1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2005 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)kern_ktrace.c 8.2 (Berkeley) 9/23/93 34 */ 35 36 #include <sys/cdefs.h> 37 __FBSDID("$FreeBSD$"); 38 39 #include "opt_ktrace.h" 40 41 #include <sys/param.h> 42 #include <sys/capsicum.h> 43 #include <sys/systm.h> 44 #include <sys/fcntl.h> 45 #include <sys/kernel.h> 46 #include <sys/kthread.h> 47 #include <sys/lock.h> 48 #include <sys/mutex.h> 49 #include <sys/malloc.h> 50 #include <sys/mount.h> 51 #include <sys/namei.h> 52 #include <sys/priv.h> 53 #include <sys/proc.h> 54 #include <sys/resourcevar.h> 55 #include <sys/unistd.h> 56 #include <sys/vnode.h> 57 #include <sys/socket.h> 58 #include <sys/stat.h> 59 #include <sys/ktrace.h> 60 #include <sys/sx.h> 61 #include <sys/sysctl.h> 62 #include <sys/sysent.h> 63 #include <sys/syslog.h> 64 #include <sys/sysproto.h> 65 66 #include <security/mac/mac_framework.h> 67 68 /* 69 * The ktrace facility allows the tracing of certain key events in user space 70 * processes, such as system calls, signal delivery, context switches, and 71 * user generated events using utrace(2). It works by streaming event 72 * records and data to a vnode associated with the process using the 73 * ktrace(2) system call. In general, records can be written directly from 74 * the context that generates the event. One important exception to this is 75 * during a context switch, where sleeping is not permitted. To handle this 76 * case, trace events are generated using in-kernel ktr_request records, and 77 * then delivered to disk at a convenient moment -- either immediately, the 78 * next traceable event, at system call return, or at process exit. 79 * 80 * When dealing with multiple threads or processes writing to the same event 81 * log, ordering guarantees are weak: specifically, if an event has multiple 82 * records (i.e., system call enter and return), they may be interlaced with 83 * records from another event. Process and thread ID information is provided 84 * in the record, and user applications can de-interlace events if required. 85 */ 86 87 static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE"); 88 89 #ifdef KTRACE 90 91 FEATURE(ktrace, "Kernel support for system-call tracing"); 92 93 #ifndef KTRACE_REQUEST_POOL 94 #define KTRACE_REQUEST_POOL 100 95 #endif 96 97 struct ktr_request { 98 struct ktr_header ktr_header; 99 void *ktr_buffer; 100 union { 101 struct ktr_proc_ctor ktr_proc_ctor; 102 struct ktr_cap_fail ktr_cap_fail; 103 struct ktr_syscall ktr_syscall; 104 struct ktr_sysret ktr_sysret; 105 struct ktr_genio ktr_genio; 106 struct ktr_psig ktr_psig; 107 struct ktr_csw ktr_csw; 108 struct ktr_fault ktr_fault; 109 struct ktr_faultend ktr_faultend; 110 struct ktr_struct_array ktr_struct_array; 111 } ktr_data; 112 STAILQ_ENTRY(ktr_request) ktr_list; 113 }; 114 115 static const int data_lengths[] = { 116 [KTR_SYSCALL] = offsetof(struct ktr_syscall, ktr_args), 117 [KTR_SYSRET] = sizeof(struct ktr_sysret), 118 [KTR_NAMEI] = 0, 119 [KTR_GENIO] = sizeof(struct ktr_genio), 120 [KTR_PSIG] = sizeof(struct ktr_psig), 121 [KTR_CSW] = sizeof(struct ktr_csw), 122 [KTR_USER] = 0, 123 [KTR_STRUCT] = 0, 124 [KTR_SYSCTL] = 0, 125 [KTR_PROCCTOR] = sizeof(struct ktr_proc_ctor), 126 [KTR_PROCDTOR] = 0, 127 [KTR_CAPFAIL] = sizeof(struct ktr_cap_fail), 128 [KTR_FAULT] = sizeof(struct ktr_fault), 129 [KTR_FAULTEND] = sizeof(struct ktr_faultend), 130 [KTR_STRUCT_ARRAY] = sizeof(struct ktr_struct_array), 131 }; 132 133 static STAILQ_HEAD(, ktr_request) ktr_free; 134 135 static SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 136 "KTRACE options"); 137 138 static u_int ktr_requestpool = KTRACE_REQUEST_POOL; 139 TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool); 140 141 u_int ktr_geniosize = PAGE_SIZE; 142 SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RWTUN, &ktr_geniosize, 143 0, "Maximum size of genio event payload"); 144 145 /* 146 * Allow to not to send signal to traced process, in which context the 147 * ktr record is written. The limit is applied from the process that 148 * set up ktrace, so killing the traced process is not completely fair. 149 */ 150 int ktr_filesize_limit_signal = 0; 151 SYSCTL_INT(_kern_ktrace, OID_AUTO, filesize_limit_signal, CTLFLAG_RWTUN, 152 &ktr_filesize_limit_signal, 0, 153 "Send SIGXFSZ to the traced process when the log size limit is exceeded"); 154 155 static int print_message = 1; 156 static struct mtx ktrace_mtx; 157 static struct sx ktrace_sx; 158 159 struct ktr_io_params { 160 