1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2008 Isilon Inc http://www.isilon.com/ 5 * Authors: Doug Rabson <dfr@rabson.org> 6 * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 /*- 30 * Copyright (c) 1982, 1986, 1989, 1993 31 * The Regents of the University of California. All rights reserved. 32 * 33 * This code is derived from software contributed to Berkeley by 34 * Scooter Morris at Genentech Inc. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 */ 60 61 #include <sys/cdefs.h> 62 #include "opt_debug_lockf.h" 63 64 #include <sys/param.h> 65 #include <sys/systm.h> 66 #include <sys/hash.h> 67 #include <sys/jail.h> 68 #include <sys/kernel.h> 69 #include <sys/limits.h> 70 #include <sys/lock.h> 71 #include <sys/mount.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/sbuf.h> 75 #include <sys/stat.h> 76 #include <sys/sx.h> 77 #include <sys/unistd.h> 78 #include <sys/user.h> 79 #include <sys/vnode.h> 80 #include <sys/malloc.h> 81 #include <sys/fcntl.h> 82 #include <sys/lockf.h> 83 #include <sys/taskqueue.h> 84 85 #ifdef LOCKF_DEBUG 86 #include <sys/sysctl.h> 87 88 static int lockf_debug = 0; /* control debug output */ 89 SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, ""); 90 #endif 91 92 static MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures"); 93 94 struct owner_edge; 95 struct owner_vertex; 96 struct owner_vertex_list; 97 struct owner_graph; 98 99 #define NOLOCKF (struct lockf_entry *)0 100 #define SELF 0x1 101 #define OTHERS 0x2 102 static void lf_init(void *); 103 static int lf_hash_owner(caddr_t, struct vnode *, struct flock *, int); 104 static int lf_owner_matches(struct lock_owner *, caddr_t, struct flock *, 105 int); 106 static struct lockf_entry * 107 lf_alloc_lock(struct lock_owner *); 108 static int lf_free_lock(struct lockf_entry *); 109 static int lf_clearlock(struct lockf *, struct lockf_entry *); 110 static int lf_overlaps(struct lockf_entry *, struct lockf_entry *); 111 static int lf_blocks(struct lockf_entry *, struct lockf_entry *); 112 static void lf_free_edge(struct lockf_edge *); 113 static struct lockf_edge * 114 lf_alloc_edge(void); 115 static void lf_alloc_vertex(struct lockf_entry *); 116 static int lf_add_edge(struct lockf_entry *, struct lockf_entry *); 117 static void lf_remove_edge(struct lockf_edge *); 118 static void lf_remove_outgoing(struct lockf_entry *); 119 static void lf_remove_incoming(struct lockf_entry *); 120 static int lf_add_outgoing(struct lockf *, struct lockf_entry *); 121 static int lf_add_incoming(struct lockf *, struct lockf_entry *); 122 static int lf_findoverlap(struct lockf_entry **, struct lockf_entry *, 123 int); 124 static struct lockf_entry * 125 lf_getblock(struct lockf *, struct lockf_entry *); 126 static int lf_getlock(struct lockf *, struct lockf_entry *, struct flock *); 127 static void lf_insert_lock(struct lockf *, struct lockf_entry *); 128 static void lf_wakeup_lock(struct lockf *, struct lockf_entry *); 129 static void lf_update_dependancies(struct lockf *, struct lockf_entry *, 130 int all, struct lockf_entry_list *); 131 static void lf_set_start(struct lockf *, struct lockf_entry *, off_t, 132 struct lockf_entry_list*); 133 static void lf_set_end(struct lockf *, struct lockf_entry *, off_t, 134 struct lockf_entry_list*); 135 static int lf_setlock(struct lockf *, struct lockf_entry *, 136 struct vnode *, void **cookiep); 137 static int lf_cancel(struct lockf *, struct lockf_entry *, void *); 138 static void lf_split(struct lockf *, struct lockf_entry *, 139 struct lockf_entry *, struct lockf_entry_list *); 140 #ifdef LOCKF_DEBUG 141 static int graph_reaches(struct owner_vertex *x, struct owner_vertex *y, 142 struct owner_vertex_list *path); 143 static void graph_check(struct owner_graph *g, int checkorder); 144 static void graph_print_vertices(struct owner_vertex_list *set); 145 #endif 146 static int graph_delta_forward(struct owner_graph *g, 147 struct owner_vertex *x, struct owner_vertex *y, 148 struct owner_vertex_list *delta); 149 static int graph_delta_backward(struct owner_graph *g, 150 struct owner_vertex *x, struct owner_vertex *y, 151 struct owner_vertex_list *delta); 152 static int graph_add_indices(int *indices, int n, 153 struct owner_vertex_list *set); 154 static int graph_assign_indices(struct owner_graph *g, int *indices, 155 int nextunused, struct owner_vertex_list *set); 156 static int graph_add_edge(struct owner_graph *g, 157 struct owner_vertex *x, struct owner_vertex *y); 158 static void graph_remove_edge(struct owner_graph *g, 159 struct owner_vertex *x, struct owner_vertex *y); 160 static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g, 161 struct lock_owner *lo); 162 static void graph_free_vertex(struct owner_graph *g, 163 struct owner_vertex *v); 164 static struct owner_graph * graph_init(struct owner_graph *g); 165 #ifdef LOCKF_DEBUG 166 static void lf_print(char *, struct lockf_entry *); 167 static void lf_printlist(char *, struct lockf_entry *); 168 static void lf_print_owner(struct lock_owner *); 169 #endif 170 171 /* 172 * This structure is used to keep track of both local and remote lock 173 * owners. The lf_owner field of the struct lockf_entry points back at 174 * the lock owner structure. Each possible lock owner (local proc for 175 * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid> 176 * pair for remote locks) is represented by a unique instance of 177 * struct lock_owner. 178 * 179 * If a lock owner has a lock that blocks some other lock or a lock 180 * that is waiting for some other lock, it also has a vertex in the 181 * owner_graph below. 182 * 183 * Locks: 184 * (s) locked by state->ls_lock 185 * (S) locked by lf_lock_states_lock 186 * (g) locked by lf_owner_graph_lock 187 * (c) const until freeing 188 */ 189 #define LOCK_OWNER_HASH_SIZE 256 190 191 struct lock_owner { 192 LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */ 193 int lo_refs; /* (l) Number of locks referring to this */ 194 int lo_flags; /* (c) Flags passed to lf_advlock */ 195 caddr_t lo_id; /* (c) Id value passed to lf_advlock */ 196 pid_t lo_pid; /* (c) Process Id of the lock owner */ 197 int lo_sysid; /* (c) System Id of the lock owner */ 198 int lo_hash; /* (c) Used to lock the appropriate chain */ 199 struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */ 200 }; 201 202 LIST_HEAD(lock_owner_list, lock_owner); 203 204 struct lock_owner_chain { 205 struct sx lock; 206 struct lock_owner_list list; 207 }; 208 209 static struct sx lf_lock_states_lock; 210 static struct lockf_list lf_lock_states; /* (S) */ 211 static struct lock_owner_chain lf_lock_owners[LOCK_OWNER_HASH_SIZE]; 212 213 /* 214 * Structures for deadlock detection. 215 * 216 * We have two types of directed graph, the first is the set of locks, 217 * both active and pending on a vnode. Within this graph, active locks 218 * are terminal nodes in the graph (i.e. have no out-going 219 * edges). Pending locks have out-going edges to each blocking active 220 * lock that prevents the lock from being granted and also to each 221 * older pending lock that would block them if it was active. The 222 * graph for each vnode is naturally acyclic; new edges are only ever 223 * added to or from new nodes (either new pending locks which only add 224 * out-going edges or new active locks which only add in-coming edges) 225 * therefore they cannot create loops in the lock graph. 226 * 227 * The second graph is a global graph of lock owners. Each lock owner 228 * is a vertex in that graph and an edge is added to the graph 229 * whenever an edge is added to a vnode graph, with end points 230 * corresponding to owner of the new pending lock and the owner of the 231 * lock upon which it waits. In order to prevent deadlock, we only add 232 * an edge to this graph if the new edge would not create a cycle. 233 * 234 * The lock owner graph is topologically sorted, i.e. if a node has 235 * any outgoing edges, then it has an order strictly less than any 236 * node to which it has an outgoing edge. We preserve this ordering 237 * (and detect cycles) on edge insertion using Algorithm PK from the 238 * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic 239 * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article 240 * No. 1.7) 241 */ 242 struct owner_vertex; 243 244 struct owner_edge { 245 LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */ 246 LIST_ENTRY(owner_edge) e_inlink; /* (g) link to's in-edge list */ 247 int e_refs; /* (g) number of times added */ 248 struct owner_vertex *e_from; /* (c) out-going from here */ 249 struct owner_vertex *e_to; /* (c) in-coming to here */ 250 }; 251 LIST_HEAD(owner_edge_list, owner_edge); 252 253 struct owner_vertex { 254 TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */ 255 uint32_t v_gen; /* (g) workspace for edge insertion */ 256 int v_order; /* (g) order of vertex in graph */ 257 struct owner_edge_list v_outedges;/* (g) list of out-edges */ 258 struct owner_edge_list v_inedges; /* (g) list of in-edges */ 259 struct lock_owner *v_owner; /* (c) corresponding lock owner */ 260 }; 261 TAILQ_HEAD(owner_vertex_list, owner_vertex); 262 263 struct owner_graph { 264 struct owner_vertex** g_vertices; /* (g) pointers to vertices */ 265 int g_size; /* (g) number of vertices */ 266 int g_space; /* (g) space allocated for vertices */ 267 int *g_indexbuf; /* (g) workspace for loop detection */ 268 uint32_t g_gen; /* (g) increment when re-ordering */ 269 }; 270 271 static struct sx lf_owner_graph_lock; 272 static struct owner_graph lf_owner_graph; 273 274 /* 275 * Initialise various structures and locks. 