xref: /freebsd/sys/kern/kern_fork.c (revision 1dfcff294e44d4b45813288ef4095c36abb22f0e)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ktrace.h"
43 #include "opt_kstack_pages.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/bitstring.h>
48 #include <sys/sysproto.h>
49 #include <sys/eventhandler.h>
50 #include <sys/fcntl.h>
51 #include <sys/filedesc.h>
52 #include <sys/jail.h>
53 #include <sys/kernel.h>
54 #include <sys/kthread.h>
55 #include <sys/sysctl.h>
56 #include <sys/lock.h>
57 #include <sys/malloc.h>
58 #include <sys/msan.h>
59 #include <sys/mutex.h>
60 #include <sys/priv.h>
61 #include <sys/proc.h>
62 #include <sys/procdesc.h>
63 #include <sys/ptrace.h>
64 #include <sys/racct.h>
65 #include <sys/resourcevar.h>
66 #include <sys/sched.h>
67 #include <sys/syscall.h>
68 #include <sys/vmmeter.h>
69 #include <sys/vnode.h>
70 #include <sys/acct.h>
71 #include <sys/ktr.h>
72 #include <sys/ktrace.h>
73 #include <sys/unistd.h>
74 #include <sys/sdt.h>
75 #include <sys/sx.h>
76 #include <sys/sysent.h>
77 #include <sys/signalvar.h>
78 
79 #include <security/audit/audit.h>
80 #include <security/mac/mac_framework.h>
81 
82 #include <vm/vm.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_extern.h>
86 #include <vm/uma.h>
87 
88 #ifdef KDTRACE_HOOKS
89 #include <sys/dtrace_bsd.h>
90 dtrace_fork_func_t	dtrace_fasttrap_fork;
91 #endif
92 
93 SDT_PROVIDER_DECLARE(proc);
94 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int");
95 
96 #ifndef _SYS_SYSPROTO_H_
97 struct fork_args {
98 	int     dummy;
99 };
100 #endif
101 
102 /* ARGSUSED */
103 int
104 sys_fork(struct thread *td, struct fork_args *uap)
105 {
106 	struct fork_req fr;
107 	int error, pid;
108 
109 	bzero(&fr, sizeof(fr));
110 	fr.fr_flags = RFFDG | RFPROC;
111 	fr.fr_pidp = &pid;
112 	error = fork1(td, &fr);
113 	if (error == 0) {
114 		td->td_retval[0] = pid;
115 		td->td_retval[1] = 0;
116 	}
117 	return (error);
118 }
119 
120 /* ARGUSED */
121 int
122 sys_pdfork(struct thread *td, struct pdfork_args *uap)
123 {
124 	struct fork_req fr;
125 	int error, fd, pid;
126 
127 	bzero(&fr, sizeof(fr));
128 	fr.fr_flags = RFFDG | RFPROC | RFPROCDESC;
129 	fr.fr_pidp = &pid;
130 	fr.fr_pd_fd = &fd;
131 	fr.fr_pd_flags = uap->flags;
132 	AUDIT_ARG_FFLAGS(uap->flags);
133 	/*
134 	 * It is necessary to return fd by reference because 0 is a valid file
135 	 * descriptor number, and the child needs to be able to distinguish
136 	 * itself from the parent using the return value.
137 	 */
138 	error = fork1(td, &fr);
139 	if (error == 0) {
140 		td->td_retval[0] = pid;
141 		td->td_retval[1] = 0;
142 		error = copyout(&fd, uap->fdp, sizeof(fd));
143 	}
144 	return (error);
145 }
146 
147 /* ARGSUSED */
148 int
149 sys_vfork(struct thread *td, struct vfork_args *uap)
150 {
151 	struct fork_req fr;
152 	int error, pid;
153 
154 	bzero(&fr, sizeof(fr));
155 	fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
156 	fr.fr_pidp = &pid;
157 	error = fork1(td, &fr);
158 	if (error == 0) {
159 		td->td_retval[0] = pid;
160 		td->td_retval[1] = 0;
161 	}
162 	return (error);
163 }
164 
165 int
166 sys_rfork(struct thread *td, struct rfork_args *uap)
167 {
168 	struct fork_req fr;
169 	int error, pid;
170 
171 	/* Don't allow kernel-only flags. */
172 	if ((uap->flags & RFKERNELONLY) != 0)
173 		return (EINVAL);
174 	/* RFSPAWN must not appear with others */
175 	if ((uap->flags & RFSPAWN) != 0 && uap->flags != RFSPAWN)
176 		return (EINVAL);
177 
178 	AUDIT_ARG_FFLAGS(uap->flags);
179 	bzero(&fr, sizeof(fr));
180 	if ((uap->flags & RFSPAWN) != 0) {
181 		fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
182 		fr.fr_flags2 = FR2_DROPSIG_CAUGHT;
183 	} else {
184 		fr.fr_flags = uap->flags;
185 	}
186 	fr.fr_pidp = &pid;
187 	error = fork1(td, &fr);
188 	if (error == 0) {
189 		td->td_retval[0] = pid;
190 		td->td_retval[1] = 0;
191 	}
192 	return (error);
193 }
194 
195 int __exclusive_cache_line	nprocs = 1;		/* process 0 */
196 int	lastpid = 0;
197 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
198     "Last used PID");
199 
200 /*
201  * Random component to lastpid generation.  We mix in a random factor to make
202  * it a little harder to predict.  We sanity check the modulus value to avoid
203  * doing it in critical paths.  Don't let it be too small or we pointlessly
204  * waste randomness entropy, and don't let it be impossibly large.  Using a
205  * modulus that is too big causes a LOT more process table scans and slows
206  * down fork processing as the pidchecked caching is defeated.
