1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2008 Isilon Inc http://www.isilon.com/ 5 * Authors: Doug Rabson <dfr@rabson.org> 6 * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 /*- 30 * Copyright (c) 1982, 1986, 1989, 1993 31 * The Regents of the University of California. All rights reserved. 32 * 33 * This code is derived from software contributed to Berkeley by 34 * Scooter Morris at Genentech Inc. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)ufs_lockf.c 8.3 (Berkeley) 1/6/94 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_debug_lockf.h" 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/hash.h> 71 #include <sys/kernel.h> 72 #include <sys/limits.h> 73 #include <sys/lock.h> 74 #include <sys/mount.h> 75 #include <sys/mutex.h> 76 #include <sys/proc.h> 77 #include <sys/sx.h> 78 #include <sys/unistd.h> 79 #include <sys/vnode.h> 80 #include <sys/malloc.h> 81 #include <sys/fcntl.h> 82 #include <sys/lockf.h> 83 #include <sys/taskqueue.h> 84 85 #ifdef LOCKF_DEBUG 86 #include <sys/sysctl.h> 87 88 #include <ufs/ufs/extattr.h> 89 #include <ufs/ufs/quota.h> 90 #include <ufs/ufs/ufsmount.h> 91 #include <ufs/ufs/inode.h> 92 93 static int lockf_debug = 0; /* control debug output */ 94 SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, ""); 95 #endif 96 97 static MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures"); 98 99 struct owner_edge; 100 struct owner_vertex; 101 struct owner_vertex_list; 102 struct owner_graph; 103 104 #define NOLOCKF (struct lockf_entry *)0 105 #define SELF 0x1 106 #define OTHERS 0x2 107 static void lf_init(void *); 108 static int lf_hash_owner(caddr_t, struct vnode *, struct flock *, int); 109 static int lf_owner_matches(struct lock_owner *, caddr_t, struct flock *, 110 int); 111 static struct lockf_entry * 112 lf_alloc_lock(struct lock_owner *); 113 static int lf_free_lock(struct lockf_entry *); 114 static int lf_clearlock(struct lockf *, struct lockf_entry *); 115 static int lf_overlaps(struct lockf_entry *, struct lockf_entry *); 116 static int lf_blocks(struct lockf_entry *, struct lockf_entry *); 117 static void lf_free_edge(struct lockf_edge *); 118 static struct lockf_edge * 119 lf_alloc_edge(void); 120 static void lf_alloc_vertex(struct lockf_entry *); 121 static int lf_add_edge(struct lockf_entry *, struct lockf_entry *); 122 static void lf_remove_edge(struct lockf_edge *); 123 static void lf_remove_outgoing(struct lockf_entry *); 124 static void lf_remove_incoming(struct lockf_entry *); 125 static int lf_add_outgoing(struct lockf *, struct lockf_entry *); 126 static int lf_add_incoming(struct lockf *, struct lockf_entry *); 127 static int lf_findoverlap(struct lockf_entry **, struct lockf_entry *, 128 int); 129 static struct lockf_entry * 130 lf_getblock(struct lockf *, struct lockf_entry *); 131 static int lf_getlock(struct lockf *, struct lockf_entry *, struct flock *); 132 static void lf_insert_lock(struct lockf *, struct lockf_entry *); 133 static void lf_wakeup_lock(struct lockf *, struct lockf_entry *); 134 static void lf_update_dependancies(struct lockf *, struct lockf_entry *, 135 int all, struct lockf_entry_list *); 136 static void lf_set_start(struct lockf *, struct lockf_entry *, off_t, 137 struct lockf_entry_list*); 138 static void lf_set_end(struct lockf *, struct lockf_entry *, off_t, 139 struct lockf_entry_list*); 140 static int lf_setlock(struct lockf *, struct lockf_entry *, 141 struct vnode *, void **cookiep); 142 static int lf_cancel(struct lockf *, struct lockf_entry *, void *); 143 static void lf_split(struct lockf *, struct lockf_entry *, 144 struct lockf_entry *, struct lockf_entry_list *); 145 #ifdef LOCKF_DEBUG 146 static int graph_reaches(struct owner_vertex *x, struct owner_vertex *y, 147 struct owner_vertex_list *path); 148 static void graph_check(struct owner_graph *g, int checkorder); 149 static void graph_print_vertices(struct owner_vertex_list *set); 150 #endif 151 static int graph_delta_forward(struct owner_graph *g, 152 struct owner_vertex *x, struct owner_vertex *y, 153 struct owner_vertex_list *delta); 154 static int graph_delta_backward(struct owner_graph *g, 155 struct owner_vertex *x, struct owner_vertex *y, 156 struct owner_vertex_list *delta); 157 static int graph_add_indices(int *indices, int n, 158 struct owner_vertex_list *set); 159 static int graph_assign_indices(struct owner_graph *g, int *indices, 160 int nextunused, struct owner_vertex_list *set); 161 static int graph_add_edge(struct owner_graph *g, 162 struct owner_vertex *x, struct owner_vertex *y); 163 static void graph_remove_edge(struct owner_graph *g, 164 struct owner_vertex *x, struct owner_vertex *y); 165 static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g, 166 struct lock_owner *lo); 167 static void graph_free_vertex(struct owner_graph *g, 168 struct owner_vertex *v); 169 static struct owner_graph * graph_init(struct owner_graph *g); 170 #ifdef LOCKF_DEBUG 171 static void lf_print(char *, struct lockf_entry *); 172 static void lf_printlist(char *, struct lockf_entry *); 173 static void lf_print_owner(struct lock_owner *); 174 #endif 175 176 /* 177 * This structure is used to keep track of both local and remote lock 178 * owners. The lf_owner field of the struct lockf_entry points back at 179 * the lock owner structure. Each possible lock owner (local proc for 180 * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid> 181 * pair for remote locks) is represented by a unique instance of 182 * struct lock_owner. 183 * 184 * If a lock owner has a lock that blocks some other lock or a lock 185 * that is waiting for some other lock, it also has a vertex in the 186 * owner_graph below. 187 * 188 * Locks: 189 * (s) locked by state->ls_lock 190 * (S) locked by lf_lock_states_lock 191 * (g) locked by lf_owner_graph_lock 192 * (c) const until freeing 193 */ 194 #define LOCK_OWNER_HASH_SIZE 256 195 196 struct lock_owner { 197 LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */ 198 int lo_refs; /* (l) Number of locks referring to this */ 199 int lo_flags; /* (c) Flags passwd to lf_advlock */ 200 caddr_t lo_id; /* (c) Id value passed to lf_advlock */ 201 pid_t lo_pid; /* (c) Process Id of the lock owner */ 202 int lo_sysid; /* (c) System Id of the lock owner */ 203 int lo_hash; /* (c) Used to lock the appropriate chain */ 204 struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */ 205 }; 206 207 LIST_HEAD(lock_owner_list, lock_owner); 208 209 struct lock_owner_chain { 210 struct sx lock; 211 struct lock_owner_list list; 212 }; 213 214 static struct sx lf_lock_states_lock; 215 static struct lockf_list lf_lock_states; /* (S) */ 216 static struct lock_owner_chain lf_lock_owners[LOCK_OWNER_HASH_SIZE]; 217 218 /* 219 * Structures for deadlock detection. 220 * 221 * We have two types of directed graph, the first is the set of locks, 222 * both active and pending on a vnode. Within this graph, active locks 223 * are terminal nodes in the graph (i.e. have no out-going 224 * edges). Pending locks have out-going edges to each blocking active 225 * lock that prevents the lock from being granted and also to each 226 * older pending lock that would block them if it was active. The 227 * graph for each vnode is naturally acyclic; new edges are only ever 228 * added to or from new nodes (either new pending locks which only add 229 * out-going edges or new active locks which only add in-coming edges) 230 * therefore they cannot create loops in the lock graph. 231 * 232 * The second graph is a global graph of lock owners. Each lock owner 233 * is a vertex in that graph and an edge is added to the graph 234 * whenever an edge is added to a vnode graph, with end points 235 * corresponding to owner of the new pending lock and the owner of the 236 * lock upon which it waits. In order to prevent deadlock, we only add 237 * an edge to this graph if the new edge would not create a cycle. 238 * 239 * The lock owner graph is topologically sorted, i.e. if a node has 240 * any outgoing edges, then it has an order strictly less than any 241 * node to which it has an outgoing edge. We preserve this ordering 242 * (and detect cycles) on edge insertion using Algorithm PK from the 243 * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic 244 * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article 245 * No. 1.7) 246 */ 247 struct owner_vertex; 248 249 struct owner_edge { 250 LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */ 251 LIST_ENTRY(owner_edge) e_inlink; /* (g) link to's in-edge list */ 252 int e_refs; /* (g) number of times added */ 253 struct owner_vertex *e_from; /* (c) out-going from here */ 254 struct owner_vertex *e_to; /* (c) in-coming to here */ 255 }; 256 LIST_HEAD(owner_edge_list, owner_edge); 257 258 struct owner_vertex { 259 TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */ 260 uint32_t v_gen; /* (g) workspace for edge insertion */ 261 int v_order; /* (g) order of vertex in graph */ 262 struct owner_edge_list v_outedges;/* (g) list of out-edges */ 263 struct owner_edge_list v_inedges; /* (g) list of in-edges */ 264 struct lock_owner *v_owner; /* (c) corresponding lock owner */ 265 }; 266 TAILQ_HEAD(owner_vertex_list, owner_vertex); 267 268 struct owner_graph { 269 struct owner_vertex** g_vertices; /* (g) pointers to vertices */ 270 int g_size; /* (g) number of vertices */ 271 int g_space; /* (g) space allocated for vertices */ 272 int *g_indexbuf; /* (g) workspace for loop detection */ 273 uint32_t g_gen; /* (g) increment when re-ordering */ 274 }; 275 276 static struct sx lf_owner_graph_lock; 277 static struct owner_graph lf_owner_graph; 278 279 /* 280 * Initialise various structures and locks. 