1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kern_exit.c 8.7 (Berkeley) 2/12/94 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_compat.h" 41 #include "opt_ktrace.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/sysproto.h> 46 #include <sys/capsicum.h> 47 #include <sys/eventhandler.h> 48 #include <sys/kernel.h> 49 #include <sys/malloc.h> 50 #include <sys/lock.h> 51 #include <sys/mutex.h> 52 #include <sys/proc.h> 53 #include <sys/procdesc.h> 54 #include <sys/pioctl.h> 55 #include <sys/jail.h> 56 #include <sys/tty.h> 57 #include <sys/wait.h> 58 #include <sys/vmmeter.h> 59 #include <sys/vnode.h> 60 #include <sys/racct.h> 61 #include <sys/resourcevar.h> 62 #include <sys/sbuf.h> 63 #include <sys/signalvar.h> 64 #include <sys/sched.h> 65 #include <sys/sx.h> 66 #include <sys/syscallsubr.h> 67 #include <sys/syslog.h> 68 #include <sys/ptrace.h> 69 #include <sys/acct.h> /* for acct_process() function prototype */ 70 #include <sys/filedesc.h> 71 #include <sys/sdt.h> 72 #include <sys/shm.h> 73 #include <sys/sem.h> 74 #ifdef KTRACE 75 #include <sys/ktrace.h> 76 #endif 77 78 #include <security/audit/audit.h> 79 #include <security/mac/mac_framework.h> 80 81 #include <vm/vm.h> 82 #include <vm/vm_extern.h> 83 #include <vm/vm_param.h> 84 #include <vm/pmap.h> 85 #include <vm/vm_map.h> 86 #include <vm/vm_page.h> 87 #include <vm/uma.h> 88 89 #ifdef KDTRACE_HOOKS 90 #include <sys/dtrace_bsd.h> 91 dtrace_execexit_func_t dtrace_fasttrap_exit; 92 #endif 93 94 SDT_PROVIDER_DECLARE(proc); 95 SDT_PROBE_DEFINE1(proc, kernel, , exit, "int"); 96 97 /* Hook for NFS teardown procedure. */ 98 void (*nlminfo_release_p)(struct proc *p); 99 100 struct proc * 101 proc_realparent(struct proc *child) 102 { 103 struct proc *p, *parent; 104 105 sx_assert(&proctree_lock, SX_LOCKED); 106 if ((child->p_treeflag & P_TREE_ORPHANED) == 0) { 107 if (child->p_oppid == 0 || 108 child->p_pptr->p_pid == child->p_oppid) 109 parent = child->p_pptr; 110 else 111 parent = initproc; 112 return (parent); 113 } 114 for (p = child; (p->p_treeflag & P_TREE_FIRST_ORPHAN) == 0;) { 115 /* Cannot use LIST_PREV(), since the list head is not known. */ 116 p = __containerof(p->p_orphan.le_prev, struct proc, 117 p_orphan.le_next); 118 KASSERT((p->p_treeflag & P_TREE_ORPHANED) != 0, 119 ("missing P_ORPHAN %p", p)); 120 } 121 parent = __containerof(p->p_orphan.le_prev, struct proc, 122 p_orphans.lh_first); 123 return (parent); 124 } 125 126 void 127 reaper_abandon_children(struct proc *p, bool exiting) 128 { 129 struct proc *p1, *p2, *ptmp; 130 131 sx_assert(&proctree_lock, SX_LOCKED); 132 KASSERT(p != initproc, ("reaper_abandon_children for initproc")); 133 if ((p->p_treeflag & P_TREE_REAPER) == 0) 134 return; 135 p1 = p->p_reaper; 136 LIST_FOREACH_SAFE(p2, &p->p_reaplist, p_reapsibling, ptmp) { 137 LIST_REMOVE(p2, p_reapsibling); 138 p2->p_reaper = p1; 139 p2->p_reapsubtree = p->p_reapsubtree; 140 LIST_INSERT_HEAD(&p1->p_reaplist, p2, p_reapsibling); 141 if (exiting && p2->p_pptr == p) { 142 PROC_LOCK(p2); 143 proc_reparent(p2, p1); 144 PROC_UNLOCK(p2); 145 } 146 } 147 KASSERT(LIST_EMPTY(&p->p_reaplist), ("p_reaplist not empty")); 148 p->p_treeflag &= ~P_TREE_REAPER; 149 } 150 151 static void 152 clear_orphan(struct proc *p) 153 { 154 struct proc *p1; 155 156 sx_assert(&proctree_lock, SA_XLOCKED); 157 if ((p->p_treeflag & P_TREE_ORPHANED) == 0) 158 return; 159 if ((p->p_treeflag & P_TREE_FIRST_ORPHAN) != 0) { 160 p1 = LIST_NEXT(p, p_orphan); 161 if (p1 != NULL) 162 p1->p_treeflag |= P_TREE_FIRST_ORPHAN; 163 p->p_treeflag &= ~P_TREE_FIRST_ORPHAN; 164 } 165 LIST_REMOVE(p, p_orphan); 166 p->p_treeflag &= ~P_TREE_ORPHANED; 167 } 168 169 /* 170 * exit -- death of process. 171 */ 172 void 173 sys_sys_exit(struct thread *td, struct sys_exit_args *uap) 174 { 175 176 exit1(td, W_EXITCODE(uap->rval, 0)); 177 /* NOTREACHED */ 178 } 179 180 /* 181 * Exit: deallocate address space and other resources, change proc state to 182 * zombie, and unlink proc from allproc and parent's lists. Save exit status 183 * and rusage for wait(). Check for child processes and orphan them. 184 */ 185 void 186 exit1(struct thread *td, int rv) 187 { 188 struct proc *p, *nq, *q, *t; 189 struct thread *tdt; 190 struct vnode *ttyvp = NULL; 191 192 mtx_assert(&Giant, MA_NOTOWNED); 193 194 p = td->td_proc; 195 /* 196 * XXX in case we're rebooting we just let init die in order to 197 * work around an unsolved stack overflow seen very late during 198 * shutdown on sparc64 when the gmirror worker process exists. 