (p->p_session == NULL || 1680 p->p_session->s_sid != (pid_t)name[0]) 1681 goto skip; 1682 break; 1683 1684 case KERN_PROC_TTY: 1685 if ((p->p_flag & P_CONTROLT) == 0 || 1686 p->p_session == NULL) 1687 goto skip; 1688 /* XXX proctree_lock */ 1689 SESS_LOCK(p->p_session); 1690 if (p->p_session->s_ttyp == NULL || 1691 tty_udev(p->p_session->s_ttyp) != 1692 (dev_t)name[0]) { 1693 SESS_UNLOCK(p->p_session); 1694 goto skip; 1695 } 1696 SESS_UNLOCK(p->p_session); 1697 break; 1698 1699 case KERN_PROC_UID: 1700 if (p->p_ucred->cr_uid != (uid_t)name[0]) 1701 goto skip; 1702 break; 1703 1704 case KERN_PROC_RUID: 1705 if (p->p_ucred->cr_ruid != (uid_t)name[0]) 1706 goto skip; 1707 break; 1708 1709 case KERN_PROC_PROC: 1710 break; 1711 1712 default: 1713 break; 1714 } 1715 error = sysctl_out_proc(p, req, flags); 1716 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 1717 return (error); 1718 skip: 1719 PROC_UNLOCK(p); 1720 return (0); 1721 } 1722 1723 static int 1724 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1725 { 1726 struct kern_proc_out_args iterarg; 1727 int *name = (int *)arg1; 1728 u_int namelen = arg2; 1729 struct proc *p; 1730 int flags, oid_number; 1731 int error = 0; 1732 1733 oid_number = oidp->oid_number; 1734 if (oid_number != KERN_PROC_ALL && 1735 (oid_number & KERN_PROC_INC_THREAD) == 0) 1736 flags = KERN_PROC_NOTHREADS; 1737 else { 1738 flags = 0; 1739 oid_number &= ~KERN_PROC_INC_THREAD; 1740 } 1741 #ifdef COMPAT_FREEBSD32 1742 if (req->flags & SCTL_MASK32) 1743 flags |= KERN_PROC_MASK32; 1744 #endif 1745 if (oid_number == KERN_PROC_PID) { 1746 if (namelen != 1) 1747 return (EINVAL); 1748 error = sysctl_wire_old_buffer(req, 0); 1749 if (error) 1750 return (error); 1751 sx_slock(&proctree_lock); 1752 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1753 if (error == 0) 1754 error = sysctl_out_proc(p, req, flags); 1755 sx_sunlock(&proctree_lock); 1756 return (error); 1757 } 1758 1759 switch (oid_number) { 1760 case KERN_PROC_ALL: 1761 if (namelen != 0) 1762 return (EINVAL); 1763 break; 1764 case KERN_PROC_PROC: 1765 if (namelen != 0 && namelen != 1) 1766 return (EINVAL); 1767 break; 1768 default: 1769 if (namelen != 1) 1770 return (EINVAL); 1771 break; 1772 } 1773 1774 if (req->oldptr == NULL) { 1775 /* overestimate by 5 procs */ 1776 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1777 if (error) 1778 return (error); 1779 } else { 1780 error = sysctl_wire_old_buffer(req, 0); 1781 if (error != 0) 1782 return (error); 1783 } 1784 iterarg.flags = flags; 1785 iterarg.oid_number = oid_number; 1786 iterarg.req = req; 1787 iterarg.name = name; 1788 error = proc_iterate(sysctl_kern_proc_iterate, &iterarg); 1789 return (error); 1790 } 1791 1792 struct pargs * 1793 pargs_alloc(int len) 1794 { 1795 struct pargs *pa; 1796 1797 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1798 M_WAITOK); 1799 refcount_init(&pa->ar_ref, 1); 1800 pa->ar_length = len; 1801 return (pa); 1802 } 1803 1804 static void 1805 pargs_free(struct pargs *pa) 1806 { 1807 1808 free(pa, M_PARGS); 1809 } 1810 1811 void 1812 pargs_hold(struct pargs *pa) 1813 { 1814 1815 if (pa == NULL) 1816 return; 1817 refcount_acquire(&pa->ar_ref); 1818 } 1819 1820 void 1821 pargs_drop(struct pargs *pa) 1822 { 1823 1824 if (pa == NULL) 1825 return; 1826 if (refcount_release(&pa->ar_ref)) 1827 pargs_free(pa); 1828 } 1829 1830 static int 1831 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1832 size_t len) 1833 { 1834 ssize_t n; 1835 1836 /* 1837 * This may return a short read if the string is shorter than the chunk 1838 * and is aligned at the end of the page, and the following page is not 1839 * mapped. 1840 */ 1841 n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len); 1842 if (n <= 0) 1843 return (ENOMEM); 1844 return (0); 1845 } 1846 1847 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1848 1849 enum proc_vector_type { 1850 PROC_ARG, 1851 PROC_ENV, 1852 PROC_AUX, 1853 }; 1854 1855 #ifdef COMPAT_FREEBSD32 1856 static int 1857 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1858 size_t *vsizep, enum proc_vector_type type) 1859 { 1860 struct freebsd32_ps_strings pss; 1861 Elf32_Auxinfo aux; 1862 vm_offset_t vptr, ptr; 1863 uint32_t *proc_vector32; 1864 char **proc_vector; 1865 size_t vsize, size; 1866 int i, error; 1867 1868 error = 0; 1869 if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) != 1870 sizeof(pss)) 1871 return (ENOMEM); 1872 switch (type) { 1873 case PROC_ARG: 1874 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1875 vsize = pss.ps_nargvstr; 1876 if (vsize > ARG_MAX) 1877 return (ENOEXEC); 1878 size = vsize * sizeof(int32_t); 1879 break; 1880 case PROC_ENV: 1881 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1882 vsize = pss.ps_nenvstr; 1883 if (vsize > ARG_MAX) 1884 return (ENOEXEC); 1885 size = vsize * sizeof(int32_t); 1886 break; 1887 case PROC_AUX: 1888 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1889 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1890 if (vptr % 4 != 0) 1891 return (ENOEXEC); 1892 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1893 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1894 sizeof(aux)) 1895 return (ENOMEM); 1896 if (aux.a_type == AT_NULL) 1897 break; 1898 ptr += sizeof(aux); 1899 } 1900 if (aux.a_type != AT_NULL) 1901 return (ENOEXEC); 1902 vsize = i + 1; 1903 size = vsize * sizeof(aux); 1904 break; 1905 default: 1906 KASSERT(0, ("Wrong proc vector type: %d", type)); 1907 return (EINVAL); 1908 } 1909 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1910 if (proc_readmem(td, p, vptr, proc_vector32, size) != size) { 1911 error = ENOMEM; 1912 goto done; 1913 } 1914 if (type == PROC_AUX) { 1915 *proc_vectorp = (char **)proc_vector32; 1916 *vsizep = vsize; 1917 return (0); 1918 } 1919 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1920 for (i = 0; i < (int)vsize; i++) 1921 proc_vector[i] = PTRIN(proc_vector32[i]); 1922 *proc_vectorp = proc_vector; 1923 *vsizep = vsize; 1924 done: 1925 free(proc_vector32, M_TEMP); 1926 return (error); 1927 } 1928 #endif 1929 1930 static int 1931 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1932 size_t *vsizep, enum proc_vector_type type) 1933 { 1934 struct ps_strings pss; 1935 Elf_Auxinfo aux; 1936 vm_offset_t vptr, ptr; 1937 char **proc_vector; 1938 size_t vsize, size; 1939 int i; 1940 1941 #ifdef COMPAT_FREEBSD32 1942 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1943 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1944 #endif 1945 if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) != 1946 sizeof(pss)) 1947 return (ENOMEM); 1948 switch (type) { 1949 case PROC_ARG: 1950 vptr = (vm_offset_t)pss.ps_argvstr; 1951 vsize = pss.ps_nargvstr; 1952 if (vsize > ARG_MAX) 1953 return (ENOEXEC); 1954 size = vsize * sizeof(char *); 1955 break; 1956 case PROC_ENV: 1957 vptr = (vm_offset_t)pss.ps_envstr; 1958 vsize = pss.ps_nenvstr; 1959 if (vsize > ARG_MAX) 1960 return (ENOEXEC); 1961 size = vsize * sizeof(char *); 1962 break; 1963 case PROC_AUX: 1964 /* 1965 * The aux array is just above env array on the stack. Check 1966 * that the address is naturally aligned. 