281 */ 282 static void 283 lf_init(void *dummy) 284 { 285 int i; 286 287 sx_init(&lf_lock_states_lock, "lock states lock"); 288 LIST_INIT(&lf_lock_states); 289 290 for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) { 291 sx_init(&lf_lock_owners[i].lock, "lock owners lock"); 292 LIST_INIT(&lf_lock_owners[i].list); 293 } 294 295 sx_init(&lf_owner_graph_lock, "owner graph lock"); 296 graph_init(&lf_owner_graph); 297 } 298 SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL); 299 300 /* 301 * Generate a hash value for a lock owner. 302 */ 303 static int 304 lf_hash_owner(caddr_t id, struct vnode *vp, struct flock *fl, int flags) 305 { 306 uint32_t h; 307 308 if (flags & F_REMOTE) { 309 h = HASHSTEP(0, fl->l_pid); 310 h = HASHSTEP(h, fl->l_sysid); 311 } else if (flags & F_FLOCK) { 312 h = ((uintptr_t) id) >> 7; 313 } else { 314 h = ((uintptr_t) vp) >> 7; 315 } 316 317 return (h % LOCK_OWNER_HASH_SIZE); 318 } 319 320 /* 321 * Return true if a lock owner matches the details passed to 322 * lf_advlock. 323 */ 324 static int 325 lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl, 326 int flags) 327 { 328 if (flags & F_REMOTE) { 329 return lo->lo_pid == fl->l_pid 330 && lo->lo_sysid == fl->l_sysid; 331 } else { 332 return lo->lo_id == id; 333 } 334 } 335 336 static struct lockf_entry * 337 lf_alloc_lock(struct lock_owner *lo) 338 { 339 struct lockf_entry *lf; 340 341 lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO); 342 343 #ifdef LOCKF_DEBUG 344 if (lockf_debug & 4) 345 printf("Allocated lock %p\n", lf); 346 #endif 347 if (lo) { 348 sx_xlock(&lf_lock_owners[lo->lo_hash].lock); 349 lo->lo_refs++; 350 sx_xunlock(&lf_lock_owners[lo->lo_hash].lock); 351 lf->lf_owner = lo; 352 } 353 354 return (lf); 355 } 356 357 static int 358 lf_free_lock(struct lockf_entry *lock) 359 { 360 struct sx *chainlock; 361 362 KASSERT(lock->lf_refs > 0, ("lockf_entry negative ref count %p", lock)); 363 if (--lock->lf_refs > 0) 364 return (0); 365 /* 366 * Adjust the lock_owner reference count and 367 * reclaim the entry if this is the last lock 368 * for that owner. 369 */ 370 struct lock_owner *lo = lock->lf_owner; 371 if (lo) { 372 KASSERT(LIST_EMPTY(&lock->lf_outedges), 373 ("freeing lock with dependencies")); 374 KASSERT(LIST_EMPTY(&lock->lf_inedges), 375 ("freeing lock with dependants")); 376 chainlock = &lf_lock_owners[lo->lo_hash].lock; 377 sx_xlock(chainlock); 378 KASSERT(lo->lo_refs > 0, ("lock owner refcount")); 379 lo->lo_refs--; 380 if (lo->lo_refs == 0) { 381 #ifdef LOCKF_DEBUG 382 if (lockf_debug & 1) 383 printf("lf_free_lock: freeing lock owner %p\n", 384 lo); 385 #endif 386 if (lo->lo_vertex) { 387 sx_xlock(&lf_owner_graph_lock); 388 graph_free_vertex(&lf_owner_graph, 389 lo->lo_vertex); 390 sx_xunlock(&lf_owner_graph_lock); 391 } 392 LIST_REMOVE(lo, lo_link); 393 free(lo, M_LOCKF); 394 #ifdef LOCKF_DEBUG 395 if (lockf_debug & 4) 396 printf("Freed lock owner %p\n", lo); 397 #endif 398 } 399 sx_unlock(chainlock); 400 } 401 if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) { 402 vrele(lock->lf_vnode); 403 lock->lf_vnode = NULL; 404 } 405 #ifdef LOCKF_DEBUG 406 if (lockf_debug & 4) 407 printf("Freed lock %p\n", lock); 408 #endif 409 free(lock, M_LOCKF); 410 return (1); 411 } 412 413 /* 414 * Advisory record locking support 415 */ 416 int 417 lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep, 418 u_quad_t size) 419 { 420 struct lockf *state; 421 struct flock *fl = ap->a_fl; 422 struct lockf_entry *lock; 423 struct vnode *vp = ap->a_vp; 424 caddr_t id = ap->a_id; 425 int flags = ap->a_flags; 426 int hash; 427 struct lock_owner *lo; 428 off_t start, end, oadd; 429 int error; 430 431 /* 432 * Handle the F_UNLKSYS case first - no need to mess about 433 * creating a lock owner for this one. 434 */ 435 if (ap->a_op == F_UNLCKSYS) { 436 lf_clearremotesys(fl->l_sysid); 437 return (0); 438 } 439 440 /* 441 * Convert the flock structure into a start and end. 442 */ 443 switch (fl->l_whence) { 444 case SEEK_SET: 445 case SEEK_CUR: 446 /* 447 * Caller is responsible for adding any necessary offset 448 * when SEEK_CUR is used. 449 */ 450 start = fl->l_start; 451 break; 452 453 case SEEK_END: 454 if (size > OFF_MAX || 455 (fl->l_start > 0 && size > OFF_MAX - fl->l_start)) 456 return (EOVERFLOW); 457 start = size + fl->l_start; 458 break; 459 460 default: 461 return (EINVAL); 462 } 463 if (start < 0) 464 return (EINVAL); 465 if (fl->l_len < 0) { 466 if (start == 0) 467 return (EINVAL); 468 end = start - 1; 469 start += fl->l_len; 470 if (start < 0) 471 return (EINVAL); 472 } else if (fl->l_len == 0) { 473 end = OFF_MAX; 474 } else { 475 oadd = fl->l_len - 1; 476 if (oadd > OFF_MAX - start) 477 return (EOVERFLOW); 478 end = start + oadd; 479 } 480 481 retry_setlock: 482 483 /* 484 * Avoid the common case of unlocking when inode has no locks. 485 */ 486 if (ap->a_op != F_SETLK && (*statep) == NULL) { 487 VI_LOCK(vp); 488 if ((*statep) == NULL) { 489 fl->l_type = F_UNLCK; 490 VI_UNLOCK(vp); 491 return (0); 492 } 493 VI_UNLOCK(vp); 494 } 495 496 /* 497 * Map our arguments to an existing lock owner or create one 498 * if this is the first time we have seen this owner. 499 */ 500 hash = lf_hash_owner(id, vp, fl, flags); 501 sx_xlock(&lf_lock_owners[hash].lock); 502 LIST_FOREACH(lo, &lf_lock_owners[hash].list, lo_link) 503 if (lf_owner_matches(lo, id, fl, flags)) 504 break; 505 if (!lo) { 506 /* 507 * We initialise the lock with a reference 508 * count which matches the new lockf_entry 509 * structure created below. 510 */ 511 lo = malloc(sizeof(struct lock_owner), M_LOCKF, 512 M_WAITOK|M_ZERO); 513 #ifdef LOCKF_DEBUG 514 if (lockf_debug & 4) 515 printf("Allocated lock owner %p\n", lo); 516 #endif 517 518 lo->lo_refs = 1; 519 lo->lo_flags = flags; 520 lo->lo_id = id; 521 lo->lo_hash = hash; 522 if (flags & F_REMOTE) { 523 lo->lo_pid = fl->l_pid; 524 lo->lo_sysid = fl->l_sysid; 525 } else if (flags & F_FLOCK) { 526 lo->lo_pid = -1; 527 lo->lo_sysid = 0; 528 } else { 529 struct proc *p = (struct proc *) id; 530 lo->lo_pid = p->p_pid; 531 lo->lo_sysid = 0; 532 } 533 lo->lo_vertex = NULL; 534 535 #ifdef LOCKF_DEBUG 536 if (lockf_debug & 1) { 537 printf("lf_advlockasync: new lock owner %p ", lo); 538 lf_print_owner(lo); 539 printf("\n"); 540 } 541 #endif 542 543 LIST_INSERT_HEAD(&lf_lock_owners[hash].list, lo, lo_link); 544 } else { 545 /* 546 * We have seen this lock owner before, increase its 547 * reference count to account for the new lockf_entry 548 * structure we create below. 549 */ 550 lo->lo_refs++; 551 } 552 sx_xunlock(&lf_lock_owners[hash].lock); 553 554 /* 555 * Create the lockf structure. We initialise the lf_owner 556 * field here instead of in lf_alloc_lock() to avoid paying 557 * the lf_lock_owners_lock tax twice. 558 */ 559 lock = lf_alloc_lock(NULL); 560 lock->lf_refs = 1; 561 lock->lf_start = start; 562 lock->lf_end = end; 563 lock->lf_owner = lo; 564 lock->lf_vnode = vp; 565 if (flags & F_REMOTE) { 566 /* 567 * For remote locks, the caller may release its ref to 568 * the vnode at any time - we have to ref it here to 569 * prevent it from being recycled unexpectedly. 570 */ 571 vref(vp); 572 } 573 574 /* 575 * XXX The problem is that VTOI is ufs specific, so it will 576 * break LOCKF_DEBUG for all other FS's other than UFS because 577 * it casts the vnode->data ptr to struct inode *. 578 */ 579 /* lock->lf_inode = VTOI(ap->a_vp); */ 580 lock->lf_inode = (struct inode *)0; 581 lock->lf_type = fl->l_type; 582 LIST_INIT(&lock->lf_outedges); 583 LIST_INIT(&lock->lf_inedges); 584 lock->lf_async_task = ap->a_task; 585 lock->lf_flags = ap->a_flags; 586 587 /* 588 * Do the requested operation. First find our state structure 589 * and create a new one if necessary - the caller's *statep 590 * variable and the state's ls_threads count is protected by 591 * the vnode interlock. 592 */ 593 VI_LOCK(vp); 594 if (VN_IS_DOOMED(vp)) { 595 VI_UNLOCK(vp); 596 lf_free_lock(lock); 597 return (ENOENT); 598 } 599 600 /* 601 * Allocate a state structure if necessary. 