199 */ 200 if (p == initproc && rebooting == 0) { 201 printf("init died (signal %d, exit %d)\n", 202 WTERMSIG(rv), WEXITSTATUS(rv)); 203 panic("Going nowhere without my init!"); 204 } 205 206 /* 207 * MUST abort all other threads before proceeding past here. 208 */ 209 PROC_LOCK(p); 210 /* 211 * First check if some other thread or external request got 212 * here before us. If so, act appropriately: exit or suspend. 213 * We must ensure that stop requests are handled before we set 214 * P_WEXIT. 215 */ 216 thread_suspend_check(0); 217 while (p->p_flag & P_HADTHREADS) { 218 /* 219 * Kill off the other threads. This requires 220 * some co-operation from other parts of the kernel 221 * so it may not be instantaneous. With this state set 222 * any thread entering the kernel from userspace will 223 * thread_exit() in trap(). Any thread attempting to 224 * sleep will return immediately with EINTR or EWOULDBLOCK 225 * which will hopefully force them to back out to userland 226 * freeing resources as they go. Any thread attempting 227 * to return to userland will thread_exit() from userret(). 228 * thread_exit() will unsuspend us when the last of the 229 * other threads exits. 230 * If there is already a thread singler after resumption, 231 * calling thread_single will fail; in that case, we just 232 * re-check all suspension request, the thread should 233 * either be suspended there or exit. 234 */ 235 if (!thread_single(p, SINGLE_EXIT)) 236 /* 237 * All other activity in this process is now 238 * stopped. Threading support has been turned 239 * off. 240 */ 241 break; 242 /* 243 * Recheck for new stop or suspend requests which 244 * might appear while process lock was dropped in 245 * thread_single(). 246 */ 247 thread_suspend_check(0); 248 } 249 KASSERT(p->p_numthreads == 1, 250 ("exit1: proc %p exiting with %d threads", p, p->p_numthreads)); 251 racct_sub(p, RACCT_NTHR, 1); 252 /* 253 * Wakeup anyone in procfs' PIOCWAIT. They should have a hold 254 * on our vmspace, so we should block below until they have 255 * released their reference to us. Note that if they have 256 * requested S_EXIT stops we will block here until they ack 257 * via PIOCCONT. 258 */ 259 _STOPEVENT(p, S_EXIT, rv); 260 261 /* 262 * Ignore any pending request to stop due to a stop signal. 263 * Once P_WEXIT is set, future requests will be ignored as 264 * well. 265 */ 266 p->p_flag &= ~P_STOPPED_SIG; 267 KASSERT(!P_SHOULDSTOP(p), ("exiting process is stopped")); 268 269 /* 270 * Note that we are exiting and do another wakeup of anyone in 271 * PIOCWAIT in case they aren't listening for S_EXIT stops or 272 * decided to wait again after we told them we are exiting. 273 */ 274 p->p_flag |= P_WEXIT; 275 wakeup(&p->p_stype); 276 277 /* 278 * Wait for any processes that have a hold on our vmspace to 279 * release their reference. 280 */ 281 while (p->p_lock > 0) 282 msleep(&p->p_lock, &p->p_mtx, PWAIT, "exithold", 0); 283 284 p->p_xstat = rv; /* Let event handler change exit status */ 285 PROC_UNLOCK(p); 286 /* Drain the limit callout while we don't have the proc locked */ 287 callout_drain(&p->p_limco); 288 289 #ifdef AUDIT 290 /* 291 * The Sun BSM exit token contains two components: an exit status as 292 * passed to exit(), and a return value to indicate what sort of exit 293 * it was. The exit status is WEXITSTATUS(rv), but it's not clear 294 * what the return value is. 295 */ 296 AUDIT_ARG_EXIT(WEXITSTATUS(rv), 0); 297 AUDIT_SYSCALL_EXIT(0, td); 298 #endif 299 300 /* Are we a task leader with peers? */ 301 if (p->p_peers != NULL && p == p->p_leader) { 302 mtx_lock(&ppeers_lock); 303 q = p->p_peers; 304 while (q != NULL) { 305 PROC_LOCK(q); 306 kern_psignal(q, SIGKILL); 307 PROC_UNLOCK(q); 308 q = q->p_peers; 309 } 310 while (p->p_peers != NULL) 311 msleep(p, &ppeers_lock, PWAIT, "exit1", 0); 312 mtx_unlock(&ppeers_lock); 313 } 314 315 /* 316 * Check if any loadable modules need anything done at process exit. 317 * E.g. SYSV IPC stuff 318 * XXX what if one of these generates an error? 319 */ 320 EVENTHANDLER_INVOKE(process_exit, p); 321 322 /* 323 * If parent is waiting for us to exit or exec, 324 * P_PPWAIT is set; we will wakeup the parent below. 325 */ 326 PROC_LOCK(p); 327 rv = p->p_xstat; /* Event handler could change exit status */ 328 stopprofclock(p); 329 p->p_flag &= ~(P_TRACED | P_PPWAIT | P_PPTRACE); 330 331 /* 332 * Stop the real interval timer. If the handler is currently 333 * executing, prevent it from rearming itself and let it finish. 