1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_ktrace.h" 43 #include "opt_kstack_pages.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/bitstring.h> 48 #include <sys/sysproto.h> 49 #include <sys/eventhandler.h> 50 #include <sys/fcntl.h> 51 #include <sys/filedesc.h> 52 #include <sys/jail.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/sysctl.h> 56 #include <sys/lock.h> 57 #include <sys/malloc.h> 58 #include <sys/mutex.h> 59 #include <sys/priv.h> 60 #include <sys/proc.h> 61 #include <sys/procdesc.h> 62 #include <sys/pioctl.h> 63 #include <sys/ptrace.h> 64 #include <sys/racct.h> 65 #include <sys/resourcevar.h> 66 #include <sys/sched.h> 67 #include <sys/syscall.h> 68 #include <sys/vmmeter.h> 69 #include <sys/vnode.h> 70 #include <sys/acct.h> 71 #include <sys/ktr.h> 72 #include <sys/ktrace.h> 73 #include <sys/unistd.h> 74 #include <sys/sdt.h> 75 #include <sys/sx.h> 76 #include <sys/sysent.h> 77 #include <sys/signalvar.h> 78 79 #include <security/audit/audit.h> 80 #include <security/mac/mac_framework.h> 81 82 #include <vm/vm.h> 83 #include <vm/pmap.h> 84 #include <vm/vm_map.h> 85 #include <vm/vm_extern.h> 86 #include <vm/uma.h> 87 88 #ifdef KDTRACE_HOOKS 89 #include <sys/dtrace_bsd.h> 90 dtrace_fork_func_t dtrace_fasttrap_fork; 91 #endif 92 93 SDT_PROVIDER_DECLARE(proc); 94 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int"); 95 96 #ifndef _SYS_SYSPROTO_H_ 97 struct fork_args { 98 int dummy; 99 }; 100 #endif 101 102 /* ARGSUSED */ 103 int 104 sys_fork(struct thread *td, struct fork_args *uap) 105 { 106 struct fork_req fr; 107 int error, pid; 108 109 bzero(&fr, sizeof(fr)); 110 fr.fr_flags = RFFDG | RFPROC; 111 fr.fr_pidp = &pid; 112 error = fork1(td, &fr); 113 if (error == 0) { 114 td->td_retval[0] = pid; 115 td->td_retval[1] = 0; 116 } 117 return (error); 118 } 119 120 /* ARGUSED */ 121 int 122 sys_pdfork(struct thread *td, struct pdfork_args *uap) 123 { 124 struct fork_req fr; 125 int error, fd, pid; 126 127 bzero(&fr, sizeof(fr)); 128 fr.fr_flags = RFFDG | RFPROC | RFPROCDESC; 129 fr.fr_pidp = &pid; 130 fr.fr_pd_fd = &fd; 131 fr.fr_pd_flags = uap->flags; 132 /* 133 * It is necessary to return fd by reference because 0 is a valid file 134 * descriptor number, and the child needs to be able to distinguish 135 * itself from the parent using the return value. 136 */ 137 error = fork1(td, &fr); 138 if (error == 0) { 139 td->td_retval[0] = pid; 140 td->td_retval[1] = 0; 141 error = copyout(&fd, uap->fdp, sizeof(fd)); 142 } 143 return (error); 144 } 145 146 /* ARGSUSED */ 147 int 148 sys_vfork(struct thread *td, struct vfork_args *uap) 149 { 150 struct fork_req fr; 151 int error, pid; 152 153 bzero(&fr, sizeof(fr)); 154 fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM; 155 fr.fr_pidp = &pid; 156 error = fork1(td, &fr); 157 if (error == 0) { 158 td->td_retval[0] = pid; 159 td->td_retval[1] = 0; 160 } 161 return (error); 162 } 163 164 int 165 sys_rfork(struct thread *td, struct rfork_args *uap) 166 { 167 struct fork_req fr; 168 int error, pid; 169 170 /* Don't allow kernel-only flags. */ 171 if ((uap->flags & RFKERNELONLY) != 0) 172 return (EINVAL); 173 /* RFSPAWN must not appear with others */ 174 if ((uap->flags & RFSPAWN) != 0 && uap->flags != RFSPAWN) 175 return (EINVAL); 176 177 AUDIT_ARG_FFLAGS(uap->flags); 178 bzero(&fr, sizeof(fr)); 179 if ((uap->flags & RFSPAWN) != 0) { 180 fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM; 181 fr.fr_flags2 = FR2_DROPSIG_CAUGHT; 182 } else { 183 fr.fr_flags = uap->flags; 184 } 185 fr.fr_pidp = &pid; 186 error = fork1(td, &fr); 187 if (error == 0) { 188 td->td_retval[0] = pid; 189 td->td_retval[1] = 0; 190 } 191 return (error); 192 } 193 194 int __exclusive_cache_line nprocs = 1; /* process 0 */ 195 int lastpid = 0; 196 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0, 197 "Last used PID"); 198 199 /* 200 * Random component to lastpid generation. We mix in a random factor to make 201 * it a little harder to predict. We sanity check the modulus value to avoid 202 * doing it in critical paths. Don't let it be too small or we pointlessly 203 * waste randomness entropy, and don't let it be impossibly large. Using a 204 * modulus that is too big causes a LOT more process table scans and slows 205 * down fork processing as the pidchecked caching is defeated. 206 */ 207 static int randompid = 0; 208 209 static int 210 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS) 211 { 212 int error, pid; 213 214 error = sysctl_wire_old_buffer(req, sizeof(int)); 215 if (error != 0) 216 return(error); 217 sx_xlock(&allproc_lock); 218 pid = randompid; 219 error = sysctl_handle_int(oidp, &pid, 0, req); 220 if (error == 0 && req->newptr != NULL) { 221 if (pid == 0) 222 randompid = 0; 223 else if (pid == 1) 224 /* generate a random PID modulus between 100 and 1123 */ 225 randompid = 100 + arc4random() % 1024; 226 else if (pid < 0 || pid > pid_max - 100) 227 /* out of range */ 228 randompid = pid_max - 100; 229 else if (pid < 100) 230 /* Make it reasonable */ 231 randompid = 100; 232 else 233 randompid = pid; 234 } 235 sx_xunlock(&allproc_lock); 236 return (error); 237 } 238 239 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW, 240 0, 0, sysctl_kern_randompid, "I", "Random PID modulus. Special values: 0: disable, 1: choose random value"); 241 242 extern bitstr_t proc_id_pidmap; 243 extern bitstr_t proc_id_grpidmap; 244 extern bitstr_t proc_id_sessidmap; 245 extern bitstr_t proc_id_reapmap; 246 247 /* 248 * Find an unused process ID 249 * 250 * If RFHIGHPID is set (used during system boot), do not allocate 251 * low-numbered pids. 252 */ 253 static int 254 fork_findpid(int flags) 255 { 256 pid_t result; 257 int trypid, random; 258 259 /* 260 * Avoid calling arc4random with procid_lock held. 261 */ 262 random = 0; 263 if (__predict_false(randompid)) 264 random = arc4random() % randompid; 265 266 mtx_lock(&procid_lock); 267 268 trypid = lastpid + 1; 269 if (flags & RFHIGHPID) { 270 if (trypid < 10) 271 trypid = 10; 272 } else { 273 trypid += random; 274 } 275 retry: 276 if (trypid >= pid_max) 277 trypid = 2; 278 279 bit_ffc_at(&proc_id_pidmap, trypid, pid_max, &result); 280 if (result == -1) { 281 KASSERT(trypid != 2, ("unexpectedly ran out of IDs")); 282 trypid = 2; 283 goto retry; 284 } 285 if (bit_test(&proc_id_grpidmap, result) || 286 bit_test(&proc_id_sessidmap, result) || 287 bit_test(&proc_id_reapmap, result)) { 288 trypid = result + 1; 289 goto retry; 290 } 291 292 /* 293 * RFHIGHPID does not mess with the lastpid counter during boot. 294 */ 295 if ((flags & RFHIGHPID) == 0) 296 lastpid = result; 297 298 bit_set(&proc_id_pidmap, result); 299 mtx_unlock(&procid_lock); 300 301 return (result); 302 } 303 304 static int 305 fork_norfproc(struct thread *td, int flags) 306 { 307 int error; 308 struct proc *p1; 309 310 KASSERT((flags & RFPROC) == 0, 311 ("fork_norfproc called with RFPROC set")); 312 p1 = td->td_proc; 313 314 if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) && 315 (flags & (RFCFDG | RFFDG))) { 316 PROC_LOCK(p1); 317 if (thread_single(p1, SINGLE_BOUNDARY)) { 318 PROC_UNLOCK(p1); 319 return (ERESTART); 320 } 321 PROC_UNLOCK(p1); 322 } 323 324 error = vm_forkproc(td, NULL, NULL, NULL, flags); 325 if (error) 326 goto fail; 327 328 /* 329 * Close all file descriptors. 