602 */ 603 state = *statep; 604 if (state == NULL) { 605 struct lockf *ls; 606 607 VI_UNLOCK(vp); 608 609 ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO); 610 sx_init(&ls->ls_lock, "ls_lock"); 611 LIST_INIT(&ls->ls_active); 612 LIST_INIT(&ls->ls_pending); 613 ls->ls_threads = 1; 614 615 sx_xlock(&lf_lock_states_lock); 616 LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link); 617 sx_xunlock(&lf_lock_states_lock); 618 619 /* 620 * Cope if we lost a race with some other thread while 621 * trying to allocate memory. 622 */ 623 VI_LOCK(vp); 624 if (VN_IS_DOOMED(vp)) { 625 VI_UNLOCK(vp); 626 sx_xlock(&lf_lock_states_lock); 627 LIST_REMOVE(ls, ls_link); 628 sx_xunlock(&lf_lock_states_lock); 629 sx_destroy(&ls->ls_lock); 630 free(ls, M_LOCKF); 631 lf_free_lock(lock); 632 return (ENOENT); 633 } 634 if ((*statep) == NULL) { 635 state = *statep = ls; 636 VI_UNLOCK(vp); 637 } else { 638 state = *statep; 639 MPASS(state->ls_threads >= 0); 640 state->ls_threads++; 641 VI_UNLOCK(vp); 642 643 sx_xlock(&lf_lock_states_lock); 644 LIST_REMOVE(ls, ls_link); 645 sx_xunlock(&lf_lock_states_lock); 646 sx_destroy(&ls->ls_lock); 647 free(ls, M_LOCKF); 648 } 649 } else { 650 MPASS(state->ls_threads >= 0); 651 state->ls_threads++; 652 VI_UNLOCK(vp); 653 } 654 655 sx_xlock(&state->ls_lock); 656 /* 657 * Recheck the doomed vnode after state->ls_lock is 658 * locked. lf_purgelocks() requires that no new threads add 659 * pending locks when vnode is marked by VIRF_DOOMED flag. 660 */ 661 if (VN_IS_DOOMED(vp)) { 662 VI_LOCK(vp); 663 MPASS(state->ls_threads > 0); 664 state->ls_threads--; 665 wakeup(state); 666 VI_UNLOCK(vp); 667 sx_xunlock(&state->ls_lock); 668 lf_free_lock(lock); 669 return (ENOENT); 670 } 671 672 switch (ap->a_op) { 673 case F_SETLK: 674 error = lf_setlock(state, lock, vp, ap->a_cookiep); 675 break; 676 677 case F_UNLCK: 678 error = lf_clearlock(state, lock); 679 lf_free_lock(lock); 680 break; 681 682 case F_GETLK: 683 error = lf_getlock(state, lock, fl); 684 lf_free_lock(lock); 685 break; 686 687 case F_CANCEL: 688 if (ap->a_cookiep) 689 error = lf_cancel(state, lock, *ap->a_cookiep); 690 else 691 error = EINVAL; 692 lf_free_lock(lock); 693 break; 694 695 default: 696 lf_free_lock(lock); 697 error = EINVAL; 698 break; 699 } 700 701 #ifdef DIAGNOSTIC 702 /* 703 * Check for some can't happen stuff. In this case, the active 704 * lock list becoming disordered or containing mutually 705 * blocking locks. We also check the pending list for locks 706 * which should be active (i.e. have no out-going edges). 707 */ 708 LIST_FOREACH(lock, &state->ls_active, lf_link) { 709 struct lockf_entry *lf; 710 if (LIST_NEXT(lock, lf_link)) 711 KASSERT((lock->lf_start 712 <= LIST_NEXT(lock, lf_link)->lf_start), 713 ("locks disordered")); 714 LIST_FOREACH(lf, &state->ls_active, lf_link) { 715 if (lock == lf) 716 break; 717 KASSERT(!lf_blocks(lock, lf), 718 ("two conflicting active locks")); 719 if (lock->lf_owner == lf->lf_owner) 720 KASSERT(!lf_overlaps(lock, lf), 721 ("two overlapping locks from same owner")); 722 } 723 } 724 LIST_FOREACH(lock, &state->ls_pending, lf_link) { 725 KASSERT(!LIST_EMPTY(&lock->lf_outedges), 726 ("pending lock which should be active")); 727 } 728 #endif 729 sx_xunlock(&state->ls_lock); 730 731 VI_LOCK(vp); 732 MPASS(state->ls_threads > 0); 733 state->ls_threads--; 734 if (state->ls_threads != 0) { 735 wakeup(state); 736 } 737 VI_UNLOCK(vp); 738 739 if (error == EDOOFUS) { 740 KASSERT(ap->a_op == F_SETLK, ("EDOOFUS")); 741 goto retry_setlock; 742 } 743 return (error); 744 } 745 746 int 747 lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size) 748 { 749 struct vop_advlockasync_args a; 750 751 a.a_vp = ap->a_vp; 752 a.a_id = ap->a_id; 753 a.a_op = ap->a_op; 754 a.a_fl = ap->a_fl; 755 a.a_flags = ap->a_flags; 756 a.a_task = NULL; 757 a.a_cookiep = NULL; 758 759 return (lf_advlockasync(&a, statep, size)); 760 } 761 762 void 763 lf_purgelocks(struct vnode *vp, struct lockf **statep) 764 { 765 struct lockf *state; 766 struct lockf_entry *lock, *nlock; 767 768 /* 769 * For this to work correctly, the caller must ensure that no 770 * other threads enter the locking system for this vnode, 771 * e.g. by checking VIRF_DOOMED. We wake up any threads that are 772 * sleeping waiting for locks on this vnode and then free all 773 * the remaining locks. 774 */ 775 VI_LOCK(vp); 776 KASSERT(VN_IS_DOOMED(vp), 777 ("lf_purgelocks: vp %p has not vgone yet", vp)); 778 state = *statep; 779 if (state == NULL) { 780 VI_UNLOCK(vp); 781 return; 782 } 783 *statep = NULL; 784 if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) { 785 KASSERT(LIST_EMPTY(&state->ls_pending), 786 ("freeing state with pending locks")); 787 VI_UNLOCK(vp); 788 goto out_free; 789 } 790 MPASS(state->ls_threads >= 0); 791 state->ls_threads++; 792 VI_UNLOCK(vp); 793 794 sx_xlock(&state->ls_lock); 795 sx_xlock(&lf_owner_graph_lock); 796 LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) { 797 LIST_REMOVE(lock, lf_link); 798 lf_remove_outgoing(lock); 799 lf_remove_incoming(lock); 800 801 /* 802 * If its an async lock, we can just free it 803 * here, otherwise we let the sleeping thread 804 * free it. 805 */ 806 if (lock->lf_async_task) { 807 lf_free_lock(lock); 808 } else { 809 lock->lf_flags |= F_INTR; 810 wakeup(lock); 811 } 812 } 813 sx_xunlock(&lf_owner_graph_lock); 814 sx_xunlock(&state->ls_lock); 815 816 /* 817 * Wait for all other threads, sleeping and otherwise 818 * to leave. 819 */ 820 VI_LOCK(vp); 821 while (state->ls_threads > 1) 822 msleep(state, VI_MTX(vp), 0, "purgelocks", 0); 823 VI_UNLOCK(vp); 824 825 /* 826 * We can just free all the active locks since they 827 * will have no dependencies (we removed them all 828 * above). We don't need to bother locking since we 829 * are the last thread using this state structure. 830 */ 831 KASSERT(LIST_EMPTY(&state->ls_pending), 832 ("lock pending for %p", state)); 833 LIST_FOREACH_SAFE(lock, &state->ls_active, lf_link, nlock) { 834 LIST_REMOVE(lock, lf_link); 835 lf_free_lock(lock); 836 } 837 out_free: 838 sx_xlock(&lf_lock_states_lock); 839 LIST_REMOVE(state, ls_link); 840 sx_xunlock(&lf_lock_states_lock); 841 sx_destroy(&state->ls_lock); 842 free(state, M_LOCKF); 843 } 844 845 /* 846 * Return non-zero if locks 'x' and 'y' overlap. 847 */ 848 static int 849 lf_overlaps(struct lockf_entry *x, struct lockf_entry *y) 850 { 851 852 return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start); 853 } 854 855 /* 856 * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa). 857 */ 858 static int 859 lf_blocks(struct lockf_entry *x, struct lockf_entry *y) 860 { 861 862 return x->lf_owner != y->lf_owner 863 && (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK) 864 && lf_overlaps(x, y); 865 } 866 867 /* 868 * Allocate a lock edge from the free list 869 */ 870 static struct lockf_edge * 871 lf_alloc_edge(void) 872 { 873 874 return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO)); 875 } 876 877 /* 878 * Free a lock edge. 879 */ 880 static void 881 lf_free_edge(struct lockf_edge *e) 882 { 883 884 free(e, M_LOCKF); 885 } 886 887 /* 888 * Ensure that the lock's owner has a corresponding vertex in the 889 * owner graph. 890 */ 891 static void 892 lf_alloc_vertex(struct lockf_entry *lock) 893 { 894 struct owner_graph *g = &lf_owner_graph; 895 896 if (!lock->lf_owner->lo_vertex) 897 lock->lf_owner->lo_vertex = 898 graph_alloc_vertex(g, lock->lf_owner); 899 } 900 901 /* 902 * Attempt to record an edge from lock x to lock y. Return EDEADLK if 903 * the new edge would cause a cycle in the owner graph. 904 */ 905 static int 906 lf_add_edge(struct lockf_entry *x, struct lockf_entry *y) 907 { 908 struct owner_graph *g = &lf_owner_graph; 909 struct lockf_edge *e; 910 int error; 911 912 #ifdef DIAGNOSTIC 913 LIST_FOREACH(e, &x->lf_outedges, le_outlink) 914 KASSERT(e->le_to != y, ("adding lock edge twice")); 915 #endif 916 917 /* 918 * Make sure the two owners have entries in the owner graph. 919 */ 920 lf_alloc_vertex(x); 921 lf_alloc_vertex(y); 922 923 error = graph_add_edge(g, x->lf_owner->lo_vertex, 924 y->lf_owner->lo_vertex); 925 if (error) 926 return (error); 927 928 e = lf_alloc_edge(); 929 LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink); 930 LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink); 931 e->le_from = x; 932 e->le_to = y; 933 934 return (0); 935 } 936 937 /* 938 * Remove an edge from the lock graph. 