334 */ 335 if (timevalisset(&p->p_realtimer.it_value) && 336 callout_stop(&p->p_itcallout) == 0) { 337 timevalclear(&p->p_realtimer.it_interval); 338 msleep(&p->p_itcallout, &p->p_mtx, PWAIT, "ritwait", 0); 339 KASSERT(!timevalisset(&p->p_realtimer.it_value), 340 ("realtime timer is still armed")); 341 } 342 PROC_UNLOCK(p); 343 344 /* 345 * Reset any sigio structures pointing to us as a result of 346 * F_SETOWN with our pid. 347 */ 348 funsetownlst(&p->p_sigiolst); 349 350 /* 351 * If this process has an nlminfo data area (for lockd), release it 352 */ 353 if (nlminfo_release_p != NULL && p->p_nlminfo != NULL) 354 (*nlminfo_release_p)(p); 355 356 /* 357 * Close open files and release open-file table. 358 * This may block! 359 */ 360 fdescfree(td); 361 362 /* 363 * If this thread tickled GEOM, we need to wait for the giggling to 364 * stop before we return to userland 365 */ 366 if (td->td_pflags & TDP_GEOM) 367 g_waitidle(); 368 369 /* 370 * Remove ourself from our leader's peer list and wake our leader. 371 */ 372 if (p->p_leader->p_peers != NULL) { 373 mtx_lock(&ppeers_lock); 374 if (p->p_leader->p_peers != NULL) { 375 q = p->p_leader; 376 while (q->p_peers != p) 377 q = q->p_peers; 378 q->p_peers = p->p_peers; 379 wakeup(p->p_leader); 380 } 381 mtx_unlock(&ppeers_lock); 382 } 383 384 vmspace_exit(td); 385 386 sx_xlock(&proctree_lock); 387 if (SESS_LEADER(p)) { 388 struct session *sp = p->p_session; 389 struct tty *tp; 390 391 /* 392 * s_ttyp is not zero'd; we use this to indicate that 393 * the session once had a controlling terminal. (for 394 * logging and informational purposes) 395 */ 396 SESS_LOCK(sp); 397 ttyvp = sp->s_ttyvp; 398 tp = sp->s_ttyp; 399 sp->s_ttyvp = NULL; 400 sp->s_ttydp = NULL; 401 sp->s_leader = NULL; 402 SESS_UNLOCK(sp); 403 404 /* 405 * Signal foreground pgrp and revoke access to 406 * controlling terminal if it has not been revoked 407 * already. 408 * 409 * Because the TTY may have been revoked in the mean 410 * time and could already have a new session associated 411 * with it, make sure we don't send a SIGHUP to a 412 * foreground process group that does not belong to this 413 * session. 414 */ 415 416 if (tp != NULL) { 417 tty_lock(tp); 418 if (tp->t_session == sp) 419 tty_signal_pgrp(tp, SIGHUP); 420 tty_unlock(tp); 421 } 422 423 if (ttyvp != NULL) { 424 sx_xunlock(&proctree_lock); 425 if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) { 426 VOP_REVOKE(ttyvp, REVOKEALL); 427 VOP_UNLOCK(ttyvp, 0); 428 } 429 sx_xlock(&proctree_lock); 430 } 431 } 432 fixjobc(p, p->p_pgrp, 0); 433 sx_xunlock(&proctree_lock); 434 (void)acct_process(td); 435 436 /* Release the TTY now we've unlocked everything. */ 437 if (ttyvp != NULL) 438 vrele(ttyvp); 439 #ifdef KTRACE 440 ktrprocexit(td); 441 #endif 442 /* 443 * Release reference to text vnode 444 */ 445 if (p->p_textvp != NULL) { 446 vrele(p->p_textvp); 447 p->p_textvp = NULL; 448 } 449 450 /* 451 * Release our limits structure. 452 */ 453 lim_free(p->p_limit); 454 p->p_limit = NULL; 455 456 tidhash_remove(td); 457 458 /* 459 * Remove proc from allproc queue and pidhash chain. 460 * Place onto zombproc. Unlink from parent's child list. 461 */ 462 sx_xlock(&allproc_lock); 463 LIST_REMOVE(p, p_list); 464 LIST_INSERT_HEAD(&zombproc, p, p_list); 465 LIST_REMOVE(p, p_hash); 466 sx_xunlock(&allproc_lock); 467 468 /* 469 * Call machine-dependent code to release any 470 * machine-dependent resources other than the address space. 471 * The address space is released by "vmspace_exitfree(p)" in 472 * vm_waitproc(). 473 */ 474 cpu_exit(td); 475 476 WITNESS_WARN(WARN_PANIC, NULL, "process (pid %d) exiting", p->p_pid); 477 478 /* 479 * Reparent all children processes: 480 * - traced ones to the original parent (or init if we are that parent) 481 * - the rest to init 482 */ 483 sx_xlock(&proctree_lock); 484 q = LIST_FIRST(&p->p_children); 485 if (q != NULL) /* only need this if any child is S_ZOMB */ 486 wakeup(q->p_reaper); 487 for (; q != NULL; q = nq) { 488 nq = LIST_NEXT(q, p_sibling); 489 PROC_LOCK(q); 490 q->p_sigparent = SIGCHLD; 491 492 if (!