330 */ 331 if (flags & RFCFDG) { 332 struct filedesc *fdtmp; 333 fdtmp = fdinit(td->td_proc->p_fd, false); 334 fdescfree(td); 335 p1->p_fd = fdtmp; 336 } 337 338 /* 339 * Unshare file descriptors (from parent). 340 */ 341 if (flags & RFFDG) 342 fdunshare(td); 343 344 fail: 345 if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) && 346 (flags & (RFCFDG | RFFDG))) { 347 PROC_LOCK(p1); 348 thread_single_end(p1, SINGLE_BOUNDARY); 349 PROC_UNLOCK(p1); 350 } 351 return (error); 352 } 353 354 static void 355 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2, 356 struct vmspace *vm2, struct file *fp_procdesc) 357 { 358 struct proc *p1, *pptr; 359 struct filedesc *fd; 360 struct filedesc_to_leader *fdtol; 361 struct sigacts *newsigacts; 362 363 p1 = td->td_proc; 364 365 PROC_LOCK(p1); 366 bcopy(&p1->p_startcopy, &p2->p_startcopy, 367 __rangeof(struct proc, p_startcopy, p_endcopy)); 368 pargs_hold(p2->p_args); 369 PROC_UNLOCK(p1); 370 371 bzero(&p2->p_startzero, 372 __rangeof(struct proc, p_startzero, p_endzero)); 373 374 /* Tell the prison that we exist. */ 375 prison_proc_hold(p2->p_ucred->cr_prison); 376 377 p2->p_state = PRS_NEW; /* protect against others */ 378 p2->p_pid = fork_findpid(fr->fr_flags); 379 AUDIT_ARG_PID(p2->p_pid); 380 381 sx_xlock(&allproc_lock); 382 LIST_INSERT_HEAD(&allproc, p2, p_list); 383 allproc_gen++; 384 sx_xunlock(&allproc_lock); 385 386 sx_xlock(PIDHASHLOCK(p2->p_pid)); 387 LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash); 388 sx_xunlock(PIDHASHLOCK(p2->p_pid)); 389 390 tidhash_add(td2); 391 392 /* 393 * Malloc things while we don't hold any locks. 394 */ 395 if (fr->fr_flags & RFSIGSHARE) 396 newsigacts = NULL; 397 else 398 newsigacts = sigacts_alloc(); 399 400 /* 401 * Copy filedesc. 402 */ 403 if (fr->fr_flags & RFCFDG) { 404 fd = fdinit(p1->p_fd, false); 405 fdtol = NULL; 406 } else if (fr->fr_flags & RFFDG) { 407 fd = fdcopy(p1->p_fd); 408 fdtol = NULL; 409 } else { 410 fd = fdshare(p1->p_fd); 411 if (p1->p_fdtol == NULL) 412 p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL, 413 p1->p_leader); 414 if ((fr->fr_flags & RFTHREAD) != 0) { 415 /* 416 * Shared file descriptor table, and shared 417 * process leaders. 418 */ 419 fdtol = p1->p_fdtol; 420 FILEDESC_XLOCK(p1->p_fd); 421 fdtol->fdl_refcount++; 422 FILEDESC_XUNLOCK(p1->p_fd); 423 } else { 424 /* 425 * Shared file descriptor table, and different 426 * process leaders. 427 */ 428 fdtol = filedesc_to_leader_alloc(p1->p_fdtol, 429 p1->p_fd, p2); 430 } 431 } 432 /* 433 * Make a proc table entry for the new process. 434 * Start by zeroing the section of proc that is zero-initialized, 435 * then copy the section that is copied directly from the parent. 436 */ 437 438 PROC_LOCK(p2); 439 PROC_LOCK(p1); 440 441 bzero(&td2->td_startzero, 442 __rangeof(struct thread, td_startzero, td_endzero)); 443 444 bcopy(&td->td_startcopy, &td2->td_startcopy, 445 __rangeof(struct thread, td_startcopy, td_endcopy)); 446 447 bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name)); 448 td2->td_sigstk = td->td_sigstk; 449 td2->td_flags = TDF_INMEM; 450 td2->td_lend_user_pri = PRI_MAX; 451 452 #ifdef VIMAGE 453 td2->td_vnet = NULL; 454 td2->td_vnet_lpush = NULL; 455 #endif 456 457 /* 458 * Allow the scheduler to initialize the child. 459 */ 460 thread_lock(td); 461 sched_fork(td, td2); 462 thread_unlock(td); 463 464 /* 465 * Duplicate sub-structures as needed. 466 * Increase reference counts on shared objects. 