939 */ 940 static void 941 lf_remove_edge(struct lockf_edge *e) 942 { 943 struct owner_graph *g = &lf_owner_graph; 944 struct lockf_entry *x = e->le_from; 945 struct lockf_entry *y = e->le_to; 946 947 graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex); 948 LIST_REMOVE(e, le_outlink); 949 LIST_REMOVE(e, le_inlink); 950 e->le_from = NULL; 951 e->le_to = NULL; 952 lf_free_edge(e); 953 } 954 955 /* 956 * Remove all out-going edges from lock x. 957 */ 958 static void 959 lf_remove_outgoing(struct lockf_entry *x) 960 { 961 struct lockf_edge *e; 962 963 while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) { 964 lf_remove_edge(e); 965 } 966 } 967 968 /* 969 * Remove all in-coming edges from lock x. 970 */ 971 static void 972 lf_remove_incoming(struct lockf_entry *x) 973 { 974 struct lockf_edge *e; 975 976 while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) { 977 lf_remove_edge(e); 978 } 979 } 980 981 /* 982 * Walk the list of locks for the file and create an out-going edge 983 * from lock to each blocking lock. 984 */ 985 static int 986 lf_add_outgoing(struct lockf *state, struct lockf_entry *lock) 987 { 988 struct lockf_entry *overlap; 989 int error; 990 991 LIST_FOREACH(overlap, &state->ls_active, lf_link) { 992 /* 993 * We may assume that the active list is sorted by 994 * lf_start. 995 */ 996 if (overlap->lf_start > lock->lf_end) 997 break; 998 if (!lf_blocks(lock, overlap)) 999 continue; 1000 1001 /* 1002 * We've found a blocking lock. Add the corresponding 1003 * edge to the graphs and see if it would cause a 1004 * deadlock. 1005 */ 1006 error = lf_add_edge(lock, overlap); 1007 1008 /* 1009 * The only error that lf_add_edge returns is EDEADLK. 1010 * Remove any edges we added and return the error. 1011 */ 1012 if (error) { 1013 lf_remove_outgoing(lock); 1014 return (error); 1015 } 1016 } 1017 1018 /* 1019 * We also need to add edges to sleeping locks that block 1020 * us. This ensures that lf_wakeup_lock cannot grant two 1021 * mutually blocking locks simultaneously and also enforces a 1022 * 'first come, first served' fairness model. Note that this 1023 * only happens if we are blocked by at least one active lock 1024 * due to the call to lf_getblock in lf_setlock below. 1025 */ 1026 LIST_FOREACH(overlap, &state->ls_pending, lf_link) { 1027 if (!lf_blocks(lock, overlap)) 1028 continue; 1029 /* 1030 * We've found a blocking lock. Add the corresponding 1031 * edge to the graphs and see if it would cause a 1032 * deadlock. 1033 */ 1034 error = lf_add_edge(lock, overlap); 1035 1036 /* 1037 * The only error that lf_add_edge returns is EDEADLK. 1038 * Remove any edges we added and return the error. 1039 */ 1040 if (error) { 1041 lf_remove_outgoing(lock); 1042 return (error); 1043 } 1044 } 1045 1046 return (0); 1047 } 1048 1049 /* 1050 * Walk the list of pending locks for the file and create an in-coming 1051 * edge from lock to each blocking lock. 1052 */ 1053 static int 1054 lf_add_incoming(struct lockf *state, struct lockf_entry *lock) 1055 { 1056 struct lockf_entry *overlap; 1057 int error; 1058 1059 sx_assert(&state->ls_lock, SX_XLOCKED); 1060 if (LIST_EMPTY(&state->ls_pending)) 1061 return (0); 1062 1063 error = 0; 1064 sx_xlock(&lf_owner_graph_lock); 1065 LIST_FOREACH(overlap, &state->ls_pending, lf_link) { 1066 if (!lf_blocks(lock, overlap)) 1067 continue; 1068 1069 /* 1070 * We've found a blocking lock. Add the corresponding 1071 * edge to the graphs and see if it would cause a 1072 * deadlock. 1073 */ 1074 error = lf_add_edge(overlap, lock); 1075 1076 /* 1077 * The only error that lf_add_edge returns is EDEADLK. 1078 * Remove any edges we added and return the error. 1079 */ 1080 if (error) { 1081 lf_remove_incoming(lock); 1082 break; 1083 } 1084 } 1085 sx_xunlock(&lf_owner_graph_lock); 1086 return (error); 1087 } 1088 1089 /* 1090 * Insert lock into the active list, keeping list entries ordered by 1091 * increasing values of lf_start. 1092 */ 1093 static void 1094 lf_insert_lock(struct lockf *state, struct lockf_entry *lock) 1095 { 1096 struct lockf_entry *lf, *lfprev; 1097 1098 if (LIST_EMPTY(&state->ls_active)) { 1099 LIST_INSERT_HEAD(&state->ls_active, lock, lf_link); 1100 return; 1101 } 1102 1103 lfprev = NULL; 1104 LIST_FOREACH(lf, &state->ls_active, lf_link) { 1105 if (lf->lf_start > lock->lf_start) { 1106 LIST_INSERT_BEFORE(lf, lock, lf_link); 1107 return; 1108 } 1109 lfprev = lf; 1110 } 1111 LIST_INSERT_AFTER(lfprev, lock, lf_link); 1112 } 1113 1114 /* 1115 * Wake up a sleeping lock and remove it from the pending list now 1116 * that all its dependencies have been resolved. The caller should 1117 * arrange for the lock to be added to the active list, adjusting any 1118 * existing locks for the same owner as needed. 1119 */ 1120 static void 1121 lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock) 1122 { 1123 1124 /* 1125 * Remove from ls_pending list and wake up the caller 1126 * or start the async notification, as appropriate. 1127 */ 1128 LIST_REMOVE(wakelock, lf_link); 1129 #ifdef LOCKF_DEBUG 1130 if (lockf_debug & 1) 1131 lf_print("lf_wakeup_lock: awakening", wakelock); 1132 #endif /* LOCKF_DEBUG */ 1133 if (wakelock->lf_async_task) { 1134 taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task); 1135 } else { 1136 wakeup(wakelock); 1137 } 1138 } 1139 1140 /* 1141 * Re-check all dependent locks and remove edges to locks that we no 1142 * longer block. If 'all' is non-zero, the lock has been removed and 1143 * we must remove all the dependencies, otherwise it has simply been 1144 * reduced but remains active. Any pending locks which have been been 1145 * unblocked are added to 'granted' 1146 */ 1147 static void 1148 lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all, 1149 struct lockf_entry_list *granted) 1150 { 1151 struct lockf_edge *e, *ne; 1152 struct lockf_entry *deplock; 1153 1154 LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) { 1155 deplock = e->le_from; 1156 if (all || !lf_blocks(lock, deplock)) { 1157 sx_xlock(&lf_owner_graph_lock); 1158 lf_remove_edge(e); 1159 sx_xunlock(&lf_owner_graph_lock); 1160 if (LIST_EMPTY(&deplock->lf_outedges)) { 1161 lf_wakeup_lock(state, deplock); 1162 LIST_INSERT_HEAD(granted, deplock, lf_link); 1163 } 1164 } 1165 } 1166 } 1167 1168 /* 1169 * Set the start of an existing active lock, updating dependencies and 1170 * adding any newly woken locks to 'granted'. 1171 */ 1172 static void 1173 lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start, 1174 struct lockf_entry_list *granted) 1175 { 1176 1177 KASSERT(new_start >= lock->lf_start, ("can't increase lock")); 1178 lock->lf_start = new_start; 1179 LIST_REMOVE(lock, lf_link); 1180 lf_insert_lock(state, lock); 1181 lf_update_dependancies(state, lock, FALSE, granted); 1182 } 1183 1184 /* 1185 * Set the end of an existing active lock, updating dependencies and 1186 * adding any newly woken locks to 'granted'. 1187 */ 1188 static void 1189 lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end, 1190 struct lockf_entry_list *granted) 1191 { 1192 1193 KASSERT(new_end <= lock->lf_end, ("can't increase lock")); 1194 lock->lf_end = new_end; 1195 lf_update_dependancies(state, lock, FALSE, granted); 1196 } 1197 1198 /* 1199 * Add a lock to the active list, updating or removing any current 1200 * locks owned by the same owner and processing any pending locks that 1201 * become unblocked as a result. This code is also used for unlock 1202 * since the logic for updating existing locks is identical. 1203 * 1204 * As a result of processing the new lock, we may unblock existing 1205 * pending locks as a result of downgrading/unlocking. We simply 1206 * activate the newly granted locks by looping. 1207 * 1208 * Since the new lock already has its dependencies set up, we always 1209 * add it to the list (unless its an unlock request). This may 1210 * fragment the lock list in some pathological cases but its probably 1211 * not a real problem. 1212 */ 1213 static void 1214 lf_activate_lock(struct lockf *state, struct lockf_entry *lock) 1215 { 1216 struct lockf_entry *overlap, *lf; 1217 struct lockf_entry_list granted; 1218 int ovcase; 1219 1220 LIST_INIT(&granted); 1221 LIST_INSERT_HEAD(&granted, lock, lf_link); 1222 1223 while (!LIST_EMPTY(&granted)) { 1224 lock = LIST_FIRST(&granted); 1225 LIST_REMOVE(lock, lf_link); 1226 1227 /* 1228 * Skip over locks owned by other processes. Handle 1229 * any locks that overlap and are owned by ourselves. 