1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2018 The FreeBSD Foundation. All rights reserved. 5 * Copyright (C) 2018, 2019 Andrew Turner 6 * 7 * This software was developed by Mitchell Horne under sponsorship of 8 * the FreeBSD Foundation. 9 * 10 * This software was developed by SRI International and the University of 11 * Cambridge Computer Laboratory under DARPA/AFRL contract FA8750-10-C-0237 12 * ("CTSRD"), as part of the DARPA CRASH research programme. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * $FreeBSD$ 36 */ 37 38 /* Interceptors are required for KMSAN. */ 39 #if defined(KASAN) || defined(KCSAN) 40 #define SAN_RUNTIME 41 #endif 42 43 #include <sys/cdefs.h> 44 __FBSDID("$FreeBSD$"); 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/conf.h> 49 #include <sys/eventhandler.h> 50 #include <sys/kcov.h> 51 #include <sys/kernel.h> 52 #include <sys/limits.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/mman.h> 56 #include <sys/mutex.h> 57 #include <sys/proc.h> 58 #include <sys/rwlock.h> 59 #include <sys/sysctl.h> 60 61 #include <vm/vm.h> 62 #include <vm/pmap.h> 63 #include <vm/vm_extern.h> 64 #include <vm/vm_object.h> 65 #include <vm/vm_page.h> 66 #include <vm/vm_pager.h> 67 #include <vm/vm_param.h> 68 69 MALLOC_DEFINE(M_KCOV_INFO, "kcovinfo", "KCOV info type"); 70 71 #define KCOV_ELEMENT_SIZE sizeof(uint64_t) 72 73 /* 74 * To know what the code can safely perform at any point in time we use a 75 * state machine. In the normal case the state transitions are: 76 * 77 * OPEN -> READY -> RUNNING -> DYING 78 * | | ^ | ^ ^ 79 * | | +--------+ | | 80 * | +-------------------+ | 81 * +-----------------------------+ 82 * 83 * The states are: 84 * OPEN: The kcov fd has been opened, but no buffer is available to store 85 * coverage data. 86 * READY: The buffer to store coverage data has been allocated. Userspace 87 * can set this by using ioctl(fd, KIOSETBUFSIZE, entries);. When 88 * this has been set the buffer can be written to by the kernel, 89 * and mmaped by userspace. 90 * RUNNING: The coverage probes are able to store coverage data in the buffer. 91 * This is entered with ioctl(fd, KIOENABLE, mode);. The READY state 92 * can be exited by ioctl(fd, KIODISABLE); or exiting the thread to 93 * return to the READY state to allow tracing to be reused, or by 94 * closing the kcov fd to enter the DYING state. 95 * DYING: The fd has been closed. All states can enter into this state when 96 * userspace closes the kcov fd. 97 * 98 * We need to be careful when moving into and out of the RUNNING state. As 99 * an interrupt may happen while this is happening the ordering of memory 100 * operations is important so struct kcov_info is valid for the tracing 101 * functions. 102 * 103 * When moving into the RUNNING state prior stores to struct kcov_info need 104 * to be observed before the state is set. This allows for interrupts that 105 * may call into one of the coverage functions to fire at any point while 106 * being enabled and see a consistent struct kcov_info. 107 * 108 * When moving out of the RUNNING state any later stores to struct kcov_info 109 * need to be observed after the state is set. As with entering this is to 110 * present a consistent struct kcov_info to interrupts. 