467 */ 468 p2->p_flag = P_INMEM; 469 p2->p_flag2 = p1->p_flag2 & (P2_ASLR_DISABLE | P2_ASLR_ENABLE | 470 P2_ASLR_IGNSTART | P2_NOTRACE | P2_NOTRACE_EXEC | 471 P2_PROTMAX_ENABLE | P2_PROTMAX_DISABLE | P2_TRAPCAP | 472 P2_STKGAP_DISABLE | P2_STKGAP_DISABLE_EXEC); 473 p2->p_swtick = ticks; 474 if (p1->p_flag & P_PROFIL) 475 startprofclock(p2); 476 477 if (fr->fr_flags & RFSIGSHARE) { 478 p2->p_sigacts = sigacts_hold(p1->p_sigacts); 479 } else { 480 sigacts_copy(newsigacts, p1->p_sigacts); 481 p2->p_sigacts = newsigacts; 482 if ((fr->fr_flags2 & FR2_DROPSIG_CAUGHT) != 0) { 483 mtx_lock(&p2->p_sigacts->ps_mtx); 484 sig_drop_caught(p2); 485 mtx_unlock(&p2->p_sigacts->ps_mtx); 486 } 487 } 488 489 if (fr->fr_flags & RFTSIGZMB) 490 p2->p_sigparent = RFTSIGNUM(fr->fr_flags); 491 else if (fr->fr_flags & RFLINUXTHPN) 492 p2->p_sigparent = SIGUSR1; 493 else 494 p2->p_sigparent = SIGCHLD; 495 496 p2->p_textvp = p1->p_textvp; 497 p2->p_fd = fd; 498 p2->p_fdtol = fdtol; 499 500 if (p1->p_flag2 & P2_INHERIT_PROTECTED) { 501 p2->p_flag |= P_PROTECTED; 502 p2->p_flag2 |= P2_INHERIT_PROTECTED; 503 } 504 505 /* 506 * p_limit is copy-on-write. Bump its refcount. 507 */ 508 lim_fork(p1, p2); 509 510 thread_cow_get_proc(td2, p2); 511 512 pstats_fork(p1->p_stats, p2->p_stats); 513 514 PROC_UNLOCK(p1); 515 PROC_UNLOCK(p2); 516 517 /* Bump references to the text vnode (for procfs). */ 518 if (p2->p_textvp) 519 vrefact(p2->p_textvp); 520 521 /* 522 * Set up linkage for kernel based threading. 523 */ 524 if ((fr->fr_flags & RFTHREAD) != 0) { 525 mtx_lock(&ppeers_lock); 526 p2->p_peers = p1->p_peers; 527 p1->p_peers = p2; 528 p2->p_leader = p1->p_leader; 529 mtx_unlock(&ppeers_lock); 530 PROC_LOCK(p1->p_leader); 531 if ((p1->p_leader->p_flag & P_WEXIT) != 0) { 532 PROC_UNLOCK(p1->p_leader); 533 /* 534 * The task leader is exiting, so process p1 is 535 * going to be killed shortly. Since p1 obviously 536 * isn't dead yet, we know that the leader is either 537 * sending SIGKILL's to all the processes in this 538 * task or is sleeping waiting for all the peers to 539 * exit. We let p1 complete the fork, but we need 540 * to go ahead and kill the new process p2 since 541 * the task leader may not get a chance to send 542 * SIGKILL to it. We leave it on the list so that 543 * the task leader will wait for this new process 544 * to commit suicide. 545 */ 546 PROC_LOCK(p2); 547 kern_psignal(p2, SIGKILL); 548 PROC_UNLOCK(p2); 549 } else 550 PROC_UNLOCK(p1->p_leader); 551 } else { 552 p2->p_peers = NULL; 553 p2->p_leader = p2; 554 } 555 556 sx_xlock(&proctree_lock); 557 PGRP_LOCK(p1->p_pgrp); 558 PROC_LOCK(p2); 559 PROC_LOCK(p1); 560 561 /* 562 * Preserve some more flags in subprocess. P_PROFIL has already 563 * been preserved. 564 */ 565 p2->p_flag |= p1->p_flag & P_SUGID; 566 td2->td_pflags |= (td->td_pflags & TDP_ALTSTACK) | TDP_FORKING; 567 SESS_LOCK(p1->p_session); 568 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT) 569 p2->p_flag |= P_CONTROLT; 570 SESS_UNLOCK(p1->p_session); 571 if (fr->fr_flags & RFPPWAIT) 572 p2->p_flag |= P_PPWAIT; 573 574 p2->p_pgrp = p1->p_pgrp; 575 LIST_INSERT_AFTER(p1, p2, p_pglist); 576 PGRP_UNLOCK(p1->p_pgrp); 577 LIST_INIT(&p2->p_children); 578 LIST_INIT(&p2->p_orphans); 579 580 callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0); 581 582 /* 583 * If PF_FORK is set, the child process inherits the 584 * procfs ioctl flags from its parent. 585 */ 586 if (p1->p_pfsflags & PF_FORK) { 587 p2->p_stops = p1->p_stops; 588 p2->p_pfsflags = p1->p_pfsflags; 589 } 590 591 /* 592 * This begins the section where we must prevent the parent 593 * from being swapped. 594 */ 595 _PHOLD(p1); 596 PROC_UNLOCK(p1); 597 598 /* 599 * Attach the new process to its parent. 600 * 601 * If RFNOWAIT is set, the newly created process becomes a child 602 * of init. This effectively disassociates the child from the 603 * parent. 