struct vnode *vp; 161 struct ucred *cr; 162 off_t lim; 163 u_int refs; 164 }; 165 166 static void ktrace_init(void *dummy); 167 static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS); 168 static u_int ktrace_resize_pool(u_int oldsize, u_int newsize); 169 static struct ktr_request *ktr_getrequest_entered(struct thread *td, int type); 170 static struct ktr_request *ktr_getrequest(int type); 171 static void ktr_submitrequest(struct thread *td, struct ktr_request *req); 172 static struct ktr_io_params *ktr_freeproc(struct proc *p); 173 static void ktr_freerequest(struct ktr_request *req); 174 static void ktr_freerequest_locked(struct ktr_request *req); 175 static void ktr_writerequest(struct thread *td, struct ktr_request *req); 176 static int ktrcanset(struct thread *,struct proc *); 177 static int ktrsetchildren(struct thread *, struct proc *, int, int, 178 struct ktr_io_params *); 179 static int ktrops(struct thread *, struct proc *, int, int, 180 struct ktr_io_params *); 181 static void ktrprocctor_entered(struct thread *, struct proc *); 182 183 /* 184 * ktrace itself generates events, such as context switches, which we do not 185 * wish to trace. Maintain a flag, TDP_INKTRACE, on each thread to determine 186 * whether or not it is in a region where tracing of events should be 187 * suppressed. 188 */ 189 static void 190 ktrace_enter(struct thread *td) 191 { 192 193 KASSERT(!(td->td_pflags & TDP_INKTRACE), ("ktrace_enter: flag set")); 194 td->td_pflags |= TDP_INKTRACE; 195 } 196 197 static void 198 ktrace_exit(struct thread *td) 199 { 200 201 KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_exit: flag not set")); 202 td->td_pflags &= ~TDP_INKTRACE; 203 } 204 205 static void 206 ktrace_assert(struct thread *td) 207 { 208 209 KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_assert: flag not set")); 210 } 211 212 static void 213 ast_ktrace(struct thread *td, int tda __unused) 214 { 215 KTRUSERRET(td); 216 } 217 218 static void 219 ktrace_init(void *dummy) 220 { 221 struct ktr_request *req; 222 int i; 223 224 mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET); 225 sx_init(&ktrace_sx, "ktrace_sx"); 226 STAILQ_INIT(&ktr_free); 227 for (i = 0; i < ktr_requestpool; i++) { 228 req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK | 229 M_ZERO); 230 STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list); 231 } 232 ast_register(TDA_KTRACE, ASTR_ASTF_REQUIRED, 0, ast_ktrace); 233 } 234 SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL); 235 236 static int 237 sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS) 238 { 239 struct thread *td; 240 u_int newsize, oldsize, wantsize; 241 int error; 242 243 /* Handle easy read-only case first to avoid warnings from GCC. */ 244 if (!req->newptr) { 245 oldsize = ktr_requestpool; 246 return (SYSCTL_OUT(req, &oldsize, sizeof(u_int))); 247 } 248 249 error = SYSCTL_IN(req, &wantsize, sizeof(u_int)); 250 if (error) 251 return (error); 252 td = curthread; 253 ktrace_enter(td); 254 oldsize = ktr_requestpool; 255 newsize = ktrace_resize_pool(oldsize, wantsize); 256 ktrace_exit(td); 257 error = SYSCTL_OUT(req, &oldsize, sizeof(u_int)); 258 if (error) 259 return (error); 260 if (wantsize > oldsize && newsize < wantsize) 261 return (ENOSPC); 262 return (0); 263 } 264 SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool, 265 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &ktr_requestpool, 0, 266 sysctl_kern_ktrace_request_pool, "IU", 267 "Pool buffer size for ktrace(1)"); 268 269 static u_int 270 ktrace_resize_pool(u_int oldsize, u_int newsize) 271 { 272 STAILQ_HEAD(, ktr_request) ktr_new; 273 struct ktr_request *req; 274 int bound; 275 276 print_message = 1; 277 bound = newsize - oldsize; 278 if (bound == 0) 279 return (ktr_requestpool); 280 if (bound < 0) { 281 mtx_lock(&ktrace_mtx); 282 /* Shrink pool down to newsize if possible. */ 283 while (bound++ < 0) { 284 req = STAILQ_FIRST(&ktr_free); 285 if (req == NULL) 286 break; 287 STAILQ_REMOVE_HEAD(&ktr_free, ktr_list); 288 ktr_requestpool--; 289 free(req, M_KTRACE); 290 } 291 } else { 292 /* Grow pool up to newsize. */ 293 STAILQ_INIT(&ktr_new); 294 while (bound-- > 0) { 295 req = malloc(sizeof(struct ktr_request), M_KTRACE, 296 M_WAITOK | M_ZERO); 297 STAILQ_INSERT_HEAD(&ktr_new, req, ktr_list); 298 } 299 mtx_lock(&ktrace_mtx); 300 STAILQ_CONCAT(&ktr_free, &ktr_new); 301 ktr_requestpool += (newsize - oldsize); 302 } 303 mtx_unlock(&ktrace_mtx); 304 return (ktr_requestpool); 305 } 306 307 /* ktr_getrequest() assumes that ktr_comm[] is