207  */
208 static int randompid = 0;
209 
210 static int
211 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
212 {
213 	int error, pid;
214 
215 	error = sysctl_wire_old_buffer(req, sizeof(int));
216 	if (error != 0)
217 		return(error);
218 	sx_xlock(&allproc_lock);
219 	pid = randompid;
220 	error = sysctl_handle_int(oidp, &pid, 0, req);
221 	if (error == 0 && req->newptr != NULL) {
222 		if (pid == 0)
223 			randompid = 0;
224 		else if (pid == 1)
225 			/* generate a random PID modulus between 100 and 1123 */
226 			randompid = 100 + arc4random() % 1024;
227 		else if (pid < 0 || pid > pid_max - 100)
228 			/* out of range */
229 			randompid = pid_max - 100;
230 		else if (pid < 100)
231 			/* Make it reasonable */
232 			randompid = 100;
233 		else
234 			randompid = pid;
235 	}
236 	sx_xunlock(&allproc_lock);
237 	return (error);
238 }
239 
240 SYSCTL_PROC(_kern, OID_AUTO, randompid,
241     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
242     sysctl_kern_randompid, "I",
243     "Random PID modulus. Special values: 0: disable, 1: choose random value");
244 
245 extern bitstr_t proc_id_pidmap;
246 extern bitstr_t proc_id_grpidmap;
247 extern bitstr_t proc_id_sessidmap;
248 extern bitstr_t proc_id_reapmap;
249 
250 /*
251  * Find an unused process ID
252  *
253  * If RFHIGHPID is set (used during system boot), do not allocate
254  * low-numbered pids.
255  */
256 static int
257 fork_findpid(int flags)
258 {
259 	pid_t result;
260 	int trypid, random;
261 
262 	/*
263 	 * Avoid calling arc4random with procid_lock held.
264 	 */
265 	random = 0;
266 	if (__predict_false(randompid))
267 		random = arc4random() % randompid;
268 
269 	mtx_lock(&procid_lock);
270 
271 	trypid = lastpid + 1;
272 	if (flags & RFHIGHPID) {
273 		if (trypid < 10)
274 			trypid = 10;
275 	} else {
276 		trypid += random;
277 	}
278 retry:
279 	if (trypid >= pid_max)
280 		trypid = 2;
281 
282 	bit_ffc_at(&proc_id_pidmap, trypid, pid_max, &result);
283 	if (result == -1) {
284 		KASSERT(trypid != 2, ("unexpectedly ran out of IDs"));
285 		trypid = 2;
286 		goto retry;
287 	}
288 	if (bit_test(&proc_id_grpidmap, result) ||
289 	    bit_test(&proc_id_sessidmap, result) ||
290 	    bit_test(&proc_id_reapmap, result)) {
291 		trypid = result + 1;
292 		goto retry;
293 	}
294 
295 	/*
296 	 * RFHIGHPID does not mess with the lastpid counter during boot.
297 	 */
298 	if ((flags & RFHIGHPID) == 0)
299 		lastpid = result;
300 
301 	bit_set(&proc_id_pidmap, result);
302 	mtx_unlock(&procid_lock);
303 
304 	return (result);
305 }
306 
307 static int
308 fork_norfproc(struct thread *td, int flags)
309 {
310 	int error;
311 	struct proc *p1;
312 
313 	KASSERT((flags & RFPROC) == 0,
314 	    ("fork_norfproc called with RFPROC set"));
315 	p1 = td->td_proc;
316 
317 	/*
318 	 * Quiesce other threads if necessary.  If RFMEM is not specified we
319 	 * must ensure that other threads do not concurrently create a second
320 	 * process sharing the vmspace, see vmspace_unshare().
321 	 */
322 again:
323 	if ((p1->p_flag & (P_HADTHREADS | P_SYSTEM)) == P_HADTHREADS &&
324 	    ((flags & (RFCFDG | RFFDG)) != 0 || (flags & RFMEM) == 0)) {
325 		PROC_LOCK(p1);
326 		while (p1->p_singlethr > 0) {
327 			error = msleep(&p1->p_singlethr, &p1->p_mtx,
328 			    PWAIT | PCATCH, "rfork1t", 0);
329 			if (error != 0) {
330 				PROC_UNLOCK(p1);
331 				return (ERESTART);
332 			}
333 			goto again;
334 		}
335 		if (thread_single(p1, SINGLE_BOUNDARY)) {
336 			PROC_UNLOCK(p1);
337 			return (ERESTART);
338 		}
339 		PROC_UNLOCK(p1);
340 	}
341 
342 	error = vm_forkproc(td, NULL, NULL, NULL, flags);
343 	if (error)
344 		goto fail;
345 
346 	/*
347 	 * Close all file descriptors.