604 */ 605 if ((fr->fr_flags & RFNOWAIT) != 0) { 606 pptr = p1->p_reaper; 607 p2->p_reaper = pptr; 608 } else { 609 p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ? 610 p1 : p1->p_reaper; 611 pptr = p1; 612 } 613 p2->p_pptr = pptr; 614 p2->p_oppid = pptr->p_pid; 615 LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling); 616 LIST_INIT(&p2->p_reaplist); 617 LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling); 618 if (p2->p_reaper == p1 && p1 != initproc) { 619 p2->p_reapsubtree = p2->p_pid; 620 proc_id_set_cond(PROC_ID_REAP, p2->p_pid); 621 } 622 sx_xunlock(&proctree_lock); 623 624 /* Inform accounting that we have forked. */ 625 p2->p_acflag = AFORK; 626 PROC_UNLOCK(p2); 627 628 #ifdef KTRACE 629 ktrprocfork(p1, p2); 630 #endif 631 632 /* 633 * Finish creating the child process. It will return via a different 634 * execution path later. (ie: directly into user mode) 635 */ 636 vm_forkproc(td, p2, td2, vm2, fr->fr_flags); 637 638 if (fr->fr_flags == (RFFDG | RFPROC)) { 639 VM_CNT_INC(v_forks); 640 VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize + 641 p2->p_vmspace->vm_ssize); 642 } else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) { 643 VM_CNT_INC(v_vforks); 644 VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize + 645 p2->p_vmspace->vm_ssize); 646 } else if (p1 == &proc0) { 647 VM_CNT_INC(v_kthreads); 648 VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize + 649 p2->p_vmspace->vm_ssize); 650 } else { 651 VM_CNT_INC(v_rforks); 652 VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize + 653 p2->p_vmspace->vm_ssize); 654 } 655 656 /* 657 * Associate the process descriptor with the process before anything 658 * can happen that might cause that process to need the descriptor. 659 * However, don't do this until after fork(2) can no longer fail. 660 */ 661 if (fr->fr_flags & RFPROCDESC) 662 procdesc_new(p2, fr->fr_pd_flags); 663 664 /* 665 * Both processes are set up, now check if any loadable modules want 666 * to adjust anything. 667 */ 668 EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags); 669 670 /* 671 * Set the child start time and mark the process as being complete. 672 */ 673 PROC_LOCK(p2); 674 PROC_LOCK(p1); 675 microuptime(&p2->p_stats->p_start); 676 PROC_SLOCK(p2); 677 p2->p_state = PRS_NORMAL; 678 PROC_SUNLOCK(p2); 679 680 #ifdef KDTRACE_HOOKS 681 /* 682 * Tell the DTrace fasttrap provider about the new process so that any 683 * tracepoints inherited from the parent can be removed. We have to do 684 * this only after p_state is PRS_NORMAL since the fasttrap module will 685 * use pfind() later on. 686 */ 687 if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork) 688 dtrace_fasttrap_fork(p1, p2); 689 #endif 690 if (fr->fr_flags & RFPPWAIT) { 691 td->td_pflags |= TDP_RFPPWAIT; 692 td->td_rfppwait_p = p2; 693 td->td_dbgflags |= TDB_VFORK; 694 } 695 PROC_UNLOCK(p2); 696 697 /* 698 * Tell any interested parties about the new process. 699 */ 700 knote_fork(p1->p_klist, p2->p_pid); 701 702 /* 703 * Now can be swapped. 704 */ 705 _PRELE(p1); 706 PROC_UNLOCK(p1); 707 SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags); 708 709 if (fr->fr_flags & RFPROCDESC) { 710 procdesc_finit(p2->p_procdesc, fp_procdesc); 711 fdrop(fp_procdesc, td); 712 } 713 714 /* 715 * Speculative check for PTRACE_FORK. PTRACE_FORK is not 716 * synced with forks in progress so it is OK if we miss it 717 * if being set atm. 718 */ 719 if ((p1->p_ptevents & PTRACE_FORK) != 0) { 720 sx_xlock(&proctree_lock); 721 PROC_LOCK(p2); 722 723 /* 724 * p1->p_ptevents & p1->p_pptr are protected by both 725 * process and proctree locks for modifications, 726 * so owning proctree_lock allows the race-free read. 727 */ 728 if ((p1->p_ptevents & PTRACE_FORK) != 0) { 729 /* 730 * Arrange for debugger to receive the fork event. 