276 */ 277 static void 278 lf_init(void *dummy) 279 { 280 int i; 281 282 sx_init(&lf_lock_states_lock, "lock states lock"); 283 LIST_INIT(&lf_lock_states); 284 285 for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) { 286 sx_init(&lf_lock_owners[i].lock, "lock owners lock"); 287 LIST_INIT(&lf_lock_owners[i].list); 288 } 289 290 sx_init(&lf_owner_graph_lock, "owner graph lock"); 291 graph_init(&lf_owner_graph); 292 } 293 SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL); 294 295 /* 296 * Generate a hash value for a lock owner. 297 */ 298 static int 299 lf_hash_owner(caddr_t id, struct vnode *vp, struct flock *fl, int flags) 300 { 301 uint32_t h; 302 303 if (flags & F_REMOTE) { 304 h = HASHSTEP(0, fl->l_pid); 305 h = HASHSTEP(h, fl->l_sysid); 306 } else if (flags & F_FLOCK) { 307 h = ((uintptr_t) id) >> 7; 308 } else { 309 h = ((uintptr_t) vp) >> 7; 310 } 311 312 return (h % LOCK_OWNER_HASH_SIZE); 313 } 314 315 /* 316 * Return true if a lock owner matches the details passed to 317 * lf_advlock. 318 */ 319 static int 320 lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl, 321 int flags) 322 { 323 if (flags & F_REMOTE) { 324 return lo->lo_pid == fl->l_pid 325 && lo->lo_sysid == fl->l_sysid; 326 } else { 327 return lo->lo_id == id; 328 } 329 } 330 331 static struct lockf_entry * 332 lf_alloc_lock(struct lock_owner *lo) 333 { 334 struct lockf_entry *lf; 335 336 lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO); 337 338 #ifdef LOCKF_DEBUG 339 if (lockf_debug & 4) 340 printf("Allocated lock %p\n", lf); 341 #endif 342 if (lo) { 343 sx_xlock(&lf_lock_owners[lo->lo_hash].lock); 344 lo->lo_refs++; 345 sx_xunlock(&lf_lock_owners[lo->lo_hash].lock); 346 lf->lf_owner = lo; 347 } 348 349 return (lf); 350 } 351 352 static int 353 lf_free_lock(struct lockf_entry *lock) 354 { 355 struct sx *chainlock; 356 357 KASSERT(lock->lf_refs > 0, ("lockf_entry negative ref count %p", lock)); 358 if (--lock->lf_refs > 0) 359 return (0); 360 /* 361 * Adjust the lock_owner reference count and 362 * reclaim the entry if this is the last lock 363 * for that owner. 364 */ 365 struct lock_owner *lo = lock->lf_owner; 366 if (lo) { 367 KASSERT(LIST_EMPTY(&lock->lf_outedges), 368 ("freeing lock with dependencies")); 369 KASSERT(LIST_EMPTY(&lock->lf_inedges), 370 ("freeing lock with dependants")); 371 chainlock = &lf_lock_owners[lo->lo_hash].lock; 372 sx_xlock(chainlock); 373 KASSERT(lo->lo_refs > 0, ("lock owner refcount")); 374 lo->lo_refs--; 375 if (lo->lo_refs == 0) { 376 #ifdef LOCKF_DEBUG 377 if (lockf_debug & 1) 378 printf("lf_free_lock: freeing lock owner %p\n", 379 lo); 380 #endif 381 if (lo->lo_vertex) { 382 sx_xlock(&lf_owner_graph_lock); 383 graph_free_vertex(&lf_owner_graph, 384 lo->lo_vertex); 385 sx_xunlock(&lf_owner_graph_lock); 386 } 387 LIST_REMOVE(lo, lo_link); 388 free(lo, M_LOCKF); 389 #ifdef LOCKF_DEBUG 390 if (lockf_debug & 4) 391 printf("Freed lock owner %p\n", lo); 392 #endif 393 } 394 sx_unlock(chainlock); 395 } 396 if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) { 397 vrele(lock->lf_vnode); 398 lock->lf_vnode = NULL; 399 } 400 #ifdef LOCKF_DEBUG 401 if (lockf_debug & 4) 402 printf("Freed lock %p\n", lock); 403 #endif 404 free(lock, M_LOCKF); 405 return (1); 406 } 407 408 /* 409 * Advisory record locking support 410 */ 411 int 412 lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep, 413 u_quad_t size) 414 { 415 struct lockf *state; 416 struct flock *fl = ap->a_fl; 417 struct lockf_entry *lock; 418 struct vnode *vp = ap->a_vp; 419 caddr_t id = ap->a_id; 420 int flags = ap->a_flags; 421 int hash; 422 struct lock_owner *lo; 423 off_t start, end, oadd; 424 int error; 425 426 /* 427 * Handle the F_UNLKSYS case first - no need to mess about 428 * creating a lock owner for this one. 429 */ 430 if (ap->a_op == F_UNLCKSYS) { 431 lf_clearremotesys(fl->l_sysid); 432 return (0); 433 } 434 435 /* 436 * Convert the flock structure into a start and end. 437 */ 438 switch (fl->l_whence) { 439 case SEEK_SET: 440 case SEEK_CUR: 441 /* 442 * Caller is responsible for adding any necessary offset 443 * when SEEK_CUR is used. 444 */ 445 start = fl->l_start; 446 break; 447 448 case SEEK_END: 449 if (size > OFF_MAX || 450 (fl->l_start > 0 && size > OFF_MAX - fl->l_start)) 451 return (EOVERFLOW); 452 start = size + fl->l_start; 453 break; 454 455 default: 456 return (EINVAL); 457 } 458 if (start < 0) 459 return (EINVAL); 460 if (fl->l_len < 0) { 461 if (start == 0) 462 return (EINVAL); 463 end = start - 1; 464 start += fl->l_len; 465 if (start < 0) 466 return (EINVAL); 467 } else if (fl->l_len == 0) { 468 end = OFF_MAX; 469 } else { 470 oadd = fl->l_len - 1; 471 if (oadd > OFF_MAX - start) 472 return (EOVERFLOW); 473 end = start + oadd; 474 } 475 476 retry_setlock: 477 478 /* 479 * Avoid the common case of unlocking when inode has no locks. 480 */ 481 if (ap->a_op != F_SETLK && (*statep) == NULL) { 482 VI_LOCK(vp); 483 if ((*statep) == NULL) { 484 fl->l_type = F_UNLCK; 485 VI_UNLOCK(vp); 486 return (0); 487 } 488 VI_UNLOCK(vp); 489 } 490 491 /* 492 * Map our arguments to an existing lock owner or create one 493 * if this is the first time we have seen this owner. 494 */ 495 hash = lf_hash_owner(id, vp, fl, flags); 496 sx_xlock(&lf_lock_owners[hash].lock); 497 LIST_FOREACH(lo, &lf_lock_owners[hash].list, lo_link) 498 if (lf_owner_matches(lo, id, fl, flags)) 499 break; 500 if (!lo) { 501 /* 502 * We initialise the lock with a reference 503 * count which matches the new lockf_entry 504 * structure created below. 505 */ 506 lo = malloc(sizeof(struct lock_owner), M_LOCKF, 507 M_WAITOK|M_ZERO); 508 #ifdef LOCKF_DEBUG 509 if (lockf_debug & 4) 510 printf("Allocated lock owner %p\n", lo); 511 #endif 512 513 lo->lo_refs = 1; 514 lo->lo_flags = flags; 515 lo->lo_id = id; 516 lo->lo_hash = hash; 517 if (flags & F_REMOTE) { 518 lo->lo_pid = fl->l_pid; 519 lo->lo_sysid = fl->l_sysid; 520 } else if (flags & F_FLOCK) { 521 lo->lo_pid = -1; 522 lo->lo_sysid = 0; 523 } else { 524 struct proc *p = (struct proc *) id; 525 lo->lo_pid = p->p_pid; 526 lo->lo_sysid = 0; 527 } 528 lo->lo_vertex = NULL; 529 530 #ifdef LOCKF_DEBUG 531 if (lockf_debug & 1) { 532 printf("lf_advlockasync: new lock owner %p ", lo); 533 lf_print_owner(lo); 534 printf("\n"); 535 } 536 #endif 537 538 LIST_INSERT_HEAD(&lf_lock_owners[hash].list, lo, lo_link); 539 } else { 540 /* 541 * We have seen this lock owner before, increase its 542 * reference count to account for the new lockf_entry 543 * structure we create below. 544 */ 545 lo->lo_refs++; 546 } 547 sx_xunlock(&lf_lock_owners[hash].lock); 548 549 /* 550 * Create the lockf structure. We initialise the lf_owner 551 * field here instead of in lf_alloc_lock() to avoid paying 552 * the lf_lock_owners_lock tax twice. 553 */ 554 lock = lf_alloc_lock(NULL); 555 lock->lf_refs = 1; 556 lock->lf_start = start; 557 lock->lf_end = end; 558 lock->lf_owner = lo; 559 lock->lf_vnode = vp; 560 if (flags & F_REMOTE) { 561 /* 562 * For remote locks, the caller may release its ref to 563 * the vnode at any time - we have to ref it here to 564 * prevent it from being recycled unexpectedly. 565 */ 566 vref(vp); 567 } 568 569 lock->lf_type = fl->l_type; 570 LIST_INIT(&lock->lf_outedges); 571 LIST_INIT(&lock->lf_inedges); 572 lock->lf_async_task = ap->a_task; 573 lock->lf_flags = ap->a_flags; 574 575 /* 576 * Do the requested operation. First find our state structure 577 * and create a new one if necessary - the caller's *statep 578 * variable and the state's ls_threads count is protected by 579 * the vnode interlock. 580 */ 581 VI_LOCK(vp); 582 if (VN_IS_DOOMED(vp)) { 583 VI_UNLOCK(vp); 584 lf_free_lock(lock); 585 return (ENOENT); 586 } 587 588 /* 589 * Allocate a state structure if necessary. 590 */ 591 state = *statep; 592 if (state == NULL) { 593 struct lockf *ls; 594 595 VI_UNLOCK(vp); 596 597 ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO); 598 sx_init(&ls->ls_lock, "ls_lock"); 599 LIST_INIT(&ls->ls_active); 600 LIST_INIT(&ls->ls_pending); 601 ls->ls_threads = 1; 602 603 sx_xlock(&lf_lock_states_lock); 604 LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link); 605 sx_xunlock(&lf_lock_states_lock); 606 607 /* 608 * Cope if we lost a race with some other thread while 609 * trying to allocate memory. 