(q->p_flag & P_TRACED)) { 493 proc_reparent(q, q->p_reaper); 494 } else { 495 /* 496 * Traced processes are killed since their existence 497 * means someone is screwing up. 498 */ 499 t = proc_realparent(q); 500 if (t == p) { 501 proc_reparent(q, q->p_reaper); 502 } else { 503 PROC_LOCK(t); 504 proc_reparent(q, t); 505 PROC_UNLOCK(t); 506 } 507 /* 508 * Since q was found on our children list, the 509 * proc_reparent() call moved q to the orphan 510 * list due to present P_TRACED flag. Clear 511 * orphan link for q now while q is locked. 512 */ 513 clear_orphan(q); 514 q->p_flag &= ~(P_TRACED | P_STOPPED_TRACE); 515 FOREACH_THREAD_IN_PROC(q, tdt) 516 tdt->td_dbgflags &= ~TDB_SUSPEND; 517 kern_psignal(q, SIGKILL); 518 } 519 PROC_UNLOCK(q); 520 } 521 522 /* 523 * Also get rid of our orphans. 524 */ 525 while ((q = LIST_FIRST(&p->p_orphans)) != NULL) { 526 PROC_LOCK(q); 527 clear_orphan(q); 528 PROC_UNLOCK(q); 529 } 530 531 /* Save exit status. */ 532 PROC_LOCK(p); 533 p->p_xthread = td; 534 535 /* Tell the prison that we are gone. */ 536 prison_proc_free(p->p_ucred->cr_prison); 537 538 #ifdef KDTRACE_HOOKS 539 /* 540 * Tell the DTrace fasttrap provider about the exit if it 541 * has declared an interest. 542 */ 543 if (dtrace_fasttrap_exit) 544 dtrace_fasttrap_exit(p); 545 #endif 546 547 /* 548 * Notify interested parties of our demise. 549 */ 550 KNOTE_LOCKED(&p->p_klist, NOTE_EXIT); 551 552 #ifdef KDTRACE_HOOKS 553 int reason = CLD_EXITED; 554 if (WCOREDUMP(rv)) 555 reason = CLD_DUMPED; 556 else if (WIFSIGNALED(rv)) 557 reason = CLD_KILLED; 558 SDT_PROBE(proc, kernel, , exit, reason, 0, 0, 0, 0); 559 #endif 560 561 /* 562 * Just delete all entries in the p_klist. At this point we won't 563 * report any more events, and there are nasty race conditions that 564 * can beat us if we don't. 565 */ 566 knlist_clear(&p->p_klist, 1); 567 568 /* 569 * If this is a process with a descriptor, we may not need to deliver 570 * a signal to the parent. proctree_lock is held over 571 * procdesc_exit() to serialize concurrent calls to close() and 572 * exit(). 573 */ 574 if (p->p_procdesc == NULL || procdesc_exit(p)) { 575 /* 576 * Notify parent that we're gone. If parent has the 577 * PS_NOCLDWAIT flag set, or if the handler is set to SIG_IGN, 578 * notify process 1 instead (and hope it will handle this 579 * situation). 580 */ 581 PROC_LOCK(p->p_pptr); 582 mtx_lock(&p->p_pptr->p_sigacts->ps_mtx); 583 if (p->p_pptr->p_sigacts->ps_flag & 584 (PS_NOCLDWAIT | PS_CLDSIGIGN)) { 585 struct proc *pp; 586 587 mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx); 588 pp = p->p_pptr; 589 PROC_UNLOCK(pp); 590 proc_reparent(p, p->p_reaper); 591 p->p_sigparent = SIGCHLD; 592 PROC_LOCK(p->p_pptr); 593 594 /* 595 * Notify parent, so in case he was wait(2)ing or 596 * executing waitpid(2) with our pid, he will 597 * continue. 598 */ 599 wakeup(pp); 600 } else 601 mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx); 602 603 if (p->p_pptr == p->p_reaper || p->p_pptr == initproc) 604 childproc_exited(p); 605 else if (p->p_sigparent != 0) { 606 if (p->p_sigparent == SIGCHLD) 607 childproc_exited(p); 608 else /* LINUX thread */ 609 kern_psignal(p->p_pptr, p->p_sigparent); 610 } 611 } else 612 PROC_LOCK(p->p_pptr); 613 sx_xunlock(&proctree_lock); 614 615 /* 616 * The state PRS_ZOMBIE prevents other proesses from sending 617 * signal to the process, to avoid memory leak, we free memory 618 * for signal queue at the time when the state is set. 619 */ 620 sigqueue_flush(&p->p_sigqueue); 621 sigqueue_flush(&td->td_sigqueue); 622 623 /* 624 * We have to wait until after acquiring all locks before 625 * changing p_state. We need to avoid all possible context 626 * switches (including ones from blocking on a mutex) while 627 * marked as a zombie. We also have to set the zombie state 628 * before we release the parent process' proc lock to avoid 629 * a lost wakeup. So, we first call wakeup, then we grab the 630 * sched lock, update the state, and release the parent process' 631 * proc lock. 632 */ 633 wakeup(p->p_pptr); 634 cv_broadcast(&p->p_pwait); 635 sched_exit(p->p_pptr, td); 636 PROC_SLOCK(p); 637 p->p_state = PRS_ZOMBIE; 638 PROC_UNLOCK(p->p_pptr); 639 640 /* 641 * Hopefully no one will try to deliver a signal to the process this 642 * late in the game. 643 */ 644 knlist_destroy(&p->p_klist); 645 646 /* 647 * Save our children's rusage information in our exit rusage. 648 */ 649 PROC_STATLOCK(p); 650 ruadd(&p->p_ru, &p->p_rux, &p->p_stats->p_cru, &p->p_crux); 651 PROC_STATUNLOCK(p); 652 653 /* 654 * Make sure the scheduler takes this thread out of its tables etc. 655 * This will also release this thread's reference to the ucred. 