the same size as td_name[]. */ 308 CTASSERT(sizeof(((struct ktr_header *)NULL)->ktr_comm) == 309 (sizeof((struct thread *)NULL)->td_name)); 310 311 static struct ktr_request * 312 ktr_getrequest_entered(struct thread *td, int type) 313 { 314 struct ktr_request *req; 315 struct proc *p = td->td_proc; 316 int pm; 317 318 mtx_lock(&ktrace_mtx); 319 if (!KTRCHECK(td, type)) { 320 mtx_unlock(&ktrace_mtx); 321 return (NULL); 322 } 323 req = STAILQ_FIRST(&ktr_free); 324 if (req != NULL) { 325 STAILQ_REMOVE_HEAD(&ktr_free, ktr_list); 326 req->ktr_header.ktr_type = type; 327 if (p->p_traceflag & KTRFAC_DROP) { 328 req->ktr_header.ktr_type |= KTR_DROP; 329 p->p_traceflag &= ~KTRFAC_DROP; 330 } 331 mtx_unlock(&ktrace_mtx); 332 nanotime(&req->ktr_header.ktr_time); 333 req->ktr_header.ktr_type |= KTR_VERSIONED; 334 req->ktr_header.ktr_pid = p->p_pid; 335 req->ktr_header.ktr_tid = td->td_tid; 336 req->ktr_header.ktr_cpu = PCPU_GET(cpuid); 337 req->ktr_header.ktr_version = KTR_VERSION1; 338 bcopy(td->td_name, req->ktr_header.ktr_comm, 339 sizeof(req->ktr_header.ktr_comm)); 340 req->ktr_buffer = NULL; 341 req->ktr_header.ktr_len = 0; 342 } else { 343 p->p_traceflag |= KTRFAC_DROP; 344 pm = print_message; 345 print_message = 0; 346 mtx_unlock(&ktrace_mtx); 347 if (pm) 348 printf("Out of ktrace request objects.\n"); 349 } 350 return (req); 351 } 352 353 static struct ktr_request * 354 ktr_getrequest(int type) 355 { 356 struct thread *td = curthread; 357 struct ktr_request *req; 358 359 ktrace_enter(td); 360 req = ktr_getrequest_entered(td, type); 361 if (req == NULL) 362 ktrace_exit(td); 363 364 return (req); 365 } 366 367 /* 368 * Some trace generation environments don't permit direct access to VFS, 369 * such as during a context switch where sleeping is not allowed. Under these 370 * circumstances, queue a request to the thread to be written asynchronously 371 * later. 372 */ 373 static void 374 ktr_enqueuerequest(struct thread *td, struct ktr_request *req) 375 { 376 377 mtx_lock(&ktrace_mtx); 378 STAILQ_INSERT_TAIL(&td->td_proc->p_ktr, req, ktr_list); 379 mtx_unlock(&ktrace_mtx); 380 ast_sched(td, TDA_KTRACE); 381 } 382 383 /* 384 * Drain any pending ktrace records from the per-thread queue to disk. This 385 * is used both internally before committing other records, and also on 386 * system call return. We drain all the ones we can find at the time when 387 * drain is requested, but don't keep draining after that as those events 388 * may be approximately "after" the current event. 389 */ 390 static void 391 ktr_drain(struct thread *td) 392 { 393 struct ktr_request *queued_req; 394 STAILQ_HEAD(, ktr_request) local_queue; 395 396 ktrace_assert(td); 397 sx_assert(&ktrace_sx, SX_XLOCKED); 398 399 STAILQ_INIT(&local_queue); 400 401 if (!STAILQ_EMPTY(&td->td_proc->p_ktr)) { 402 mtx_lock(&ktrace_mtx); 403 STAILQ_CONCAT(&local_queue, &td->td_proc->p_ktr); 404 mtx_unlock(&ktrace_mtx); 405 406 while ((queued_req = STAILQ_FIRST(&local_queue))) { 407 STAILQ_REMOVE_HEAD(&local_queue, ktr_list); 408 ktr_writerequest(td, queued_req); 409 ktr_freerequest(queued_req); 410 } 411 } 412 } 413 414 /* 415 * Submit a trace record for immediate commit to disk -- to be used only 416 * where entering VFS is OK. First drain any pending records that may have 417 * been cached in the thread. 418 */ 419 static void 420 ktr_submitrequest(struct thread *td, struct ktr_request *req) 421 { 422 423 ktrace_assert(td); 424 425 sx_xlock(&ktrace_sx); 426 ktr_drain(td); 427 ktr_writerequest(td, req); 428 ktr_freerequest(req); 429 sx_xunlock(&ktrace_sx); 430 ktrace_exit(td); 431 } 432 433 static void 434 ktr_freerequest(struct ktr_request *req) 435 { 436 437 mtx_lock(&ktrace_mtx); 438 ktr_freerequest_locked(req); 439 mtx_unlock(&ktrace_mtx); 440 } 441 442 static void 443 ktr_freerequest_locked(struct ktr_request *req) 444 { 445 446 mtx_assert(&ktrace_mtx, MA_OWNED); 447 if (req->ktr_buffer != NULL) 448 free(req->ktr_buffer, M_KTRACE); 449 STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list); 450 } 451 452 static void 453 ktr_io_params_ref(struct ktr_io_params *kiop) 454 { 455 mtx_assert(&ktrace_mtx, MA_OWNED); 456 kiop->refs++; 457 } 458 459 static struct ktr_io_params * 460 ktr_io_params_rele(struct ktr_io_params *kiop) 461 { 462 mtx_assert(&ktrace_mtx, MA_OWNED); 463 if (kiop == NULL) 464 return (NULL); 465 KASSERT(kiop->refs > 0, ("kiop ref == 0 %p", kiop)); 466 return (--(kiop->refs) == 0 ? kiop : NULL); 467 } 468 469 void 470 ktr_io_params_free(struct ktr_io_params *kiop) 471 { 472 if (kiop == NULL) 473 return; 474 475 MPASS(kiop->refs == 0); 476 vn_close(kiop->vp, FWRITE, kiop->cr, curthread); 477 crfree(kiop->cr); 478 free(kiop, M_KTRACE); 479 } 480 481 static struct ktr_io_params * 482 ktr_io_params_alloc(struct thread *td, struct vnode *vp) 483 { 484 struct ktr_io_params *res; 485 486 res = malloc(sizeof(struct ktr_io_params), M_KTRACE, M_WAITOK); 487 res->vp = vp; 488 res->cr = crhold(td->td_ucred); 489 res->lim = lim_cur(td, RLIMIT_FSIZE); 490 res->refs = 1; 491 return (res); 492 } 493 494 /* 495 * Disable tracing for a process and release all associated resources. 