610 */ 611 VI_LOCK(vp); 612 if (VN_IS_DOOMED(vp)) { 613 VI_UNLOCK(vp); 614 sx_xlock(&lf_lock_states_lock); 615 LIST_REMOVE(ls, ls_link); 616 sx_xunlock(&lf_lock_states_lock); 617 sx_destroy(&ls->ls_lock); 618 free(ls, M_LOCKF); 619 lf_free_lock(lock); 620 return (ENOENT); 621 } 622 if ((*statep) == NULL) { 623 state = *statep = ls; 624 VI_UNLOCK(vp); 625 } else { 626 state = *statep; 627 MPASS(state->ls_threads >= 0); 628 state->ls_threads++; 629 VI_UNLOCK(vp); 630 631 sx_xlock(&lf_lock_states_lock); 632 LIST_REMOVE(ls, ls_link); 633 sx_xunlock(&lf_lock_states_lock); 634 sx_destroy(&ls->ls_lock); 635 free(ls, M_LOCKF); 636 } 637 } else { 638 MPASS(state->ls_threads >= 0); 639 state->ls_threads++; 640 VI_UNLOCK(vp); 641 } 642 643 sx_xlock(&state->ls_lock); 644 /* 645 * Recheck the doomed vnode after state->ls_lock is 646 * locked. lf_purgelocks() requires that no new threads add 647 * pending locks when vnode is marked by VIRF_DOOMED flag. 648 */ 649 if (VN_IS_DOOMED(vp)) { 650 VI_LOCK(vp); 651 MPASS(state->ls_threads > 0); 652 state->ls_threads--; 653 wakeup(state); 654 VI_UNLOCK(vp); 655 sx_xunlock(&state->ls_lock); 656 lf_free_lock(lock); 657 return (ENOENT); 658 } 659 660 switch (ap->a_op) { 661 case F_SETLK: 662 error = lf_setlock(state, lock, vp, ap->a_cookiep); 663 break; 664 665 case F_UNLCK: 666 error = lf_clearlock(state, lock); 667 lf_free_lock(lock); 668 break; 669 670 case F_GETLK: 671 error = lf_getlock(state, lock, fl); 672 lf_free_lock(lock); 673 break; 674 675 case F_CANCEL: 676 if (ap->a_cookiep) 677 error = lf_cancel(state, lock, *ap->a_cookiep); 678 else 679 error = EINVAL; 680 lf_free_lock(lock); 681 break; 682 683 default: 684 lf_free_lock(lock); 685 error = EINVAL; 686 break; 687 } 688 689 #ifdef DIAGNOSTIC 690 /* 691 * Check for some can't happen stuff. In this case, the active 692 * lock list becoming disordered or containing mutually 693 * blocking locks. We also check the pending list for locks 694 * which should be active (i.e. have no out-going edges). 695 */ 696 LIST_FOREACH(lock, &state->ls_active, lf_link) { 697 struct lockf_entry *lf; 698 if (LIST_NEXT(lock, lf_link)) 699 KASSERT((lock->lf_start 700 <= LIST_NEXT(lock, lf_link)->lf_start), 701 ("locks disordered")); 702 LIST_FOREACH(lf, &state->ls_active, lf_link) { 703 if (lock == lf) 704 break; 705 KASSERT(!lf_blocks(lock, lf), 706 ("two conflicting active locks")); 707 if (lock->lf_owner == lf->lf_owner) 708 KASSERT(!lf_overlaps(lock, lf), 709 ("two overlapping locks from same owner")); 710 } 711 } 712 LIST_FOREACH(lock, &state->ls_pending, lf_link) { 713 KASSERT(!LIST_EMPTY(&lock->lf_outedges), 714 ("pending lock which should be active")); 715 } 716 #endif 717 sx_xunlock(&state->ls_lock); 718 719 VI_LOCK(vp); 720 MPASS(state->ls_threads > 0); 721 state->ls_threads--; 722 if (state->ls_threads != 0) { 723 wakeup(state); 724 } 725 VI_UNLOCK(vp); 726 727 if (error == EDOOFUS) { 728 KASSERT(ap->a_op == F_SETLK, ("EDOOFUS")); 729 goto retry_setlock; 730 } 731 return (error); 732 } 733 734 int 735 lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size) 736 { 737 struct vop_advlockasync_args a; 738 739 a.a_vp = ap->a_vp; 740 a.a_id = ap->a_id; 741 a.a_op = ap->a_op; 742 a.a_fl = ap->a_fl; 743 a.a_flags = ap->a_flags; 744 a.a_task = NULL; 745 a.a_cookiep = NULL; 746 747 return (lf_advlockasync(&a, statep, size)); 748 } 749 750 void 751 lf_purgelocks(struct vnode *vp, struct lockf **statep) 752 { 753 struct lockf *state; 754 struct lockf_entry *lock, *nlock; 755 756 /* 757 * For this to work correctly, the caller must ensure that no 758 * other threads enter the locking system for this vnode, 759 * e.g. by checking VIRF_DOOMED. We wake up any threads that are 760 * sleeping waiting for locks on this vnode and then free all 761 * the remaining locks. 762 */ 763 KASSERT(VN_IS_DOOMED(vp), 764 ("lf_purgelocks: vp %p has not vgone yet", vp)); 765 state = *statep; 766 if (state == NULL) { 767 return; 768 } 769 VI_LOCK(vp); 770 *statep = NULL; 771 if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) { 772 KASSERT(LIST_EMPTY(&state->ls_pending), 773 ("freeing state with pending locks")); 774 VI_UNLOCK(vp); 775 goto out_free; 776 } 777 MPASS(state->ls_threads >= 0); 778 state->ls_threads++; 779 VI_UNLOCK(vp); 780 781 sx_xlock(&state->ls_lock); 782 sx_xlock(&lf_owner_graph_lock); 783 LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) { 784 LIST_REMOVE(lock, lf_link); 785 lf_remove_outgoing(lock); 786 lf_remove_incoming(lock); 787 788 /* 789 * If its an async lock, we can just free it 790 * here, otherwise we let the sleeping thread 791 * free it. 792 */ 793 if (lock->lf_async_task) { 794 lf_free_lock(lock); 795 } else { 796 lock->lf_flags |= F_INTR; 797 wakeup(lock); 798 } 799 } 800 sx_xunlock(&lf_owner_graph_lock); 801 sx_xunlock(&state->ls_lock); 802 803 /* 804 * Wait for all other threads, sleeping and otherwise 805 * to leave. 806 */ 807 VI_LOCK(vp); 808 while (state->ls_threads > 1) 809 msleep(state, VI_MTX(vp), 0, "purgelocks", 0); 810 VI_UNLOCK(vp); 811 812 /* 813 * We can just free all the active locks since they 814 * will have no dependencies (we removed them all 815 * above). We don't need to bother locking since we 816 * are the last thread using this state structure. 817 */ 818 KASSERT(LIST_EMPTY(&state->ls_pending), 819 ("lock pending for %p", state)); 820 LIST_FOREACH_SAFE(lock, &state->ls_active, lf_link, nlock) { 821 LIST_REMOVE(lock, lf_link); 822 lf_free_lock(lock); 823 } 824 out_free: 825 sx_xlock(&lf_lock_states_lock); 826 LIST_REMOVE(state, ls_link); 827 sx_xunlock(&lf_lock_states_lock); 828 sx_destroy(&state->ls_lock); 829 free(state, M_LOCKF); 830 } 831 832 /* 833 * Return non-zero if locks 'x' and 'y' overlap. 834 */ 835 static int 836 lf_overlaps(struct lockf_entry *x, struct lockf_entry *y) 837 { 838 839 return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start); 840 } 841 842 /* 843 * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa). 844 */ 845 static int 846 lf_blocks(struct lockf_entry *x, struct lockf_entry *y) 847 { 848 849 return x->lf_owner != y->lf_owner 850 && (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK) 851 && lf_overlaps(x, y); 852 } 853 854 /* 855 * Allocate a lock edge from the free list 856 */ 857 static struct lockf_edge * 858 lf_alloc_edge(void) 859 { 860 861 return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO)); 862 } 863 864 /* 865 * Free a lock edge. 866 */ 867 static void 868 lf_free_edge(struct lockf_edge *e) 869 { 870 871 free(e, M_LOCKF); 872 } 873 874 /* 875 * Ensure that the lock's owner has a corresponding vertex in the 876 * owner graph. 877 */ 878 static void 879 lf_alloc_vertex(struct lockf_entry *lock) 880 { 881 struct owner_graph *g = &lf_owner_graph; 882 883 if (!lock->lf_owner->lo_vertex) 884 lock->lf_owner->lo_vertex = 885 graph_alloc_vertex(g, lock->lf_owner); 886 } 887 888 /* 889 * Attempt to record an edge from lock x to lock y. Return EDEADLK if 890 * the new edge would cause a cycle in the owner graph. 891 */ 892 static int 893 lf_add_edge(struct lockf_entry *x, struct lockf_entry *y) 894 { 895 struct owner_graph *g = &lf_owner_graph; 896 struct lockf_edge *e; 897 int error; 898 899 #ifdef DIAGNOSTIC 900 LIST_FOREACH(e, &x->lf_outedges, le_outlink) 901 KASSERT(e->le_to != y, ("adding lock edge twice")); 902 #endif 903 904 /* 905 * Make sure the two owners have entries in the owner graph. 906 */ 907 lf_alloc_vertex(x); 908 lf_alloc_vertex(y); 909 910 error = graph_add_edge(g, x->lf_owner->lo_vertex, 911 y->lf_owner->lo_vertex); 912 if (error) 913 return (error); 914 915 e = lf_alloc_edge(); 916 LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink); 917 LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink); 918 e->le_from = x; 919 e->le_to = y; 920 921 return (0); 922 } 923 924 /* 925 * Remove an edge from the lock graph. 926 */ 927 static void 928 lf_remove_edge(struct lockf_edge *e) 929 { 930 struct owner_graph *g = &lf_owner_graph; 931 struct lockf_entry *x = e->le_from; 932 struct lockf_entry *y = e->le_to; 933 934 graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex); 935 LIST_REMOVE(e, le_outlink); 936 LIST_REMOVE(e, le_inlink); 937 e->le_from = NULL; 938 e->le_to = NULL; 939 lf_free_edge(e); 940 } 941 942 /* 943 * Remove all out-going edges from lock x. 944 */ 945 static void 946 lf_remove_outgoing(struct lockf_entry *x) 947 { 948 struct lockf_edge *e; 949 950 while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) { 951 lf_remove_edge(e); 952 } 953 } 954 955 /* 956 * Remove all in-coming edges from lock x. 957 */ 958 static void 959 lf_remove_incoming(struct lockf_entry *x) 960 { 961 struct lockf_edge *e; 962 963 while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) { 964 lf_remove_edge(e); 965 } 966 } 967 968 /* 969 * Walk the list of locks for the file and create an out-going edge 970 * from lock to each blocking lock. 971 */ 972 static int 973 lf_add_outgoing(struct lockf *state, struct lockf_entry *lock) 974 { 975 struct lockf_entry *overlap; 976 int error; 977 978 LIST_FOREACH(overlap, &state->ls_active, lf_link) { 979 /* 980 * We may assume that the active list is sorted by 981 * lf_start. 982 */ 983 if (overlap->lf_start > lock->lf_end) 984 break; 985 if (!lf_blocks(lock, overlap)) 986 continue; 987 988 /* 989 * We've found a blocking lock. Add the corresponding 990 * edge to the graphs and see if it would cause a 991 * deadlock. 992 */ 993 error = lf_add_edge(lock, overlap); 994 995 /* 996 * The only error that lf_add_edge returns is EDEADLK. 997 * Remove any edges we added and return the error. 