348 	 */
349 	if (flags & RFCFDG) {
350 		struct filedesc *fdtmp;
351 		struct pwddesc *pdtmp;
352 		pdtmp = pdinit(td->td_proc->p_pd, false);
353 		fdtmp = fdinit();
354 		pdescfree(td);
355 		fdescfree(td);
356 		p1->p_fd = fdtmp;
357 		p1->p_pd = pdtmp;
358 	}
359 
360 	/*
361 	 * Unshare file descriptors (from parent).
362 	 */
363 	if (flags & RFFDG) {
364 		fdunshare(td);
365 		pdunshare(td);
366 	}
367 
368 fail:
369 	if ((p1->p_flag & (P_HADTHREADS | P_SYSTEM)) == P_HADTHREADS &&
370 	    ((flags & (RFCFDG | RFFDG)) != 0 || (flags & RFMEM) == 0)) {
371 		PROC_LOCK(p1);
372 		thread_single_end(p1, SINGLE_BOUNDARY);
373 		PROC_UNLOCK(p1);
374 	}
375 	return (error);
376 }
377 
378 static void
379 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2,
380     struct vmspace *vm2, struct file *fp_procdesc)
381 {
382 	struct proc *p1, *pptr;
383 	struct filedesc *fd;
384 	struct filedesc_to_leader *fdtol;
385 	struct pwddesc *pd;
386 	struct sigacts *newsigacts;
387 
388 	p1 = td->td_proc;
389 
390 	PROC_LOCK(p1);
391 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
392 	    __rangeof(struct proc, p_startcopy, p_endcopy));
393 	pargs_hold(p2->p_args);
394 	PROC_UNLOCK(p1);
395 
396 	bzero(&p2->p_startzero,
397 	    __rangeof(struct proc, p_startzero, p_endzero));
398 
399 	/* Tell the prison that we exist. */
400 	prison_proc_hold(p2->p_ucred->cr_prison);
401 
402 	p2->p_state = PRS_NEW;		/* protect against others */
403 	p2->p_pid = fork_findpid(fr->fr_flags);
404 	AUDIT_ARG_PID(p2->p_pid);
405 	TSFORK(p2->p_pid, p1->p_pid);
406 
407 	sx_xlock(&allproc_lock);
408 	LIST_INSERT_HEAD(&allproc, p2, p_list);
409 	allproc_gen++;
410 	sx_xunlock(&allproc_lock);
411 
412 	sx_xlock(PIDHASHLOCK(p2->p_pid));
413 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
414 	sx_xunlock(PIDHASHLOCK(p2->p_pid));
415 
416 	tidhash_add(td2);
417 
418 	/*
419 	 * Malloc things while we don't hold any locks.
420 	 */
421 	if (fr->fr_flags & RFSIGSHARE)
422 		newsigacts = NULL;
423 	else
424 		newsigacts = sigacts_alloc();
425 
426 	/*
427 	 * Copy filedesc.
428 	 */
429 	if (fr->fr_flags & RFCFDG) {
430 		pd = pdinit(p1->p_pd, false);
431 		fd = fdinit();
432 		fdtol = NULL;
433 	} else if (fr->fr_flags & RFFDG) {
434 		if (fr->fr_flags2 & FR2_SHARE_PATHS)
435 			pd = pdshare(p1->p_pd);
436 		else
437 			pd = pdcopy(p1->p_pd);
438 		fd = fdcopy(p1->p_fd);
439 		fdtol = NULL;
440 	} else {
441 		if (fr->fr_flags2 & FR2_SHARE_PATHS)
442 			pd = pdcopy(p1->p_pd);
443 		else
444 			pd = pdshare(p1->p_pd);
445 		fd = fdshare(p1->p_fd);
446 		if (p1->p_fdtol == NULL)
447 			p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
448 			    p1->p_leader);
449 		if ((fr->fr_flags & RFTHREAD) != 0) {
450 			/*
451 			 * Shared file descriptor table, and shared
452 			 * process leaders.
453 			 */
454 			fdtol = p1->p_fdtol;
455 			FILEDESC_XLOCK(p1->p_fd);
456 			fdtol->fdl_refcount++;
457 			FILEDESC_XUNLOCK(p1->p_fd);
458 		} else {
459 			/*
460 			 * Shared file descriptor table, and different
461 			 * process leaders.
462 			 */
463 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
464 			    p1->p_fd, p2);
465 		}
466 	}
467 	/*
468 	 * Make a proc table entry for the new process.
469 	 * Start by zeroing the section of proc that is zero-initialized,
470 	 * then copy the section that is copied directly from the parent.
471 	 */
472 
473 	PROC_LOCK(p2);
474 	PROC_LOCK(p1);
475 
476 	bzero(&td2->td_startzero,
477 	    __rangeof(struct thread, td_startzero, td_endzero));
478 
479 	bcopy(&td->td_startcopy, &td2->td_startcopy,
480 	    __rangeof(struct thread, td_startcopy, td_endcopy));
481 
482 	bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
483 	td2->td_sigstk = td->td_sigstk;
484 	td2->td_flags = TDF_INMEM;
485 	td2->td_lend_user_pri = PRI_MAX;
486 
487 #ifdef VIMAGE
488 	td2->td_vnet = NULL;
489 	td2->td_vnet_lpush = NULL;
490 #endif
491 
492 	/*
493 	 * Allow the scheduler to initialize the child.