496 * The caller is responsible for releasing a reference on the returned 497 * vnode and credentials. 498 */ 499 static struct ktr_io_params * 500 ktr_freeproc(struct proc *p) 501 { 502 struct ktr_io_params *kiop; 503 struct ktr_request *req; 504 505 PROC_LOCK_ASSERT(p, MA_OWNED); 506 mtx_assert(&ktrace_mtx, MA_OWNED); 507 kiop = ktr_io_params_rele(p->p_ktrioparms); 508 p->p_ktrioparms = NULL; 509 p->p_traceflag = 0; 510 while ((req = STAILQ_FIRST(&p->p_ktr)) != NULL) { 511 STAILQ_REMOVE_HEAD(&p->p_ktr, ktr_list); 512 ktr_freerequest_locked(req); 513 } 514 return (kiop); 515 } 516 517 struct vnode * 518 ktr_get_tracevp(struct proc *p, bool ref) 519 { 520 struct vnode *vp; 521 522 PROC_LOCK_ASSERT(p, MA_OWNED); 523 524 if (p->p_ktrioparms != NULL) { 525 vp = p->p_ktrioparms->vp; 526 if (ref) 527 vrefact(vp); 528 } else { 529 vp = NULL; 530 } 531 return (vp); 532 } 533 534 void 535 ktrsyscall(int code, int narg, syscallarg_t args[]) 536 { 537 struct ktr_request *req; 538 struct ktr_syscall *ktp; 539 size_t buflen; 540 char *buf = NULL; 541 542 if (__predict_false(curthread->td_pflags & TDP_INKTRACE)) 543 return; 544 545 buflen = sizeof(register_t) * narg; 546 if (buflen > 0) { 547 buf = malloc(buflen, M_KTRACE, M_WAITOK); 548 bcopy(args, buf, buflen); 549 } 550 req = ktr_getrequest(KTR_SYSCALL); 551 if (req == NULL) { 552 if (buf != NULL) 553 free(buf, M_KTRACE); 554 return; 555 } 556 ktp = &req->ktr_data.ktr_syscall; 557 ktp->ktr_code = code; 558 ktp->ktr_narg = narg; 559 if (buflen > 0) { 560 req->ktr_header.ktr_len = buflen; 561 req->ktr_buffer = buf; 562 } 563 ktr_submitrequest(curthread, req); 564 } 565 566 void 567 ktrsysret(int code, int error, register_t retval) 568 { 569 struct ktr_request *req; 570 struct ktr_sysret *ktp; 571 572 if (__predict_false(curthread->td_pflags & TDP_INKTRACE)) 573 return; 574 575 req = ktr_getrequest(KTR_SYSRET); 576 if (req == NULL) 577 return; 578 ktp = &req->ktr_data.ktr_sysret; 579 ktp->ktr_code = code; 580 ktp->ktr_error = error; 581 ktp->ktr_retval = ((error == 0) ? retval: 0); /* what about val2 ? */ 582 ktr_submitrequest(curthread, req); 583 } 584 585 /* 586 * When a setuid process execs, disable tracing. 587 * 588 * XXX: We toss any pending asynchronous records. 589 */ 590 struct ktr_io_params * 591 ktrprocexec(struct proc *p) 592 { 593 struct ktr_io_params *kiop; 594 595 PROC_LOCK_ASSERT(p, MA_OWNED); 596 597 kiop = p->p_ktrioparms; 598 if (kiop == NULL || priv_check_cred(kiop->cr, PRIV_DEBUG_DIFFCRED)) 599 return (NULL); 600 601 mtx_lock(&ktrace_mtx); 602 kiop = ktr_freeproc(p); 603 mtx_unlock(&ktrace_mtx); 604 return (kiop); 605 } 606 607 /* 608 * When a process exits, drain per-process asynchronous trace records 609 * and disable tracing. 610 */ 611 void 612 ktrprocexit(struct thread *td) 613 { 614 struct ktr_request *req; 615 struct proc *p; 616 struct ktr_io_params *kiop; 617 618 p = td->td_proc; 619 if (p->p_traceflag == 0) 620 return; 621 622 ktrace_enter(td); 623 req = ktr_getrequest_entered(td, KTR_PROCDTOR); 624 if (req != NULL) 625 ktr_enqueuerequest(td, req); 626 sx_xlock(&ktrace_sx); 627 ktr_drain(td); 628 sx_xunlock(&ktrace_sx); 629 PROC_LOCK(p); 630 mtx_lock(&ktrace_mtx); 631 kiop = ktr_freeproc(p); 632 mtx_unlock(&ktrace_mtx); 633 PROC_UNLOCK(p); 634 ktr_io_params_free(kiop); 635 ktrace_exit(td); 636 } 637 638 static void 639 ktrprocctor_entered(struct thread *td, struct proc *p) 640 { 641 struct ktr_proc_ctor *ktp; 642 struct ktr_request *req; 643 struct thread *td2; 644 645 ktrace_assert(td); 646 td2 = FIRST_THREAD_IN_PROC(p); 647 req = ktr_getrequest_entered(td2, KTR_PROCCTOR); 648 if (req == NULL) 649 return; 650 ktp = &req->ktr_data.ktr_proc_ctor; 651 ktp->sv_flags = p->p_sysent->sv_flags; 652 ktr_enqueuerequest(td2, req); 653 } 654 655 void 656 ktrprocctor(struct proc *p) 657 { 658 struct thread *td = curthread; 659 660 if ((p->p_traceflag & KTRFAC_MASK) == 0) 661 return; 662 663 ktrace_enter(td); 664 ktrprocctor_entered(td, p); 665 ktrace_exit(td); 666 } 667 668 /* 669 * When a process forks, enable tracing in the new process if needed. 