998 */ 999 if (error) { 1000 lf_remove_outgoing(lock); 1001 return (error); 1002 } 1003 } 1004 1005 /* 1006 * We also need to add edges to sleeping locks that block 1007 * us. This ensures that lf_wakeup_lock cannot grant two 1008 * mutually blocking locks simultaneously and also enforces a 1009 * 'first come, first served' fairness model. Note that this 1010 * only happens if we are blocked by at least one active lock 1011 * due to the call to lf_getblock in lf_setlock below. 1012 */ 1013 LIST_FOREACH(overlap, &state->ls_pending, lf_link) { 1014 if (!lf_blocks(lock, overlap)) 1015 continue; 1016 /* 1017 * We've found a blocking lock. Add the corresponding 1018 * edge to the graphs and see if it would cause a 1019 * deadlock. 1020 */ 1021 error = lf_add_edge(lock, overlap); 1022 1023 /* 1024 * The only error that lf_add_edge returns is EDEADLK. 1025 * Remove any edges we added and return the error. 1026 */ 1027 if (error) { 1028 lf_remove_outgoing(lock); 1029 return (error); 1030 } 1031 } 1032 1033 return (0); 1034 } 1035 1036 /* 1037 * Walk the list of pending locks for the file and create an in-coming 1038 * edge from lock to each blocking lock. 1039 */ 1040 static int 1041 lf_add_incoming(struct lockf *state, struct lockf_entry *lock) 1042 { 1043 struct lockf_entry *overlap; 1044 int error; 1045 1046 sx_assert(&state->ls_lock, SX_XLOCKED); 1047 if (LIST_EMPTY(&state->ls_pending)) 1048 return (0); 1049 1050 error = 0; 1051 sx_xlock(&lf_owner_graph_lock); 1052 LIST_FOREACH(overlap, &state->ls_pending, lf_link) { 1053 if (!lf_blocks(lock, overlap)) 1054 continue; 1055 1056 /* 1057 * We've found a blocking lock. Add the corresponding 1058 * edge to the graphs and see if it would cause a 1059 * deadlock. 1060 */ 1061 error = lf_add_edge(overlap, lock); 1062 1063 /* 1064 * The only error that lf_add_edge returns is EDEADLK. 1065 * Remove any edges we added and return the error. 1066 */ 1067 if (error) { 1068 lf_remove_incoming(lock); 1069 break; 1070 } 1071 } 1072 sx_xunlock(&lf_owner_graph_lock); 1073 return (error); 1074 } 1075 1076 /* 1077 * Insert lock into the active list, keeping list entries ordered by 1078 * increasing values of lf_start. 1079 */ 1080 static void 1081 lf_insert_lock(struct lockf *state, struct lockf_entry *lock) 1082 { 1083 struct lockf_entry *lf, *lfprev; 1084 1085 if (LIST_EMPTY(&state->ls_active)) { 1086 LIST_INSERT_HEAD(&state->ls_active, lock, lf_link); 1087 return; 1088 } 1089 1090 lfprev = NULL; 1091 LIST_FOREACH(lf, &state->ls_active, lf_link) { 1092 if (lf->lf_start > lock->lf_start) { 1093 LIST_INSERT_BEFORE(lf, lock, lf_link); 1094 return; 1095 } 1096 lfprev = lf; 1097 } 1098 LIST_INSERT_AFTER(lfprev, lock, lf_link); 1099 } 1100 1101 /* 1102 * Wake up a sleeping lock and remove it from the pending list now 1103 * that all its dependencies have been resolved. The caller should 1104 * arrange for the lock to be added to the active list, adjusting any 1105 * existing locks for the same owner as needed. 1106 */ 1107 static void 1108 lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock) 1109 { 1110 1111 /* 1112 * Remove from ls_pending list and wake up the caller 1113 * or start the async notification, as appropriate. 1114 */ 1115 LIST_REMOVE(wakelock, lf_link); 1116 #ifdef LOCKF_DEBUG 1117 if (lockf_debug & 1) 1118 lf_print("lf_wakeup_lock: awakening", wakelock); 1119 #endif /* LOCKF_DEBUG */ 1120 if (wakelock->lf_async_task) { 1121 taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task); 1122 } else { 1123 wakeup(wakelock); 1124 } 1125 } 1126 1127 /* 1128 * Re-check all dependent locks and remove edges to locks that we no 1129 * longer block. If 'all' is non-zero, the lock has been removed and 1130 * we must remove all the dependencies, otherwise it has simply been 1131 * reduced but remains active. Any pending locks which have been been 1132 * unblocked are added to 'granted' 1133 */ 1134 static void 1135 lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all, 1136 struct lockf_entry_list *granted) 1137 { 1138 struct lockf_edge *e, *ne; 1139 struct lockf_entry *deplock; 1140 1141 LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) { 1142 deplock = e->le_from; 1143 if (all || !lf_blocks(lock, deplock)) { 1144 sx_xlock(&lf_owner_graph_lock); 1145 lf_remove_edge(e); 1146 sx_xunlock(&lf_owner_graph_lock); 1147 if (LIST_EMPTY(&deplock->lf_outedges)) { 1148 lf_wakeup_lock(state, deplock); 1149 LIST_INSERT_HEAD(granted, deplock, lf_link); 1150 } 1151 } 1152 } 1153 } 1154 1155 /* 1156 * Set the start of an existing active lock, updating dependencies and 1157 * adding any newly woken locks to 'granted'. 1158 */ 1159 static void 1160 lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start, 1161 struct lockf_entry_list *granted) 1162 { 1163 1164 KASSERT(new_start >= lock->lf_start, ("can't increase lock")); 1165 lock->lf_start = new_start; 1166 LIST_REMOVE(lock, lf_link); 1167 lf_insert_lock(state, lock); 1168 lf_update_dependancies(state, lock, FALSE, granted); 1169 } 1170 1171 /* 1172 * Set the end of an existing active lock, updating dependencies and 1173 * adding any newly woken locks to 'granted'. 1174 */ 1175 static void 1176 lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end, 1177 struct lockf_entry_list *granted) 1178 { 1179 1180 KASSERT(new_end <= lock->lf_end, ("can't increase lock")); 1181 lock->lf_end = new_end; 1182 lf_update_dependancies(state, lock, FALSE, granted); 1183 } 1184 1185 /* 1186 * Add a lock to the active list, updating or removing any current 1187 * locks owned by the same owner and processing any pending locks that 1188 * become unblocked as a result. This code is also used for unlock 1189 * since the logic for updating existing locks is identical. 1190 * 1191 * As a result of processing the new lock, we may unblock existing 1192 * pending locks as a result of downgrading/unlocking. We simply 1193 * activate the newly granted locks by looping. 1194 * 1195 * Since the new lock already has its dependencies set up, we always 1196 * add it to the list (unless its an unlock request). This may 1197 * fragment the lock list in some pathological cases but its probably 1198 * not a real problem. 1199 */ 1200 static void 1201 lf_activate_lock(struct lockf *state, struct lockf_entry *lock) 1202 { 1203 struct lockf_entry *overlap, *lf; 1204 struct lockf_entry_list granted; 1205 int ovcase; 1206 1207 LIST_INIT(&granted); 1208 LIST_INSERT_HEAD(&granted, lock, lf_link); 1209 1210 while (!LIST_EMPTY(&granted)) { 1211 lock = LIST_FIRST(&granted); 1212 LIST_REMOVE(lock, lf_link); 1213 1214 /* 1215 * Skip over locks owned by other processes. Handle 1216 * any locks that overlap and are owned by ourselves. 1217 */ 1218 overlap = LIST_FIRST(&state->ls_active); 1219 for (;;) { 1220 ovcase = lf_findoverlap(&overlap, lock, SELF); 1221 1222 #ifdef LOCKF_DEBUG 1223 if (ovcase && (lockf_debug & 2)) { 1224 printf("lf_setlock: overlap %d", ovcase); 1225 lf_print("", overlap); 1226 } 1227 #endif 1228 /* 1229 * Six cases: 1230 * 0) no overlap 1231 * 1) overlap == lock 1232 * 2) overlap contains lock 1233 * 3) lock contains overlap 1234 * 4) overlap starts before lock 1235 * 5) overlap ends after lock 1236 */ 1237 switch (ovcase) { 1238 case 0: /* no overlap */ 1239 break; 1240 1241 case 1: /* overlap == lock */ 1242 /* 1243 * We have already setup the 1244 * dependants for the new lock, taking 1245 * into account a possible downgrade 1246 * or unlock. Remove the old lock. 1247 */ 1248 LIST_REMOVE(overlap, lf_link); 1249 lf_update_dependancies(state, overlap, TRUE, 1250 &granted); 1251 lf_free_lock(overlap); 1252 break; 1253 1254 case 2: /* overlap contains lock */ 1255 /* 1256 * Just split the existing lock. 1257 */ 1258 lf_split(state, overlap, lock, &granted); 1259 break; 1260 1261 case 3: /* lock contains overlap */ 1262 /* 1263 * Delete the overlap and advance to 1264 * the next entry in the list. 1265 */ 1266 lf = LIST_NEXT(overlap, lf_link); 1267 LIST_REMOVE(overlap, lf_link); 1268 lf_update_dependancies(state, overlap, TRUE, 1269 &granted); 1270 lf_free_lock(overlap); 1271 overlap = lf; 1272 continue; 1273 1274 case 4: /* overlap starts before lock */ 1275 /* 1276 * Just update the overlap end and 1277 * move on. 1278 */ 1279 lf_set_end(state, overlap, lock->lf_start - 1, 1280 &granted); 1281 overlap = LIST_NEXT(overlap, lf_link); 1282 continue; 1283 1284 case 5: /* overlap ends after lock */ 1285 /* 1286 * Change the start of overlap and 1287 * re-insert. 1288 */ 1289 lf_set_start(state, overlap, lock->lf_end + 1, 1290 &granted); 1291 break; 1292 } 1293 break; 1294 } 1295 #ifdef LOCKF_DEBUG 1296 if (lockf_debug & 1) { 1297 if (lock->lf_type != F_UNLCK) 1298 lf_print("lf_activate_lock: activated", lock); 1299 else 1300 lf_print("lf_activate_lock: unlocked", lock); 1301 lf_printlist("lf_activate_lock", lock); 1302 } 1303 #endif /* LOCKF_DEBUG */ 1304 if (lock->lf_type != F_UNLCK) 1305 lf_insert_lock(state, lock); 1306 } 1307 } 1308 1309 /* 1310 * Cancel a pending lock request, either as a result of a signal or a 1311 * cancel request for an async lock. 1312 */ 1313 static void 1314 lf_cancel_lock(struct lockf *state, struct lockf_entry *lock) 1315 { 1316 struct lockf_entry_list granted; 1317 1318 /* 1319 * Note it is theoretically possible that cancelling this lock 1320 * may allow some other pending lock to become 1321 * active. Consider this case: 1322 * 1323 * Owner Action Result Dependencies 1324 * 1325 * A: lock [0..0] succeeds 1326 * B: lock [2..2] succeeds 1327 * C: lock [1..2] blocked C->B 1328 * D: lock [0..1] blocked C->B,D->A,D->C 1329 * A: unlock [0..0] C->B,D->C 1330 * C: cancel [1..2] 1331 */ 1332 1333 LIST_REMOVE(lock, lf_link); 1334 1335 /* 1336 * Removing out-going edges is simple. 