1230 */ 1231 overlap = LIST_FIRST(&state->ls_active); 1232 for (;;) { 1233 ovcase = lf_findoverlap(&overlap, lock, SELF); 1234 1235 #ifdef LOCKF_DEBUG 1236 if (ovcase && (lockf_debug & 2)) { 1237 printf("lf_setlock: overlap %d", ovcase); 1238 lf_print("", overlap); 1239 } 1240 #endif 1241 /* 1242 * Six cases: 1243 * 0) no overlap 1244 * 1) overlap == lock 1245 * 2) overlap contains lock 1246 * 3) lock contains overlap 1247 * 4) overlap starts before lock 1248 * 5) overlap ends after lock 1249 */ 1250 switch (ovcase) { 1251 case 0: /* no overlap */ 1252 break; 1253 1254 case 1: /* overlap == lock */ 1255 /* 1256 * We have already setup the 1257 * dependants for the new lock, taking 1258 * into account a possible downgrade 1259 * or unlock. Remove the old lock. 1260 */ 1261 LIST_REMOVE(overlap, lf_link); 1262 lf_update_dependancies(state, overlap, TRUE, 1263 &granted); 1264 lf_free_lock(overlap); 1265 break; 1266 1267 case 2: /* overlap contains lock */ 1268 /* 1269 * Just split the existing lock. 1270 */ 1271 lf_split(state, overlap, lock, &granted); 1272 break; 1273 1274 case 3: /* lock contains overlap */ 1275 /* 1276 * Delete the overlap and advance to 1277 * the next entry in the list. 1278 */ 1279 lf = LIST_NEXT(overlap, lf_link); 1280 LIST_REMOVE(overlap, lf_link); 1281 lf_update_dependancies(state, overlap, TRUE, 1282 &granted); 1283 lf_free_lock(overlap); 1284 overlap = lf; 1285 continue; 1286 1287 case 4: /* overlap starts before lock */ 1288 /* 1289 * Just update the overlap end and 1290 * move on. 1291 */ 1292 lf_set_end(state, overlap, lock->lf_start - 1, 1293 &granted); 1294 overlap = LIST_NEXT(overlap, lf_link); 1295 continue; 1296 1297 case 5: /* overlap ends after lock */ 1298 /* 1299 * Change the start of overlap and 1300 * re-insert. 1301 */ 1302 lf_set_start(state, overlap, lock->lf_end + 1, 1303 &granted); 1304 break; 1305 } 1306 break; 1307 } 1308 #ifdef LOCKF_DEBUG 1309 if (lockf_debug & 1) { 1310 if (lock->lf_type != F_UNLCK) 1311 lf_print("lf_activate_lock: activated", lock); 1312 else 1313 lf_print("lf_activate_lock: unlocked", lock); 1314 lf_printlist("lf_activate_lock", lock); 1315 } 1316 #endif /* LOCKF_DEBUG */ 1317 if (lock->lf_type != F_UNLCK) 1318 lf_insert_lock(state, lock); 1319 } 1320 } 1321 1322 /* 1323 * Cancel a pending lock request, either as a result of a signal or a 1324 * cancel request for an async lock. 1325 */ 1326 static void 1327 lf_cancel_lock(struct lockf *state, struct lockf_entry *lock) 1328 { 1329 struct lockf_entry_list granted; 1330 1331 /* 1332 * Note it is theoretically possible that cancelling this lock 1333 * may allow some other pending lock to become 1334 * active. Consider this case: 1335 * 1336 * Owner Action Result Dependencies 1337 * 1338 * A: lock [0..0] succeeds 1339 * B: lock [2..2] succeeds 1340 * C: lock [1..2] blocked C->B 1341 * D: lock [0..1] blocked C->B,D->A,D->C 1342 * A: unlock [0..0] C->B,D->C 1343 * C: cancel [1..2] 1344 */ 1345 1346 LIST_REMOVE(lock, lf_link); 1347 1348 /* 1349 * Removing out-going edges is simple. 1350 */ 1351 sx_xlock(&lf_owner_graph_lock); 1352 lf_remove_outgoing(lock); 1353 sx_xunlock(&lf_owner_graph_lock); 1354 1355 /* 1356 * Removing in-coming edges may allow some other lock to 1357 * become active - we use lf_update_dependancies to figure 1358 * this out. 1359 */ 1360 LIST_INIT(&granted); 1361 lf_update_dependancies(state, lock, TRUE, &granted); 1362 lf_free_lock(lock); 1363 1364 /* 1365 * Feed any newly active locks to lf_activate_lock. 1366 */ 1367 while (!LIST_EMPTY(&granted)) { 1368 lock = LIST_FIRST(&granted); 1369 LIST_REMOVE(lock, lf_link); 1370 lf_activate_lock(state, lock); 1371 } 1372 } 1373 1374 /* 1375 * Set a byte-range lock. 1376 */ 1377 static int 1378 lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp, 1379 void **cookiep) 1380 { 1381 static char lockstr[] = "lockf"; 1382 int error, priority, stops_deferred; 1383 1384 #ifdef LOCKF_DEBUG 1385 if (lockf_debug & 1) 1386 lf_print("lf_setlock", lock); 1387 #endif /* LOCKF_DEBUG */ 1388 1389 /* 1390 * Set the priority 1391 */ 1392 priority = PLOCK; 1393 if (lock->lf_type == F_WRLCK) 1394 priority += 4; 1395 if (!(lock->lf_flags & F_NOINTR)) 1396 priority |= PCATCH; 1397 /* 1398 * Scan lock list for this file looking for locks that would block us. 1399 */ 1400 if (lf_getblock(state, lock)) { 1401 /* 1402 * Free the structure and return if nonblocking. 1403 */ 1404 if ((lock->lf_flags & F_WAIT) == 0 1405 && lock->lf_async_task == NULL) { 1406 lf_free_lock(lock); 1407 error = EAGAIN; 1408 goto out; 1409 } 1410 1411 /* 1412 * For flock type locks, we must first remove 1413 * any shared locks that we hold before we sleep 1414 * waiting for an exclusive lock. 1415 */ 1416 if ((lock->lf_flags & F_FLOCK) && 1417 lock->lf_type == F_WRLCK) { 1418 lock->lf_type = F_UNLCK; 1419 lf_activate_lock(state, lock); 1420 lock->lf_type = F_WRLCK; 1421 } 1422 1423 /* 1424 * We are blocked. Create edges to each blocking lock, 1425 * checking for deadlock using the owner graph. For 1426 * simplicity, we run deadlock detection for all 1427 * locks, posix and otherwise. 1428 */ 1429 sx_xlock(&lf_owner_graph_lock); 1430 error = lf_add_outgoing(state, lock); 1431 sx_xunlock(&lf_owner_graph_lock); 1432 1433 if (error) { 1434 #ifdef LOCKF_DEBUG 1435 if (lockf_debug & 1) 1436 lf_print("lf_setlock: deadlock", lock); 1437 #endif 1438 lf_free_lock(lock); 1439 goto out; 1440 } 1441 1442 /* 1443 * We have added edges to everything that blocks 1444 * us. Sleep until they all go away. 1445 */ 1446 LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link); 1447 #ifdef LOCKF_DEBUG 1448 if (lockf_debug & 1) { 1449 struct lockf_edge *e; 1450 LIST_FOREACH(e, &lock->lf_outedges, le_outlink) { 1451 lf_print("lf_setlock: blocking on", e->le_to); 1452 lf_printlist("lf_setlock", e->le_to); 1453 } 1454 } 1455 #endif /* LOCKF_DEBUG */ 1456 1457 if ((lock->lf_flags & F_WAIT) == 0) { 1458 /* 1459 * The caller requested async notification - 1460 * this callback happens when the blocking 1461 * lock is released, allowing the caller to 1462 * make another attempt to take the lock. 1463 */ 1464 *cookiep = (void *) lock; 1465 error = EINPROGRESS; 1466 goto out; 1467 } 1468 1469 lock->lf_refs++; 1470 stops_deferred = sigdeferstop(SIGDEFERSTOP_ERESTART); 1471 error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0); 1472 sigallowstop(stops_deferred); 1473 if (lf_free_lock(lock)) { 1474 error = EDOOFUS; 1475 goto out; 1476 } 1477 1478 /* 1479 * We may have been awakened by a signal and/or by a 1480 * debugger continuing us (in which cases we must 1481 * remove our lock graph edges) and/or by another 1482 * process releasing a lock (in which case our edges 1483 * have already been removed and we have been moved to 1484 * the active list). We may also have been woken by 1485 * lf_purgelocks which we report to the caller as 1486 * EINTR. In that case, lf_purgelocks will have 1487 * removed our lock graph edges. 1488 * 1489 * Note that it is possible to receive a signal after 1490 * we were successfully woken (and moved to the active 1491 * list) but before we resumed execution. In this 1492 * case, our lf_outedges list will be clear. We 1493 * pretend there was no error. 1494 * 1495 * Note also, if we have been sleeping long enough, we 1496 * may now have incoming edges from some newer lock 1497 * which is waiting behind us in the queue. 1498 */ 1499 if (lock->lf_flags & F_INTR) { 1500 error = EINTR; 1501 lf_free_lock(lock); 1502 goto out; 1503 } 1504 if (LIST_EMPTY(&lock->lf_outedges)) { 1505 error = 0; 1506 } else { 1507 lf_cancel_lock(state, lock); 1508 goto out; 1509 } 1510 #ifdef LOCKF_DEBUG 1511 if (lockf_debug & 1) { 1512 lf_print("lf_setlock: granted", lock); 1513 } 1514 #endif 1515 goto out; 1516 } 1517 /* 1518 * It looks like we are going to grant the lock. First add 1519 * edges from any currently pending lock that the new lock 1520 * would block. 1521 */ 1522 error = lf_add_incoming(state, lock); 1523 if (error) { 1524 #ifdef LOCKF_DEBUG 1525 if (lockf_debug & 1) 1526 lf_print("lf_setlock: deadlock", lock); 1527 #endif 1528 lf_free_lock(lock); 1529 goto out; 1530 } 1531 1532 /* 1533 * No blocks!! Add the lock. Note that we will 1534 * downgrade or upgrade any overlapping locks this 1535 * process already owns. 1536 */ 1537 lf_activate_lock(state, lock); 1538 error = 0; 1539 out: 1540 return (error); 1541 } 1542 1543 /* 1544 * Remove a byte-range lock on an inode. 1545 * 1546 * Generally, find the lock (or an overlap to that lock) 1547 * and remove it (or shrink it), then wakeup anyone we can. 1548 */ 1549 static int 1550 lf_clearlock(struct lockf *state, struct lockf_entry *unlock) 1551 { 1552 struct lockf_entry *overlap; 1553 1554 overlap = LIST_FIRST(&state->ls_active); 1555 1556 if (overlap == NOLOCKF) 1557 return (0); 1558 #ifdef LOCKF_DEBUG 1559 if (unlock->lf_type != F_UNLCK) 1560 panic("lf_clearlock: bad type"); 1561 if (lockf_debug & 1) 1562 lf_print("lf_clearlock", unlock); 1563 #endif /* LOCKF_DEBUG */ 1564 1565 lf_activate_lock(state, unlock); 1566 1567 return (0); 1568 } 1569 1570 /* 1571 * Check whether there is a blocking lock, and if so return its 1572 * details in '*fl'. 