656 * Other thread parts to release include pcb bits and such. 657 */ 658 thread_exit(); 659 } 660 661 662 #ifndef _SYS_SYSPROTO_H_ 663 struct abort2_args { 664 char *why; 665 int nargs; 666 void **args; 667 }; 668 #endif 669 670 int 671 sys_abort2(struct thread *td, struct abort2_args *uap) 672 { 673 struct proc *p = td->td_proc; 674 struct sbuf *sb; 675 void *uargs[16]; 676 int error, i, sig; 677 678 /* 679 * Do it right now so we can log either proper call of abort2(), or 680 * note, that invalid argument was passed. 512 is big enough to 681 * handle 16 arguments' descriptions with additional comments. 682 */ 683 sb = sbuf_new(NULL, NULL, 512, SBUF_FIXEDLEN); 684 sbuf_clear(sb); 685 sbuf_printf(sb, "%s(pid %d uid %d) aborted: ", 686 p->p_comm, p->p_pid, td->td_ucred->cr_uid); 687 /* 688 * Since we can't return from abort2(), send SIGKILL in cases, where 689 * abort2() was called improperly 690 */ 691 sig = SIGKILL; 692 /* Prevent from DoSes from user-space. */ 693 if (uap->nargs < 0 || uap->nargs > 16) 694 goto out; 695 if (uap->nargs > 0) { 696 if (uap->args == NULL) 697 goto out; 698 error = copyin(uap->args, uargs, uap->nargs * sizeof(void *)); 699 if (error != 0) 700 goto out; 701 } 702 /* 703 * Limit size of 'reason' string to 128. Will fit even when 704 * maximal number of arguments was chosen to be logged. 705 */ 706 if (uap->why != NULL) { 707 error = sbuf_copyin(sb, uap->why, 128); 708 if (error < 0) 709 goto out; 710 } else { 711 sbuf_printf(sb, "(null)"); 712 } 713 if (uap->nargs > 0) { 714 sbuf_printf(sb, "("); 715 for (i = 0;i < uap->nargs; i++) 716 sbuf_printf(sb, "%s%p", i == 0 ? "" : ", ", uargs[i]); 717 sbuf_printf(sb, ")"); 718 } 719 /* 720 * Final stage: arguments were proper, string has been 721 * successfully copied from userspace, and copying pointers 722 * from user-space succeed. 723 */ 724 sig = SIGABRT; 725 out: 726 if (sig == SIGKILL) { 727 sbuf_trim(sb); 728 sbuf_printf(sb, " (Reason text inaccessible)"); 729 } 730 sbuf_cat(sb, "\n"); 731 sbuf_finish(sb); 732 log(LOG_INFO, "%s", sbuf_data(sb)); 733 sbuf_delete(sb); 734 exit1(td, W_EXITCODE(0, sig)); 735 return (0); 736 } 737 738 739 #ifdef COMPAT_43 740 /* 741 * The dirty work is handled by kern_wait(). 742 */ 743 int 744 owait(struct thread *td, struct owait_args *uap __unused) 745 { 746 int error, status; 747 748 error = kern_wait(td, WAIT_ANY, &status, 0, NULL); 749 if (error == 0) 750 td->td_retval[1] = status; 751 return (error); 752 } 753 #endif /* COMPAT_43 */ 754 755 /* 756 * The dirty work is handled by kern_wait(). 757 */ 758 int 759 sys_wait4(struct thread *td, struct wait4_args *uap) 760 { 761 struct rusage ru, *rup; 762 int error, status; 763 764 if (uap->rusage != NULL) 765 rup = &ru; 766 else 767 rup = NULL; 768 error = kern_wait(td, uap->pid, &status, uap->options, rup); 769 if (uap->status != NULL && error == 0) 770 error = copyout(&status, uap->status, sizeof(status)); 771 if (uap->rusage != NULL && error == 0) 772 error = copyout(&ru, uap->rusage, sizeof(struct rusage)); 773 return (error); 774 } 775 776 int 777 sys_wait6(struct thread *td, struct wait6_args *uap) 778 { 779 struct __wrusage wru, *wrup; 780 siginfo_t si, *sip; 781 idtype_t idtype; 782 id_t id; 783 int error, status; 784 785 idtype = uap->idtype; 786 id = uap->id; 787 788 if (uap->wrusage != NULL) 789 wrup = &wru; 790 else 791 wrup = NULL; 792 793 if (uap->info != NULL) { 794 sip = &si; 795 bzero(sip, sizeof(*sip)); 796 } else 797 sip = NULL; 798 799 /* 800 * We expect all callers of wait6() to know about WEXITED and 801 * WTRAPPED. 802 */ 803 error = kern_wait6(td, idtype, id, &status, uap->options, wrup, sip); 804 805 if (uap->status != NULL && error == 0) 806 error = copyout(&status, uap->status, sizeof(status)); 807 if (uap->wrusage != NULL && error == 0) 808 error = copyout(&wru, uap->wrusage, sizeof(wru)); 809 if (uap->info != NULL && error == 0) 810 error = copyout(&si, uap->info, sizeof(si)); 811 return (error); 812 } 813 814 /* 815 * Reap the remains of a zombie process and optionally return status and 816 * rusage. Asserts and will release both the proctree_lock and the process 817 * lock as part of its work. 818 */ 819 void 820 proc_reap(struct thread *td, struct proc *p, int *status, int options) 821 { 822 struct proc *q, *t; 823 824 sx_assert(&proctree_lock, SA_XLOCKED); 825 PROC_LOCK_ASSERT(p, MA_OWNED); 826 PROC_SLOCK_ASSERT(p, MA_OWNED); 827 KASSERT(p->p_state == PRS_ZOMBIE, ("proc_reap: !PRS_ZOMBIE")); 828 829 q = td->td_proc; 830 831 PROC_SUNLOCK(p); 832 td->td_retval[0] = p->p_pid; 833 if (status) 834 *status = p->p_xstat; /* convert to int */ 835 if (options & WNOWAIT) { 836 /* 837 * Only poll, returning the status. Caller does not wish to 838 * release the proc struct just yet. 839 */ 840 PROC_UNLOCK(p); 841 sx_xunlock(&proctree_lock); 842 return; 843 } 844 845 PROC_LOCK(q); 846 sigqueue_take(p->p_ksi); 847 PROC_UNLOCK(q); 848 PROC_UNLOCK(p); 849 850 /* 851 * If we got the child via a ptrace 'attach', we need to give it back 852 * to the old parent. 