111 */ 112 typedef enum { 113 KCOV_STATE_INVALID, 114 KCOV_STATE_OPEN, /* The device is open, but with no buffer */ 115 KCOV_STATE_READY, /* The buffer has been allocated */ 116 KCOV_STATE_RUNNING, /* Recording trace data */ 117 KCOV_STATE_DYING, /* The fd was closed */ 118 } kcov_state_t; 119 120 /* 121 * (l) Set while holding the kcov_lock mutex and not in the RUNNING state. 122 * (o) Only set once while in the OPEN state. Cleaned up while in the DYING 123 * state, and with no thread associated with the struct kcov_info. 124 * (s) Set atomically to enter or exit the RUNNING state, non-atomically 125 * otherwise. See above for a description of the other constraints while 126 * moving into or out of the RUNNING state. 127 */ 128 struct kcov_info { 129 struct thread *thread; /* (l) */ 130 vm_object_t bufobj; /* (o) */ 131 vm_offset_t kvaddr; /* (o) */ 132 size_t entries; /* (o) */ 133 size_t bufsize; /* (o) */ 134 kcov_state_t state; /* (s) */ 135 int mode; /* (l) */ 136 }; 137 138 /* Prototypes */ 139 static d_open_t kcov_open; 140 static d_close_t kcov_close; 141 static d_mmap_single_t kcov_mmap_single; 142 static d_ioctl_t kcov_ioctl; 143 144 static int kcov_alloc(struct kcov_info *info, size_t entries); 145 static void kcov_free(struct kcov_info *info); 146 static void kcov_init(const void *unused); 147 148 static struct cdevsw kcov_cdevsw = { 149 .d_version = D_VERSION, 150 .d_open = kcov_open, 151 .d_close = kcov_close, 152 .d_mmap_single = kcov_mmap_single, 153 .d_ioctl = kcov_ioctl, 154 .d_name = "kcov", 155 }; 156 157 SYSCTL_NODE(_kern, OID_AUTO, kcov, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 158 "Kernel coverage"); 159 160 static u_int kcov_max_entries = KCOV_MAXENTRIES; 161 SYSCTL_UINT(_kern_kcov, OID_AUTO, max_entries, CTLFLAG_RW, 162 &kcov_max_entries, 0, 163 "Maximum number of entries in the kcov buffer"); 164 165 static struct mtx kcov_lock; 166 static int active_count; 167 168 static struct kcov_info * __nosanitizeaddress __nosanitizememory 169 get_kinfo(struct thread *td) 170 { 171 struct kcov_info *info; 172 173 /* We might have a NULL thread when releasing the secondary CPUs */ 174 if (td == NULL) 175 return (NULL); 176 177 /* 178 * We are in an interrupt, stop tracing as it is not explicitly 179 * part of a syscall. 180 */ 181 if (td->td_intr_nesting_level > 0 || td->td_intr_frame != NULL) 182 return (NULL); 183 184 /* 185 * If info is NULL or the state is not running we are not tracing. 186 */ 187 info = td->td_kcov_info; 188 if (info == NULL || 189 atomic_load_acq_int(&info->state) != KCOV_STATE_RUNNING) 190 return (NULL); 191 192 return (info); 193 } 194 195 static void __nosanitizeaddress __nosanitizememory 196 trace_pc(uintptr_t ret) 197 { 198 struct thread *td; 199 struct kcov_info *info; 200 uint64_t *buf, index; 201 202 td = curthread; 203 info = get_kinfo(td); 204 if (info == NULL) 205 return; 206 207 /* 208 * Check we are in the PC-trace mode. 209 */ 210 if (info->mode != KCOV_MODE_TRACE_PC) 211 return; 212 213 KASSERT(info->kvaddr != 0, 214 ("__sanitizer_cov_trace_pc: NULL buf while running")); 215 216 buf = (uint64_t *)info->kvaddr; 217 218 /* The first entry of the buffer holds the index */ 219 index = buf[0]; 220 if (index + 2 > info->entries) 221 return; 222 223 buf[index + 1] = ret; 224 buf[0] = index + 1; 225 } 226 227 static bool __nosanitizeaddress __nosanitizememory 228 trace_cmp(uint64_t type, uint64_t arg1, uint64_t arg2, uint64_t ret) 229 { 230 struct thread *td; 231 struct kcov_info *info; 232 uint64_t *buf, index; 233 234 td = curthread; 235 info = get_kinfo(td); 236 if (info == NULL) 237 return (false); 238 239 /* 240 * Check we are in the comparison-trace mode. 241 */ 242 if (info->mode != KCOV_MODE_TRACE_CMP) 243 return (false); 244 245 KASSERT(info->kvaddr != 0, 246 ("__sanitizer_cov_trace_pc: NULL buf while running")); 247 248 buf = (uint64_t *)info->kvaddr; 249 250 /* The first entry of the buffer holds the index */ 251 index = buf[0]; 252 253 /* Check we have space to store all elements */ 254 if (index * 4 + 4 + 1 > info->entries) 255 return (false); 256 257 while (1) { 258 buf[index * 4 + 1] = type; 259 buf[index * 4 + 2] = arg1; 260 buf[index * 4 + 3] = arg2; 261 buf[index * 4 + 4] = ret; 262 263 if (atomic_cmpset_64(&buf[0], index, index + 1)) 264 break; 265 buf[0] = index; 266 } 267 268 return (true); 269 } 270 271 /* 272 * The fd is being closed, cleanup everything we can. 273 */ 274 static void 275 kcov_mmap_cleanup(void *arg) 276 { 277 struct kcov_info *info = arg; 278 struct thread *thread; 279 280 mtx_lock_spin(&kcov_lock); 281 /* 282 * Move to KCOV_STATE_DYING to stop adding new entries. 283 * 284 * If the thread is running we need to wait until thread exit to 285 * clean up as it may currently be adding a new entry. If this is 286 * the case being in KCOV_STATE_DYING will signal that the buffer 287 * needs to be cleaned up. 288 */ 289 atomic_store_int(&info->state, KCOV_STATE_DYING); 290 atomic_thread_fence_seq_cst(); 291 thread = info->thread; 292 mtx_unlock_spin(&kcov_lock); 293 294 if (thread != NULL) 295 return; 296 297 /* 298 * We can safely clean up the info struct as it is in the 299 * KCOV_STATE_DYING state with no thread associated. 300 * 301 * The KCOV_STATE_DYING stops new threads from using it. 302 * The lack of a thread means nothing is currently using the buffers. 303 */ 304 kcov_free(info); 305 } 306 307 static int 308 kcov_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 309 { 310 struct kcov_info *info; 311 int error; 312 313 info = malloc(sizeof(struct kcov_info), M_KCOV_INFO, M_ZERO | M_WAITOK); 314 info->state = KCOV_STATE_OPEN; 315 info->thread = NULL; 316 info->mode = -1; 317 318 if ((error = devfs_set_cdevpriv(info, kcov_mmap_cleanup)) != 0) 319 kcov_mmap_cleanup(info); 320 321 return (error); 322 } 323 324 static int 325 kcov_close(struct cdev *dev, int fflag, int devtype, struct thread *td) 326 { 327 struct kcov_info *info; 328 int error; 329 330 if ((error = devfs_get_cdevpriv((void **)&info)) != 0) 331 return (error); 332 333 KASSERT(info != NULL, ("kcov_close with no kcov_info structure")); 334 335 /* Trying to close, but haven't disabled */ 336 if (info->state == KCOV_STATE_RUNNING) 337 return (EBUSY); 338 339 return (0); 340 } 341 342 static int 343 kcov_mmap_single(struct