1573 */ 1574 static int 1575 lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl) 1576 { 1577 struct lockf_entry *block; 1578 1579 #ifdef LOCKF_DEBUG 1580 if (lockf_debug & 1) 1581 lf_print("lf_getlock", lock); 1582 #endif /* LOCKF_DEBUG */ 1583 1584 if ((block = lf_getblock(state, lock))) { 1585 fl->l_type = block->lf_type; 1586 fl->l_whence = SEEK_SET; 1587 fl->l_start = block->lf_start; 1588 if (block->lf_end == OFF_MAX) 1589 fl->l_len = 0; 1590 else 1591 fl->l_len = block->lf_end - block->lf_start + 1; 1592 fl->l_pid = block->lf_owner->lo_pid; 1593 fl->l_sysid = block->lf_owner->lo_sysid; 1594 } else { 1595 fl->l_type = F_UNLCK; 1596 } 1597 return (0); 1598 } 1599 1600 /* 1601 * Cancel an async lock request. 1602 */ 1603 static int 1604 lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie) 1605 { 1606 struct lockf_entry *reallock; 1607 1608 /* 1609 * We need to match this request with an existing lock 1610 * request. 1611 */ 1612 LIST_FOREACH(reallock, &state->ls_pending, lf_link) { 1613 if ((void *) reallock == cookie) { 1614 /* 1615 * Double-check that this lock looks right 1616 * (maybe use a rolling ID for the cancel 1617 * cookie instead?) 1618 */ 1619 if (!(reallock->lf_vnode == lock->lf_vnode 1620 && reallock->lf_start == lock->lf_start 1621 && reallock->lf_end == lock->lf_end)) { 1622 return (ENOENT); 1623 } 1624 1625 /* 1626 * Make sure this lock was async and then just 1627 * remove it from its wait lists. 1628 */ 1629 if (!reallock->lf_async_task) { 1630 return (ENOENT); 1631 } 1632 1633 /* 1634 * Note that since any other thread must take 1635 * state->ls_lock before it can possibly 1636 * trigger the async callback, we are safe 1637 * from a race with lf_wakeup_lock, i.e. we 1638 * can free the lock (actually our caller does 1639 * this). 1640 */ 1641 lf_cancel_lock(state, reallock); 1642 return (0); 1643 } 1644 } 1645 1646 /* 1647 * We didn't find a matching lock - not much we can do here. 1648 */ 1649 return (ENOENT); 1650 } 1651 1652 /* 1653 * Walk the list of locks for an inode and 1654 * return the first blocking lock. 1655 */ 1656 static struct lockf_entry * 1657 lf_getblock(struct lockf *state, struct lockf_entry *lock) 1658 { 1659 struct lockf_entry *overlap; 1660 1661 LIST_FOREACH(overlap, &state->ls_active, lf_link) { 1662 /* 1663 * We may assume that the active list is sorted by 1664 * lf_start. 1665 */ 1666 if (overlap->lf_start > lock->lf_end) 1667 break; 1668 if (!lf_blocks(lock, overlap)) 1669 continue; 1670 return (overlap); 1671 } 1672 return (NOLOCKF); 1673 } 1674 1675 /* 1676 * Walk the list of locks for an inode to find an overlapping lock (if 1677 * any) and return a classification of that overlap. 1678 * 1679 * Arguments: 1680 * *overlap The place in the lock list to start looking 1681 * lock The lock which is being tested 1682 * type Pass 'SELF' to test only locks with the same 1683 * owner as lock, or 'OTHER' to test only locks 1684 * with a different owner 1685 * 1686 * Returns one of six values: 1687 * 0) no overlap 1688 * 1) overlap == lock 1689 * 2) overlap contains lock 1690 * 3) lock contains overlap 1691 * 4) overlap starts before lock 1692 * 5) overlap ends after lock 1693 * 1694 * If there is an overlapping lock, '*overlap' is set to point at the 1695 * overlapping lock. 1696 * 1697 * NOTE: this returns only the FIRST overlapping lock. There 1698 * may be more than one. 1699 */ 1700 static int 1701 lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type) 1702 { 1703 struct lockf_entry *lf; 1704 off_t start, end; 1705 int res; 1706 1707 if ((*overlap) == NOLOCKF) { 1708 return (0); 1709 } 1710 #ifdef LOCKF_DEBUG 1711 if (lockf_debug & 2) 1712 lf_print("lf_findoverlap: looking for overlap in", lock); 1713 #endif /* LOCKF_DEBUG */ 1714 start = lock->lf_start; 1715 end = lock->lf_end; 1716 res = 0; 1717 while (*overlap) { 1718 lf = *overlap; 1719 if (lf->lf_start > end) 1720 break; 1721 if (((type & SELF) && lf->lf_owner != lock->lf_owner) || 1722 ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) { 1723 *overlap = LIST_NEXT(lf, lf_link); 1724 continue; 1725 } 1726 #ifdef LOCKF_DEBUG 1727 if (lockf_debug & 2) 1728 lf_print("\tchecking", lf); 1729 #endif /* LOCKF_DEBUG */ 1730 /* 1731 * OK, check for overlap 1732 * 1733 * Six cases: 1734 * 0) no overlap 1735 * 1) overlap == lock 1736 * 2) overlap contains lock 1737 * 3) lock contains overlap 1738 * 4) overlap starts before lock 1739 * 5) overlap ends after lock 1740 */ 1741 if (start > lf->lf_end) { 1742 /* Case 0 */ 1743 #ifdef LOCKF_DEBUG 1744 if (lockf_debug & 2) 1745 printf("no overlap\n"); 1746 #endif /* LOCKF_DEBUG */ 1747 *overlap = LIST_NEXT(lf, lf_link); 1748 continue; 1749 } 1750 if (lf->lf_start == start && lf->lf_end == end) { 1751 /* Case 1 */ 1752 #ifdef LOCKF_DEBUG 1753 if (lockf_debug & 2) 1754 printf("overlap == lock\n"); 1755 #endif /* LOCKF_DEBUG */ 1756 res = 1; 1757 break; 1758 } 1759 if (lf->lf_start <= start && lf->lf_end >= end) { 1760 /* Case 2 */ 1761 #ifdef LOCKF_DEBUG 1762 if (lockf_debug & 2) 1763 printf("overlap contains lock\n"); 1764 #endif /* LOCKF_DEBUG */ 1765 res = 2; 1766 break; 1767 } 1768 if (start <= lf->lf_start && end >= lf->lf_end) { 1769 /* Case 3 */ 1770 #ifdef LOCKF_DEBUG 1771 if (lockf_debug & 2) 1772 printf("lock contains overlap\n"); 1773 #endif /* LOCKF_DEBUG */ 1774 res = 3; 1775 break; 1776 } 1777 if (lf->lf_start < start && lf->lf_end >= start) { 1778 /* Case 4 */ 1779 #ifdef LOCKF_DEBUG 1780 if (lockf_debug & 2) 1781 printf("overlap starts before lock\n"); 1782 #endif /* LOCKF_DEBUG */ 1783 res = 4; 1784 break; 1785 } 1786 if (lf->lf_start > start && lf->lf_end > end) { 1787 /* Case 5 */ 1788 #ifdef LOCKF_DEBUG 1789 if (lockf_debug & 2) 1790 printf("overlap ends after lock\n"); 1791 #endif /* LOCKF_DEBUG */ 1792 res = 5; 1793 break; 1794 } 1795 panic("lf_findoverlap: default"); 1796 } 1797 return (res); 1798 } 1799 1800 /* 1801 * Split an the existing 'lock1', based on the extent of the lock 1802 * described by 'lock2'. The existing lock should cover 'lock2' 1803 * entirely. 1804 * 1805 * Any pending locks which have been been unblocked are added to 1806 * 'granted' 1807 */ 1808 static void 1809 lf_split(struct lockf *state, struct lockf_entry *lock1, 1810 struct lockf_entry *lock2, struct lockf_entry_list *granted) 1811 { 1812 struct lockf_entry *splitlock; 1813 1814 #ifdef LOCKF_DEBUG 1815 if (lockf_debug & 2) { 1816 lf_print("lf_split", lock1); 1817 lf_print("splitting from", lock2); 1818 } 1819 #endif /* LOCKF_DEBUG */ 1820 /* 1821 * Check to see if we don't need to split at all. 1822 */ 1823 if (lock1->lf_start == lock2->lf_start) { 1824 lf_set_start(state, lock1, lock2->lf_end + 1, granted); 1825 return; 1826 } 1827 if (lock1->lf_end == lock2->lf_end) { 1828 lf_set_end(state, lock1, lock2->lf_start - 1, granted); 1829 return; 1830 } 1831 /* 1832 * Make a new lock consisting of the last part of 1833 * the encompassing lock. 1834 */ 1835 splitlock = lf_alloc_lock(lock1->lf_owner); 1836 memcpy(splitlock, lock1, sizeof *splitlock); 1837 splitlock->lf_refs = 1; 1838 if (splitlock->lf_flags & F_REMOTE) 1839 vref(splitlock->lf_vnode); 1840 1841 /* 1842 * This cannot cause a deadlock since any edges we would add 1843 * to splitlock already exist in lock1. We must be sure to add 1844 * necessary dependencies to splitlock before we reduce lock1 1845 * otherwise we may accidentally grant a pending lock that 1846 * was blocked by the tail end of lock1. 1847 */ 1848 splitlock->lf_start = lock2->lf_end + 1; 1849 LIST_INIT(&splitlock->lf_outedges); 1850 LIST_INIT(&splitlock->lf_inedges); 1851 lf_add_incoming(state, splitlock); 1852 1853 lf_set_end(state, lock1, lock2->lf_start - 1, granted); 1854 1855 /* 1856 * OK, now link it in 1857 */ 1858 lf_insert_lock(state, splitlock); 1859 } 1860 1861 struct lockdesc { 1862 STAILQ_ENTRY(lockdesc) link; 1863 struct vnode *vp; 1864 struct flock fl; 1865 }; 1866 STAILQ_HEAD(lockdesclist, lockdesc); 1867 1868 int 1869 lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg) 1870 { 1871 struct lockf *ls; 1872 struct lockf_entry *lf; 1873 struct lockdesc *ldesc; 1874 struct lockdesclist locks; 1875 int error; 1876 1877 /* 1878 * In order to keep the locking simple, we iterate over the 1879 * active lock lists to build a list of locks that need 1880 * releasing. We then call the iterator for each one in turn. 1881 * 1882 * We take an extra reference to the vnode for the duration to 1883 * make sure it doesn't go away before we are finished. 1884 */ 1885 STAILQ_INIT(&locks); 1886 sx_xlock(&lf_lock_states_lock); 1887 LIST_FOREACH(ls, &lf_lock_states, ls_link) { 1888 sx_xlock(&ls->ls_lock); 1889 LIST_FOREACH(lf, &ls->ls_active, lf_link) { 1890 if (lf->lf_owner->lo_sysid != sysid) 1891 continue; 1892 1893 ldesc = malloc(sizeof(struct lockdesc), M_LOCKF, 1894 M_WAITOK); 1895 ldesc->vp = lf->lf_vnode; 1896 vref(ldesc->vp); 1897 ldesc->fl.l_start = lf->lf_start; 1898 if (lf->lf_end == OFF_MAX) 1899 ldesc->fl.l_len = 0; 1900 else 1901 ldesc->fl.l_len = 1902 lf->lf_end - lf->lf_start + 1; 1903 ldesc->fl.l_whence = SEEK_SET; 1904 ldesc->fl.l_type = F_UNLCK; 1905 ldesc->fl.l_pid = lf->lf_owner->lo_pid; 1906 ldesc->fl.l_sysid = sysid; 1907 STAILQ_INSERT_TAIL(&locks, ldesc, link); 1908 } 1909 sx_xunlock(&ls->ls_lock); 1910 } 1911 sx_xunlock(&lf_lock_states_lock); 1912 1913 /* 1914 * Call the iterator function for each lock in turn. If the 1915 * iterator returns an error code, just free the rest of the 1916 * lockdesc structures. 