1337 */ 1338 sx_xlock(&lf_owner_graph_lock); 1339 lf_remove_outgoing(lock); 1340 sx_xunlock(&lf_owner_graph_lock); 1341 1342 /* 1343 * Removing in-coming edges may allow some other lock to 1344 * become active - we use lf_update_dependancies to figure 1345 * this out. 1346 */ 1347 LIST_INIT(&granted); 1348 lf_update_dependancies(state, lock, TRUE, &granted); 1349 lf_free_lock(lock); 1350 1351 /* 1352 * Feed any newly active locks to lf_activate_lock. 1353 */ 1354 while (!LIST_EMPTY(&granted)) { 1355 lock = LIST_FIRST(&granted); 1356 LIST_REMOVE(lock, lf_link); 1357 lf_activate_lock(state, lock); 1358 } 1359 } 1360 1361 /* 1362 * Set a byte-range lock. 1363 */ 1364 static int 1365 lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp, 1366 void **cookiep) 1367 { 1368 static char lockstr[] = "lockf"; 1369 int error, priority, stops_deferred; 1370 1371 #ifdef LOCKF_DEBUG 1372 if (lockf_debug & 1) 1373 lf_print("lf_setlock", lock); 1374 #endif /* LOCKF_DEBUG */ 1375 1376 /* 1377 * Set the priority 1378 */ 1379 priority = PLOCK; 1380 if (lock->lf_type == F_WRLCK) 1381 priority += 4; 1382 if (!(lock->lf_flags & F_NOINTR)) 1383 priority |= PCATCH; 1384 /* 1385 * Scan lock list for this file looking for locks that would block us. 1386 */ 1387 if (lf_getblock(state, lock)) { 1388 /* 1389 * Free the structure and return if nonblocking. 1390 */ 1391 if ((lock->lf_flags & F_WAIT) == 0 1392 && lock->lf_async_task == NULL) { 1393 lf_free_lock(lock); 1394 error = EAGAIN; 1395 goto out; 1396 } 1397 1398 /* 1399 * For flock type locks, we must first remove 1400 * any shared locks that we hold before we sleep 1401 * waiting for an exclusive lock. 1402 */ 1403 if ((lock->lf_flags & F_FLOCK) && 1404 lock->lf_type == F_WRLCK) { 1405 lock->lf_type = F_UNLCK; 1406 lf_activate_lock(state, lock); 1407 lock->lf_type = F_WRLCK; 1408 } 1409 1410 /* 1411 * We are blocked. Create edges to each blocking lock, 1412 * checking for deadlock using the owner graph. For 1413 * simplicity, we run deadlock detection for all 1414 * locks, posix and otherwise. 1415 */ 1416 sx_xlock(&lf_owner_graph_lock); 1417 error = lf_add_outgoing(state, lock); 1418 sx_xunlock(&lf_owner_graph_lock); 1419 1420 if (error) { 1421 #ifdef LOCKF_DEBUG 1422 if (lockf_debug & 1) 1423 lf_print("lf_setlock: deadlock", lock); 1424 #endif 1425 lf_free_lock(lock); 1426 goto out; 1427 } 1428 1429 /* 1430 * We have added edges to everything that blocks 1431 * us. Sleep until they all go away. 1432 */ 1433 LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link); 1434 #ifdef LOCKF_DEBUG 1435 if (lockf_debug & 1) { 1436 struct lockf_edge *e; 1437 LIST_FOREACH(e, &lock->lf_outedges, le_outlink) { 1438 lf_print("lf_setlock: blocking on", e->le_to); 1439 lf_printlist("lf_setlock", e->le_to); 1440 } 1441 } 1442 #endif /* LOCKF_DEBUG */ 1443 1444 if ((lock->lf_flags & F_WAIT) == 0) { 1445 /* 1446 * The caller requested async notification - 1447 * this callback happens when the blocking 1448 * lock is released, allowing the caller to 1449 * make another attempt to take the lock. 1450 */ 1451 *cookiep = (void *) lock; 1452 error = EINPROGRESS; 1453 goto out; 1454 } 1455 1456 lock->lf_refs++; 1457 stops_deferred = sigdeferstop(SIGDEFERSTOP_ERESTART); 1458 error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0); 1459 sigallowstop(stops_deferred); 1460 if (lf_free_lock(lock)) { 1461 error = EDOOFUS; 1462 goto out; 1463 } 1464 1465 /* 1466 * We may have been awakened by a signal and/or by a 1467 * debugger continuing us (in which cases we must 1468 * remove our lock graph edges) and/or by another 1469 * process releasing a lock (in which case our edges 1470 * have already been removed and we have been moved to 1471 * the active list). We may also have been woken by 1472 * lf_purgelocks which we report to the caller as 1473 * EINTR. In that case, lf_purgelocks will have 1474 * removed our lock graph edges. 1475 * 1476 * Note that it is possible to receive a signal after 1477 * we were successfully woken (and moved to the active 1478 * list) but before we resumed execution. In this 1479 * case, our lf_outedges list will be clear. We 1480 * pretend there was no error. 1481 * 1482 * Note also, if we have been sleeping long enough, we 1483 * may now have incoming edges from some newer lock 1484 * which is waiting behind us in the queue. 1485 */ 1486 if (lock->lf_flags & F_INTR) { 1487 error = EINTR; 1488 lf_free_lock(lock); 1489 goto out; 1490 } 1491 if (LIST_EMPTY(&lock->lf_outedges)) { 1492 error = 0; 1493 } else { 1494 lf_cancel_lock(state, lock); 1495 goto out; 1496 } 1497 #ifdef LOCKF_DEBUG 1498 if (lockf_debug & 1) { 1499 lf_print("lf_setlock: granted", lock); 1500 } 1501 #endif 1502 goto out; 1503 } 1504 /* 1505 * It looks like we are going to grant the lock. First add 1506 * edges from any currently pending lock that the new lock 1507 * would block. 1508 */ 1509 error = lf_add_incoming(state, lock); 1510 if (error) { 1511 #ifdef LOCKF_DEBUG 1512 if (lockf_debug & 1) 1513 lf_print("lf_setlock: deadlock", lock); 1514 #endif 1515 lf_free_lock(lock); 1516 goto out; 1517 } 1518 1519 /* 1520 * No blocks!! Add the lock. Note that we will 1521 * downgrade or upgrade any overlapping locks this 1522 * process already owns. 1523 */ 1524 lf_activate_lock(state, lock); 1525 error = 0; 1526 out: 1527 return (error); 1528 } 1529 1530 /* 1531 * Remove a byte-range lock on an inode. 1532 * 1533 * Generally, find the lock (or an overlap to that lock) 1534 * and remove it (or shrink it), then wakeup anyone we can. 1535 */ 1536 static int 1537 lf_clearlock(struct lockf *state, struct lockf_entry *unlock) 1538 { 1539 struct lockf_entry *overlap; 1540 1541 overlap = LIST_FIRST(&state->ls_active); 1542 1543 if (overlap == NOLOCKF) 1544 return (0); 1545 #ifdef LOCKF_DEBUG 1546 if (unlock->lf_type != F_UNLCK) 1547 panic("lf_clearlock: bad type"); 1548 if (lockf_debug & 1) 1549 lf_print("lf_clearlock", unlock); 1550 #endif /* LOCKF_DEBUG */ 1551 1552 lf_activate_lock(state, unlock); 1553 1554 return (0); 1555 } 1556 1557 /* 1558 * Check whether there is a blocking lock, and if so return its 1559 * details in '*fl'. 1560 */ 1561 static int 1562 lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl) 1563 { 1564 struct lockf_entry *block; 1565 1566 #ifdef LOCKF_DEBUG 1567 if (lockf_debug & 1) 1568 lf_print("lf_getlock", lock); 1569 #endif /* LOCKF_DEBUG */ 1570 1571 if ((block = lf_getblock(state, lock))) { 1572 fl->l_type = block->lf_type; 1573 fl->l_whence = SEEK_SET; 1574 fl->l_start = block->lf_start; 1575 if (block->lf_end == OFF_MAX) 1576 fl->l_len = 0; 1577 else 1578 fl->l_len = block->lf_end - block->lf_start + 1; 1579 fl->l_pid = block->lf_owner->lo_pid; 1580 fl->l_sysid = block->lf_owner->lo_sysid; 1581 } else { 1582 fl->l_type = F_UNLCK; 1583 } 1584 return (0); 1585 } 1586 1587 /* 1588 * Cancel an async lock request. 1589 */ 1590 static int 1591 lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie) 1592 { 1593 struct lockf_entry *reallock; 1594 1595 /* 1596 * We need to match this request with an existing lock 1597 * request. 1598 */ 1599 LIST_FOREACH(reallock, &state->ls_pending, lf_link) { 1600 if ((void *) reallock == cookie) { 1601 /* 1602 * Double-check that this lock looks right 1603 * (maybe use a rolling ID for the cancel 1604 * cookie instead?) 1605 */ 1606 if (!(reallock->lf_vnode == lock->lf_vnode 1607 && reallock->lf_start == lock->lf_start 1608 && reallock->lf_end == lock->lf_end)) { 1609 return (ENOENT); 1610 } 1611 1612 /* 1613 * Make sure this lock was async and then just 1614 * remove it from its wait lists. 1615 */ 1616 if (!reallock->lf_async_task) { 1617 return (ENOENT); 1618 } 1619 1620 /* 1621 * Note that since any other thread must take 1622 * state->ls_lock before it can possibly 1623 * trigger the async callback, we are safe 1624 * from a race with lf_wakeup_lock, i.e. we 1625 * can free the lock (actually our caller does 1626 * this). 1627 */ 1628 lf_cancel_lock(state, reallock); 1629 return (0); 1630 } 1631 } 1632 1633 /* 1634 * We didn't find a matching lock - not much we can do here. 1635 */ 1636 return (ENOENT); 1637 } 1638 1639 /* 1640 * Walk the list of locks for an inode and 1641 * return the first blocking lock. 1642 */ 1643 static struct lockf_entry * 1644 lf_getblock(struct lockf *state, struct lockf_entry *lock) 1645 { 1646 struct lockf_entry *overlap; 1647 1648 LIST_FOREACH(overlap, &state->ls_active, lf_link) { 1649 /* 1650 * We may assume that the active list is sorted by 1651 * lf_start. 1652 */ 1653 if (overlap->lf_start > lock->lf_end) 1654 break; 1655 if (!lf_blocks(lock, overlap)) 1656 continue; 1657 return (overlap); 1658 } 1659 return (NOLOCKF); 1660 } 1661 1662 /* 1663 * Walk the list of locks for an inode to find an overlapping lock (if 1664 * any) and return a classification of that overlap. 