670 */ 671 void 672 ktrprocfork(struct proc *p1, struct proc *p2) 673 { 674 675 MPASS(p2->p_ktrioparms == NULL); 676 MPASS(p2->p_traceflag == 0); 677 678 if (p1->p_traceflag == 0) 679 return; 680 681 PROC_LOCK(p1); 682 mtx_lock(&ktrace_mtx); 683 if (p1->p_traceflag & KTRFAC_INHERIT) { 684 p2->p_traceflag = p1->p_traceflag; 685 if ((p2->p_ktrioparms = p1->p_ktrioparms) != NULL) 686 p1->p_ktrioparms->refs++; 687 } 688 mtx_unlock(&ktrace_mtx); 689 PROC_UNLOCK(p1); 690 691 ktrprocctor(p2); 692 } 693 694 /* 695 * When a thread returns, drain any asynchronous records generated by the 696 * system call. 697 */ 698 void 699 ktruserret(struct thread *td) 700 { 701 702 ktrace_enter(td); 703 sx_xlock(&ktrace_sx); 704 ktr_drain(td); 705 sx_xunlock(&ktrace_sx); 706 ktrace_exit(td); 707 } 708 709 void 710 ktrnamei(const char *path) 711 { 712 struct ktr_request *req; 713 int namelen; 714 char *buf = NULL; 715 716 namelen = strlen(path); 717 if (namelen > 0) { 718 buf = malloc(namelen, M_KTRACE, M_WAITOK); 719 bcopy(path, buf, namelen); 720 } 721 req = ktr_getrequest(KTR_NAMEI); 722 if (req == NULL) { 723 if (buf != NULL) 724 free(buf, M_KTRACE); 725 return; 726 } 727 if (namelen > 0) { 728 req->ktr_header.ktr_len = namelen; 729 req->ktr_buffer = buf; 730 } 731 ktr_submitrequest(curthread, req); 732 } 733 734 void 735 ktrsysctl(int *name, u_int namelen) 736 { 737 struct ktr_request *req; 738 u_int mib[CTL_MAXNAME + 2]; 739 char *mibname; 740 size_t mibnamelen; 741 int error; 742 743 /* Lookup name of mib. */ 744 KASSERT(namelen <= CTL_MAXNAME, ("sysctl MIB too long")); 745 mib[0] = 0; 746 mib[1] = 1; 747 bcopy(name, mib + 2, namelen * sizeof(*name)); 748 mibnamelen = 128; 749 mibname = malloc(mibnamelen, M_KTRACE, M_WAITOK); 750 error = kernel_sysctl(curthread, mib, namelen + 2, mibname, &mibnamelen, 751 NULL, 0, &mibnamelen, 0); 752 if (error) { 753 free(mibname, M_KTRACE); 754 return; 755 } 756 req = ktr_getrequest(KTR_SYSCTL); 757 if (req == NULL) { 758 free(mibname, M_KTRACE); 759 return; 760 } 761 req->ktr_header.ktr_len = mibnamelen; 762 req->ktr_buffer = mibname; 763 ktr_submitrequest(curthread, req); 764 } 765 766 void 767 ktrgenio(int fd, enum uio_rw rw, struct uio *uio, int error) 768 { 769 struct ktr_request *req; 770 struct ktr_genio *ktg; 771 int datalen; 772 char *buf; 773 774 if (error) { 775 free(uio, M_IOV); 776 return; 777 } 778 uio->uio_offset = 0; 779 uio->uio_rw = UIO_WRITE; 780 datalen = MIN(uio->uio_resid, ktr_geniosize); 781 buf = malloc(datalen, M_KTRACE, M_WAITOK); 782 error = uiomove(buf, datalen, uio); 783 free(uio, M_IOV); 784 if (error) { 785 free(buf, M_KTRACE); 786 return; 787 } 788 req = ktr_getrequest(KTR_GENIO); 789 if (req == NULL) { 790 free(buf, M_KTRACE); 791 return; 792 } 793 ktg = &req->ktr_data.ktr_genio; 794 ktg->ktr_fd = fd; 795 ktg->ktr_rw = rw; 796 req->ktr_header.ktr_len = datalen; 797 req->ktr_buffer = buf; 798 ktr_submitrequest(curthread, req); 799 } 800 801 void 802 ktrpsig(int sig, sig_t action, sigset_t *mask, int code) 803 { 804 struct thread *td = curthread; 805 struct ktr_request *req; 806 struct ktr_psig *kp; 807 808 req = ktr_getrequest(KTR_PSIG); 809 if (req == NULL) 810 return; 811 kp = &req->ktr_data.ktr_psig; 812 kp->signo = (char)sig; 813 kp->action = action; 814 kp->mask = *mask; 815 kp->code = code; 816 ktr_enqueuerequest(td, req); 817 ktrace_exit(td); 818 } 819 820 void 821 ktrcsw(int out, int user, const char *wmesg) 822 { 823 struct thread *td = curthread; 824 struct ktr_request *req; 825 struct ktr_csw *kc; 826 827 if (__predict_false(curthread->td_pflags & TDP_INKTRACE)) 828 return; 829 830 req = ktr_getrequest(KTR_CSW); 831 if (req == NULL) 832 return; 833 kc = &req->ktr_data.ktr_csw; 834 kc->out = out; 835 kc->user = user; 836 if (wmesg != NULL) 837 strlcpy(kc->wmesg, wmesg, sizeof(kc->wmesg)); 838 else 839 bzero(kc->wmesg, sizeof(kc->wmesg)); 840 ktr_enqueuerequest(td, req); 841 ktrace_exit(td); 842 } 843 844 void 845 ktrstruct(const char *name, const void *data, size_t datalen) 846 { 847 struct ktr_request *req; 848 char *buf; 849 size_t buflen, namelen; 850 851 if (__predict_false(curthread->td_pflags & TDP_INKTRACE)) 852 return; 853 854 if (data == NULL) 855 datalen = 0; 856 namelen = strlen(name) + 1; 857 buflen = namelen + datalen; 858 buf = malloc(buflen, M_KTRACE, M_WAITOK); 859 strcpy(buf, name); 860 bcopy(data, buf + namelen, datalen); 861 if ((req = ktr_getrequest(KTR_STRUCT)) == NULL) { 862 free(buf, M_KTRACE); 863 return; 864 } 865 req->ktr_buffer = buf; 866 req->ktr_header.ktr_len = buflen; 867 ktr_submitrequest(curthread, req); 868 } 869 870 void 871 ktrstruct_error(const char *name, const void *data, size_t datalen, int error) 872 { 873 874 if (error == 0) 875 ktrstruct(name, data, datalen); 876 } 877 878 void 879 ktrstructarray(const char *name, enum uio_seg seg, const void *data, 880 int num_items, size_t struct_size) 881 { 882 struct ktr_request *req; 883 struct ktr_struct_array *ksa; 884 char *buf; 885 size_t buflen, datalen, namelen; 886 int max_items; 887 888 if (__predict_false(curthread->td_pflags & TDP_INKTRACE)) 889 return; 890 if (num_items < 0) 891 return; 892 893 /* Trim array length to genio size. */ 894 max_items = ktr_geniosize / struct_size; 895 if (num_items > max_items) { 896 if (max_items == 0) 897 num_items = 1; 898 else 899 num_items = max_items; 900 } 901 datalen = num_items * struct_size; 902 903 if (data == NULL) 904 datalen = 0; 905 906 namelen = strlen(name) + 1; 907 buflen = namelen + datalen; 908 buf = malloc(buflen, M_KTRACE, M_WAITOK); 909 strcpy(buf, name); 910 if (seg == UIO_SYSSPACE) 911 bcopy(data, buf + namelen, datalen); 912 else { 913 if (copyin(data, buf + namelen, datalen) != 0) { 914 free(buf, M_KTRACE); 915 return; 916 } 917 } 918 if ((req = ktr_getrequest(KTR_STRUCT_ARRAY)) == NULL) { 919 free(buf, M_KTRACE); 920 return; 921 } 922 ksa = &req->ktr_data.ktr_struct_array; 923 ksa->struct_size = struct_size; 924 req->ktr_buffer = buf; 925 req->ktr_header.ktr_len = buflen; 926 ktr_submitrequest(curthread, req); 927 } 928 929 void 930 ktrcapfail(enum ktr_cap_fail_type type, const cap_rights_t *needed, 931 const cap_rights_t *held) 932 { 933 struct thread *td = curthread; 934 struct ktr_request *req; 935 struct ktr_cap_fail *kcf; 936 937 if (__predict_false(curthread->td_pflags & TDP_INKTRACE)) 938 return; 939 940 req = ktr_getrequest(KTR_CAPFAIL); 941 if (req == NULL) 942 return; 943 kcf = &req->ktr_data.ktr_cap_fail; 944 kcf->cap_type = type; 945 if (needed != NULL) 946 kcf->cap_needed = *needed; 947 else 948 cap_rights_init(&kcf->cap_needed); 949 if (held != NULL) 950 kcf->cap_held = *held; 951 else 952 cap_rights_init(&kcf->cap_held); 953 ktr_enqueuerequest(td, req); 954 ktrace_exit(td); 955 } 956 957 void 958 ktrfault(vm_offset_t vaddr, int type) 959 { 960 struct thread *td = curthread; 961 struct ktr_request *req; 962 struct ktr_fault *kf; 963 964 if (__predict_false(curthread->td_pflags & TDP_INKTRACE)) 965 return; 966 967 req = ktr_getrequest(KTR_FAULT); 968 if (req == NULL) 969 return; 970 kf = &req->ktr_data.ktr_fault; 971 kf->vaddr = vaddr; 972 kf->type = type; 973 ktr_enqueuerequest(td, req); 974 ktrace_exit(td); 975 } 976 977 void 978 ktrfaultend(int result) 979 { 980 struct thread *td = curthread; 981 struct ktr_request *req; 982 struct ktr_faultend *kf; 983 984 if (__predict_false(curthread->td_pflags & TDP_INKTRACE)) 985 return; 986 987 req = ktr_getrequest(KTR_FAULTEND); 988 if (req == NULL) 989 return; 990 kf = &req->ktr_data.ktr_faultend; 991 kf->result = result; 992 ktr_enqueuerequest(td, req); 993 ktrace_exit(td); 994 } 995 #endif /* KTRACE */ 996 997 /* Interface and common routines */ 998 999 #ifndef _SYS_SYSPROTO_H_ 1000 struct ktrace_args { 1001 char *fname; 1002 int ops; 1003 int facs; 1004 int pid; 1005 }; 1006 #endif 1007 /* ARGSUSED */ 1008 int 1009 sys_ktrace(struct thread *td, struct ktrace_args *uap) 1010 { 1011 #ifdef KTRACE 1012 struct vnode *vp = NULL; 1013 struct proc *p; 1014 struct pgrp *pg; 1015 int facs = uap->facs & ~KTRFAC_ROOT; 1016 int ops = KTROP(uap->ops); 1017 int descend = uap->ops & KTRFLAG_DESCEND; 1018 int ret = 0; 1019 int flags, error = 0; 1020 struct nameidata nd; 1021 struct ktr_io_params *kiop, *old_kiop; 1022 1023 /* 1024 * Need something to (un)trace. 1025 */ 1026 if (ops != KTROP_CLEARFILE && facs == 0) 1027 return (EINVAL); 1028 1029 kiop = NULL; 1030 if (ops != KTROP_CLEAR) { 1031 /* 1032 * an operation which requires a file argument. 1033 */ 1034 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, uap->fname); 1035 flags = FREAD | FWRITE | O_NOFOLLOW; 1036 error = vn_open(&nd, &flags, 0, NULL); 1037 if (error) 1038 return (error); 1039 NDFREE_PNBUF(&nd); 1040 vp = nd.ni_vp; 1041 VOP_UNLOCK(vp); 1042 if (vp->v_type != VREG) { 1043 (void)vn_close(vp, FREAD|FWRITE, td->td_ucred, td); 1044 return (EACCES); 1045 } 1046 kiop = ktr_io_params_alloc(td, vp); 1047 } 1048 1049 /* 1050 * Clear all uses of the tracefile. 