494 	 */
495 	thread_lock(td);
496 	sched_fork(td, td2);
497 	/*
498 	 * Request AST to check for TDP_RFPPWAIT.  Do it here
499 	 * to avoid calling thread_lock() again.
500 	 */
501 	if ((fr->fr_flags & RFPPWAIT) != 0)
502 		td->td_flags |= TDF_ASTPENDING;
503 	thread_unlock(td);
504 
505 	/*
506 	 * Duplicate sub-structures as needed.
507 	 * Increase reference counts on shared objects.
508 	 */
509 	p2->p_flag = P_INMEM;
510 	p2->p_flag2 = p1->p_flag2 & (P2_ASLR_DISABLE | P2_ASLR_ENABLE |
511 	    P2_ASLR_IGNSTART | P2_NOTRACE | P2_NOTRACE_EXEC |
512 	    P2_PROTMAX_ENABLE | P2_PROTMAX_DISABLE | P2_TRAPCAP |
513 	    P2_STKGAP_DISABLE | P2_STKGAP_DISABLE_EXEC | P2_NO_NEW_PRIVS |
514 	    P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC);
515 	p2->p_swtick = ticks;
516 	if (p1->p_flag & P_PROFIL)
517 		startprofclock(p2);
518 
519 	if (fr->fr_flags & RFSIGSHARE) {
520 		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
521 	} else {
522 		sigacts_copy(newsigacts, p1->p_sigacts);
523 		p2->p_sigacts = newsigacts;
524 		if ((fr->fr_flags2 & (FR2_DROPSIG_CAUGHT | FR2_KPROC)) != 0) {
525 			mtx_lock(&p2->p_sigacts->ps_mtx);
526 			if ((fr->fr_flags2 & FR2_DROPSIG_CAUGHT) != 0)
527 				sig_drop_caught(p2);
528 			if ((fr->fr_flags2 & FR2_KPROC) != 0)
529 				p2->p_sigacts->ps_flag |= PS_NOCLDWAIT;
530 			mtx_unlock(&p2->p_sigacts->ps_mtx);
531 		}
532 	}
533 
534 	if (fr->fr_flags & RFTSIGZMB)
535 	        p2->p_sigparent = RFTSIGNUM(fr->fr_flags);
536 	else if (fr->fr_flags & RFLINUXTHPN)
537 	        p2->p_sigparent = SIGUSR1;
538 	else
539 	        p2->p_sigparent = SIGCHLD;
540 
541 	if ((fr->fr_flags2 & FR2_KPROC) != 0) {
542 		p2->p_flag |= P_SYSTEM | P_KPROC;
543 		td2->td_pflags |= TDP_KTHREAD;
544 	}
545 
546 	p2->p_textvp = p1->p_textvp;
547 	p2->p_textdvp = p1->p_textdvp;
548 	p2->p_fd = fd;
549 	p2->p_fdtol = fdtol;
550 	p2->p_pd = pd;
551 
552 	if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
553 		p2->p_flag |= P_PROTECTED;
554 		p2->p_flag2 |= P2_INHERIT_PROTECTED;
555 	}
556 
557 	/*
558 	 * p_limit is copy-on-write.  Bump its refcount.
559 	 */
560 	lim_fork(p1, p2);
561 
562 	thread_cow_get_proc(td2, p2);
563 
564 	pstats_fork(p1->p_stats, p2->p_stats);
565 
566 	PROC_UNLOCK(p1);
567 	PROC_UNLOCK(p2);
568 
569 	/*
570 	 * Bump references to the text vnode and directory, and copy
571 	 * the hardlink name.
572 	 */
573 	if (p2->p_textvp != NULL)
574 		vrefact(p2->p_textvp);
575 	if (p2->p_textdvp != NULL)
576 		vrefact(p2->p_textdvp);
577 	p2->p_binname = p1->p_binname == NULL ? NULL :
578 	    strdup(p1->p_binname, M_PARGS);
579 
580 	/*
581 	 * Set up linkage for kernel based threading.
582 	 */
583 	if ((fr->fr_flags & RFTHREAD) != 0) {
584 		mtx_lock(&ppeers_lock);
585 		p2->p_peers = p1->p_peers;
586 		p1->p_peers = p2;
587 		p2->p_leader = p1->p_leader;
588 		mtx_unlock(&ppeers_lock);
589 		PROC_LOCK(p1->p_leader);
590 		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
591 			PROC_UNLOCK(p1->p_leader);
592 			/*
593 			 * The task leader is exiting, so process p1 is
594 			 * going to be killed shortly.  Since p1 obviously
595 			 * isn't dead yet, we know that the leader is either
596 			 * sending SIGKILL's to all the processes in this
597 			 * task or is sleeping waiting for all the peers to
598 			 * exit.  We let p1 complete the fork, but we need
599 			 * to go ahead and kill the new process p2 since
600 			 * the task leader may not get a chance to send
601 			 * SIGKILL to it.  We leave it on the list so that
602 			 * the task leader will wait for this new process
603 			 * to commit suicide.