1665 * 1666 * Arguments: 1667 * *overlap The place in the lock list to start looking 1668 * lock The lock which is being tested 1669 * type Pass 'SELF' to test only locks with the same 1670 * owner as lock, or 'OTHER' to test only locks 1671 * with a different owner 1672 * 1673 * Returns one of six values: 1674 * 0) no overlap 1675 * 1) overlap == lock 1676 * 2) overlap contains lock 1677 * 3) lock contains overlap 1678 * 4) overlap starts before lock 1679 * 5) overlap ends after lock 1680 * 1681 * If there is an overlapping lock, '*overlap' is set to point at the 1682 * overlapping lock. 1683 * 1684 * NOTE: this returns only the FIRST overlapping lock. There 1685 * may be more than one. 1686 */ 1687 static int 1688 lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type) 1689 { 1690 struct lockf_entry *lf; 1691 off_t start, end; 1692 int res; 1693 1694 if ((*overlap) == NOLOCKF) { 1695 return (0); 1696 } 1697 #ifdef LOCKF_DEBUG 1698 if (lockf_debug & 2) 1699 lf_print("lf_findoverlap: looking for overlap in", lock); 1700 #endif /* LOCKF_DEBUG */ 1701 start = lock->lf_start; 1702 end = lock->lf_end; 1703 res = 0; 1704 while (*overlap) { 1705 lf = *overlap; 1706 if (lf->lf_start > end) 1707 break; 1708 if (((type & SELF) && lf->lf_owner != lock->lf_owner) || 1709 ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) { 1710 *overlap = LIST_NEXT(lf, lf_link); 1711 continue; 1712 } 1713 #ifdef LOCKF_DEBUG 1714 if (lockf_debug & 2) 1715 lf_print("\tchecking", lf); 1716 #endif /* LOCKF_DEBUG */ 1717 /* 1718 * OK, check for overlap 1719 * 1720 * Six cases: 1721 * 0) no overlap 1722 * 1) overlap == lock 1723 * 2) overlap contains lock 1724 * 3) lock contains overlap 1725 * 4) overlap starts before lock 1726 * 5) overlap ends after lock 1727 */ 1728 if (start > lf->lf_end) { 1729 /* Case 0 */ 1730 #ifdef LOCKF_DEBUG 1731 if (lockf_debug & 2) 1732 printf("no overlap\n"); 1733 #endif /* LOCKF_DEBUG */ 1734 *overlap = LIST_NEXT(lf, lf_link); 1735 continue; 1736 } 1737 if (lf->lf_start == start && lf->lf_end == end) { 1738 /* Case 1 */ 1739 #ifdef LOCKF_DEBUG 1740 if (lockf_debug & 2) 1741 printf("overlap == lock\n"); 1742 #endif /* LOCKF_DEBUG */ 1743 res = 1; 1744 break; 1745 } 1746 if (lf->lf_start <= start && lf->lf_end >= end) { 1747 /* Case 2 */ 1748 #ifdef LOCKF_DEBUG 1749 if (lockf_debug & 2) 1750 printf("overlap contains lock\n"); 1751 #endif /* LOCKF_DEBUG */ 1752 res = 2; 1753 break; 1754 } 1755 if (start <= lf->lf_start && end >= lf->lf_end) { 1756 /* Case 3 */ 1757 #ifdef LOCKF_DEBUG 1758 if (lockf_debug & 2) 1759 printf("lock contains overlap\n"); 1760 #endif /* LOCKF_DEBUG */ 1761 res = 3; 1762 break; 1763 } 1764 if (lf->lf_start < start && lf->lf_end >= start) { 1765 /* Case 4 */ 1766 #ifdef LOCKF_DEBUG 1767 if (lockf_debug & 2) 1768 printf("overlap starts before lock\n"); 1769 #endif /* LOCKF_DEBUG */ 1770 res = 4; 1771 break; 1772 } 1773 if (lf->lf_start > start && lf->lf_end > end) { 1774 /* Case 5 */ 1775 #ifdef LOCKF_DEBUG 1776 if (lockf_debug & 2) 1777 printf("overlap ends after lock\n"); 1778 #endif /* LOCKF_DEBUG */ 1779 res = 5; 1780 break; 1781 } 1782 panic("lf_findoverlap: default"); 1783 } 1784 return (res); 1785 } 1786 1787 /* 1788 * Split an the existing 'lock1', based on the extent of the lock 1789 * described by 'lock2'. The existing lock should cover 'lock2' 1790 * entirely. 1791 * 1792 * Any pending locks which have been been unblocked are added to 1793 * 'granted' 1794 */ 1795 static void 1796 lf_split(struct lockf *state, struct lockf_entry *lock1, 1797 struct lockf_entry *lock2, struct lockf_entry_list *granted) 1798 { 1799 struct lockf_entry *splitlock; 1800 1801 #ifdef LOCKF_DEBUG 1802 if (lockf_debug & 2) { 1803 lf_print("lf_split", lock1); 1804 lf_print("splitting from", lock2); 1805 } 1806 #endif /* LOCKF_DEBUG */ 1807 /* 1808 * Check to see if we don't need to split at all. 1809 */ 1810 if (lock1->lf_start == lock2->lf_start) { 1811 lf_set_start(state, lock1, lock2->lf_end + 1, granted); 1812 return; 1813 } 1814 if (lock1->lf_end == lock2->lf_end) { 1815 lf_set_end(state, lock1, lock2->lf_start - 1, granted); 1816 return; 1817 } 1818 /* 1819 * Make a new lock consisting of the last part of 1820 * the encompassing lock. 1821 */ 1822 splitlock = lf_alloc_lock(lock1->lf_owner); 1823 memcpy(splitlock, lock1, sizeof *splitlock); 1824 splitlock->lf_refs = 1; 1825 if (splitlock->lf_flags & F_REMOTE) 1826 vref(splitlock->lf_vnode); 1827 1828 /* 1829 * This cannot cause a deadlock since any edges we would add 1830 * to splitlock already exist in lock1. We must be sure to add 1831 * necessary dependencies to splitlock before we reduce lock1 1832 * otherwise we may accidentally grant a pending lock that 1833 * was blocked by the tail end of lock1. 1834 */ 1835 splitlock->lf_start = lock2->lf_end + 1; 1836 LIST_INIT(&splitlock->lf_outedges); 1837 LIST_INIT(&splitlock->lf_inedges); 1838 lf_add_incoming(state, splitlock); 1839 1840 lf_set_end(state, lock1, lock2->lf_start - 1, granted); 1841 1842 /* 1843 * OK, now link it in 1844 */ 1845 lf_insert_lock(state, splitlock); 1846 } 1847 1848 struct lockdesc { 1849 STAILQ_ENTRY(lockdesc) link; 1850 struct vnode *vp; 1851 struct flock fl; 1852 }; 1853 STAILQ_HEAD(lockdesclist, lockdesc); 1854 1855 int 1856 lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg) 1857 { 1858 struct lockf *ls; 1859 struct lockf_entry *lf; 1860 struct lockdesc *ldesc; 1861 struct lockdesclist locks; 1862 int error; 1863 1864 /* 1865 * In order to keep the locking simple, we iterate over the 1866 * active lock lists to build a list of locks that need 1867 * releasing. We then call the iterator for each one in turn. 1868 * 1869 * We take an extra reference to the vnode for the duration to 1870 * make sure it doesn't go away before we are finished. 1871 */ 1872 STAILQ_INIT(&locks); 1873 sx_xlock(&lf_lock_states_lock); 1874 LIST_FOREACH(ls, &lf_lock_states, ls_link) { 1875 sx_xlock(&ls->ls_lock); 1876 LIST_FOREACH(lf, &ls->ls_active, lf_link) { 1877 if (lf->lf_owner->lo_sysid != sysid) 1878 continue; 1879 1880 ldesc = malloc(sizeof(struct lockdesc), M_LOCKF, 1881 M_WAITOK); 1882 ldesc->vp = lf->lf_vnode; 1883 vref(ldesc->vp); 1884 ldesc->fl.l_start = lf->lf_start; 1885 if (lf->lf_end == OFF_MAX) 1886 ldesc->fl.l_len = 0; 1887 else 1888 ldesc->fl.l_len = 1889 lf->lf_end - lf->lf_start + 1; 1890 ldesc->fl.l_whence = SEEK_SET; 1891 ldesc->fl.l_type = F_UNLCK; 1892 ldesc->fl.l_pid = lf->lf_owner->lo_pid; 1893 ldesc->fl.l_sysid = sysid; 1894 STAILQ_INSERT_TAIL(&locks, ldesc, link); 1895 } 1896 sx_xunlock(&ls->ls_lock); 1897 } 1898 sx_xunlock(&lf_lock_states_lock); 1899 1900 /* 1901 * Call the iterator function for each lock in turn. If the 1902 * iterator returns an error code, just free the rest of the 1903 * lockdesc structures. 1904 */ 1905 error = 0; 1906 while ((ldesc = STAILQ_FIRST(&locks)) != NULL) { 1907 STAILQ_REMOVE_HEAD(&locks, link); 1908 if (!error) 1909 error = fn(ldesc->vp, &ldesc->fl, arg); 1910 vrele(ldesc->vp); 1911 free(ldesc, M_LOCKF); 1912 } 1913 1914 return (error); 1915 } 1916 1917 int 1918 lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg) 1919 { 1920 struct lockf *ls; 1921 struct lockf_entry *lf; 1922 struct lockdesc *ldesc; 1923 struct lockdesclist locks; 1924 int error; 1925 1926 /* 1927 * In order to keep the locking simple, we iterate over the 1928 * active lock lists to build a list of locks that need 1929 * releasing. We then call the iterator for each one in turn. 1930 * 1931 * We take an extra reference to the vnode for the duration to 1932 * make sure it doesn't go away before we are finished. 1933 */ 1934 STAILQ_INIT(&locks); 1935 VI_LOCK(vp); 1936 ls = vp->v_lockf; 1937 if (!ls) { 1938 VI_UNLOCK(vp); 1939 return (0); 1940 } 1941 MPASS(ls->ls_threads >= 0); 1942 ls->ls_threads++; 1943 VI_UNLOCK(vp); 1944 1945 sx_xlock(&ls->ls_lock); 1946 LIST_FOREACH(lf, &ls->ls_active, lf_link) { 1947 ldesc = malloc(sizeof(struct lockdesc), M_LOCKF, 1948 M_WAITOK); 1949 ldesc->vp = lf->lf_vnode; 1950 vref(ldesc->vp); 1951 ldesc->fl.l_start = lf->lf_start; 1952 if (lf->lf_end == OFF_MAX) 1953 ldesc->fl.l_len = 0; 1954 else 1955 ldesc->fl.l_len = 1956 lf->lf_end - lf->lf_start + 1; 1957 ldesc->fl.l_whence = SEEK_SET; 1958 ldesc->fl.l_type = F_UNLCK; 1959 ldesc->fl.l_pid = lf->lf_owner->lo_pid; 1960 ldesc->fl.l_sysid = lf->lf_owner->lo_sysid; 1961 STAILQ_INSERT_TAIL(&locks, ldesc, link); 1962 } 1963 sx_xunlock(&ls->ls_lock); 1964 VI_LOCK(vp); 1965 MPASS(ls->ls_threads > 0); 1966 ls->ls_threads--; 1967 wakeup(ls); 1968 VI_UNLOCK(vp); 1969 1970 /* 1971 * Call the iterator function for each lock in turn. If the 1972 * iterator returns an error code, just free the rest of the 1973 * lockdesc structures. 