853 */ 854 if (p->p_oppid != 0) { 855 t = proc_realparent(p); 856 PROC_LOCK(t); 857 PROC_LOCK(p); 858 proc_reparent(p, t); 859 p->p_oppid = 0; 860 PROC_UNLOCK(p); 861 pksignal(t, SIGCHLD, p->p_ksi); 862 wakeup(t); 863 cv_broadcast(&p->p_pwait); 864 PROC_UNLOCK(t); 865 sx_xunlock(&proctree_lock); 866 return; 867 } 868 869 /* 870 * Remove other references to this process to ensure we have an 871 * exclusive reference. 872 */ 873 sx_xlock(&allproc_lock); 874 LIST_REMOVE(p, p_list); /* off zombproc */ 875 sx_xunlock(&allproc_lock); 876 LIST_REMOVE(p, p_sibling); 877 reaper_abandon_children(p, true); 878 LIST_REMOVE(p, p_reapsibling); 879 PROC_LOCK(p); 880 clear_orphan(p); 881 PROC_UNLOCK(p); 882 leavepgrp(p); 883 if (p->p_procdesc != NULL) 884 procdesc_reap(p); 885 sx_xunlock(&proctree_lock); 886 887 /* 888 * As a side effect of this lock, we know that all other writes to 889 * this proc are visible now, so no more locking is needed for p. 890 */ 891 PROC_LOCK(p); 892 p->p_xstat = 0; /* XXX: why? */ 893 PROC_UNLOCK(p); 894 PROC_LOCK(q); 895 ruadd(&q->p_stats->p_cru, &q->p_crux, &p->p_ru, &p->p_rux); 896 PROC_UNLOCK(q); 897 898 /* 899 * Decrement the count of procs running with this uid. 900 */ 901 (void)chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0); 902 903 /* 904 * Destroy resource accounting information associated with the process. 905 */ 906 #ifdef RACCT 907 PROC_LOCK(p); 908 racct_sub(p, RACCT_NPROC, 1); 909 PROC_UNLOCK(p); 910 #endif 911 racct_proc_exit(p); 912 913 /* 914 * Free credentials, arguments, and sigacts. 915 */ 916 crfree(p->p_ucred); 917 p->p_ucred = NULL; 918 pargs_drop(p->p_args); 919 p->p_args = NULL; 920 sigacts_free(p->p_sigacts); 921 p->p_sigacts = NULL; 922 923 /* 924 * Do any thread-system specific cleanups. 925 */ 926 thread_wait(p); 927 928 /* 929 * Give vm and machine-dependent layer a chance to free anything that 930 * cpu_exit couldn't release while still running in process context. 931 */ 932 vm_waitproc(p); 933 #ifdef MAC 934 mac_proc_destroy(p); 935 #endif 936 KASSERT(FIRST_THREAD_IN_PROC(p), 937 ("proc_reap: no residual thread!")); 938 uma_zfree(proc_zone, p); 939 sx_xlock(&allproc_lock); 940 nprocs--; 941 sx_xunlock(&allproc_lock); 942 } 943 944 static int 945 proc_to_reap(struct thread *td, struct proc *p, idtype_t idtype, id_t id, 946 int *status, int options, struct __wrusage *wrusage, siginfo_t *siginfo) 947 { 948 struct proc *q; 949 struct rusage *rup; 950 951 sx_assert(&proctree_lock, SA_XLOCKED); 952 953 q = td->td_proc; 954 PROC_LOCK(p); 955 956 switch (idtype) { 957 case P_ALL: 958 break; 959 case P_PID: 960 if (p->p_pid != (pid_t)id) { 961 PROC_UNLOCK(p); 962 return (0); 963 } 964 break; 965 case P_PGID: 966 if (p->p_pgid != (pid_t)id) { 967 PROC_UNLOCK(p); 968 return (0); 969 } 970 break; 971 case P_SID: 972 if (p->p_session->s_sid != (pid_t)id) { 973 PROC_UNLOCK(p); 974 return (0); 975 } 976 break; 977 case P_UID: 978 if (p->p_ucred->cr_uid != (uid_t)id) { 979 PROC_UNLOCK(p); 980 return (0); 981 } 982 break; 983 case P_GID: 984 if (p->p_ucred->cr_gid != (gid_t)id) { 985 PROC_UNLOCK(p); 986 return (0); 987 } 988 break; 989 case P_JAILID: 990 if (p->p_ucred->cr_prison->pr_id != (int)id) { 991 PROC_UNLOCK(p); 992 return (0); 993 } 994 break; 995 /* 996 * It seems that the thread structures get zeroed out 997 * at process exit. This makes it impossible to 998 * support P_SETID, P_CID or P_CPUID. 999 */ 1000 default: 1001 PROC_UNLOCK(p); 1002 return (0); 1003 } 1004 1005 if (p_canwait(td, p)) { 1006 PROC_UNLOCK(p); 1007 return (0); 1008 } 1009 1010 if (((options & WEXITED) == 0) && (p->p_state == PRS_ZOMBIE)) { 1011 PROC_UNLOCK(p); 1012 return (0); 1013 } 1014 1015 /* 1016 * This special case handles a kthread spawned by linux_clone 1017 * (see linux_misc.c). The linux_wait4 and linux_waitpid 1018 * functions need to be able to distinguish between waiting 1019 * on a process and waiting on a thread. It is a thread if 1020 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option 1021 * signifies we want to wait for threads and not processes. 