604 			 */
605 			PROC_LOCK(p2);
606 			kern_psignal(p2, SIGKILL);
607 			PROC_UNLOCK(p2);
608 		} else
609 			PROC_UNLOCK(p1->p_leader);
610 	} else {
611 		p2->p_peers = NULL;
612 		p2->p_leader = p2;
613 	}
614 
615 	sx_xlock(&proctree_lock);
616 	PGRP_LOCK(p1->p_pgrp);
617 	PROC_LOCK(p2);
618 	PROC_LOCK(p1);
619 
620 	/*
621 	 * Preserve some more flags in subprocess.  P_PROFIL has already
622 	 * been preserved.
623 	 */
624 	p2->p_flag |= p1->p_flag & P_SUGID;
625 	td2->td_pflags |= (td->td_pflags & (TDP_ALTSTACK | TDP_SIGFASTBLOCK));
626 	SESS_LOCK(p1->p_session);
627 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
628 		p2->p_flag |= P_CONTROLT;
629 	SESS_UNLOCK(p1->p_session);
630 	if (fr->fr_flags & RFPPWAIT)
631 		p2->p_flag |= P_PPWAIT;
632 
633 	p2->p_pgrp = p1->p_pgrp;
634 	LIST_INSERT_AFTER(p1, p2, p_pglist);
635 	PGRP_UNLOCK(p1->p_pgrp);
636 	LIST_INIT(&p2->p_children);
637 	LIST_INIT(&p2->p_orphans);
638 
639 	callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);
640 	TAILQ_INIT(&p2->p_kqtim_stop);
641 
642 	/*
643 	 * This begins the section where we must prevent the parent
644 	 * from being swapped.
645 	 */
646 	_PHOLD(p1);
647 	PROC_UNLOCK(p1);
648 
649 	/*
650 	 * Attach the new process to its parent.
651 	 *
652 	 * If RFNOWAIT is set, the newly created process becomes a child
653 	 * of init.  This effectively disassociates the child from the
654 	 * parent.
655 	 */
656 	if ((fr->fr_flags & RFNOWAIT) != 0) {
657 		pptr = p1->p_reaper;
658 		p2->p_reaper = pptr;
659 	} else {
660 		p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ?
661 		    p1 : p1->p_reaper;
662 		pptr = p1;
663 	}
664 	p2->p_pptr = pptr;
665 	p2->p_oppid = pptr->p_pid;
666 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
667 	LIST_INIT(&p2->p_reaplist);
668 	LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling);
669 	if (p2->p_reaper == p1 && p1 != initproc) {
670 		p2->p_reapsubtree = p2->p_pid;
671 		proc_id_set_cond(PROC_ID_REAP, p2->p_pid);
672 	}
673 	sx_xunlock(&proctree_lock);
674 
675 	/* Inform accounting that we have forked. */
676 	p2->p_acflag = AFORK;
677 	PROC_UNLOCK(p2);
678 
679 #ifdef KTRACE
680 	ktrprocfork(p1, p2);
681 #endif
682 
683 	/*
684 	 * Finish creating the child process.  It will return via a different
685 	 * execution path later.  (ie: directly into user mode)
686 	 */
687 	vm_forkproc(td, p2, td2, vm2, fr->fr_flags);
688 
689 	if (fr->fr_flags == (RFFDG | RFPROC)) {
690 		VM_CNT_INC(v_forks);
691 		VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize +
692 		    p2->p_vmspace->vm_ssize);
693 	} else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
694 		VM_CNT_INC(v_vforks);
695 		VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize +
696 		    p2->p_vmspace->vm_ssize);
697 	} else if (p1 == &proc0) {
698 		VM_CNT_INC(v_kthreads);
699 		VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize +
700 		    p2->p_vmspace->vm_ssize);
701 	} else {
702 		VM_CNT_INC(v_rforks);
703 		VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize +
704 		    p2->p_vmspace->vm_ssize);
705 	}
706 
707 	/*
708 	 * Associate the process descriptor with the process before anything
709 	 * can happen that might cause that process to need the descriptor.
710 	 * However, don't do this until after fork(2) can no longer fail.
711 	 */
712 	if (fr->fr_flags & RFPROCDESC)
713 		procdesc_new(p2, fr->fr_pd_flags);
714 
715 	/*
716 	 * Both processes are set up, now check if any loadable modules want
717 	 * to adjust anything.
718 	 */
719 	EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags);
720 
721 	/*
722 	 * Set the child start time and mark the process as being complete.
723 	 */
724 	PROC_LOCK(p2);
725 	PROC_LOCK(p1);
726 	microuptime(&p2->p_stats->p_start);
727 	PROC_SLOCK(p2);
728 	p2->p_state = PRS_NORMAL;
729 	PROC_SUNLOCK(p2);
730 
731 #ifdef KDTRACE_HOOKS
732 	/*
733 	 * Tell the DTrace fasttrap provider about the new process so that any
734 	 * tracepoints inherited from the parent can be removed. We have to do
735 	 * this only after p_state is PRS_NORMAL since the fasttrap module will
736 	 * use pfind() later on.
737 	 */
738 	if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork)
739 		dtrace_fasttrap_fork(p1, p2);
740 #endif
741 	if (fr->fr_flags & RFPPWAIT) {
742 		td->td_pflags |= TDP_RFPPWAIT;
743 		td->td_rfppwait_p = p2;
744 		td->td_dbgflags |= TDB_VFORK;
745 	}
746 	PROC_UNLOCK(p2);
747 
748 	/*
749 	 * Tell any interested parties about the new process.