1967 */ 1968 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1969 * sizeof(char *); 1970 #if __ELF_WORD_SIZE == 64 1971 if (vptr % sizeof(uint64_t) != 0) 1972 #else 1973 if (vptr % sizeof(uint32_t) != 0) 1974 #endif 1975 return (ENOEXEC); 1976 /* 1977 * We count the array size reading the aux vectors from the 1978 * stack until AT_NULL vector is returned. So (to keep the code 1979 * simple) we read the process stack twice: the first time here 1980 * to find the size and the second time when copying the vectors 1981 * to the allocated proc_vector. 1982 */ 1983 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1984 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1985 sizeof(aux)) 1986 return (ENOMEM); 1987 if (aux.a_type == AT_NULL) 1988 break; 1989 ptr += sizeof(aux); 1990 } 1991 /* 1992 * If the PROC_AUXV_MAX entries are iterated over, and we have 1993 * not reached AT_NULL, it is most likely we are reading wrong 1994 * data: either the process doesn't have auxv array or data has 1995 * been modified. Return the error in this case. 1996 */ 1997 if (aux.a_type != AT_NULL) 1998 return (ENOEXEC); 1999 vsize = i + 1; 2000 size = vsize * sizeof(aux); 2001 break; 2002 default: 2003 KASSERT(0, ("Wrong proc vector type: %d", type)); 2004 return (EINVAL); /* In case we are built without INVARIANTS. */ 2005 } 2006 proc_vector = malloc(size, M_TEMP, M_WAITOK); 2007 if (proc_readmem(td, p, vptr, proc_vector, size) != size) { 2008 free(proc_vector, M_TEMP); 2009 return (ENOMEM); 2010 } 2011 *proc_vectorp = proc_vector; 2012 *vsizep = vsize; 2013 2014 return (0); 2015 } 2016 2017 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 2018 2019 static int 2020 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 2021 enum proc_vector_type type) 2022 { 2023 size_t done, len, nchr, vsize; 2024 int error, i; 2025 char **proc_vector, *sptr; 2026 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 2027 2028 PROC_ASSERT_HELD(p); 2029 2030 /* 2031 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 2032 */ 2033 nchr = 2 * (PATH_MAX + ARG_MAX); 2034 2035 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 2036 if (error != 0) 2037 return (error); 2038 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 2039 /* 2040 * The program may have scribbled into its argv array, e.g. to 2041 * remove some arguments. If that has happened, break out 2042 * before trying to read from NULL. 2043 */ 2044 if (proc_vector[i] == NULL) 2045 break; 2046 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 2047 error = proc_read_string(td, p, sptr, pss_string, 2048 sizeof(pss_string)); 2049 if (error != 0) 2050 goto done; 2051 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 2052 if (done + len >= nchr) 2053 len = nchr - done - 1; 2054 sbuf_bcat(sb, pss_string, len); 2055 if (len != GET_PS_STRINGS_CHUNK_SZ) 2056 break; 2057 done += GET_PS_STRINGS_CHUNK_SZ; 2058 } 2059 sbuf_bcat(sb, "", 1); 2060 done += len + 1; 2061 } 2062 done: 2063 free(proc_vector, M_TEMP); 2064 return (error); 2065 } 2066 2067 int 2068 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 2069 { 2070 2071 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 2072 } 2073 2074 int 2075 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 2076 { 2077 2078 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 2079 } 2080 2081 int 2082 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) 2083 { 2084 size_t vsize, size; 2085 char **auxv; 2086 int error; 2087 2088 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); 2089 if (error == 0) { 2090 #ifdef COMPAT_FREEBSD32 2091 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 2092 size = vsize * sizeof(Elf32_Auxinfo); 2093 else 2094 #endif 2095 size = vsize * sizeof(Elf_Auxinfo); 2096 if (sbuf_bcat(sb, auxv, size) != 0) 2097 error = ENOMEM; 2098 free(auxv, M_TEMP); 2099 } 2100 return (error); 2101 } 2102 2103 /* 2104 * This sysctl allows a process to retrieve the argument list or process 2105 * title for another process without groping around in the address space 2106 * of the other process. It also allow a process to set its own "process 2107 * title to a string of its own choice. 2108 */ 2109 static int 2110 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 2111 { 2112 int *name = (int *)arg1; 2113 u_int namelen = arg2; 2114 struct pargs *newpa, *pa; 2115 struct proc *p; 2116 struct sbuf sb; 2117 int flags, error = 0, error2; 2118 pid_t pid; 2119 2120 if (namelen != 1) 2121 return (EINVAL); 2122 2123 p = curproc; 2124 pid = (pid_t)name[0]; 2125 if (pid == -1) { 2126 pid = p->p_pid; 2127 } 2128 2129 /* 2130 * If the query is for this process and it is single-threaded, there 2131 * is nobody to modify pargs, thus we can just read. 2132 */ 2133 if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL && 2134 (pa = p->p_args) != NULL) 2135 return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length)); 2136 2137 flags = PGET_CANSEE; 2138 if (req->newptr != NULL) 2139 flags |= PGET_ISCURRENT; 2140 error = pget(pid, flags, &p); 2141 if (error) 2142 return (error); 2143 2144 pa = p->p_args; 2145 if (pa != NULL) { 2146 pargs_hold(pa); 2147 PROC_UNLOCK(p); 2148 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 2149 pargs_drop(pa); 2150 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 2151 _PHOLD(p); 2152 PROC_UNLOCK(p); 2153 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2154 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2155 error = proc_getargv(curthread, p, &sb); 2156 error2 = sbuf_finish(&sb); 2157 PRELE(p); 2158 sbuf_delete(&sb); 2159 if (error == 0 && error2 != 0) 2160 error = error2; 2161 } else { 2162 PROC_UNLOCK(p); 2163 } 2164 if (error != 0 || req->newptr == NULL) 2165 return (error); 2166 2167 if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs)) 2168 return (ENOMEM); 2169 2170 if (req->newlen == 0) { 2171 /* 2172 * Clear the argument pointer, so that we'll fetch arguments 2173 * with proc_getargv() until further notice. 