1917 */ 1918 error = 0; 1919 while ((ldesc = STAILQ_FIRST(&locks)) != NULL) { 1920 STAILQ_REMOVE_HEAD(&locks, link); 1921 if (!error) 1922 error = fn(ldesc->vp, &ldesc->fl, arg); 1923 vrele(ldesc->vp); 1924 free(ldesc, M_LOCKF); 1925 } 1926 1927 return (error); 1928 } 1929 1930 int 1931 lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg) 1932 { 1933 struct lockf *ls; 1934 struct lockf_entry *lf; 1935 struct lockdesc *ldesc; 1936 struct lockdesclist locks; 1937 int error; 1938 1939 /* 1940 * In order to keep the locking simple, we iterate over the 1941 * active lock lists to build a list of locks that need 1942 * releasing. We then call the iterator for each one in turn. 1943 * 1944 * We take an extra reference to the vnode for the duration to 1945 * make sure it doesn't go away before we are finished. 1946 */ 1947 STAILQ_INIT(&locks); 1948 VI_LOCK(vp); 1949 ls = vp->v_lockf; 1950 if (!ls) { 1951 VI_UNLOCK(vp); 1952 return (0); 1953 } 1954 MPASS(ls->ls_threads >= 0); 1955 ls->ls_threads++; 1956 VI_UNLOCK(vp); 1957 1958 sx_xlock(&ls->ls_lock); 1959 LIST_FOREACH(lf, &ls->ls_active, lf_link) { 1960 ldesc = malloc(sizeof(struct lockdesc), M_LOCKF, 1961 M_WAITOK); 1962 ldesc->vp = lf->lf_vnode; 1963 vref(ldesc->vp); 1964 ldesc->fl.l_start = lf->lf_start; 1965 if (lf->lf_end == OFF_MAX) 1966 ldesc->fl.l_len = 0; 1967 else 1968 ldesc->fl.l_len = 1969 lf->lf_end - lf->lf_start + 1; 1970 ldesc->fl.l_whence = SEEK_SET; 1971 ldesc->fl.l_type = F_UNLCK; 1972 ldesc->fl.l_pid = lf->lf_owner->lo_pid; 1973 ldesc->fl.l_sysid = lf->lf_owner->lo_sysid; 1974 STAILQ_INSERT_TAIL(&locks, ldesc, link); 1975 } 1976 sx_xunlock(&ls->ls_lock); 1977 VI_LOCK(vp); 1978 MPASS(ls->ls_threads > 0); 1979 ls->ls_threads--; 1980 wakeup(ls); 1981 VI_UNLOCK(vp); 1982 1983 /* 1984 * Call the iterator function for each lock in turn. If the 1985 * iterator returns an error code, just free the rest of the 1986 * lockdesc structures. 1987 */ 1988 error = 0; 1989 while ((ldesc = STAILQ_FIRST(&locks)) != NULL) { 1990 STAILQ_REMOVE_HEAD(&locks, link); 1991 if (!error) 1992 error = fn(ldesc->vp, &ldesc->fl, arg); 1993 vrele(ldesc->vp); 1994 free(ldesc, M_LOCKF); 1995 } 1996 1997 return (error); 1998 } 1999 2000 static int 2001 lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg) 2002 { 2003 2004 VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE); 2005 return (0); 2006 } 2007 2008 void 2009 lf_clearremotesys(int sysid) 2010 { 2011 2012 KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS")); 2013 lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL); 2014 } 2015 2016 int 2017 lf_countlocks(int sysid) 2018 { 2019 int i; 2020 struct lock_owner *lo; 2021 int count; 2022 2023 count = 0; 2024 for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) { 2025 sx_xlock(&lf_lock_owners[i].lock); 2026 LIST_FOREACH(lo, &lf_lock_owners[i].list, lo_link) 2027 if (lo->lo_sysid == sysid) 2028 count += lo->lo_refs; 2029 sx_xunlock(&lf_lock_owners[i].lock); 2030 } 2031 2032 return (count); 2033 } 2034 2035 #ifdef LOCKF_DEBUG 2036 2037 /* 2038 * Return non-zero if y is reachable from x using a brute force 2039 * search. If reachable and path is non-null, return the route taken 2040 * in path. 2041 */ 2042 static int 2043 graph_reaches(struct owner_vertex *x, struct owner_vertex *y, 2044 struct owner_vertex_list *path) 2045 { 2046 struct owner_edge *e; 2047 2048 if (x == y) { 2049 if (path) 2050 TAILQ_INSERT_HEAD(path, x, v_link); 2051 return 1; 2052 } 2053 2054 LIST_FOREACH(e, &x->v_outedges, e_outlink) { 2055 if (graph_reaches(e->e_to, y, path)) { 2056 if (path) 2057 TAILQ_INSERT_HEAD(path, x, v_link); 2058 return 1; 2059 } 2060 } 2061 return 0; 2062 } 2063 2064 /* 2065 * Perform consistency checks on the graph. Make sure the values of 2066 * v_order are correct. If checkorder is non-zero, check no vertex can 2067 * reach any other vertex with a smaller order. 2068 */ 2069 static void 2070 graph_check(struct owner_graph *g, int checkorder) 2071 { 2072 int i, j; 2073 2074 for (i = 0; i < g->g_size; i++) { 2075 if (!g->g_vertices[i]->v_owner) 2076 continue; 2077 KASSERT(g->g_vertices[i]->v_order == i, 2078 ("lock graph vertices disordered")); 2079 if (checkorder) { 2080 for (j = 0; j < i; j++) { 2081 if (!g->g_vertices[j]->v_owner) 2082 continue; 2083 KASSERT(!graph_reaches(g->g_vertices[i], 2084 g->g_vertices[j], NULL), 2085 ("lock graph vertices disordered")); 2086 } 2087 } 2088 } 2089 } 2090 2091 static void 2092 graph_print_vertices(struct owner_vertex_list *set) 2093 { 2094 struct owner_vertex *v; 2095 2096 printf("{ "); 2097 TAILQ_FOREACH(v, set, v_link) { 2098 printf("%d:", v->v_order); 2099 lf_print_owner(v->v_owner); 2100 if (TAILQ_NEXT(v, v_link)) 2101 printf(", "); 2102 } 2103 printf(" }\n"); 2104 } 2105 2106 #endif 2107 2108 /* 2109 * Calculate the sub-set of vertices v from the affected region [y..x] 2110 * where v is reachable from y. Return -1 if a loop was detected 2111 * (i.e. x is reachable from y, otherwise the number of vertices in 2112 * this subset. 2113 */ 2114 static int 2115 graph_delta_forward(struct owner_graph *g, struct owner_vertex *x, 2116 struct owner_vertex *y, struct owner_vertex_list *delta) 2117 { 2118 uint32_t gen; 2119 struct owner_vertex *v; 2120 struct owner_edge *e; 2121 int n; 2122 2123 /* 2124 * We start with a set containing just y. Then for each vertex 2125 * v in the set so far unprocessed, we add each vertex that v 2126 * has an out-edge to and that is within the affected region 2127 * [y..x]. If we see the vertex x on our travels, stop 2128 * immediately. 2129 */ 2130 TAILQ_INIT(delta); 2131 TAILQ_INSERT_TAIL(delta, y, v_link); 2132 v = y; 2133 n = 1; 2134 gen = g->g_gen; 2135 while (v) { 2136 LIST_FOREACH(e, &v->v_outedges, e_outlink) { 2137 if (e->e_to == x) 2138 return -1; 2139 if (e->e_to->v_order < x->v_order 2140 && e->e_to->v_gen != gen) { 2141 e->e_to->v_gen = gen; 2142 TAILQ_INSERT_TAIL(delta, e->e_to, v_link); 2143 n++; 2144 } 2145 } 2146 v = TAILQ_NEXT(v, v_link); 2147 } 2148 2149 return (n); 2150 } 2151 2152 /* 2153 * Calculate the sub-set of vertices v from the affected region [y..x] 2154 * where v reaches x. Return the number of vertices in this subset. 2155 */ 2156 static int 2157 graph_delta_backward(struct owner_graph *g, struct owner_vertex *x, 2158 struct owner_vertex *y, struct owner_vertex_list *delta) 2159 { 2160 uint32_t gen; 2161 struct owner_vertex *v; 2162 struct owner_edge *e; 2163 int n; 2164 2165 /* 2166 * We start with a set containing just x. Then for each vertex 2167 * v in the set so far unprocessed, we add each vertex that v 2168 * has an in-edge from and that is within the affected region 2169 * [y..x]. 2170 */ 2171 TAILQ_INIT(delta); 2172 TAILQ_INSERT_TAIL(delta, x, v_link); 2173 v = x; 2174 n = 1; 2175 gen = g->g_gen; 2176 while (v) { 2177 LIST_FOREACH(e, &v->v_inedges, e_inlink) { 2178 if (e->e_from->v_order > y->v_order 2179 && e->e_from->v_gen != gen) { 2180 e->e_from->v_gen = gen; 2181 TAILQ_INSERT_HEAD(delta, e->e_from, v_link); 2182 n++; 2183 } 2184 } 2185 v = TAILQ_PREV(v, owner_vertex_list, v_link); 2186 } 2187 2188 return (n); 2189 } 2190 2191 static int 2192 graph_add_indices(int *indices, int n, struct owner_vertex_list *set) 2193 { 2194 struct owner_vertex *v; 2195 int i, j; 2196 2197 TAILQ_FOREACH(v, set, v_link) { 2198 for (i = n; 2199 i > 0 && indices[i - 1] > v->v_order; i--) 2200 ; 2201 for (j = n - 1; j >= i; j--) 2202 indices[j + 1] = indices[j]; 2203 indices[i] = v->v_order; 2204 n++; 2205 } 2206 2207 return (n); 2208 } 2209 2210 static int 2211 graph_assign_indices(struct owner_graph *g, int *indices, int nextunused, 2212 struct owner_vertex_list *set) 2213 { 2214 struct owner_vertex *v, *vlowest; 2215 2216 while (!TAILQ_EMPTY(set)) { 2217 vlowest = NULL; 2218 TAILQ_FOREACH(v, set, v_link) { 2219 if (!vlowest || v->v_order < vlowest->v_order) 2220 vlowest = v; 2221 } 2222 TAILQ_REMOVE(set, vlowest, v_link); 2223 vlowest->v_order = indices[nextunused]; 2224 g->g_vertices[vlowest->v_order] = vlowest; 2225 nextunused++; 2226 } 2227 2228 return (nextunused); 2229 } 2230 2231 static int 2232 graph_add_edge(struct owner_graph *g, struct owner_vertex *x, 2233 struct owner_vertex *y) 2234 { 2235 struct owner_edge *e; 2236 struct owner_vertex_list deltaF, deltaB; 2237 int nF, n, vi, i; 2238 int *indices; 2239 int nB __unused; 2240 2241 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2242 2243 LIST_FOREACH(e, &x->v_outedges, e_outlink) { 2244 if (e->e_to == y) { 2245 e->e_refs++; 2246 return (0); 2247 } 2248 } 2249 2250 #ifdef LOCKF_DEBUG 2251 if (lockf_debug & 8) { 2252 printf("adding edge %d:", x->v_order); 2253 lf_print_owner(x->v_owner); 2254 printf(" -> %d:", y->v_order); 2255 lf_print_owner(y->v_owner); 2256 printf("\n"); 2257 } 2258 #endif 2259 if (y->v_order < x->v_order) { 2260 /* 2261 * The new edge violates the order. First find the set 2262 * of affected vertices reachable from y (deltaF) and 2263 * the set of affect vertices affected that reach x 2264 * (deltaB), using the graph generation number to 2265 * detect whether we have visited a given vertex 2266 * already. We re-order the graph so that each vertex 2267 * in deltaB appears before each vertex in deltaF. 