cdev *dev, vm_ooffset_t *offset, vm_size_t size, 344 struct vm_object **object, int nprot) 345 { 346 struct kcov_info *info; 347 int error; 348 349 if ((nprot & (PROT_EXEC | PROT_READ | PROT_WRITE)) != 350 (PROT_READ | PROT_WRITE)) 351 return (EINVAL); 352 353 if ((error = devfs_get_cdevpriv((void **)&info)) != 0) 354 return (error); 355 356 if (info->kvaddr == 0 || size / KCOV_ELEMENT_SIZE != info->entries) 357 return (EINVAL); 358 359 vm_object_reference(info->bufobj); 360 *offset = 0; 361 *object = info->bufobj; 362 return (0); 363 } 364 365 static int 366 kcov_alloc(struct kcov_info *info, size_t entries) 367 { 368 size_t n, pages; 369 vm_page_t m; 370 371 KASSERT(info->kvaddr == 0, ("kcov_alloc: Already have a buffer")); 372 KASSERT(info->state == KCOV_STATE_OPEN, 373 ("kcov_alloc: Not in open state (%x)", info->state)); 374 375 if (entries < 2 || entries > kcov_max_entries) 376 return (EINVAL); 377 378 /* Align to page size so mmap can't access other kernel memory */ 379 info->bufsize = roundup2(entries * KCOV_ELEMENT_SIZE, PAGE_SIZE); 380 pages = info->bufsize / PAGE_SIZE; 381 382 if ((info->kvaddr = kva_alloc(info->bufsize)) == 0) 383 return (ENOMEM); 384 385 info->bufobj = vm_pager_allocate(OBJT_PHYS, 0, info->bufsize, 386 PROT_READ | PROT_WRITE, 0, curthread->td_ucred); 387 388 VM_OBJECT_WLOCK(info->bufobj); 389 for (n = 0; n < pages; n++) { 390 m = vm_page_grab(info->bufobj, n, 391 VM_ALLOC_ZERO | VM_ALLOC_WIRED); 392 vm_page_valid(m); 393 vm_page_xunbusy(m); 394 pmap_qenter(info->kvaddr + n * PAGE_SIZE, &m, 1); 395 } 396 VM_OBJECT_WUNLOCK(info->bufobj); 397 398 info->entries = entries; 399 400 return (0); 401 } 402 403 static void 404 kcov_free(struct kcov_info *info) 405 { 406 vm_page_t m; 407 size_t i; 408 409 if (info->kvaddr != 0) { 410 pmap_qremove(info->kvaddr, info->bufsize / PAGE_SIZE); 411 kva_free(info->kvaddr, info->bufsize); 412 } 413 if (info->bufobj != NULL) { 414 VM_OBJECT_WLOCK(info->bufobj); 415 m = vm_page_lookup(info->bufobj, 0); 416 for (i = 0; i < info->bufsize / PAGE_SIZE; i++) { 417 vm_page_unwire_noq(m); 418 m = vm_page_next(m); 419 } 420 VM_OBJECT_WUNLOCK(info->bufobj); 421 vm_object_deallocate(info->bufobj); 422 } 423 free(info, M_KCOV_INFO); 424 } 425 426 static int 427 kcov_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag __unused, 428 struct thread *td) 429 { 430 struct kcov_info *info; 431 int mode, error; 432 433 if ((error = devfs_get_cdevpriv((void **)&info)) != 0) 434 return (error); 435 436 if (cmd == KIOSETBUFSIZE) { 437 /* 438 * Set the size of the coverage buffer. Should be called 439 * before enabling coverage collection for that thread. 440 */ 441 if (info->state != KCOV_STATE_OPEN) { 442 return (EBUSY); 443 } 444 error = kcov_alloc(info, *(u_int *)data); 445 if (error == 0) 446 info->state = KCOV_STATE_READY; 447 return (error); 448 } 449 450 mtx_lock_spin(&kcov_lock); 451 switch (cmd) { 452 case KIOENABLE: 453 if (info->state != KCOV_STATE_READY) { 454 error = EBUSY; 455 break; 456 } 457 if (td->td_kcov_info != NULL) { 458 error = EINVAL; 459 break; 460 } 461 mode = *(int *)data; 462 if (mode != KCOV_MODE_TRACE_PC && mode != KCOV_MODE_TRACE_CMP) { 463 