2174 */ 2175 newpa = NULL; 2176 } else { 2177 newpa = pargs_alloc(req->newlen); 2178 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 2179 if (error != 0) { 2180 pargs_free(newpa); 2181 return (error); 2182 } 2183 } 2184 PROC_LOCK(p); 2185 pa = p->p_args; 2186 p->p_args = newpa; 2187 PROC_UNLOCK(p); 2188 pargs_drop(pa); 2189 return (0); 2190 } 2191 2192 /* 2193 * This sysctl allows a process to retrieve environment of another process. 2194 */ 2195 static int 2196 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 2197 { 2198 int *name = (int *)arg1; 2199 u_int namelen = arg2; 2200 struct proc *p; 2201 struct sbuf sb; 2202 int error, error2; 2203 2204 if (namelen != 1) 2205 return (EINVAL); 2206 2207 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2208 if (error != 0) 2209 return (error); 2210 if ((p->p_flag & P_SYSTEM) != 0) { 2211 PRELE(p); 2212 return (0); 2213 } 2214 2215 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2216 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2217 error = proc_getenvv(curthread, p, &sb); 2218 error2 = sbuf_finish(&sb); 2219 PRELE(p); 2220 sbuf_delete(&sb); 2221 return (error != 0 ? error : error2); 2222 } 2223 2224 /* 2225 * This sysctl allows a process to retrieve ELF auxiliary vector of 2226 * another process. 2227 */ 2228 static int 2229 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 2230 { 2231 int *name = (int *)arg1; 2232 u_int namelen = arg2; 2233 struct proc *p; 2234 struct sbuf sb; 2235 int error, error2; 2236 2237 if (namelen != 1) 2238 return (EINVAL); 2239 2240 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2241 if (error != 0) 2242 return (error); 2243 if ((p->p_flag & P_SYSTEM) != 0) { 2244 PRELE(p); 2245 return (0); 2246 } 2247 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2248 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2249 error = proc_getauxv(curthread, p, &sb); 2250 error2 = sbuf_finish(&sb); 2251 PRELE(p); 2252 sbuf_delete(&sb); 2253 return (error != 0 ? error : error2); 2254 } 2255 2256 /* 2257 * Look up the canonical executable path running in the specified process. 2258 * It tries to return the same hardlink name as was used for execve(2). 2259 * This allows the programs that modify their behavior based on their progname, 2260 * to operate correctly. 2261 * 2262 * Result is returned in retbuf, it must not be freed, similar to vn_fullpath() 2263 * calling conventions. 2264 * binname is a pointer to temporary string buffer of length MAXPATHLEN, 2265 * allocated and freed by caller. 2266 * freebuf should be freed by caller, from the M_TEMP malloc type. 2267 */ 2268 int 2269 proc_get_binpath(struct proc *p, char *binname, char **retbuf, 2270 char **freebuf) 2271 { 2272 struct nameidata nd; 2273 struct vnode *vp, *dvp; 2274 size_t freepath_size; 2275 int error; 2276 bool do_fullpath; 2277 2278 PROC_LOCK_ASSERT(p, MA_OWNED); 2279 2280 vp = p->p_textvp; 2281 if (vp == NULL) { 2282 PROC_UNLOCK(p); 2283 *retbuf = ""; 2284 *freebuf = NULL; 2285 return (0); 2286 } 2287 vref(vp); 2288 dvp = p->p_textdvp; 2289 if (dvp != NULL) 2290 vref(dvp); 2291 if (p->p_binname != NULL) 2292 strlcpy(binname, p->p_binname, MAXPATHLEN); 2293 PROC_UNLOCK(p); 2294 2295 do_fullpath = true; 2296 *freebuf = NULL; 2297 if (dvp != NULL && binname[0] != '\0') { 2298 freepath_size = MAXPATHLEN; 2299 if (vn_fullpath_hardlink(vp, dvp, binname, strlen(binname), 2300 retbuf, freebuf, &freepath_size) == 0) { 2301 /* 2302 * Recheck the looked up path. The binary 2303 * might have been renamed or replaced, in 2304 * which case we should not report old name. 2305 */ 2306 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, *retbuf); 2307 error = namei(&nd); 2308 if (error == 0) { 2309 if (nd.ni_vp == vp) 2310 do_fullpath = false; 2311 vrele(nd.ni_vp); 2312 NDFREE_PNBUF(&nd); 2313 } 2314 } 2315 } 2316 if (do_fullpath) { 2317 free(*freebuf, M_TEMP); 2318 *freebuf = NULL; 2319 error = vn_fullpath(vp, retbuf, freebuf); 2320 } 2321 vrele(vp); 2322 if (dvp != NULL) 2323 vrele(dvp); 2324 return (error); 2325 } 2326 2327 /* 2328 * This sysctl allows a process to retrieve the path of the executable for 2329 * itself or another process. 2330 */ 2331 static int 2332 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 2333 { 2334 pid_t *pidp = (pid_t *)arg1; 2335 unsigned int arglen = arg2; 2336 struct proc *p; 2337 char *retbuf, *freebuf, *binname; 2338 int error; 2339 2340 if (arglen != 1) 2341 return (EINVAL); 2342 binname = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 2343 binname[0] = '\0'; 2344 if (*pidp == -1) { /* -1 means this process */ 2345 error = 0; 2346 p = req->td->td_proc; 2347 PROC_LOCK(p); 2348 } else { 2349 error = pget(*pidp, PGET_CANSEE, &p); 2350 } 2351 2352 if (error == 0) 2353 error = proc_get_binpath(p, binname, &retbuf, &freebuf); 2354 free(binname, M_TEMP); 2355 if (error != 0) 2356 return (error); 2357 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 2358 free(freebuf, M_TEMP); 2359 return (error); 2360 } 2361 2362 static int 2363 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 2364 { 2365 struct proc *p; 2366 char *sv_name; 2367 int *name; 2368 int namelen; 2369 int error; 2370 2371 namelen = arg2; 2372 if (namelen != 1) 2373 return (EINVAL); 2374 2375 name = (int *)arg1; 2376 error = pget((pid_t)name[0], PGET_CANSEE, &p); 2377 if (error != 0) 2378 return (error); 2379 sv_name = p->p_sysent->sv_name; 2380 PROC_UNLOCK(p); 2381 return (sysctl_handle_string(oidp, sv_name, 0, req)); 2382 } 2383 2384 #ifdef KINFO_OVMENTRY_SIZE 2385 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 2386 #endif 2387 2388 #ifdef COMPAT_FREEBSD7 2389 static int 2390 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 2391 { 2392 vm_map_entry_t entry, tmp_entry; 2393 unsigned int last_timestamp, namelen; 2394 char *fullpath, *freepath; 2395 struct kinfo_ovmentry *kve; 2396 struct vattr va; 2397 struct ucred *cred; 2398 int error, *name; 2399 struct vnode *vp; 2400 struct proc *p; 2401 vm_map_t map; 2402 struct vmspace *vm; 2403 2404 namelen = arg2; 2405 if (namelen != 1) 2406 return (EINVAL); 2407 2408 name = (int *)arg1; 2409 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2410 if (error != 0) 2411 return (error); 2412 vm = vmspace_acquire_ref(p); 2413 if (vm == NULL) { 2414 PRELE(p); 2415 return (ESRCH); 2416 } 2417 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2418 2419 map = &vm->vm_map; 2420 vm_map_lock_read(map); 2421 VM_MAP_ENTRY_FOREACH(entry, map) { 2422 vm_object_t obj, tobj, lobj; 2423 vm_offset_t addr; 2424 2425 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2426 continue; 2427 2428 bzero(kve, sizeof(*kve)); 2429 kve->kve_structsize = sizeof(*kve); 2430 2431 kve->kve_private_resident = 0; 2432 obj = entry->object.vm_object; 2433 if (obj != NULL) { 2434 VM_OBJECT_RLOCK(obj); 2435 if (obj->shadow_count == 1) 2436 kve->kve_private_resident = 2437 obj->resident_page_count; 2438 } 2439 kve->kve_resident = 0; 2440 addr = entry->start; 2441 while (addr < entry->end) { 2442 if (pmap_extract(map->pmap, addr)) 2443 kve->kve_resident++; 2444 addr += PAGE_SIZE; 2445 } 2446 2447 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2448 if (tobj != obj) { 2449 VM_OBJECT_RLOCK(tobj); 2450 kve->kve_offset += tobj->backing_object_offset; 2451 } 2452 if (lobj != obj) 2453 VM_OBJECT_RUNLOCK(lobj); 2454 lobj = tobj; 2455 } 2456 2457 kve->kve_start = (void*)entry->start; 2458 kve->kve_end = (void*)entry->end; 2459 kve->kve_offset += (off_t)entry->offset; 2460 2461 if (entry->protection & VM_PROT_READ) 2462 kve->kve_protection |= KVME_PROT_READ; 2463 if (entry->protection & VM_PROT_WRITE) 2464 kve->kve_protection |= KVME_PROT_WRITE; 2465 if (entry->protection & VM_PROT_EXECUTE) 2466 kve->kve_protection |= KVME_PROT_EXEC; 2467 2468 if (entry->eflags & MAP_ENTRY_COW) 2469 kve->kve_flags |= KVME_FLAG_COW; 2470 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2471 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2472 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2473 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2474 2475 last_timestamp = map->timestamp; 2476 vm_map_unlock_read(map); 2477 2478 kve->kve_fileid = 0; 2479 kve->kve_fsid = 0; 2480 freepath = NULL; 2481 fullpath = ""; 2482 if (lobj) { 2483 kve->kve_type = vm_object_kvme_type(lobj, &vp); 2484 if (kve->kve_type == KVME_TYPE_MGTDEVICE) 2485 kve->kve_type = KVME_TYPE_UNKNOWN; 2486 if (vp != NULL) 2487 vref(vp); 2488 if (lobj != obj) 2489 VM_OBJECT_RUNLOCK(lobj); 2490 2491 kve->kve_ref_count = obj->ref_count; 2492 kve->kve_shadow_count = obj->shadow_count; 2493 VM_OBJECT_RUNLOCK(obj); 2494 if (vp != NULL) { 2495 vn_fullpath(vp, &fullpath, &freepath); 2496 cred = curthread->td_ucred; 2497 vn_lock(vp, LK_SHARED | LK_RETRY); 2498 if (VOP_GETATTR(vp, &va, cred) == 0) { 2499 kve->kve_fileid = va.va_fileid; 2500 /* truncate */ 2501 kve->kve_fsid = va.va_fsid; 2502 } 2503 vput(vp); 2504 } 2505 } else { 2506 kve->kve_type = KVME_TYPE_NONE; 2507 kve->kve_ref_count = 0; 2508 kve->kve_shadow_count = 0; 2509 } 2510 2511 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2512 if (freepath != NULL) 2513 free(freepath, M_TEMP); 2514 2515 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2516 vm_map_lock_read(map); 2517 if (error) 2518 break; 2519 if (last_timestamp != map->timestamp) { 2520 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2521 entry = tmp_entry; 2522 } 2523 } 2524 vm_map_unlock_read(map); 2525 vmspace_free(vm); 2526 PRELE(p); 2527 free(kve, M_TEMP); 2528 return (error); 2529 } 2530 #endif /* COMPAT_FREEBSD7 */ 2531 2532 #ifdef KINFO_VMENTRY_SIZE 2533 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2534 #endif 2535 2536 void 2537 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, 2538 int *resident_count, bool *super) 2539 { 2540 vm_object_t obj, tobj; 2541 vm_page_t m, m_adv; 2542 vm_offset_t addr; 2543 vm_paddr_t pa; 2544 vm_pindex_t pi, pi_adv, pindex; 2545 2546 *super = false; 2547 *resident_count = 0; 2548 if (vmmap_skip_res_cnt) 2549 return; 2550 2551 pa = 0; 2552 obj = entry->object.vm_object; 2553 addr = entry->start; 2554 m_adv = NULL; 2555 pi = OFF_TO_IDX(entry->offset); 2556 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) { 2557 if (m_adv != NULL) { 2558 m = m_adv; 2559 } else { 2560 pi_adv = atop(entry->end - addr); 2561 pindex = pi; 2562 for (tobj = obj;; tobj = tobj->backing_object) { 2563 m = vm_page_find_least(tobj, pindex); 2564 if (m != NULL) { 2565 if (m->pindex == pindex) 2566 break; 2567 if (pi_adv > m->pindex - pindex) { 2568 pi_adv = m->pindex - pindex; 2569 m_adv = m; 2570 } 2571 } 2572 if (tobj->backing_object == NULL) 2573 goto next; 2574 pindex += OFF_TO_IDX(tobj-> 2575 backing_object_offset); 2576 } 2577 } 2578 m_adv = NULL; 2579 if (m->psind != 0 && addr + pagesizes[1] <= entry->end && 2580 (addr & (pagesizes[1] - 1)) == 0 && 2581 (pmap_mincore(map->pmap, addr, &pa) & MINCORE_SUPER) != 0) { 2582 *super = true; 2583 pi_adv = atop(pagesizes[1]); 2584 } else { 2585 /* 2586 * We do not test the found page on validity. 2587 * Either the page is busy and being paged in, 2588 * or it was invalidated. The first case 2589 * should be counted as resident, the second 2590 * is not so clear; we do account both. 2591 */ 2592 pi_adv = 1; 2593 } 2594 *resident_count += pi_adv; 2595 next:; 2596 } 2597 } 2598 2599 /* 2600 * Must be called with the process locked and will return unlocked. 2601 */ 2602 int 2603 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags) 2604 { 2605 vm_map_entry_t entry, tmp_entry; 2606 struct vattr va; 2607 vm_map_t map; 2608 vm_object_t lobj, nobj, obj, tobj; 2609 char *fullpath, *freepath; 2610 struct kinfo_vmentry *kve; 2611 struct ucred *cred; 2612 struct vnode *vp; 2613 struct vmspace *vm; 2614 vm_offset_t addr; 2615 unsigned int last_timestamp; 2616 int error; 2617 bool guard, super; 2618 2619 PROC_LOCK_ASSERT(p, MA_OWNED); 2620 2621 _PHOLD(p); 2622 PROC_UNLOCK(p); 2623 vm = vmspace_acquire_ref(p); 2624 if (vm == NULL) { 2625 PRELE(p); 2626 return (ESRCH); 2627 } 2628 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO); 2629 2630 error = 0; 2631 map = &vm->vm_map; 2632 vm_map_lock_read(map); 2633 VM_MAP_ENTRY_FOREACH(entry, map) { 2634 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2635 continue; 2636 2637 addr = entry->end; 2638 bzero(kve, sizeof(*kve)); 2639 obj = entry->object.vm_object; 2640 if (obj != NULL) { 2641 if ((obj->flags & OBJ_ANON) != 0) 2642 kve->kve_obj = (uintptr_t)obj; 2643 2644 for (tobj = obj; tobj != NULL; 2645 tobj = tobj->backing_object) { 2646 VM_OBJECT_RLOCK(tobj); 2647 kve->kve_offset += tobj->backing_object_offset; 2648 lobj = tobj; 2649 } 2650 if (obj->backing_object == NULL) 2651 kve->kve_private_resident = 2652 obj->resident_page_count; 2653 kern_proc_vmmap_resident(map, entry, 2654 &kve->kve_resident, &super); 2655 if (super) 2656 kve->kve_flags |= KVME_FLAG_SUPER; 2657 for (tobj = obj; tobj != NULL; tobj = nobj) { 2658 nobj = tobj->backing_object; 2659 if (tobj != obj && tobj != lobj) 2660 VM_OBJECT_RUNLOCK(tobj); 2661 } 2662 } else { 2663 lobj = NULL; 2664 } 2665 2666 kve->kve_start = entry->start; 2667 kve->kve_end = entry->end; 2668 kve->kve_offset += entry->offset; 2669 2670 if (entry->protection & VM_PROT_READ) 2671 kve->kve_protection |= KVME_PROT_READ; 2672 if (entry->protection & VM_PROT_WRITE) 2673 kve->kve_protection |= KVME_PROT_WRITE; 2674 if (entry->protection & VM_PROT_EXECUTE) 2675 kve->kve_protection |= KVME_PROT_EXEC; 2676 2677 if (entry->eflags & MAP_ENTRY_COW) 2678 kve->kve_flags |= KVME_FLAG_COW; 2679 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2680 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2681 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2682 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2683 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2684 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2685 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2686 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2687 if (entry->eflags & MAP_ENTRY_USER_WIRED) 2688 kve->kve_flags |= KVME_FLAG_USER_WIRED; 2689 2690 guard = (entry->eflags & MAP_ENTRY_GUARD) != 0; 2691 2692 last_timestamp = map->timestamp; 2693 vm_map_unlock_read(map); 2694 2695 freepath = NULL; 2696 fullpath = ""; 2697 if (lobj != NULL) { 2698 kve->kve_type = vm_object_kvme_type(lobj, &vp); 2699 if (vp != NULL) 2700 vref(vp); 2701 if (lobj != obj) 2702 VM_OBJECT_RUNLOCK(lobj); 2703 2704 kve->kve_ref_count = obj->ref_count; 2705 kve->kve_shadow_count = obj->shadow_count; 2706 VM_OBJECT_RUNLOCK(obj); 2707 if (vp != NULL) { 2708 vn_fullpath(vp, &fullpath, &freepath); 2709 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2710 cred = curthread->td_ucred; 2711 vn_lock(vp, LK_SHARED | LK_RETRY); 2712 if (VOP_GETATTR(vp, &va, cred) == 0) { 2713 kve->kve_vn_fileid = va.va_fileid; 2714 kve->kve_vn_fsid = va.va_fsid; 2715 kve->kve_vn_fsid_freebsd11 = 2716 kve->kve_vn_fsid; /* truncate */ 2717 kve->kve_vn_mode = 2718 MAKEIMODE(va.va_type, va.va_mode); 2719 kve->kve_vn_size = va.va_size; 2720 kve->kve_vn_rdev = va.va_rdev; 2721 kve->kve_vn_rdev_freebsd11 = 2722 kve->kve_vn_rdev; /* truncate */ 2723 kve->kve_status = KF_ATTR_VALID; 2724 } 2725 vput(vp); 2726 } 2727 } else { 2728 kve->kve_type = guard ? KVME_TYPE_GUARD : 2729 KVME_TYPE_NONE; 2730 kve->kve_ref_count = 0; 2731 kve->kve_shadow_count = 0; 2732 } 2733 2734 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2735 if (freepath != NULL) 2736 free(freepath, M_TEMP); 2737 2738 /* Pack record size down */ 2739 if ((flags & KERN_VMMAP_PACK_KINFO) != 0) 2740 kve->kve_structsize = 2741 offsetof(struct kinfo_vmentry, kve_path) + 2742 strlen(kve->kve_path) + 1; 2743 else 2744 kve->kve_structsize = sizeof(*kve); 2745 kve->kve_structsize = roundup(kve->kve_structsize, 2746 sizeof(uint64_t)); 2747 2748 /* Halt filling and truncate rather than exceeding maxlen */ 2749 if (maxlen != -1 && maxlen < kve->kve_structsize) { 2750 error = 0; 2751 vm_map_lock_read(map); 2752 break; 2753 } else if (maxlen != -1) 2754 maxlen -= kve->kve_structsize; 2755 2756 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0) 2757 error = ENOMEM; 2758 vm_map_lock_read(map); 2759 if (error != 0) 2760 break; 2761 if (last_timestamp != map->timestamp) { 2762 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2763 entry = tmp_entry; 2764 } 2765 } 2766 vm_map_unlock_read(map); 2767 vmspace_free(vm); 2768 PRELE(p); 2769 free(kve, M_TEMP); 2770 return (error); 2771 } 2772 2773 static int 2774 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2775 { 2776 struct proc *p; 2777 struct sbuf sb; 2778 u_int namelen; 2779 int error, error2, *name; 2780 2781 namelen = arg2; 2782 if (namelen != 1) 2783 return (EINVAL); 2784 2785 name = (int *)arg1; 2786 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); 2787 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2788 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 2789 if (error != 0) { 2790 sbuf_delete(&sb); 2791 return (error); 2792 } 2793 error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO); 2794 error2 = sbuf_finish(&sb); 2795 sbuf_delete(&sb); 2796 return (error != 0 ? error : error2); 2797 } 2798 2799 #if defined(STACK) || defined(DDB) 2800 static int 2801 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2802 { 2803 struct kinfo_kstack *kkstp; 2804 int error, i, *name, numthreads; 2805 lwpid_t *lwpidarray; 2806 struct thread *td; 2807 struct stack *st; 2808 struct sbuf sb; 2809 struct proc *p; 2810 u_int namelen; 2811 2812 namelen = arg2; 2813 if (namelen != 1) 2814 return (EINVAL); 2815 2816 name = (int *)arg1; 2817 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2818 if (error != 0) 2819 return (error); 2820 2821 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2822 st = stack_create(M_WAITOK); 2823 2824 lwpidarray = NULL; 2825 PROC_LOCK(p); 2826 do { 2827 if (lwpidarray != NULL) { 2828 free(lwpidarray, M_TEMP); 2829 lwpidarray = NULL; 2830 } 2831 numthreads = p->p_numthreads; 2832 PROC_UNLOCK(p); 2833 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2834 M_WAITOK | M_ZERO); 2835 PROC_LOCK(p); 2836 } while (numthreads < p->p_numthreads); 2837 2838 /* 2839 * XXXRW: During the below loop, execve(2) and countless other sorts 2840 * of changes could have taken place. Should we check to see if the 2841 * vmspace has been replaced, or the like, in order to prevent 2842 * giving a snapshot that spans, say, execve(2), with some threads 2843 * before and some after? Among other things, the credentials could 2844 * have changed, in which case the right to extract debug info might 2845 * no longer be assured. 2846 */ 2847 i = 0; 2848 FOREACH_THREAD_IN_PROC(p, td) { 2849 KASSERT(i < numthreads, 2850 ("sysctl_kern_proc_kstack: numthreads")); 2851 lwpidarray[i] = td->td_tid; 2852 i++; 2853 } 2854 PROC_UNLOCK(p); 2855 numthreads = i; 2856 for (i = 0; i < numthreads; i++) { 2857 td = tdfind(lwpidarray[i], p->p_pid); 2858 if (td == NULL) { 2859 continue; 2860 } 2861 bzero(kkstp, sizeof(*kkstp)); 2862 (void)sbuf_new(&sb, kkstp->kkst_trace, 2863 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2864 thread_lock(td); 2865 kkstp->kkst_tid = td->td_tid; 2866 if (TD_IS_SWAPPED(td)) 2867 kkstp->kkst_state = KKST_STATE_SWAPPED; 2868 else if (stack_save_td(st, td) == 0) 2869 kkstp->kkst_state = KKST_STATE_STACKOK; 2870 else 2871 kkstp->kkst_state = KKST_STATE_RUNNING; 2872 thread_unlock(td); 2873 PROC_UNLOCK(p); 2874 stack_sbuf_print(&sb, st); 2875 sbuf_finish(&sb); 2876 sbuf_delete(&sb); 2877 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2878 if (error) 2879 break; 2880 } 2881 PRELE(p); 2882 if (lwpidarray != NULL) 2883 free(lwpidarray, M_TEMP); 2884 stack_destroy(st); 2885 free(kkstp, M_TEMP); 2886 return (error); 2887 } 2888 #endif 2889 2890 /* 2891 * This sysctl allows a process to retrieve the full list of groups from 2892 * itself or another process. 