1974 */ 1975 error = 0; 1976 while ((ldesc = STAILQ_FIRST(&locks)) != NULL) { 1977 STAILQ_REMOVE_HEAD(&locks, link); 1978 if (!error) 1979 error = fn(ldesc->vp, &ldesc->fl, arg); 1980 vrele(ldesc->vp); 1981 free(ldesc, M_LOCKF); 1982 } 1983 1984 return (error); 1985 } 1986 1987 static int 1988 lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg) 1989 { 1990 1991 VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE); 1992 return (0); 1993 } 1994 1995 void 1996 lf_clearremotesys(int sysid) 1997 { 1998 1999 KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS")); 2000 lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL); 2001 } 2002 2003 int 2004 lf_countlocks(int sysid) 2005 { 2006 int i; 2007 struct lock_owner *lo; 2008 int count; 2009 2010 count = 0; 2011 for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) { 2012 sx_xlock(&lf_lock_owners[i].lock); 2013 LIST_FOREACH(lo, &lf_lock_owners[i].list, lo_link) 2014 if (lo->lo_sysid == sysid) 2015 count += lo->lo_refs; 2016 sx_xunlock(&lf_lock_owners[i].lock); 2017 } 2018 2019 return (count); 2020 } 2021 2022 #ifdef LOCKF_DEBUG 2023 2024 /* 2025 * Return non-zero if y is reachable from x using a brute force 2026 * search. If reachable and path is non-null, return the route taken 2027 * in path. 2028 */ 2029 static int 2030 graph_reaches(struct owner_vertex *x, struct owner_vertex *y, 2031 struct owner_vertex_list *path) 2032 { 2033 struct owner_edge *e; 2034 2035 if (x == y) { 2036 if (path) 2037 TAILQ_INSERT_HEAD(path, x, v_link); 2038 return 1; 2039 } 2040 2041 LIST_FOREACH(e, &x->v_outedges, e_outlink) { 2042 if (graph_reaches(e->e_to, y, path)) { 2043 if (path) 2044 TAILQ_INSERT_HEAD(path, x, v_link); 2045 return 1; 2046 } 2047 } 2048 return 0; 2049 } 2050 2051 /* 2052 * Perform consistency checks on the graph. Make sure the values of 2053 * v_order are correct. If checkorder is non-zero, check no vertex can 2054 * reach any other vertex with a smaller order. 2055 */ 2056 static void 2057 graph_check(struct owner_graph *g, int checkorder) 2058 { 2059 int i, j; 2060 2061 for (i = 0; i < g->g_size; i++) { 2062 if (!g->g_vertices[i]->v_owner) 2063 continue; 2064 KASSERT(g->g_vertices[i]->v_order == i, 2065 ("lock graph vertices disordered")); 2066 if (checkorder) { 2067 for (j = 0; j < i; j++) { 2068 if (!g->g_vertices[j]->v_owner) 2069 continue; 2070 KASSERT(!graph_reaches(g->g_vertices[i], 2071 g->g_vertices[j], NULL), 2072 ("lock graph vertices disordered")); 2073 } 2074 } 2075 } 2076 } 2077 2078 static void 2079 graph_print_vertices(struct owner_vertex_list *set) 2080 { 2081 struct owner_vertex *v; 2082 2083 printf("{ "); 2084 TAILQ_FOREACH(v, set, v_link) { 2085 printf("%d:", v->v_order); 2086 lf_print_owner(v->v_owner); 2087 if (TAILQ_NEXT(v, v_link)) 2088 printf(", "); 2089 } 2090 printf(" }\n"); 2091 } 2092 2093 #endif 2094 2095 /* 2096 * Calculate the sub-set of vertices v from the affected region [y..x] 2097 * where v is reachable from y. Return -1 if a loop was detected 2098 * (i.e. x is reachable from y, otherwise the number of vertices in 2099 * this subset. 2100 */ 2101 static int 2102 graph_delta_forward(struct owner_graph *g, struct owner_vertex *x, 2103 struct owner_vertex *y, struct owner_vertex_list *delta) 2104 { 2105 uint32_t gen; 2106 struct owner_vertex *v; 2107 struct owner_edge *e; 2108 int n; 2109 2110 /* 2111 * We start with a set containing just y. Then for each vertex 2112 * v in the set so far unprocessed, we add each vertex that v 2113 * has an out-edge to and that is within the affected region 2114 * [y..x]. If we see the vertex x on our travels, stop 2115 * immediately. 2116 */ 2117 TAILQ_INIT(delta); 2118 TAILQ_INSERT_TAIL(delta, y, v_link); 2119 v = y; 2120 n = 1; 2121 gen = g->g_gen; 2122 while (v) { 2123 LIST_FOREACH(e, &v->v_outedges, e_outlink) { 2124 if (e->e_to == x) 2125 return -1; 2126 if (e->e_to->v_order < x->v_order 2127 && e->e_to->v_gen != gen) { 2128 e->e_to->v_gen = gen; 2129 TAILQ_INSERT_TAIL(delta, e->e_to, v_link); 2130 n++; 2131 } 2132 } 2133 v = TAILQ_NEXT(v, v_link); 2134 } 2135 2136 return (n); 2137 } 2138 2139 /* 2140 * Calculate the sub-set of vertices v from the affected region [y..x] 2141 * where v reaches x. Return the number of vertices in this subset. 2142 */ 2143 static int 2144 graph_delta_backward(struct owner_graph *g, struct owner_vertex *x, 2145 struct owner_vertex *y, struct owner_vertex_list *delta) 2146 { 2147 uint32_t gen; 2148 struct owner_vertex *v; 2149 struct owner_edge *e; 2150 int n; 2151 2152 /* 2153 * We start with a set containing just x. Then for each vertex 2154 * v in the set so far unprocessed, we add each vertex that v 2155 * has an in-edge from and that is within the affected region 2156 * [y..x]. 2157 */ 2158 TAILQ_INIT(delta); 2159 TAILQ_INSERT_TAIL(delta, x, v_link); 2160 v = x; 2161 n = 1; 2162 gen = g->g_gen; 2163 while (v) { 2164 LIST_FOREACH(e, &v->v_inedges, e_inlink) { 2165 if (e->e_from->v_order > y->v_order 2166 && e->e_from->v_gen != gen) { 2167 e->e_from->v_gen = gen; 2168 TAILQ_INSERT_HEAD(delta, e->e_from, v_link); 2169 n++; 2170 } 2171 } 2172 v = TAILQ_PREV(v, owner_vertex_list, v_link); 2173 } 2174 2175 return (n); 2176 } 2177 2178 static int 2179 graph_add_indices(int *indices, int n, struct owner_vertex_list *set) 2180 { 2181 struct owner_vertex *v; 2182 int i, j; 2183 2184 TAILQ_FOREACH(v, set, v_link) { 2185 for (i = n; 2186 i > 0 && indices[i - 1] > v->v_order; i--) 2187 ; 2188 for (j = n - 1; j >= i; j--) 2189 indices[j + 1] = indices[j]; 2190 indices[i] = v->v_order; 2191 n++; 2192 } 2193 2194 return (n); 2195 } 2196 2197 static int 2198 graph_assign_indices(struct owner_graph *g, int *indices, int nextunused, 2199 struct owner_vertex_list *set) 2200 { 2201 struct owner_vertex *v, *vlowest; 2202 2203 while (!TAILQ_EMPTY(set)) { 2204 vlowest = NULL; 2205 TAILQ_FOREACH(v, set, v_link) { 2206 if (!vlowest || v->v_order < vlowest->v_order) 2207 vlowest = v; 2208 } 2209 TAILQ_REMOVE(set, vlowest, v_link); 2210 vlowest->v_order = indices[nextunused]; 2211 g->g_vertices[vlowest->v_order] = vlowest; 2212 nextunused++; 2213 } 2214 2215 return (nextunused); 2216 } 2217 2218 static int 2219 graph_add_edge(struct owner_graph *g, struct owner_vertex *x, 2220 struct owner_vertex *y) 2221 { 2222 struct owner_edge *e; 2223 struct owner_vertex_list deltaF, deltaB; 2224 int nF, n, vi, i; 2225 int *indices; 2226 int nB __unused; 2227 2228 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2229 2230 LIST_FOREACH(e, &x->v_outedges, e_outlink) { 2231 if (e->e_to == y) { 2232 e->e_refs++; 2233 return (0); 2234 } 2235 } 2236 2237 #ifdef LOCKF_DEBUG 2238 if (lockf_debug & 8) { 2239 printf("adding edge %d:", x->v_order); 2240 lf_print_owner(x->v_owner); 2241 printf(" -> %d:", y->v_order); 2242 lf_print_owner(y->v_owner); 2243 printf("\n"); 2244 } 2245 #endif 2246 if (y->v_order < x->v_order) { 2247 /* 2248 * The new edge violates the order. First find the set 2249 * of affected vertices reachable from y (deltaF) and 2250 * the set of affect vertices affected that reach x 2251 * (deltaB), using the graph generation number to 2252 * detect whether we have visited a given vertex 2253 * already. We re-order the graph so that each vertex 2254 * in deltaB appears before each vertex in deltaF. 2255 * 2256 * If x is a member of deltaF, then the new edge would 2257 * create a cycle. Otherwise, we may assume that 2258 * deltaF and deltaB are disjoint. 2259 */ 2260 g->g_gen++; 2261 if (g->g_gen == 0) { 2262 /* 2263 * Generation wrap. 2264 */ 2265 for (vi = 0; vi < g->g_size; vi++) { 2266 g->g_vertices[vi]->v_gen = 0; 2267 } 2268 g->g_gen++; 2269 } 2270 nF = graph_delta_forward(g, x, y, &deltaF); 2271 if (nF < 0) { 2272 #ifdef LOCKF_DEBUG 2273 if (lockf_debug & 8) { 2274 struct owner_vertex_list path; 2275 printf("deadlock: "); 2276 TAILQ_INIT(&path); 2277 graph_reaches(y, x, &path); 2278 graph_print_vertices(&path); 2279 } 2280 #endif 2281 return (EDEADLK); 2282 } 2283 2284 #ifdef LOCKF_DEBUG 2285 if (lockf_debug & 8) { 2286 printf("re-ordering graph vertices\n"); 2287 printf("deltaF = "); 2288 graph_print_vertices(&deltaF); 2289 } 2290 #endif 2291 2292 nB = graph_delta_backward(g, x, y, &deltaB); 2293 2294 #ifdef LOCKF_DEBUG 2295 if (lockf_debug & 8) { 2296 printf("deltaB = "); 2297 graph_print_vertices(&deltaB); 2298 } 2299 #endif 2300 2301 /* 2302 * We first build a set of vertex indices (vertex 2303 * order values) that we may use, then we re-assign 2304 * orders first to those vertices in deltaB, then to 2305 * deltaF. Note that the contents of deltaF and deltaB 2306 * may be partially disordered - we perform an 2307 * insertion sort while building our index set. 2308 */ 2309 indices = g->g_indexbuf; 2310 n = graph_add_indices(indices, 0, &deltaF); 2311 graph_add_indices(indices, n, &deltaB); 2312 2313 /* 2314 * We must also be sure to maintain the relative 2315 * ordering of deltaF and deltaB when re-assigning 2316 * vertices. We do this by iteratively removing the 2317 * lowest ordered element from the set and assigning 2318 * it the next value from our new ordering. 2319 */ 2320 i = graph_assign_indices(g, indices, 0, &deltaB); 2321 graph_assign_indices(g, indices, i, &deltaF); 2322 2323 #ifdef LOCKF_DEBUG 2324 if (lockf_debug & 8) { 2325 struct owner_vertex_list set; 2326 TAILQ_INIT(&set); 2327 for (i = 0; i < nB + nF; i++) 2328 TAILQ_INSERT_TAIL(&set, 2329 g->g_vertices[indices[i]], v_link); 2330 printf("new ordering = "); 2331 graph_print_vertices(&set); 2332 } 2333 #endif 2334 } 2335 2336 KASSERT(x->v_order < y->v_order, ("Failed to re-order graph")); 2337 2338 #ifdef LOCKF_DEBUG 2339 if (lockf_debug & 8) { 2340 graph_check(g, TRUE); 2341 } 2342 #endif 2343 2344 e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK); 2345 2346 LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink); 2347 LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink); 2348 e->e_refs = 1; 2349 e->e_from = x; 2350 e->e_to = y; 2351 2352 return (0); 2353 } 2354 2355 /* 2356 * Remove an edge x->y from the graph. 