1051 */ 1052 ktrace_enter(td); 1053 if (ops == KTROP_CLEARFILE) { 1054 restart: 1055 sx_slock(&allproc_lock); 1056 FOREACH_PROC_IN_SYSTEM(p) { 1057 old_kiop = NULL; 1058 PROC_LOCK(p); 1059 if (p->p_ktrioparms != NULL && 1060 p->p_ktrioparms->vp == vp) { 1061 if (ktrcanset(td, p)) { 1062 mtx_lock(&ktrace_mtx); 1063 old_kiop = ktr_freeproc(p); 1064 mtx_unlock(&ktrace_mtx); 1065 } else 1066 error = EPERM; 1067 } 1068 PROC_UNLOCK(p); 1069 if (old_kiop != NULL) { 1070 sx_sunlock(&allproc_lock); 1071 ktr_io_params_free(old_kiop); 1072 goto restart; 1073 } 1074 } 1075 sx_sunlock(&allproc_lock); 1076 goto done; 1077 } 1078 /* 1079 * do it 1080 */ 1081 sx_slock(&proctree_lock); 1082 if (uap->pid < 0) { 1083 /* 1084 * by process group 1085 */ 1086 pg = pgfind(-uap->pid); 1087 if (pg == NULL) { 1088 sx_sunlock(&proctree_lock); 1089 error = ESRCH; 1090 goto done; 1091 } 1092 1093 /* 1094 * ktrops() may call vrele(). Lock pg_members 1095 * by the proctree_lock rather than pg_mtx. 1096 */ 1097 PGRP_UNLOCK(pg); 1098 if (LIST_EMPTY(&pg->pg_members)) { 1099 sx_sunlock(&proctree_lock); 1100 error = ESRCH; 1101 goto done; 1102 } 1103 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 1104 PROC_LOCK(p); 1105 if (descend) 1106 ret |= ktrsetchildren(td, p, ops, facs, kiop); 1107 else 1108 ret |= ktrops(td, p, ops, facs, kiop); 1109 } 1110 } else { 1111 /* 1112 * by pid 1113 */ 1114 p = pfind(uap->pid); 1115 if (p == NULL) { 1116 error = ESRCH; 1117 sx_sunlock(&proctree_lock); 1118 goto done; 1119 } 1120 if (descend) 1121 ret |= ktrsetchildren(td, p, ops, facs, kiop); 1122 else 1123 ret |= ktrops(td, p, ops, facs, kiop); 1124 } 1125 sx_sunlock(&proctree_lock); 1126 if (!ret) 1127 error = EPERM; 1128 done: 1129 if (kiop != NULL) { 1130 mtx_lock(&ktrace_mtx); 1131 kiop = ktr_io_params_rele(kiop); 1132 mtx_unlock(&ktrace_mtx); 1133 ktr_io_params_free(kiop); 1134 } 1135 ktrace_exit(td); 1136 return (error); 1137 #else /* !KTRACE */ 1138 return (ENOSYS); 1139 #endif /* KTRACE */ 1140 } 1141 1142 /* ARGSUSED */ 1143 int 1144 sys_utrace(struct thread *td, struct utrace_args *uap) 1145 { 1146 1147 #ifdef KTRACE 1148 struct ktr_request *req; 1149 void *cp; 1150 int error; 1151 1152 if (!KTRPOINT(td, KTR_USER)) 1153 return (0); 1154 if (uap->len > KTR_USER_MAXLEN) 1155 return (EINVAL); 1156 cp = malloc(uap->len, M_KTRACE, M_WAITOK); 1157 error = copyin(uap->addr, cp, uap->len); 1158 if (error) { 1159 free(cp, M_KTRACE); 1160 return (error); 1161 } 1162 req = ktr_getrequest(KTR_USER); 1163 if (req == NULL) { 1164 free(cp, M_KTRACE); 1165 return (ENOMEM); 1166 } 1167 req->ktr_buffer = cp; 1168 req->ktr_header.ktr_len = uap->len; 1169 ktr_submitrequest(td, req); 1170 return (0); 1171 #else /* !KTRACE */ 1172 return (ENOSYS); 1173 #endif /* KTRACE */ 1174 } 1175 1176 #ifdef KTRACE 1177 static int 1178 ktrops(struct thread *td, struct proc *p, int ops, int facs, 1179 struct ktr_io_params *new_kiop) 1180 { 1181 struct ktr_io_params *old_kiop; 1182 1183 PROC_LOCK_ASSERT(p, MA_OWNED); 1184 if (!ktrcanset(td, p)) { 1185 PROC_UNLOCK(p); 1186 return (0); 1187 } 1188 if ((ops == KTROP_SET && p->p_state == PRS_NEW) || 1189 p_cansee(td, p) != 0) { 1190 /* 1191 * Disallow setting trace points if the process is being born. 1192 * This avoids races with trace point inheritance in 1193 * ktrprocfork(). 1194 */ 1195 PROC_UNLOCK(p); 1196 return (0); 1197 } 1198 if ((p->p_flag & P_WEXIT) != 0) { 1199 /* 1200 * There's nothing to do if the process is exiting, but avoid 1201 * signaling an error. 1202 */ 1203 PROC_UNLOCK(p); 1204 return (1); 1205 } 1206 old_kiop = NULL; 1207 mtx_lock(&ktrace_mtx); 1208 if (ops == KTROP_SET) { 1209 if (p->p_ktrioparms != NULL && 1210 p->p_ktrioparms->vp != new_kiop->vp) { 1211 /* if trace file already in use, relinquish below */ 1212 old_kiop = ktr_io_params_rele(p->p_ktrioparms); 1213 p->p_ktrioparms = NULL; 1214 } 1215 if (p->p_ktrioparms == NULL) { 1216 p->p_ktrioparms = new_kiop; 1217 ktr_io_params_ref(new_kiop); 1218 } 1219 p->p_traceflag |= facs; 1220 if (priv_check(td, PRIV_KTRACE) == 0) 1221 p->p_traceflag |= KTRFAC_ROOT; 1222 } else { 1223 /* KTROP_CLEAR */ 1224 if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0) 1225 /* no more tracing */ 1226 old_kiop = ktr_freeproc(p); 1227 } 1228 mtx_unlock(&ktrace_mtx); 1229 if ((p->p_traceflag & KTRFAC_MASK) != 0) 1230 ktrprocctor_entered(td, p); 1231 PROC_UNLOCK(p); 1232 ktr_io_params_free(old_kiop); 1233 1234 return (1); 1235 } 1236 1237 static int 1238 ktrsetchildren(struct thread *td, struct proc *top, int ops, int facs, 1239 struct ktr_io_params *new_kiop) 1240 { 1241 struct proc *p; 1242 int ret = 0; 1243 1244 p = top; 1245 PROC_LOCK_ASSERT(p, MA_OWNED); 1246 sx_assert(&proctree_lock, SX_LOCKED); 1247 for (;;) { 1248 ret |= ktrops(td, p, ops, facs, new_kiop); 1249 /* 1250 * If this process has children, descend to them next, 1251 * otherwise do any siblings, and if done with this level, 1252 * follow back up the tree (but not past top). 