2893 */ 2894 static int 2895 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2896 { 2897 pid_t *pidp = (pid_t *)arg1; 2898 unsigned int arglen = arg2; 2899 struct proc *p; 2900 struct ucred *cred; 2901 int error; 2902 2903 if (arglen != 1) 2904 return (EINVAL); 2905 if (*pidp == -1) { /* -1 means this process */ 2906 p = req->td->td_proc; 2907 PROC_LOCK(p); 2908 } else { 2909 error = pget(*pidp, PGET_CANSEE, &p); 2910 if (error != 0) 2911 return (error); 2912 } 2913 2914 cred = crhold(p->p_ucred); 2915 PROC_UNLOCK(p); 2916 2917 error = SYSCTL_OUT(req, cred->cr_groups, 2918 cred->cr_ngroups * sizeof(gid_t)); 2919 crfree(cred); 2920 return (error); 2921 } 2922 2923 /* 2924 * This sysctl allows a process to retrieve or/and set the resource limit for 2925 * another process. 2926 */ 2927 static int 2928 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2929 { 2930 int *name = (int *)arg1; 2931 u_int namelen = arg2; 2932 struct rlimit rlim; 2933 struct proc *p; 2934 u_int which; 2935 int flags, error; 2936 2937 if (namelen != 2) 2938 return (EINVAL); 2939 2940 which = (u_int)name[1]; 2941 if (which >= RLIM_NLIMITS) 2942 return (EINVAL); 2943 2944 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2945 return (EINVAL); 2946 2947 flags = PGET_HOLD | PGET_NOTWEXIT; 2948 if (req->newptr != NULL) 2949 flags |= PGET_CANDEBUG; 2950 else 2951 flags |= PGET_CANSEE; 2952 error = pget((pid_t)name[0], flags, &p); 2953 if (error != 0) 2954 return (error); 2955 2956 /* 2957 * Retrieve limit. 2958 */ 2959 if (req->oldptr != NULL) { 2960 PROC_LOCK(p); 2961 lim_rlimit_proc(p, which, &rlim); 2962 PROC_UNLOCK(p); 2963 } 2964 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2965 if (error != 0) 2966 goto errout; 2967 2968 /* 2969 * Set limit. 2970 */ 2971 if (req->newptr != NULL) { 2972 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2973 if (error == 0) 2974 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2975 } 2976 2977 errout: 2978 PRELE(p); 2979 return (error); 2980 } 2981 2982 /* 2983 * This sysctl allows a process to retrieve ps_strings structure location of 2984 * another process. 2985 */ 2986 static int 2987 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2988 { 2989 int *name = (int *)arg1; 2990 u_int namelen = arg2; 2991 struct proc *p; 2992 vm_offset_t ps_strings; 2993 int error; 2994 #ifdef COMPAT_FREEBSD32 2995 uint32_t ps_strings32; 2996 #endif 2997 2998 if (namelen != 1) 2999 return (EINVAL); 3000 3001 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 3002 if (error != 0) 3003 return (error); 3004 #ifdef COMPAT_FREEBSD32 3005 if ((req->flags & SCTL_MASK32) != 0) { 3006 /* 3007 * We return 0 if the 32 bit emulation request is for a 64 bit 3008 * process. 3009 */ 3010 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 3011 PTROUT(PROC_PS_STRINGS(p)) : 0; 3012 PROC_UNLOCK(p); 3013 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 3014 return (error); 3015 } 3016 #endif 3017 ps_strings = PROC_PS_STRINGS(p); 3018 PROC_UNLOCK(p); 3019 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 3020 return (error); 3021 } 3022 3023 /* 3024 * This sysctl allows a process to retrieve umask of another process. 3025 */ 3026 static int 3027 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 3028 { 3029 int *name = (int *)arg1; 3030 u_int namelen = arg2; 3031 struct proc *p; 3032 int error; 3033 u_short cmask; 3034 pid_t pid; 3035 3036 if (namelen != 1) 3037 return (EINVAL); 3038 3039 pid = (pid_t)name[0]; 3040 p = curproc; 3041 if (pid == p->p_pid || pid == 0) { 3042 cmask = p->p_pd->pd_cmask; 3043 goto out; 3044 } 3045 3046 error = pget(pid, PGET_WANTREAD, &p); 3047 if (error != 0) 3048 return (error); 3049 3050 cmask = p->p_pd->pd_cmask; 3051 PRELE(p); 3052 out: 3053 error = SYSCTL_OUT(req, &cmask, sizeof(cmask)); 3054 return (error); 3055 } 3056 3057 /* 3058 * This sysctl allows a process to set and retrieve binary osreldate of 3059 * another process. 3060 */ 3061 static int 3062 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 3063 { 3064 int *name = (int *)arg1; 3065 u_int namelen = arg2; 3066 struct proc *p; 3067 int flags, error, osrel; 3068 3069 if (namelen != 1) 3070 return (EINVAL); 3071 3072 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 3073 return (EINVAL); 3074 3075 flags = PGET_HOLD | PGET_NOTWEXIT; 3076 if (req->newptr != NULL) 3077 flags |= PGET_CANDEBUG; 3078 else 3079 flags |= PGET_CANSEE; 3080 error = pget((pid_t)name[0], flags, &p); 3081 if (error != 0) 3082 return (error); 3083 3084 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 3085 if (error != 0) 3086 goto errout; 3087 3088 if (req->newptr != NULL) { 3089 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 3090 if (error != 0) 3091 goto errout; 3092 if (osrel < 0) { 3093 error = EINVAL; 3094 goto errout; 3095 } 3096 p->p_osrel = osrel; 3097 } 3098 errout: 3099 PRELE(p); 3100 return (error); 3101 } 3102 3103 static int 3104 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS) 3105 { 3106 int *name = (int *)arg1; 3107 u_int namelen = arg2; 3108 struct proc *p; 3109 struct kinfo_sigtramp kst; 3110 const struct sysentvec *sv; 3111 int error; 3112 #ifdef COMPAT_FREEBSD32 3113 struct kinfo_sigtramp32 kst32; 3114 #endif 3115 3116 if (namelen != 1) 3117 return (EINVAL); 3118 3119 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 3120 if (error != 0) 3121 return (error); 3122 sv = p->p_sysent; 3123 #ifdef COMPAT_FREEBSD32 3124 if ((req->flags & SCTL_MASK32) != 0) { 3125 bzero(&kst32, sizeof(kst32)); 3126 if (SV_PROC_FLAG(p, SV_ILP32)) { 3127 if (PROC_HAS_SHP(p)) { 3128 kst32.ksigtramp_start = PROC_SIGCODE(p); 3129 kst32.ksigtramp_end = kst32.ksigtramp_start + 3130 ((sv->sv_flags & SV_DSO_SIG) == 0 ? 3131 *sv->sv_szsigcode : 3132 (uintptr_t)sv->sv_szsigcode); 3133 } else { 3134 kst32.ksigtramp_start = PROC_PS_STRINGS(p) - 3135 *sv->sv_szsigcode; 3136 kst32.ksigtramp_end = PROC_PS_STRINGS(p); 3137 } 3138 } 3139 PROC_UNLOCK(p); 3140 error = SYSCTL_OUT(req, &kst32, sizeof(kst32)); 3141 return (error); 3142 } 3143 #endif 3144 bzero(&kst, sizeof(kst)); 3145 if (PROC_HAS_SHP(p)) { 3146 kst.ksigtramp_start = (char *)PROC_SIGCODE(p); 3147 kst.ksigtramp_end = (char *)kst.ksigtramp_start + 3148 ((sv->sv_flags & SV_DSO_SIG) == 0 ? *sv->sv_szsigcode : 3149 (uintptr_t)sv->sv_szsigcode); 3150 } else { 3151 kst.ksigtramp_start = (char *)PROC_PS_STRINGS(p) - 3152 *sv->sv_szsigcode; 3153 kst.ksigtramp_end = (char *)PROC_PS_STRINGS(p); 3154 } 3155 PROC_UNLOCK(p); 3156 error = SYSCTL_OUT(req, &kst, sizeof(kst)); 3157 return (error); 3158 } 3159 3160 static int 3161 sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS) 3162 { 3163 int *name = (int *)arg1; 3164 u_int namelen = arg2; 3165 pid_t pid; 3166 struct proc *p; 