2357 */ 2358 static void 2359 graph_remove_edge(struct owner_graph *g, struct owner_vertex *x, 2360 struct owner_vertex *y) 2361 { 2362 struct owner_edge *e; 2363 2364 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2365 2366 LIST_FOREACH(e, &x->v_outedges, e_outlink) { 2367 if (e->e_to == y) 2368 break; 2369 } 2370 KASSERT(e, ("Removing non-existent edge from deadlock graph")); 2371 2372 e->e_refs--; 2373 if (e->e_refs == 0) { 2374 #ifdef LOCKF_DEBUG 2375 if (lockf_debug & 8) { 2376 printf("removing edge %d:", x->v_order); 2377 lf_print_owner(x->v_owner); 2378 printf(" -> %d:", y->v_order); 2379 lf_print_owner(y->v_owner); 2380 printf("\n"); 2381 } 2382 #endif 2383 LIST_REMOVE(e, e_outlink); 2384 LIST_REMOVE(e, e_inlink); 2385 free(e, M_LOCKF); 2386 } 2387 } 2388 2389 /* 2390 * Allocate a vertex from the free list. Return ENOMEM if there are 2391 * none. 2392 */ 2393 static struct owner_vertex * 2394 graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo) 2395 { 2396 struct owner_vertex *v; 2397 2398 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2399 2400 v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK); 2401 if (g->g_size == g->g_space) { 2402 g->g_vertices = realloc(g->g_vertices, 2403 2 * g->g_space * sizeof(struct owner_vertex *), 2404 M_LOCKF, M_WAITOK); 2405 free(g->g_indexbuf, M_LOCKF); 2406 g->g_indexbuf = malloc(2 * g->g_space * sizeof(int), 2407 M_LOCKF, M_WAITOK); 2408 g->g_space = 2 * g->g_space; 2409 } 2410 v->v_order = g->g_size; 2411 v->v_gen = g->g_gen; 2412 g->g_vertices[g->g_size] = v; 2413 g->g_size++; 2414 2415 LIST_INIT(&v->v_outedges); 2416 LIST_INIT(&v->v_inedges); 2417 v->v_owner = lo; 2418 2419 return (v); 2420 } 2421 2422 static void 2423 graph_free_vertex(struct owner_graph *g, struct owner_vertex *v) 2424 { 2425 struct owner_vertex *w; 2426 int i; 2427 2428 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2429 2430 KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges")); 2431 KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges")); 2432 2433 /* 2434 * Remove from the graph's array and close up the gap, 2435 * renumbering the other vertices. 2436 */ 2437 for (i = v->v_order + 1; i < g->g_size; i++) { 2438 w = g->g_vertices[i]; 2439 w->v_order--; 2440 g->g_vertices[i - 1] = w; 2441 } 2442 g->g_size--; 2443 2444 free(v, M_LOCKF); 2445 } 2446 2447 static struct owner_graph * 2448 graph_init(struct owner_graph *g) 2449 { 2450 2451 g->g_vertices = malloc(10 * sizeof(struct owner_vertex *), 2452 M_LOCKF, M_WAITOK); 2453 g->g_size = 0; 2454 g->g_space = 10; 2455 g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK); 2456 g->g_gen = 0; 2457 2458 return (g); 2459 } 2460 2461 struct kinfo_lockf_linked { 2462 struct kinfo_lockf kl; 2463 struct vnode *vp; 2464 STAILQ_ENTRY(kinfo_lockf_linked) link; 2465 }; 2466 2467 int 2468 vfs_report_lockf(struct mount *mp, struct sbuf *sb) 2469 { 2470 struct lockf *ls; 2471 struct lockf_entry *lf; 2472 struct kinfo_lockf_linked *klf; 2473 struct vnode *vp; 2474 struct ucred *ucred; 2475 char *fullpath, *freepath; 2476 struct stat stt; 2477 STAILQ_HEAD(, kinfo_lockf_linked) locks; 2478 int error, gerror; 2479 2480 STAILQ_INIT(&locks); 2481 sx_slock(&lf_lock_states_lock); 2482 LIST_FOREACH(ls, &lf_lock_states, ls_link) { 2483 sx_slock(&ls->ls_lock); 2484 LIST_FOREACH(lf, &ls->ls_active, lf_link) { 2485 vp = lf->lf_vnode; 2486 if (VN_IS_DOOMED(vp) || vp->v_mount != mp) 2487 continue; 2488 vhold(vp); 2489 klf = malloc(sizeof(struct kinfo_lockf_linked), 2490 M_LOCKF, M_WAITOK | M_ZERO); 2491 klf->vp = vp; 2492 klf->kl.kl_structsize = sizeof(struct kinfo_lockf); 2493 klf->kl.kl_start = lf->lf_start; 2494 klf->kl.kl_len = lf->lf_end == OFF_MAX ? 0 : 2495 lf->lf_end - lf->lf_start + 1; 2496 klf->kl.kl_rw = lf->lf_type == F_RDLCK ? 2497 KLOCKF_RW_READ : KLOCKF_RW_WRITE; 2498 if (lf->lf_owner->lo_sysid != 0) { 2499 klf->kl.kl_pid = lf->lf_owner->lo_pid; 2500 klf->kl.kl_sysid = lf->lf_owner->lo_sysid; 2501 klf->kl.kl_type = KLOCKF_TYPE_REMOTE; 2502 } else if (lf->lf_owner->lo_pid == -1) { 2503 klf->kl.kl_pid = -1; 2504 klf->kl.kl_sysid = 0; 2505 klf->kl.kl_type = KLOCKF_TYPE_FLOCK; 2506 } else { 2507 klf->kl.kl_pid = lf->lf_owner->lo_pid; 2508 klf->kl.kl_sysid = 0; 2509 klf->kl.kl_type = KLOCKF_TYPE_PID; 2510 } 2511 STAILQ_INSERT_TAIL(&locks, klf, link); 2512 } 2513 sx_sunlock(&ls->ls_lock); 2514 } 2515 sx_sunlock(&lf_lock_states_lock); 2516 2517 gerror = 0; 2518 ucred = curthread->td_ucred; 2519 while ((klf = STAILQ_FIRST(&locks)) != NULL) { 2520 STAILQ_REMOVE_HEAD(&locks, link); 2521 vp = klf->vp; 2522 if (gerror == 0 && vn_lock(vp, LK_SHARED) == 0) { 2523 error = prison_canseemount(ucred, vp->v_mount); 2524 if (error == 0) 2525 error = VOP_STAT(vp, &stt, ucred, NOCRED); 2526 VOP_UNLOCK(vp); 2527 if (error == 0) { 2528 klf->kl.kl_file_fsid = stt.st_dev; 2529 klf->kl.kl_file_rdev = stt.st_rdev; 2530 klf->kl.kl_file_fileid = stt.st_ino; 2531 freepath = NULL; 2532 fullpath = "-"; 2533 error = vn_fullpath(vp, &fullpath, &freepath); 2534 if (error == 0) 2535 strlcpy(klf->kl.kl_path, fullpath, 2536 sizeof(klf->kl.kl_path)); 2537 free(freepath, M_TEMP); 2538 if (sbuf_bcat(sb, &klf->kl, 2539 klf->kl.kl_structsize) != 0) { 2540 gerror = sbuf_error(sb); 2541 } 2542 } 2543 } 2544 vdrop(vp); 2545 free(klf, M_LOCKF); 2546 } 2547 2548 return (gerror); 2549 } 2550 2551 static int 2552 sysctl_kern_lockf_run(struct sbuf *sb) 2553 { 2554 struct mount *mp; 2555 int error; 2556 2557 error = 0; 2558 mtx_lock(&mountlist_mtx); 2559 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 2560 error = vfs_busy(mp, MBF_MNTLSTLOCK); 2561 if (error != 0) 2562 continue; 2563 error = mp->mnt_op->vfs_report_lockf(mp, sb); 2564 mtx_lock(&mountlist_mtx); 2565 vfs_unbusy(mp); 2566 if (error != 0) 2567 break; 2568 } 2569 mtx_unlock(&mountlist_mtx); 2570 return (error); 2571 } 2572 2573 static int 2574 sysctl_kern_lockf(SYSCTL_HANDLER_ARGS) 2575 { 2576 struct sbuf sb; 2577 int error, error2; 2578 2579 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_lockf) * 5, req); 2580 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2581 error = sysctl_kern_lockf_run(&sb); 2582 error2 = sbuf_finish(&sb); 2583 sbuf_delete(&sb); 2584 return (error != 0 ? error : error2); 2585 } 2586 SYSCTL_PROC(_kern, KERN_LOCKF, lockf, 2587 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 2588 0, 0, sysctl_kern_lockf, "S,lockf", 2589 "Advisory locks table"); 2590 2591 #ifdef LOCKF_DEBUG 2592 /* 2593 * Print description of a lock owner 2594 */ 2595 static void 2596 lf_print_owner(struct lock_owner *lo) 2597 { 2598 2599 if (lo->lo_flags & F_REMOTE) { 2600 printf("remote pid %d, system %d", 2601 lo->lo_pid, lo->lo_sysid); 2602 } else if (lo->lo_flags & F_FLOCK) { 2603 printf("file %p", lo->lo_id); 2604 } else { 2605 printf("local pid %d", lo->lo_pid); 2606 } 2607 } 2608 2609 /* 2610 * Print out a lock. 2611 */ 2612 static void 2613 lf_print(char *tag, struct lockf_entry *lock) 2614 { 2615 2616 printf("%s: lock %p for ", tag, (void *)lock); 2617 lf_print_owner(lock->lf_owner); 2618 printf("\nvnode %p", lock->lf_vnode); 2619 VOP_PRINT(lock->lf_vnode); 2620 printf(" %s, start %jd, end ", 2621 lock->lf_type == F_RDLCK ? "shared" : 2622 lock->lf_type == F_WRLCK ? "exclusive" : 2623 lock->lf_type == F_UNLCK ? "unlock" : "unknown", 2624 (intmax_t)lock->lf_start); 2625 if (lock->lf_end == OFF_MAX) 2626 printf("EOF"); 2627 else 2628 printf("%jd", (intmax_t)lock->lf_end); 2629 if (!LIST_EMPTY(&lock->lf_outedges)) 2630 printf(" block %p\n", 2631 (void *)LIST_FIRST(&lock->lf_outedges)->le_to); 2632 else 2633 printf("\n"); 2634 } 2635 2636 static void 2637 lf_printlist(char *tag, struct lockf_entry *lock) 2638 { 2639 struct lockf_entry *lf, *blk; 2640 struct lockf_edge *e; 2641 2642 printf("%s: Lock list for vnode %p:\n", tag, lock->lf_vnode); 2643 LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) { 2644 printf("\tlock %p for ",(void *)lf); 2645 lf_print_owner(lock->lf_owner); 2646 printf(", %s, start %jd, end %jd", 2647 lf->lf_type == F_RDLCK ? "shared" : 2648 lf->lf_type == F_WRLCK ? "exclusive" : 2649 lf->lf_type == F_UNLCK ? "unlock" : 2650 "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end); 2651 LIST_FOREACH(e, &lf->lf_outedges, le_outlink) { 2652 blk = e->le_to; 2653 printf("\n\t\tlock request %p for ", (void *)blk); 2654 lf_print_owner(blk->lf_owner); 2655 printf(", %s, start %jd, end %jd", 2656 blk->lf_type == F_RDLCK ? "shared" : 2657 blk->lf_type == F_WRLCK ? "exclusive" : 2658 blk->lf_type == F_UNLCK ? "unlock" : 2659 "unknown", (intmax_t)blk->lf_start, 2660 (intmax_t)blk->lf_end); 2661 if (!LIST_EMPTY(&blk->lf_inedges)) 2662 panic("lf_printlist: bad list"); 2663 } 2664 printf("\n"); 2665 } 2666 } 2667 #endif /* LOCKF_DEBUG */ 2668