750 	 */
751 	knote_fork(p1->p_klist, p2->p_pid);
752 
753 	/*
754 	 * Now can be swapped.
755 	 */
756 	_PRELE(p1);
757 	PROC_UNLOCK(p1);
758 	SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags);
759 
760 	if (fr->fr_flags & RFPROCDESC) {
761 		procdesc_finit(p2->p_procdesc, fp_procdesc);
762 		fdrop(fp_procdesc, td);
763 	}
764 
765 	/*
766 	 * Speculative check for PTRACE_FORK. PTRACE_FORK is not
767 	 * synced with forks in progress so it is OK if we miss it
768 	 * if being set atm.
769 	 */
770 	if ((p1->p_ptevents & PTRACE_FORK) != 0) {
771 		sx_xlock(&proctree_lock);
772 		PROC_LOCK(p2);
773 
774 		/*
775 		 * p1->p_ptevents & p1->p_pptr are protected by both
776 		 * process and proctree locks for modifications,
777 		 * so owning proctree_lock allows the race-free read.
778 		 */
779 		if ((p1->p_ptevents & PTRACE_FORK) != 0) {
780 			/*
781 			 * Arrange for debugger to receive the fork event.
782 			 *
783 			 * We can report PL_FLAG_FORKED regardless of
784 			 * P_FOLLOWFORK settings, but it does not make a sense
785 			 * for runaway child.
786 			 */
787 			td->td_dbgflags |= TDB_FORK;
788 			td->td_dbg_forked = p2->p_pid;
789 			td2->td_dbgflags |= TDB_STOPATFORK;
790 			proc_set_traced(p2, true);
791 			CTR2(KTR_PTRACE,
792 			    "do_fork: attaching to new child pid %d: oppid %d",
793 			    p2->p_pid, p2->p_oppid);
794 			proc_reparent(p2, p1->p_pptr, false);
795 		}
796 		PROC_UNLOCK(p2);
797 		sx_xunlock(&proctree_lock);
798 	}
799 
800 	racct_proc_fork_done(p2);
801 
802 	if ((fr->fr_flags & RFSTOPPED) == 0) {
803 		if (fr->fr_pidp != NULL)
804 			*fr->fr_pidp = p2->p_pid;
805 		/*
806 		 * If RFSTOPPED not requested, make child runnable and
807 		 * add to run queue.
808 		 */
809 		thread_lock(td2);
810 		TD_SET_CAN_RUN(td2);
811 		sched_add(td2, SRQ_BORING);
812 	} else {
813 		*fr->fr_procp = p2;
814 	}
815 }
816 
817 void
818 fork_rfppwait(struct thread *td)
819 {
820 	struct proc *p, *p2;
821 
822 	MPASS(td->td_pflags & TDP_RFPPWAIT);
823 
824 	p = td->td_proc;
825 	/*
826 	 * Preserve synchronization semantics of vfork.  If
827 	 * waiting for child to exec or exit, fork set
828 	 * P_PPWAIT on child, and there we sleep on our proc
829 	 * (in case of exit).
830 	 *
831 	 * Do it after the ptracestop() above is finished, to
832 	 * not block our debugger until child execs or exits
833 	 * to finish vfork wait.
834 	 */
835 	td->td_pflags &= ~TDP_RFPPWAIT;
836 	p2 = td->td_rfppwait_p;
837 again:
838 	PROC_LOCK(p2);
839 	while (p2->p_flag & P_PPWAIT) {
840 		PROC_LOCK(p);
841 		if (thread_suspend_check_needed()) {
842 			PROC_UNLOCK(p2);
843 			thread_suspend_check(0);
844 			PROC_UNLOCK(p);
845 			goto again;
846 		} else {
847 			PROC_UNLOCK(p);
848 		}
849 		cv_timedwait(&p2->p_pwait, &p2->p_mtx, hz);
850 	}
851 	PROC_UNLOCK(p2);
852 
853 	if (td->td_dbgflags & TDB_VFORK) {
854 		PROC_LOCK(p);
855 		if (p->p_ptevents & PTRACE_VFORK)
856 			ptracestop(td, SIGTRAP, NULL);
857 		td->td_dbgflags &= ~TDB_VFORK;
858 		PROC_UNLOCK(p);
859 	}
860 }
861 
862 int
863 fork1(struct thread *td, struct fork_req *fr)
864 {
865 	struct proc *p1, *newproc;
866 	struct thread *td2;
867 	struct vmspace *vm2;
868 	struct ucred *cred;
869 	struct file *fp_procdesc;
870 	vm_ooffset_t mem_charged;
871 	int error, nprocs_new;
872 	static int curfail;
873 	static struct timeval lastfail;
874 	int flags, pages;
875 
876 	flags = fr->fr_flags;
877 	pages = fr->fr_pages;
878 
879 	if ((flags & RFSTOPPED) != 0)
880 		MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL);
881 	else
882 		MPASS(fr->fr_procp == NULL);
883 
884 	/* Check for the undefined or unimplemented flags. */
885 	if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0)
886 		return (EINVAL);
887 
888 	/* Signal value requires RFTSIGZMB. */
889 	if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0)
890 		return (EINVAL);
891 
892 	/* Can't copy and clear. */
893 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
894 		return (EINVAL);
895 
896 	/* Check the validity of the signal number. */
897 	if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG)
898 		return (EINVAL);
899 
900 	if ((flags & RFPROCDESC) != 0) {
901 		/* Can't not create a process yet get a process descriptor. */
902 		if ((flags & RFPROC) == 0)
903 			return (EINVAL);
904 
905 		/* Must provide a place to put a procdesc if creating one. */
906 		if (fr->fr_pd_fd == NULL)
907 			return (EINVAL);
908 
909 		/* Check if we are using supported flags. */
910 		if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0)
911 			return (EINVAL);
912 	}
913 
914 	p1 = td->td_proc;
915 
916 	/*
917 	 * Here we don't create a new process, but we divorce
918 	 * certain parts of a process from itself.