3167 struct thread *td1; 3168 uintptr_t addr; 3169 #ifdef COMPAT_FREEBSD32 3170 uint32_t addr32; 3171 #endif 3172 int error; 3173 3174 if (namelen != 1 || req->newptr != NULL) 3175 return (EINVAL); 3176 3177 pid = (pid_t)name[0]; 3178 error = pget(pid, PGET_HOLD | PGET_NOTWEXIT | PGET_CANDEBUG, &p); 3179 if (error != 0) 3180 return (error); 3181 3182 PROC_LOCK(p); 3183 #ifdef COMPAT_FREEBSD32 3184 if (SV_CURPROC_FLAG(SV_ILP32)) { 3185 if (!SV_PROC_FLAG(p, SV_ILP32)) { 3186 error = EINVAL; 3187 goto errlocked; 3188 } 3189 } 3190 #endif 3191 if (pid <= PID_MAX) { 3192 td1 = FIRST_THREAD_IN_PROC(p); 3193 } else { 3194 FOREACH_THREAD_IN_PROC(p, td1) { 3195 if (td1->td_tid == pid) 3196 break; 3197 } 3198 } 3199 if (td1 == NULL) { 3200 error = ESRCH; 3201 goto errlocked; 3202 } 3203 /* 3204 * The access to the private thread flags. It is fine as far 3205 * as no out-of-thin-air values are read from td_pflags, and 3206 * usermode read of the td_sigblock_ptr is racy inherently, 3207 * since target process might have already changed it 3208 * meantime. 3209 */ 3210 if ((td1->td_pflags & TDP_SIGFASTBLOCK) != 0) 3211 addr = (uintptr_t)td1->td_sigblock_ptr; 3212 else 3213 error = ENOTTY; 3214 3215 errlocked: 3216 _PRELE(p); 3217 PROC_UNLOCK(p); 3218 if (error != 0) 3219 return (error); 3220 3221 #ifdef COMPAT_FREEBSD32 3222 if (SV_CURPROC_FLAG(SV_ILP32)) { 3223 addr32 = addr; 3224 error = SYSCTL_OUT(req, &addr32, sizeof(addr32)); 3225 } else 3226 #endif 3227 error = SYSCTL_OUT(req, &addr, sizeof(addr)); 3228 return (error); 3229 } 3230 3231 static int 3232 sysctl_kern_proc_vm_layout(SYSCTL_HANDLER_ARGS) 3233 { 3234 struct kinfo_vm_layout kvm; 3235 struct proc *p; 3236 struct vmspace *vmspace; 3237 int error, *name; 3238 3239 name = (int *)arg1; 3240 if ((u_int)arg2 != 1) 3241 return (EINVAL); 3242 3243 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 3244 if (error != 0) 3245 return (error); 3246 #ifdef COMPAT_FREEBSD32 3247 if (SV_CURPROC_FLAG(SV_ILP32)) { 3248 if (!SV_PROC_FLAG(p, SV_ILP32)) { 3249 PROC_UNLOCK(p); 3250 return (EINVAL); 3251 } 3252 } 3253 #endif 3254 vmspace = vmspace_acquire_ref(p); 3255 PROC_UNLOCK(p); 3256 3257 memset(&kvm, 0, sizeof(kvm)); 3258 kvm.kvm_min_user_addr = vm_map_min(&vmspace->vm_map); 3259 kvm.kvm_max_user_addr = vm_map_max(&vmspace->vm_map); 3260 kvm.kvm_text_addr = (uintptr_t)vmspace->vm_taddr; 3261 kvm.kvm_text_size = vmspace->vm_tsize; 3262 kvm.kvm_data_addr = (uintptr_t)vmspace->vm_daddr; 3263 kvm.kvm_data_size = vmspace->vm_dsize; 3264 kvm.kvm_stack_addr = (uintptr_t)vmspace->vm_maxsaddr; 3265 kvm.kvm_stack_size = vmspace->vm_ssize; 3266 kvm.kvm_shp_addr = vmspace->vm_shp_base; 3267 kvm.kvm_shp_size = p->p_sysent->sv_shared_page_len; 3268 if ((vmspace->vm_map.flags & MAP_WIREFUTURE) != 0) 3269 kvm.kvm_map_flags |= KMAP_FLAG_WIREFUTURE; 3270 if ((vmspace->vm_map.flags & MAP_ASLR) != 0) 3271 kvm.kvm_map_flags |= KMAP_FLAG_ASLR; 3272 if ((vmspace->vm_map.flags & MAP_ASLR_IGNSTART) != 0) 3273 kvm.kvm_map_flags |= KMAP_FLAG_ASLR_IGNSTART; 3274 if ((vmspace->vm_map.flags & MAP_WXORX) != 0) 3275 kvm.kvm_map_flags |= KMAP_FLAG_WXORX; 3276 if ((vmspace->vm_map.flags & MAP_ASLR_STACK) != 0) 3277 kvm.kvm_map_flags |= KMAP_FLAG_ASLR_STACK; 3278 if (vmspace->vm_shp_base != p->p_sysent->sv_shared_page_base && 3279 PROC_HAS_SHP(p)) 3280 kvm.kvm_map_flags |= KMAP_FLAG_ASLR_SHARED_PAGE; 3281 3282 #ifdef COMPAT_FREEBSD32 3283 if (SV_CURPROC_FLAG(SV_ILP32)) { 3284 struct kinfo_vm_layout32 kvm32; 3285 3286 memset(&kvm32, 0, sizeof(kvm32)); 3287 kvm32.kvm_min_user_addr = (uint32_t)kvm.kvm_min_user_addr; 3288 kvm32.kvm_max_user_addr = (uint32_t)kvm.kvm_max_user_addr; 3289 kvm32.kvm_text_addr = (uint32_t)kvm.kvm_text_addr; 3290 kvm32.kvm_text_size = (uint32_t)kvm.kvm_text_size; 3291 kvm32.kvm_data_addr = (uint32_t)kvm.kvm_data_addr; 3292 kvm32.kvm_data_size = (uint32_t)kvm.kvm_data_size; 3293 kvm32.kvm_stack_addr = (uint32_t)kvm.kvm_stack_addr; 3294 kvm32.kvm_stack_size = (uint32_t)kvm.kvm_stack_size; 3295 kvm32.kvm_shp_addr = (uint32_t)kvm.kvm_shp_addr; 3296 kvm32.kvm_shp_size = (uint32_t)kvm.kvm_shp_size; 3297 kvm32.kvm_map_flags = kvm.kvm_map_flags; 3298 error = SYSCTL_OUT(req, &kvm32, sizeof(kvm32)); 3299 goto out; 3300 } 3301 #endif 3302 3303 error = SYSCTL_OUT(req, &kvm, sizeof(kvm)); 3304 #ifdef COMPAT_FREEBSD32 3305 out: 3306 #endif 3307 vmspace_free(vmspace); 3308 return (error); 3309 } 3310 3311 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 3312 "Process table"); 3313 3314 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 3315 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 3316 "Return entire process table"); 3317 3318 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3319 sysctl_kern_proc, "Process table"); 3320 3321 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 3322 sysctl_kern_proc, "Process table"); 3323 3324 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3325 sysctl_kern_proc, "Process table"); 3326 3327 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 3328 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3329 3330 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 3331 sysctl_kern_proc, "Process table"); 3332 3333 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3334 sysctl_kern_proc, "Process table"); 3335 3336 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3337 sysctl_kern_proc, "Process table"); 3338 3339 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3340 sysctl_kern_proc, "Process table"); 3341 3342 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 3343 sysctl_kern_proc, "Return process table, no threads"); 3344 3345 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 3346 CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 3347 sysctl_kern_proc_args, "Process argument list"); 3348 3349 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 3350 sysctl_kern_proc_env, "Process environment"); 3351 3352 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 3353 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 3354 3355 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 3356 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 3357 3358 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 3359 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 3360 "Process syscall vector name (ABI type)"); 3361 3362 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 3363 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3364 3365 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 3366 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3367 3368 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 