731 * 732 * We can report PL_FLAG_FORKED regardless of 733 * P_FOLLOWFORK settings, but it does not make a sense 734 * for runaway child. 735 */ 736 td->td_dbgflags |= TDB_FORK; 737 td->td_dbg_forked = p2->p_pid; 738 td2->td_dbgflags |= TDB_STOPATFORK; 739 proc_set_traced(p2, true); 740 CTR2(KTR_PTRACE, 741 "do_fork: attaching to new child pid %d: oppid %d", 742 p2->p_pid, p2->p_oppid); 743 proc_reparent(p2, p1->p_pptr, false); 744 } 745 PROC_UNLOCK(p2); 746 sx_xunlock(&proctree_lock); 747 } 748 749 racct_proc_fork_done(p2); 750 751 if ((fr->fr_flags & RFSTOPPED) == 0) { 752 if (fr->fr_pidp != NULL) 753 *fr->fr_pidp = p2->p_pid; 754 /* 755 * If RFSTOPPED not requested, make child runnable and 756 * add to run queue. 757 */ 758 thread_lock(td2); 759 TD_SET_CAN_RUN(td2); 760 sched_add(td2, SRQ_BORING); 761 thread_unlock(td2); 762 } else { 763 *fr->fr_procp = p2; 764 } 765 } 766 767 void 768 fork_rfppwait(struct thread *td) 769 { 770 struct proc *p, *p2; 771 772 MPASS(td->td_pflags & TDP_RFPPWAIT); 773 774 p = td->td_proc; 775 /* 776 * Preserve synchronization semantics of vfork. If 777 * waiting for child to exec or exit, fork set 778 * P_PPWAIT on child, and there we sleep on our proc 779 * (in case of exit). 780 * 781 * Do it after the ptracestop() above is finished, to 782 * not block our debugger until child execs or exits 783 * to finish vfork wait. 784 */ 785 td->td_pflags &= ~TDP_RFPPWAIT; 786 p2 = td->td_rfppwait_p; 787 again: 788 PROC_LOCK(p2); 789 while (p2->p_flag & P_PPWAIT) { 790 PROC_LOCK(p); 791 if (thread_suspend_check_needed()) { 792 PROC_UNLOCK(p2); 793 thread_suspend_check(0); 794 PROC_UNLOCK(p); 795 goto again; 796 } else { 797 PROC_UNLOCK(p); 798 } 799 cv_timedwait(&p2->p_pwait, &p2->p_mtx, hz); 800 } 801 PROC_UNLOCK(p2); 802 803 if (td->td_dbgflags & TDB_VFORK) { 804 PROC_LOCK(p); 805 if (p->p_ptevents & PTRACE_VFORK) 806 ptracestop(td, SIGTRAP, NULL); 807 td->td_dbgflags &= ~TDB_VFORK; 808 PROC_UNLOCK(p); 809 } 810 } 811 812 int 813 fork1(struct thread *td, struct fork_req *fr) 814 { 815 struct proc *p1, *newproc; 816 struct thread *td2; 817 struct vmspace *vm2; 818 struct ucred *cred; 819 struct file *fp_procdesc; 820 vm_ooffset_t mem_charged; 821 int error, nprocs_new; 822 static int curfail; 823 static struct timeval lastfail; 824 int flags, pages; 825 826 flags = fr->fr_flags; 827 pages = fr->fr_pages; 828 829 if ((flags & RFSTOPPED) != 0) 830 MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL); 831 else 832 MPASS(fr->fr_procp == NULL); 833 834 /* Check for the undefined or unimplemented flags. */ 835 if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0) 836 return (EINVAL); 837 838 /* Signal value requires RFTSIGZMB. */ 839 if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0) 840 return (EINVAL); 841 842 /* Can't copy and clear. */ 843 if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG)) 844 return (EINVAL); 845 846 /* Check the validity of the signal number. */ 847 if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG) 848 return (EINVAL); 849 850 if ((flags & RFPROCDESC) != 0) { 851 /* Can't not create a process yet get a process descriptor. */ 852 if ((flags & RFPROC) == 0) 853 return (EINVAL); 854 855 /* Must provide a place to put a procdesc if creating one. */ 856 if (fr->fr_pd_fd == NULL) 857 return (EINVAL); 858 859 /* Check if we are using supported flags. */ 860 if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0) 861 return (EINVAL); 862 } 863 864 p1 = td->td_proc; 865 866 /* 867 * Here we don't create a new process, but we divorce 868 * certain parts of a process from itself. 