2268 * 2269 * If x is a member of deltaF, then the new edge would 2270 * create a cycle. Otherwise, we may assume that 2271 * deltaF and deltaB are disjoint. 2272 */ 2273 g->g_gen++; 2274 if (g->g_gen == 0) { 2275 /* 2276 * Generation wrap. 2277 */ 2278 for (vi = 0; vi < g->g_size; vi++) { 2279 g->g_vertices[vi]->v_gen = 0; 2280 } 2281 g->g_gen++; 2282 } 2283 nF = graph_delta_forward(g, x, y, &deltaF); 2284 if (nF < 0) { 2285 #ifdef LOCKF_DEBUG 2286 if (lockf_debug & 8) { 2287 struct owner_vertex_list path; 2288 printf("deadlock: "); 2289 TAILQ_INIT(&path); 2290 graph_reaches(y, x, &path); 2291 graph_print_vertices(&path); 2292 } 2293 #endif 2294 return (EDEADLK); 2295 } 2296 2297 #ifdef LOCKF_DEBUG 2298 if (lockf_debug & 8) { 2299 printf("re-ordering graph vertices\n"); 2300 printf("deltaF = "); 2301 graph_print_vertices(&deltaF); 2302 } 2303 #endif 2304 2305 nB = graph_delta_backward(g, x, y, &deltaB); 2306 2307 #ifdef LOCKF_DEBUG 2308 if (lockf_debug & 8) { 2309 printf("deltaB = "); 2310 graph_print_vertices(&deltaB); 2311 } 2312 #endif 2313 2314 /* 2315 * We first build a set of vertex indices (vertex 2316 * order values) that we may use, then we re-assign 2317 * orders first to those vertices in deltaB, then to 2318 * deltaF. Note that the contents of deltaF and deltaB 2319 * may be partially disordered - we perform an 2320 * insertion sort while building our index set. 2321 */ 2322 indices = g->g_indexbuf; 2323 n = graph_add_indices(indices, 0, &deltaF); 2324 graph_add_indices(indices, n, &deltaB); 2325 2326 /* 2327 * We must also be sure to maintain the relative 2328 * ordering of deltaF and deltaB when re-assigning 2329 * vertices. We do this by iteratively removing the 2330 * lowest ordered element from the set and assigning 2331 * it the next value from our new ordering. 2332 */ 2333 i = graph_assign_indices(g, indices, 0, &deltaB); 2334 graph_assign_indices(g, indices, i, &deltaF); 2335 2336 #ifdef LOCKF_DEBUG 2337 if (lockf_debug & 8) { 2338 struct owner_vertex_list set; 2339 TAILQ_INIT(&set); 2340 for (i = 0; i < nB + nF; i++) 2341 TAILQ_INSERT_TAIL(&set, 2342 g->g_vertices[indices[i]], v_link); 2343 printf("new ordering = "); 2344 graph_print_vertices(&set); 2345 } 2346 #endif 2347 } 2348 2349 KASSERT(x->v_order < y->v_order, ("Failed to re-order graph")); 2350 2351 #ifdef LOCKF_DEBUG 2352 if (lockf_debug & 8) { 2353 graph_check(g, TRUE); 2354 } 2355 #endif 2356 2357 e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK); 2358 2359 LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink); 2360 LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink); 2361 e->e_refs = 1; 2362 e->e_from = x; 2363 e->e_to = y; 2364 2365 return (0); 2366 } 2367 2368 /* 2369 * Remove an edge x->y from the graph. 2370 */ 2371 static void 2372 graph_remove_edge(struct owner_graph *g, struct owner_vertex *x, 2373 struct owner_vertex *y) 2374 { 2375 struct owner_edge *e; 2376 2377 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2378 2379 LIST_FOREACH(e, &x->v_outedges, e_outlink) { 2380 if (e->e_to == y) 2381 break; 2382 } 2383 KASSERT(e, ("Removing non-existent edge from deadlock graph")); 2384 2385 e->e_refs--; 2386 if (e->e_refs == 0) { 2387 #ifdef LOCKF_DEBUG 2388 if (lockf_debug & 8) { 2389 printf("removing edge %d:", x->v_order); 2390 lf_print_owner(x->v_owner); 2391 printf(" -> %d:", y->v_order); 2392 lf_print_owner(y->v_owner); 2393 printf("\n"); 2394 } 2395 #endif 2396 LIST_REMOVE(e, e_outlink); 2397 LIST_REMOVE(e, e_inlink); 2398 free(e, M_LOCKF); 2399 } 2400 } 2401 2402 /* 2403 * Allocate a vertex from the free list. Return ENOMEM if there are 2404 * none. 2405 */ 2406 static struct owner_vertex * 2407 graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo) 2408 { 2409 struct owner_vertex *v; 2410 2411 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2412 2413 v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK); 2414 if (g->g_size == g->g_space) { 2415 g->g_vertices = realloc(g->g_vertices, 2416 2 * g->g_space * sizeof(struct owner_vertex *), 2417 M_LOCKF, M_WAITOK); 2418 free(g->g_indexbuf, M_LOCKF); 2419 g->g_indexbuf = malloc(2 * g->g_space * sizeof(int), 2420 M_LOCKF, M_WAITOK); 2421 g->g_space = 2 * g->g_space; 2422 } 2423 v->v_order = g->g_size; 2424 v->v_gen = g->g_gen; 2425 g->g_vertices[g->g_size] = v; 2426 g->g_size++; 2427 2428 LIST_INIT(&v->v_outedges); 2429 LIST_INIT(&v->v_inedges); 2430 v->v_owner = lo; 2431 2432 return (v); 2433 } 2434 2435 static void 2436 graph_free_vertex(struct owner_graph *g, struct owner_vertex *v) 2437 { 2438 struct owner_vertex *w; 2439 int i; 2440 2441 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2442 2443 KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges")); 2444 KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges")); 2445 2446 /* 2447 * Remove from the graph's array and close up the gap, 2448 * renumbering the other vertices. 2449 */ 2450 for (i = v->v_order + 1; i < g->g_size; i++) { 2451 w = g->g_vertices[i]; 2452 w->v_order--; 2453 g->g_vertices[i - 1] = w; 2454 } 2455 g->g_size--; 2456 2457 free(v, M_LOCKF); 2458 } 2459 2460 static struct owner_graph * 2461 graph_init(struct owner_graph *g) 2462 { 2463 2464 g->g_vertices = malloc(10 * sizeof(struct owner_vertex *), 2465 M_LOCKF, M_WAITOK); 2466 g->g_size = 0; 2467 g->g_space = 10; 2468 g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK); 2469 g->g_gen = 0; 2470 2471 return (g); 2472 } 2473 2474 #ifdef LOCKF_DEBUG 2475 /* 2476 * Print description of a lock owner 2477 */ 2478 static void 2479 lf_print_owner(struct lock_owner *lo) 2480 { 2481 2482 if (lo->lo_flags & F_REMOTE) { 2483 printf("remote pid %d, system %d", 2484 lo->lo_pid, lo->lo_sysid); 2485 } else if (lo->lo_flags & F_FLOCK) { 2486 printf("file %p", lo->lo_id); 2487 } else { 2488 printf("local pid %d", lo->lo_pid); 2489 } 2490 } 2491 2492 /* 2493 * Print out a lock. 2494 */ 2495 static void 2496 lf_print(char *tag, struct lockf_entry *lock) 2497 { 2498 2499 printf("%s: lock %p for ", tag, (void *)lock); 2500 lf_print_owner(lock->lf_owner); 2501 if (lock->lf_inode != (struct inode *)0) 2502 printf(" in ino %ju on dev <%s>,", 2503 (uintmax_t)lock->lf_inode->i_number, 2504 devtoname(ITODEV(lock->lf_inode))); 2505 printf(" %s, start %jd, end ", 2506 lock->lf_type == F_RDLCK ? "shared" : 2507 lock->lf_type == F_WRLCK ? "exclusive" : 2508 lock->lf_type == F_UNLCK ? "unlock" : "unknown", 2509 (intmax_t)lock->lf_start); 2510 if (lock->lf_end == OFF_MAX) 2511 printf("EOF"); 2512 else 2513 printf("%jd", (intmax_t)lock->lf_end); 2514 if (!LIST_EMPTY(&lock->lf_outedges)) 2515 printf(" block %p\n", 2516 (void *)LIST_FIRST(&lock->lf_outedges)->le_to); 2517 else 2518 printf("\n"); 2519 } 2520 2521 static void 2522 lf_printlist(char *tag, struct lockf_entry *lock) 2523 { 2524 struct lockf_entry *lf, *blk; 2525 struct lockf_edge *e; 2526 2527 if (lock->lf_inode == (struct inode *)0) 2528 return; 2529 2530 printf("%s: Lock list for ino %ju on dev <%s>:\n", 2531 tag, (uintmax_t)lock->lf_inode->i_number, 2532 devtoname(ITODEV(lock->lf_inode))); 2533 LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) { 2534 printf("\tlock %p for ",(void *)lf); 2535 lf_print_owner(lock->lf_owner); 2536 printf(", %s, start %jd, end %jd", 2537 lf->lf_type == F_RDLCK ? "shared" : 2538 lf->lf_type == F_WRLCK ? "exclusive" : 2539 lf->lf_type == F_UNLCK ? "unlock" : 2540 "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end); 2541 LIST_FOREACH(e, &lf->lf_outedges, le_outlink) { 2542 blk = e->le_to; 2543 printf("\n\t\tlock request %p for ", (void *)blk); 2544 lf_print_owner(blk->lf_owner); 2545 printf(", %s, start %jd, end %jd", 2546 blk->lf_type == F_RDLCK ? "shared" : 2547 blk->lf_type == F_WRLCK ? "exclusive" : 2548 blk->lf_type == F_UNLCK ? "unlock" : 2549 "unknown", (intmax_t)blk->lf_start, 2550 (intmax_t)blk->lf_end); 2551 if (!LIST_EMPTY(&blk->lf_inedges)) 2552 panic("lf_printlist: bad list"); 2553 } 2554 printf("\n"); 2555 } 2556 } 2557 #endif /* LOCKF_DEBUG */ 2558