1022 */ 1023 if ((p->p_sigparent != SIGCHLD) ^ 1024 ((options & WLINUXCLONE) != 0)) { 1025 PROC_UNLOCK(p); 1026 return (0); 1027 } 1028 1029 if (siginfo != NULL) { 1030 bzero(siginfo, sizeof(*siginfo)); 1031 siginfo->si_errno = 0; 1032 1033 /* 1034 * SUSv4 requires that the si_signo value is always 1035 * SIGCHLD. Obey it despite the rfork(2) interface 1036 * allows to request other signal for child exit 1037 * notification. 1038 */ 1039 siginfo->si_signo = SIGCHLD; 1040 1041 /* 1042 * This is still a rough estimate. We will fix the 1043 * cases TRAPPED, STOPPED, and CONTINUED later. 1044 */ 1045 if (WCOREDUMP(p->p_xstat)) { 1046 siginfo->si_code = CLD_DUMPED; 1047 siginfo->si_status = WTERMSIG(p->p_xstat); 1048 } else if (WIFSIGNALED(p->p_xstat)) { 1049 siginfo->si_code = CLD_KILLED; 1050 siginfo->si_status = WTERMSIG(p->p_xstat); 1051 } else { 1052 siginfo->si_code = CLD_EXITED; 1053 siginfo->si_status = WEXITSTATUS(p->p_xstat); 1054 } 1055 1056 siginfo->si_pid = p->p_pid; 1057 siginfo->si_uid = p->p_ucred->cr_uid; 1058 1059 /* 1060 * The si_addr field would be useful additional 1061 * detail, but apparently the PC value may be lost 1062 * when we reach this point. bzero() above sets 1063 * siginfo->si_addr to NULL. 1064 */ 1065 } 1066 1067 /* 1068 * There should be no reason to limit resources usage info to 1069 * exited processes only. A snapshot about any resources used 1070 * by a stopped process may be exactly what is needed. 1071 */ 1072 if (wrusage != NULL) { 1073 rup = &wrusage->wru_self; 1074 *rup = p->p_ru; 1075 PROC_STATLOCK(p); 1076 calcru(p, &rup->ru_utime, &rup->ru_stime); 1077 PROC_STATUNLOCK(p); 1078 1079 rup = &wrusage->wru_children; 1080 *rup = p->p_stats->p_cru; 1081 calccru(p, &rup->ru_utime, &rup->ru_stime); 1082 } 1083 1084 if (p->p_state == PRS_ZOMBIE) { 1085 PROC_SLOCK(p); 1086 proc_reap(td, p, status, options); 1087 return (-1); 1088 } 1089 PROC_UNLOCK(p); 1090 return (1); 1091 } 1092 1093 int 1094 kern_wait(struct thread *td, pid_t pid, int *status, int options, 1095 struct rusage *rusage) 1096 { 1097 struct __wrusage wru, *wrup; 1098 idtype_t idtype; 1099 id_t id; 1100 int ret; 1101 1102 /* 1103 * Translate the special pid values into the (idtype, pid) 1104 * pair for kern_wait6. The WAIT_MYPGRP case is handled by 1105 * kern_wait6() on its own. 1106 */ 1107 if (pid == WAIT_ANY) { 1108 idtype = P_ALL; 1109 id = 0; 1110 } else if (pid < 0) { 1111 idtype = P_PGID; 1112 id = (id_t)-pid; 1113 } else { 1114 idtype = P_PID; 1115 id = (id_t)pid; 1116 } 1117 1118 if (rusage != NULL) 1119 wrup = &wru; 1120 else 1121 wrup = NULL; 1122 1123 /* 1124 * For backward compatibility we implicitly add flags WEXITED 1125 * and WTRAPPED here. 1126 */ 1127 options |= WEXITED | WTRAPPED; 1128 ret = kern_wait6(td, idtype, id, status, options, wrup, NULL); 1129 if (rusage != NULL) 1130 *rusage = wru.wru_self; 1131 return (ret); 1132 } 1133 1134 int 1135 kern_wait6(struct thread *td, idtype_t idtype, id_t id, int *status, 1136 int options, struct __wrusage *wrusage, siginfo_t *siginfo) 1137 { 1138 struct proc *p, *q; 1139 int error, nfound, ret; 1140 1141 AUDIT_ARG_VALUE((int)idtype); /* XXX - This is likely wrong! */ 1142 AUDIT_ARG_PID((pid_t)id); /* XXX - This may be wrong! */ 1143 AUDIT_ARG_VALUE(options); 1144 1145 q = td->td_proc; 1146 1147 if ((pid_t)id == WAIT_MYPGRP && (idtype == P_PID || idtype == P_PGID)) { 1148 PROC_LOCK(q); 1149 id = (id_t)q->p_pgid; 1150 PROC_UNLOCK(q); 1151 idtype = P_PGID; 1152 } 1153 1154 /* If we don't know the option, just return. */ 1155 if ((options & ~(WUNTRACED | WNOHANG | WCONTINUED | WNOWAIT | 1156 WEXITED | WTRAPPED | WLINUXCLONE)) != 0) 1157 return (EINVAL); 1158 if ((options & (WEXITED | WUNTRACED | WCONTINUED | WTRAPPED)) == 0) { 1159 /* 1160 * We will be unable to find any matching processes, 1161 * because there are no known events to look for. 1162 * Prefer to return error instead of blocking 1163 * indefinitely. 