919 	 */
920 	if ((flags & RFPROC) == 0) {
921 		if (fr->fr_procp != NULL)
922 			*fr->fr_procp = NULL;
923 		else if (fr->fr_pidp != NULL)
924 			*fr->fr_pidp = 0;
925 		return (fork_norfproc(td, flags));
926 	}
927 
928 	fp_procdesc = NULL;
929 	newproc = NULL;
930 	vm2 = NULL;
931 
932 	/*
933 	 * Increment the nprocs resource before allocations occur.
934 	 * Although process entries are dynamically created, we still
935 	 * keep a global limit on the maximum number we will
936 	 * create. There are hard-limits as to the number of processes
937 	 * that can run, established by the KVA and memory usage for
938 	 * the process data.
939 	 *
940 	 * Don't allow a nonprivileged user to use the last ten
941 	 * processes; don't let root exceed the limit.
942 	 */
943 	nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1;
944 	if (nprocs_new >= maxproc - 10) {
945 		if (priv_check_cred(td->td_ucred, PRIV_MAXPROC) != 0 ||
946 		    nprocs_new >= maxproc) {
947 			error = EAGAIN;
948 			sx_xlock(&allproc_lock);
949 			if (ppsratecheck(&lastfail, &curfail, 1)) {
950 				printf("maxproc limit exceeded by uid %u "
951 				    "(pid %d); see tuning(7) and "
952 				    "login.conf(5)\n",
953 				    td->td_ucred->cr_ruid, p1->p_pid);
954 			}
955 			sx_xunlock(&allproc_lock);
956 			goto fail2;
957 		}
958 	}
959 
960 	/*
961 	 * If required, create a process descriptor in the parent first; we
962 	 * will abandon it if something goes wrong. We don't finit() until
963 	 * later.
964 	 */
965 	if (flags & RFPROCDESC) {
966 		error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd,
967 		    fr->fr_pd_flags, fr->fr_pd_fcaps);
968 		if (error != 0)
969 			goto fail2;
970 		AUDIT_ARG_FD(*fr->fr_pd_fd);
971 	}
972 
973 	mem_charged = 0;
974 	if (pages == 0)
975 		pages = kstack_pages;
976 	/* Allocate new proc. */
977 	newproc = uma_zalloc(proc_zone, M_WAITOK);
978 	td2 = FIRST_THREAD_IN_PROC(newproc);
979 	if (td2 == NULL) {
980 		td2 = thread_alloc(pages);
981 		if (td2 == NULL) {
982 			error = ENOMEM;
983 			goto fail2;
984 		}
985 		proc_linkup(newproc, td2);
986 	} else {
987 		kmsan_thread_alloc(td2);
988 		if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) {
989 			if (td2->td_kstack != 0)
990 				vm_thread_dispose(td2);
991 			if (!thread_alloc_stack(td2, pages)) {
992 				error = ENOMEM;
993 				goto fail2;
994 			}
995 		}
996 	}
997 
998 	if ((flags & RFMEM) == 0) {
999 		vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
1000 		if (vm2 == NULL) {
1001 			error = ENOMEM;
1002 			goto fail2;
1003 		}
1004 		if (!swap_reserve(mem_charged)) {
1005 			/*
1006 			 * The swap reservation failed. The accounting
1007 			 * from the entries of the copied vm2 will be
1008 			 * subtracted in vmspace_free(), so force the
1009 			 * reservation there.
1010 			 */
1011 			swap_reserve_force(mem_charged);
1012 			error = ENOMEM;
1013 			goto fail2;
1014 		}
1015 	} else
1016 		vm2 = NULL;
1017 
1018 	/*
1019 	 * XXX: This is ugly; when we copy resource usage, we need to bump
1020 	 *      per-cred resource counters.
1021 	 */
1022 	proc_set_cred_init(newproc, td->td_ucred);
1023 
1024 	/*
1025 	 * Initialize resource accounting for the child process.
1026 	 */
1027 	error = racct_proc_fork(p1, newproc);
1028 	if (error != 0) {
1029 		error = EAGAIN;
1030 		goto fail1;
1031 	}
1032 
1033 #ifdef MAC
1034 	mac_proc_init(newproc);
1035 #endif
1036 	newproc->p_klist = knlist_alloc(&newproc->p_mtx);
1037 	STAILQ_INIT(&newproc->p_ktr);
1038 
1039 	/*
1040 	 * Increment the count of procs running with this uid. Don't allow
1041 	 * a nonprivileged user to exceed their current limit.