869 */ 870 if ((flags & RFPROC) == 0) { 871 if (fr->fr_procp != NULL) 872 *fr->fr_procp = NULL; 873 else if (fr->fr_pidp != NULL) 874 *fr->fr_pidp = 0; 875 return (fork_norfproc(td, flags)); 876 } 877 878 fp_procdesc = NULL; 879 newproc = NULL; 880 vm2 = NULL; 881 882 /* 883 * Increment the nprocs resource before allocations occur. 884 * Although process entries are dynamically created, we still 885 * keep a global limit on the maximum number we will 886 * create. There are hard-limits as to the number of processes 887 * that can run, established by the KVA and memory usage for 888 * the process data. 889 * 890 * Don't allow a nonprivileged user to use the last ten 891 * processes; don't let root exceed the limit. 892 */ 893 nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1; 894 if (nprocs_new >= maxproc - 10) { 895 if (priv_check_cred(td->td_ucred, PRIV_MAXPROC) != 0 || 896 nprocs_new >= maxproc) { 897 error = EAGAIN; 898 sx_xlock(&allproc_lock); 899 if (ppsratecheck(&lastfail, &curfail, 1)) { 900 printf("maxproc limit exceeded by uid %u " 901 "(pid %d); see tuning(7) and " 902 "login.conf(5)\n", 903 td->td_ucred->cr_ruid, p1->p_pid); 904 } 905 sx_xunlock(&allproc_lock); 906 goto fail2; 907 } 908 } 909 910 /* 911 * If required, create a process descriptor in the parent first; we 912 * will abandon it if something goes wrong. We don't finit() until 913 * later. 914 */ 915 if (flags & RFPROCDESC) { 916 error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd, 917 fr->fr_pd_flags, fr->fr_pd_fcaps); 918 if (error != 0) 919 goto fail2; 920 } 921 922 mem_charged = 0; 923 if (pages == 0) 924 pages = kstack_pages; 925 /* Allocate new proc. */ 926 newproc = uma_zalloc(proc_zone, M_WAITOK); 927 td2 = FIRST_THREAD_IN_PROC(newproc); 928 if (td2 == NULL) { 929 td2 = thread_alloc(pages); 930 if (td2 == NULL) { 931 error = ENOMEM; 932 goto fail2; 933 } 934 proc_linkup(newproc, td2); 935 } else { 936 if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) { 937 if (td2->td_kstack != 0) 938 vm_thread_dispose(td2); 939 if (!thread_alloc_stack(td2, pages)) { 940 error = ENOMEM; 941 goto fail2; 942 } 943 } 944 } 945 946 if ((flags & RFMEM) == 0) { 947 vm2 = vmspace_fork(p1->p_vmspace, &mem_charged); 948 if (vm2 == NULL) { 949 error = ENOMEM; 950 goto fail2; 951 } 952 if (!swap_reserve(mem_charged)) { 953 /* 954 * The swap reservation failed. The accounting 955 * from the entries of the copied vm2 will be 956 * subtracted in vmspace_free(), so force the 957 * reservation there. 958 */ 959 swap_reserve_force(mem_charged); 960 error = ENOMEM; 961 goto fail2; 962 } 963 } else 964 vm2 = NULL; 965 966 /* 967 * XXX: This is ugly; when we copy resource usage, we need to bump 968 * per-cred resource counters. 969 */ 970 proc_set_cred_init(newproc, crhold(td->td_ucred)); 971 972 /* 973 * Initialize resource accounting for the child process. 974 */ 975 error = racct_proc_fork(p1, newproc); 976 if (error != 0) { 977 error = EAGAIN; 978 goto fail1; 979 } 980 981 #ifdef MAC 982 mac_proc_init(newproc); 983 #endif 984 newproc->p_klist = knlist_alloc(&newproc->p_mtx); 985 STAILQ_INIT(&newproc->p_ktr); 986 987 /* 988 * Increment the count of procs running with this uid. Don't allow 989 * a nonprivileged user to exceed their current limit. 