error = EINVAL; 464 break; 465 } 466 467 /* Lets hope nobody opens this 2 billion times */ 468 KASSERT(active_count < INT_MAX, 469 ("%s: Open too many times", __func__)); 470 active_count++; 471 if (active_count == 1) { 472 cov_register_pc(&trace_pc); 473 cov_register_cmp(&trace_cmp); 474 } 475 476 KASSERT(info->thread == NULL, 477 ("Enabling kcov when already enabled")); 478 info->thread = td; 479 info->mode = mode; 480 /* 481 * Ensure the mode has been set before starting coverage 482 * tracing. 483 */ 484 atomic_store_rel_int(&info->state, KCOV_STATE_RUNNING); 485 td->td_kcov_info = info; 486 break; 487 case KIODISABLE: 488 /* Only the currently enabled thread may disable itself */ 489 if (info->state != KCOV_STATE_RUNNING || 490 info != td->td_kcov_info) { 491 error = EINVAL; 492 break; 493 } 494 KASSERT(active_count > 0, ("%s: Open count is zero", __func__)); 495 active_count--; 496 if (active_count == 0) { 497 cov_unregister_pc(); 498 cov_unregister_cmp(); 499 } 500 501 td->td_kcov_info = NULL; 502 atomic_store_int(&info->state, KCOV_STATE_READY); 503 /* 504 * Ensure we have exited the READY state before clearing the 505 * rest of the info struct. 506 */ 507 atomic_thread_fence_rel(); 508 info->mode = -1; 509 info->thread = NULL; 510 break; 511 default: 512 error = EINVAL; 513 break; 514 } 515 mtx_unlock_spin(&kcov_lock); 516 517 return (error); 518 } 519 520 static void 521 kcov_thread_dtor(void *arg __unused, struct thread *td) 522 { 523 struct kcov_info *info; 524 525 info = td->td_kcov_info; 526 if (info == NULL) 527 return; 528 529 mtx_lock_spin(&kcov_lock); 530 KASSERT(active_count > 0, ("%s: Open count is zero", __func__)); 531 active_count--; 532 if (active_count == 0) { 533 cov_unregister_pc(); 534 cov_unregister_cmp(); 535 } 536 td->td_kcov_info = NULL; 537 if (info->state != KCOV_STATE_DYING) { 538 /* 539 * The kcov file is still open. Mark it as unused and 540 * wait for it to be closed before cleaning up. 541 */ 542 atomic_store_int(&info->state, KCOV_STATE_READY); 543 atomic_thread_fence_seq_cst(); 544 /* This info struct is unused */ 545 info->thread = NULL; 546 mtx_unlock_spin(&kcov_lock); 547 return; 548 } 549 mtx_unlock_spin(&kcov_lock); 550 551 /* 552 * We can safely clean up the info struct as it is in the 553 * KCOV_STATE_DYING state where the info struct is associated with 554 * the current thread that's about to exit. 555 * 556 * The KCOV_STATE_DYING stops new threads from using it. 557 * It also stops the current thread from trying to use the info struct. 558 */ 559 kcov_free(info); 560 } 561 562 static void 563 kcov_init(const void *unused) 564 { 565 struct make_dev_args args; 566 struct cdev *dev; 567 568 mtx_init(&kcov_lock, "kcov lock", NULL, MTX_SPIN); 569 570 make_dev_args_init(&args); 571 args.mda_devsw = &kcov_cdevsw; 572 args.mda_uid = UID_ROOT; 573 args.mda_gid = GID_WHEEL; 574 args.mda_mode = 0600; 575 if (make_dev_s(&args, &dev, "kcov") != 0) { 576 printf("%s", "Failed to create kcov device"); 577 return; 578 } 579 580 EVENTHANDLER_REGISTER(thread_dtor, kcov_thread_dtor, NULL, 581 EVENTHANDLER_PRI_ANY); 582 } 583 584 SYSINIT(kcovdev, SI_SUB_LAST, SI_ORDER_ANY, kcov_init, NULL); 585