1253 */ 1254 if (!LIST_EMPTY(&p->p_children)) 1255 p = LIST_FIRST(&p->p_children); 1256 else for (;;) { 1257 if (p == top) 1258 return (ret); 1259 if (LIST_NEXT(p, p_sibling)) { 1260 p = LIST_NEXT(p, p_sibling); 1261 break; 1262 } 1263 p = p->p_pptr; 1264 } 1265 PROC_LOCK(p); 1266 } 1267 /*NOTREACHED*/ 1268 } 1269 1270 static void 1271 ktr_writerequest(struct thread *td, struct ktr_request *req) 1272 { 1273 struct ktr_io_params *kiop, *kiop1; 1274 struct ktr_header *kth; 1275 struct vnode *vp; 1276 struct proc *p; 1277 struct ucred *cred; 1278 struct uio auio; 1279 struct iovec aiov[3]; 1280 struct mount *mp; 1281 off_t lim; 1282 int datalen, buflen; 1283 int error; 1284 1285 p = td->td_proc; 1286 1287 /* 1288 * We reference the kiop for use in I/O in case ktrace is 1289 * disabled on the process as we write out the request. 1290 */ 1291 mtx_lock(&ktrace_mtx); 1292 kiop = p->p_ktrioparms; 1293 1294 /* 1295 * If kiop is NULL, it has been cleared out from under this 1296 * request, so just drop it. 1297 */ 1298 if (kiop == NULL) { 1299 mtx_unlock(&ktrace_mtx); 1300 return; 1301 } 1302 1303 ktr_io_params_ref(kiop); 1304 vp = kiop->vp; 1305 cred = kiop->cr; 1306 lim = kiop->lim; 1307 1308 KASSERT(cred != NULL, ("ktr_writerequest: cred == NULL")); 1309 mtx_unlock(&ktrace_mtx); 1310 1311 kth = &req->ktr_header; 1312 KASSERT(((u_short)kth->ktr_type & ~KTR_TYPE) < nitems(data_lengths), 1313 ("data_lengths array overflow")); 1314 datalen = data_lengths[(u_short)kth->ktr_type & ~KTR_TYPE]; 1315 buflen = kth->ktr_len; 1316 auio.uio_iov = &aiov[0]; 1317 auio.uio_offset = 0; 1318 auio.uio_segflg = UIO_SYSSPACE; 1319 auio.uio_rw = UIO_WRITE; 1320 aiov[0].iov_base = (caddr_t)kth; 1321 aiov[0].iov_len = sizeof(struct ktr_header); 1322 auio.uio_resid = sizeof(struct ktr_header); 1323 auio.uio_iovcnt = 1; 1324 auio.uio_td = td; 1325 if (datalen != 0) { 1326 aiov[1].iov_base = (caddr_t)&req->ktr_data; 1327 aiov[1].iov_len = datalen; 1328 auio.uio_resid += datalen; 1329 auio.uio_iovcnt++; 1330 kth->ktr_len += datalen; 1331 } 1332 if (buflen != 0) { 1333 KASSERT(req->ktr_buffer != NULL, ("ktrace: nothing to write")); 1334 aiov[auio.uio_iovcnt].iov_base = req->ktr_buffer; 1335 aiov[auio.uio_iovcnt].iov_len = buflen; 1336 auio.uio_resid += buflen; 1337 auio.uio_iovcnt++; 1338 } 1339 1340 vn_start_write(vp, &mp, V_WAIT); 1341 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1342 td->td_ktr_io_lim = lim; 1343 #ifdef MAC 1344 error = mac_vnode_check_write(cred, NOCRED, vp); 1345 if (error == 0) 1346 #endif 1347 error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred); 1348 VOP_UNLOCK(vp); 1349 vn_finished_write(mp); 1350 if (error == 0) { 1351 mtx_lock(&ktrace_mtx); 1352 kiop = ktr_io_params_rele(kiop); 1353 mtx_unlock(&ktrace_mtx); 1354 ktr_io_params_free(kiop); 1355 return; 1356 } 1357 1358 /* 1359 * If error encountered, give up tracing on this vnode on this 1360 * process. Other processes might still be suitable for 1361 * writes to this vnode. 1362 */ 1363 log(LOG_NOTICE, 1364 "ktrace write failed, errno %d, tracing stopped for pid %d\n", 1365 error, p->p_pid); 1366 1367 kiop1 = NULL; 1368 PROC_LOCK(p); 1369 mtx_lock(&ktrace_mtx); 1370 if (p->p_ktrioparms != NULL && p->p_ktrioparms->vp == vp) 1371 kiop1 = ktr_freeproc(p); 1372 kiop = ktr_io_params_rele(kiop); 1373 mtx_unlock(&ktrace_mtx); 1374 PROC_UNLOCK(p); 1375 ktr_io_params_free(kiop1); 1376 ktr_io_params_free(kiop); 1377 } 1378 1379 /* 1380 * Return true if caller has permission to set the ktracing state 1381 * of target. Essentially, the target can't possess any 1382 * more permissions than the caller. KTRFAC_ROOT signifies that 1383 * root previously set the tracing status on the target process, and 1384 * so, only root may further change it. 1385 */ 1386 static int 1387 ktrcanset(struct thread *td, struct proc *targetp) 1388 { 1389 1390 PROC_LOCK_ASSERT(targetp, MA_OWNED); 1391 if (targetp->p_traceflag & KTRFAC_ROOT && 1392 priv_check(td, PRIV_KTRACE)) 1393 return (0); 1394 1395 if (p_candebug(td, targetp) != 0) 1396 return (0); 1397 1398 return (1); 1399 } 1400 1401 #endif /* KTRACE */ 1402