990 */ 991 cred = td->td_ucred; 992 if (!chgproccnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_NPROC))) { 993 if (priv_check_cred(cred, PRIV_PROC_LIMIT) != 0) 994 goto fail0; 995 chgproccnt(cred->cr_ruidinfo, 1, 0); 996 } 997 998 do_fork(td, fr, newproc, td2, vm2, fp_procdesc); 999 return (0); 1000 fail0: 1001 error = EAGAIN; 1002 #ifdef MAC 1003 mac_proc_destroy(newproc); 1004 #endif 1005 racct_proc_exit(newproc); 1006 fail1: 1007 crfree(newproc->p_ucred); 1008 newproc->p_ucred = NULL; 1009 fail2: 1010 if (vm2 != NULL) 1011 vmspace_free(vm2); 1012 uma_zfree(proc_zone, newproc); 1013 if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) { 1014 fdclose(td, fp_procdesc, *fr->fr_pd_fd); 1015 fdrop(fp_procdesc, td); 1016 } 1017 atomic_add_int(&nprocs, -1); 1018 pause("fork", hz / 2); 1019 return (error); 1020 } 1021 1022 /* 1023 * Handle the return of a child process from fork1(). This function 1024 * is called from the MD fork_trampoline() entry point. 1025 */ 1026 void 1027 fork_exit(void (*callout)(void *, struct trapframe *), void *arg, 1028 struct trapframe *frame) 1029 { 1030 struct proc *p; 1031 struct thread *td; 1032 struct thread *dtd; 1033 1034 td = curthread; 1035 p = td->td_proc; 1036 KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new")); 1037 1038 CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)", 1039 td, td_get_sched(td), p->p_pid, td->td_name); 1040 1041 sched_fork_exit(td); 1042 /* 1043 * Processes normally resume in mi_switch() after being 1044 * cpu_switch()'ed to, but when children start up they arrive here 1045 * instead, so we must do much the same things as mi_switch() would. 1046 */ 1047 if ((dtd = PCPU_GET(deadthread))) { 1048 PCPU_SET(deadthread, NULL); 1049 thread_stash(dtd); 1050 } 1051 thread_unlock(td); 1052 1053 /* 1054 * cpu_fork_kthread_handler intercepts this function call to 1055 * have this call a non-return function to stay in kernel mode. 1056 * initproc has its own fork handler, but it does return. 1057 */ 1058 KASSERT(callout != NULL, ("NULL callout in fork_exit")); 1059 callout(arg, frame); 1060 1061 /* 1062 * Check if a kernel thread misbehaved and returned from its main 1063 * function. 1064 */ 1065 if (p->p_flag & P_KPROC) { 1066 printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n", 1067 td->td_name, p->p_pid); 1068 kthread_exit(); 1069 } 1070 mtx_assert(&Giant, MA_NOTOWNED); 1071 1072 if (p->p_sysent->sv_schedtail != NULL) 1073 (p->p_sysent->sv_schedtail)(td); 1074 td->td_pflags &= ~TDP_FORKING; 1075 } 1076 1077 /* 1078 * Simplified back end of syscall(), used when returning from fork() 1079 * directly into user mode. This function is passed in to fork_exit() 1080 * as the first parameter and is called when returning to a new 1081 * userland process. 1082 */ 1083 void 1084 fork_return(struct thread *td, struct trapframe *frame) 1085 { 1086 struct proc *p; 1087 1088 p = td->td_proc; 1089 if (td->td_dbgflags & TDB_STOPATFORK) { 1090 PROC_LOCK(p); 1091 if ((p->p_flag & P_TRACED) != 0) { 1092 /* 1093 * Inform the debugger if one is still present. 1094 */ 1095 td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP; 1096 ptracestop(td, SIGSTOP, NULL); 1097 td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX); 1098 } else { 1099 /* 1100 * ... otherwise clear the request. 1101 */ 1102 td->td_dbgflags &= ~TDB_STOPATFORK; 1103 } 1104 PROC_UNLOCK(p); 1105 } else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) { 1106 /* 1107 * This is the start of a new thread in a traced 1108 * process. Report a system call exit event. 1109 */ 1110 PROC_LOCK(p); 1111 td->td_dbgflags |= TDB_SCX; 1112 _STOPEVENT(p, S_SCX, td->td_sa.code); 1113 if ((p->p_ptevents & PTRACE_SCX) != 0 || 1114 (td->td_dbgflags & TDB_BORN) != 0) 1115 ptracestop(td, SIGTRAP, NULL); 1116 td->td_dbgflags &= ~(TDB_SCX | TDB_BORN); 1117 PROC_UNLOCK(p); 1118 } 1119 1120 userret(td, frame); 1121 1122 #ifdef KTRACE 1123 if (KTRPOINT(td, KTR_SYSRET)) 1124 ktrsysret(SYS_fork, 0, 0); 1125 #endif 1126 } 1127