3369 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3370 3371 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 3372 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3373 3374 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 3375 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3376 3377 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 3378 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3379 3380 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 3381 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3382 3383 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 3384 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3385 3386 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 3387 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 3388 "Return process table, including threads"); 3389 3390 #ifdef COMPAT_FREEBSD7 3391 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 3392 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 3393 #endif 3394 3395 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 3396 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 3397 3398 #if defined(STACK) || defined(DDB) 3399 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 3400 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 3401 #endif 3402 3403 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 3404 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 3405 3406 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 3407 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 3408 "Process resource limits"); 3409 3410 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 3411 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 3412 "Process ps_strings location"); 3413 3414 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 3415 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 3416 3417 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 3418 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 3419 "Process binary osreldate"); 3420 3421 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD | 3422 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp, 3423 "Process signal trampoline location"); 3424 3425 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGFASTBLK, sigfastblk, CTLFLAG_RD | 3426 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_sigfastblk, 3427 "Thread sigfastblock address"); 3428 3429 static SYSCTL_NODE(_kern_proc, KERN_PROC_VM_LAYOUT, vm_layout, CTLFLAG_RD | 3430 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_vm_layout, 3431 "Process virtual address space layout info"); 3432 3433 static struct sx stop_all_proc_blocker; 3434 SX_SYSINIT(stop_all_proc_blocker, &stop_all_proc_blocker, "sapblk"); 3435 3436 bool 3437 stop_all_proc_block(void) 3438 { 3439 return (sx_xlock_sig(&stop_all_proc_blocker) == 0); 3440 } 3441 3442 void 3443 stop_all_proc_unblock(void) 3444 { 3445 sx_xunlock(&stop_all_proc_blocker); 3446 } 3447 3448 int allproc_gen; 3449 3450 /* 3451 * stop_all_proc() purpose is to stop all process which have usermode, 3452 * except current process for obvious reasons. This makes it somewhat 3453 * unreliable when invoked from multithreaded process. The service 3454 * must not be user-callable anyway. 3455 */ 3456 void 3457 stop_all_proc(void) 3458 { 3459 struct proc *cp, *p; 3460 int r, gen; 3461 bool restart, seen_stopped, seen_exiting, stopped_some; 3462 3463 if (!stop_all_proc_block()) 3464 return; 3465 3466 cp = curproc; 3467 allproc_loop: 3468 sx_xlock(&allproc_lock); 3469 gen = allproc_gen; 3470 seen_exiting = seen_stopped = stopped_some = restart = false; 3471 LIST_REMOVE(cp, p_list); 3472 LIST_INSERT_HEAD(&allproc, cp, p_list); 3473 for (;;) { 3474 p = LIST_NEXT(cp, p_list); 3475 if (p == NULL) 3476 break; 3477 LIST_REMOVE(cp, p_list); 3478 LIST_INSERT_AFTER(p, cp, p_list); 3479 PROC_LOCK(p); 3480 if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) { 3481 PROC_UNLOCK(p); 3482 continue; 3483 } 3484 if ((p->p_flag2 & P2_WEXIT) != 0) { 3485 seen_exiting = true; 3486 PROC_UNLOCK(p); 3487 continue; 3488 } 3489 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 3490 /* 3491 * Stopped processes are tolerated when there 3492 * are no other processes which might continue 3493 * them. P_STOPPED_SINGLE but not 3494 * P_TOTAL_STOP process still has at least one 3495 * thread running. 3496 */ 3497 seen_stopped = true; 3498 PROC_UNLOCK(p); 3499 continue; 3500 } 3501 sx_xunlock(&allproc_lock); 3502 _PHOLD(p); 3503 r = thread_single(p, SINGLE_ALLPROC); 3504 if (r != 0) 3505 restart = true; 3506 else 3507 stopped_some = true; 3508 _PRELE(p); 3509 PROC_UNLOCK(p); 3510 sx_xlock(&allproc_lock); 3511 } 3512 /* Catch forked children we did not see in iteration. */ 3513 if (gen != allproc_gen) 3514 restart = true; 3515 sx_xunlock(&allproc_lock); 3516 if (restart || stopped_some || seen_exiting || seen_stopped) { 3517 kern_yield(PRI_USER); 3518 goto allproc_loop; 3519 } 3520 } 3521 3522 void 3523 resume_all_proc(void) 3524 { 3525 struct proc *cp, *p; 3526 3527 cp = curproc; 3528 sx_xlock(&allproc_lock); 3529 again: 3530 LIST_REMOVE(cp, p_list); 3531 LIST_INSERT_HEAD(&allproc, cp, p_list); 3532 for (;;) { 3533 p = LIST_NEXT(cp, p_list); 3534 if (p == NULL) 3535 break; 3536 LIST_REMOVE(cp, p_list); 3537 LIST_INSERT_AFTER(p, cp, p_list); 3538 PROC_LOCK(p); 3539 if ((p->p_flag & P_TOTAL_STOP) != 0) { 3540 sx_xunlock(&allproc_lock); 3541 _PHOLD(p); 3542 thread_single_end(p, SINGLE_ALLPROC); 3543 _PRELE(p); 3544 PROC_UNLOCK(p); 3545 sx_xlock(&allproc_lock); 3546 } else { 3547 PROC_UNLOCK(p); 3548 } 3549 } 3550 /* Did the loop above missed any stopped process ? */ 3551 FOREACH_PROC_IN_SYSTEM(p) { 3552 /* No need for proc lock. */ 3553 if ((p->p_flag & P_TOTAL_STOP) != 0) 3554 goto again; 3555 } 3556 sx_xunlock(&allproc_lock); 3557 3558 stop_all_proc_unblock(); 3559 } 3560 3561 /* #define TOTAL_STOP_DEBUG 1 */ 3562 #ifdef TOTAL_STOP_DEBUG 3563 volatile static int ap_resume; 3564 #include <sys/mount.h> 3565 3566 static int 3567 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS) 3568 { 3569 int error, val; 3570 3571 val = 0; 3572 ap_resume = 0; 3573 error = sysctl_handle_int(oidp, &val, 0, req); 3574 if (error != 0 || req->newptr == NULL) 3575 return (error); 3576 if (val != 0) { 3577 stop_all_proc(); 3578 syncer_suspend(); 3579 while (ap_resume == 0) 3580 ; 3581 syncer_resume(); 3582 resume_all_proc(); 3583 } 3584 return (0); 3585 } 3586 3587 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW | 3588 CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0, 3589 sysctl_debug_stop_all_proc, "I", 3590 ""); 3591 #endif 3592