1164 */ 1165 return (EINVAL); 1166 } 1167 1168 loop: 1169 if (q->p_flag & P_STATCHILD) { 1170 PROC_LOCK(q); 1171 q->p_flag &= ~P_STATCHILD; 1172 PROC_UNLOCK(q); 1173 } 1174 nfound = 0; 1175 sx_xlock(&proctree_lock); 1176 LIST_FOREACH(p, &q->p_children, p_sibling) { 1177 ret = proc_to_reap(td, p, idtype, id, status, options, 1178 wrusage, siginfo); 1179 if (ret == 0) 1180 continue; 1181 else if (ret == 1) 1182 nfound++; 1183 else 1184 return (0); 1185 1186 PROC_LOCK(p); 1187 PROC_SLOCK(p); 1188 1189 if ((options & WTRAPPED) != 0 && 1190 (p->p_flag & P_TRACED) != 0 && 1191 (p->p_flag & (P_STOPPED_TRACE | P_STOPPED_SIG)) != 0 && 1192 (p->p_suspcount == p->p_numthreads) && 1193 ((p->p_flag & P_WAITED) == 0)) { 1194 PROC_SUNLOCK(p); 1195 if ((options & WNOWAIT) == 0) 1196 p->p_flag |= P_WAITED; 1197 sx_xunlock(&proctree_lock); 1198 td->td_retval[0] = p->p_pid; 1199 1200 if (status != NULL) 1201 *status = W_STOPCODE(p->p_xstat); 1202 if (siginfo != NULL) { 1203 siginfo->si_status = p->p_xstat; 1204 siginfo->si_code = CLD_TRAPPED; 1205 } 1206 if ((options & WNOWAIT) == 0) { 1207 PROC_LOCK(q); 1208 sigqueue_take(p->p_ksi); 1209 PROC_UNLOCK(q); 1210 } 1211 1212 PROC_UNLOCK(p); 1213 return (0); 1214 } 1215 if ((options & WUNTRACED) != 0 && 1216 (p->p_flag & P_STOPPED_SIG) != 0 && 1217 (p->p_suspcount == p->p_numthreads) && 1218 ((p->p_flag & P_WAITED) == 0)) { 1219 PROC_SUNLOCK(p); 1220 if ((options & WNOWAIT) == 0) 1221 p->p_flag |= P_WAITED; 1222 sx_xunlock(&proctree_lock); 1223 td->td_retval[0] = p->p_pid; 1224 1225 if (status != NULL) 1226 *status = W_STOPCODE(p->p_xstat); 1227 if (siginfo != NULL) { 1228 siginfo->si_status = p->p_xstat; 1229 siginfo->si_code = CLD_STOPPED; 1230 } 1231 if ((options & WNOWAIT) == 0) { 1232 PROC_LOCK(q); 1233 sigqueue_take(p->p_ksi); 1234 PROC_UNLOCK(q); 1235 } 1236 1237 PROC_UNLOCK(p); 1238 return (0); 1239 } 1240 PROC_SUNLOCK(p); 1241 if ((options & WCONTINUED) != 0 && 1242 (p->p_flag & P_CONTINUED) != 0) { 1243 sx_xunlock(&proctree_lock); 1244 td->td_retval[0] = p->p_pid; 1245 if ((options & WNOWAIT) == 0) { 1246 p->p_flag &= ~P_CONTINUED; 1247 PROC_LOCK(q); 1248 sigqueue_take(p->p_ksi); 1249 PROC_UNLOCK(q); 1250 } 1251 PROC_UNLOCK(p); 1252 1253 if (status != NULL) 1254 *status = SIGCONT; 1255 if (siginfo != NULL) { 1256 siginfo->si_status = SIGCONT; 1257 siginfo->si_code = CLD_CONTINUED; 1258 } 1259 return (0); 1260 } 1261 PROC_UNLOCK(p); 1262 } 1263 1264 /* 1265 * Look in the orphans list too, to allow the parent to 1266 * collect it's child exit status even if child is being 1267 * debugged. 1268 * 1269 * Debugger detaches from the parent upon successful 1270 * switch-over from parent to child. At this point due to 1271 * re-parenting the parent loses the child to debugger and a 1272 * wait4(2) call would report that it has no children to wait 1273 * for. By maintaining a list of orphans we allow the parent 1274 * to successfully wait until the child becomes a zombie. 1275 */ 1276 LIST_FOREACH(p, &q->p_orphans, p_orphan) { 1277 ret = proc_to_reap(td, p, idtype, id, status, options, 1278 wrusage, siginfo); 1279 if (ret == 0) 1280 continue; 1281 else if (ret == 1) 1282 nfound++; 1283 else 1284 return (0); 1285 } 1286 if (nfound == 0) { 1287 sx_xunlock(&proctree_lock); 1288 return (ECHILD); 1289 } 1290 if (options & WNOHANG) { 1291 sx_xunlock(&proctree_lock); 1292 td->td_retval[0] = 0; 1293 return (0); 1294 } 1295 PROC_LOCK(q); 1296 sx_xunlock(&proctree_lock); 1297 if (q->p_flag & P_STATCHILD) { 1298 q->p_flag &= ~P_STATCHILD; 1299 error = 0; 1300 } else 1301 error = msleep(q, &q->p_mtx, PWAIT | PCATCH, "wait", 0); 1302 PROC_UNLOCK(q); 1303 if (error) 1304 return (error); 1305 goto loop; 1306 } 1307 1308 /* 1309 * Make process 'parent' the new parent of process 'child'. 1310 * Must be called with an exclusive hold of proctree lock. 1311 */ 1312 void 1313 proc_reparent(struct proc *child, struct proc *parent) 1314 { 1315 1316 sx_assert(&proctree_lock, SX_XLOCKED); 1317 PROC_LOCK_ASSERT(child, MA_OWNED); 1318 if (child->p_pptr == parent) 1319 return; 1320 1321 PROC_LOCK(child->p_pptr); 1322 sigqueue_take(child->p_ksi); 1323 PROC_UNLOCK(child->p_pptr); 1324 LIST_REMOVE(child, p_sibling); 1325 LIST_INSERT_HEAD(&parent->p_children, child, p_sibling); 1326 1327 clear_orphan(child); 1328 if (child->p_flag & P_TRACED) { 1329 if (LIST_EMPTY(&child->p_pptr->p_orphans)) { 1330 child->p_treeflag |= P_TREE_FIRST_ORPHAN; 1331 LIST_INSERT_HEAD(&child->p_pptr->p_orphans, child, 1332 p_orphan); 1333 } else { 1334 LIST_INSERT_AFTER(LIST_FIRST(&child->p_pptr->p_orphans), 1335 child, p_orphan); 1336 } 1337 child->p_treeflag |= P_TREE_ORPHANED; 1338 } 1339 1340 child->p_pptr = parent; 1341 } 1342