1042 	 */
1043 	cred = td->td_ucred;
1044 	if (!chgproccnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_NPROC))) {
1045 		if (priv_check_cred(cred, PRIV_PROC_LIMIT) != 0)
1046 			goto fail0;
1047 		chgproccnt(cred->cr_ruidinfo, 1, 0);
1048 	}
1049 
1050 	do_fork(td, fr, newproc, td2, vm2, fp_procdesc);
1051 	return (0);
1052 fail0:
1053 	error = EAGAIN;
1054 #ifdef MAC
1055 	mac_proc_destroy(newproc);
1056 #endif
1057 	racct_proc_exit(newproc);
1058 fail1:
1059 	proc_unset_cred(newproc);
1060 fail2:
1061 	if (vm2 != NULL)
1062 		vmspace_free(vm2);
1063 	uma_zfree(proc_zone, newproc);
1064 	if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) {
1065 		fdclose(td, fp_procdesc, *fr->fr_pd_fd);
1066 		fdrop(fp_procdesc, td);
1067 	}
1068 	atomic_add_int(&nprocs, -1);
1069 	pause("fork", hz / 2);
1070 	return (error);
1071 }
1072 
1073 /*
1074  * Handle the return of a child process from fork1().  This function
1075  * is called from the MD fork_trampoline() entry point.
1076  */
1077 void
1078 fork_exit(void (*callout)(void *, struct trapframe *), void *arg,
1079     struct trapframe *frame)
1080 {
1081 	struct proc *p;
1082 	struct thread *td;
1083 	struct thread *dtd;
1084 
1085 	kmsan_mark(frame, sizeof(*frame), KMSAN_STATE_INITED);
1086 
1087 	td = curthread;
1088 	p = td->td_proc;
1089 	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
1090 
1091 	CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
1092 	    td, td_get_sched(td), p->p_pid, td->td_name);
1093 
1094 	sched_fork_exit(td);
1095 	/*
1096 	* Processes normally resume in mi_switch() after being
1097 	* cpu_switch()'ed to, but when children start up they arrive here
1098 	* instead, so we must do much the same things as mi_switch() would.
1099 	*/
1100 	if ((dtd = PCPU_GET(deadthread))) {
1101 		PCPU_SET(deadthread, NULL);
1102 		thread_stash(dtd);
1103 	}
1104 	thread_unlock(td);
1105 
1106 	/*
1107 	 * cpu_fork_kthread_handler intercepts this function call to
1108 	 * have this call a non-return function to stay in kernel mode.
1109 	 * initproc has its own fork handler, but it does return.
1110 	 */
1111 	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
1112 	callout(arg, frame);
1113 
1114 	/*
1115 	 * Check if a kernel thread misbehaved and returned from its main
1116 	 * function.
1117 	 */
1118 	if (p->p_flag & P_KPROC) {
1119 		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
1120 		    td->td_name, p->p_pid);
1121 		kthread_exit();
1122 	}
1123 	mtx_assert(&Giant, MA_NOTOWNED);
1124 
1125 	if (p->p_sysent->sv_schedtail != NULL)
1126 		(p->p_sysent->sv_schedtail)(td);
1127 }
1128 
1129 /*
1130  * Simplified back end of syscall(), used when returning from fork()
1131  * directly into user mode.  This function is passed in to fork_exit()
1132  * as the first parameter and is called when returning to a new
1133  * userland process.
1134  */
1135 void
1136 fork_return(struct thread *td, struct trapframe *frame)
1137 {
1138 	struct proc *p;
1139 
1140 	p = td->td_proc;
1141 	if (td->td_dbgflags & TDB_STOPATFORK) {
1142 		PROC_LOCK(p);
1143 		if ((p->p_flag & P_TRACED) != 0) {
1144 			/*
1145 			 * Inform the debugger if one is still present.
1146 			 */
1147 			td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP;
1148 			ptracestop(td, SIGSTOP, NULL);
1149 			td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX);
1150 		} else {
1151 			/*
1152 			 * ... otherwise clear the request.
1153 			 */
1154 			td->td_dbgflags &= ~TDB_STOPATFORK;
1155 		}
1156 		PROC_UNLOCK(p);
1157 	} else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) {
1158  		/*
1159 		 * This is the start of a new thread in a traced
1160 		 * process.  Report a system call exit event.
1161 		 */
1162 		PROC_LOCK(p);
1163 		td->td_dbgflags |= TDB_SCX;
1164 		if ((p->p_ptevents & PTRACE_SCX) != 0 ||
1165 		    (td->td_dbgflags & TDB_BORN) != 0)
1166 			ptracestop(td, SIGTRAP, NULL);
1167 		td->td_dbgflags &= ~(TDB_SCX | TDB_BORN);
1168 		PROC_UNLOCK(p);
1169 	}
1170 
1171 	/*
1172 	 * If the prison was killed mid-fork, die along with it.
1173 	 */
1174 	if (!prison_isalive(td->td_ucred->cr_prison))
1175 		exit1(td, 0, SIGKILL);
1176 
1177 	userret(td, frame);
1178 
1179 #ifdef KTRACE
1180 	if (KTRPOINT(td, KTR_SYSRET))
1181 		ktrsysret(SYS_fork, 0, 0);
1182 #endif
1183 }
1184