xref: /freebsd/sys/kern/kern_exec.c (revision e87ec409fa9b21abf79895837fe375ab3d7e408a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1993, David Greenman
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_capsicum.h"
33 #include "opt_hwpmc_hooks.h"
34 #include "opt_ktrace.h"
35 #include "opt_vm.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/acct.h>
40 #include <sys/asan.h>
41 #include <sys/capsicum.h>
42 #include <sys/compressor.h>
43 #include <sys/eventhandler.h>
44 #include <sys/exec.h>
45 #include <sys/fcntl.h>
46 #include <sys/filedesc.h>
47 #include <sys/imgact.h>
48 #include <sys/imgact_elf.h>
49 #include <sys/kernel.h>
50 #include <sys/lock.h>
51 #include <sys/malloc.h>
52 #include <sys/mman.h>
53 #include <sys/mount.h>
54 #include <sys/mutex.h>
55 #include <sys/namei.h>
56 #include <sys/priv.h>
57 #include <sys/proc.h>
58 #include <sys/ptrace.h>
59 #include <sys/reg.h>
60 #include <sys/resourcevar.h>
61 #include <sys/rwlock.h>
62 #include <sys/sched.h>
63 #include <sys/sdt.h>
64 #include <sys/sf_buf.h>
65 #include <sys/shm.h>
66 #include <sys/signalvar.h>
67 #include <sys/smp.h>
68 #include <sys/stat.h>
69 #include <sys/syscallsubr.h>
70 #include <sys/sysctl.h>
71 #include <sys/sysent.h>
72 #include <sys/sysproto.h>
73 #include <sys/timers.h>
74 #include <sys/umtxvar.h>
75 #include <sys/vnode.h>
76 #include <sys/wait.h>
77 #ifdef KTRACE
78 #include <sys/ktrace.h>
79 #endif
80 
81 #include <vm/vm.h>
82 #include <vm/vm_param.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_kern.h>
87 #include <vm/vm_extern.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_pager.h>
90 
91 #ifdef	HWPMC_HOOKS
92 #include <sys/pmckern.h>
93 #endif
94 
95 #include <security/audit/audit.h>
96 #include <security/mac/mac_framework.h>
97 
98 #ifdef KDTRACE_HOOKS
99 #include <sys/dtrace_bsd.h>
100 dtrace_execexit_func_t	dtrace_fasttrap_exec;
101 #endif
102 
103 SDT_PROVIDER_DECLARE(proc);
104 SDT_PROBE_DEFINE1(proc, , , exec, "char *");
105 SDT_PROBE_DEFINE1(proc, , , exec__failure, "int");
106 SDT_PROBE_DEFINE1(proc, , , exec__success, "char *");
107 
108 MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments");
109 
110 int coredump_pack_fileinfo = 1;
111 SYSCTL_INT(_kern, OID_AUTO, coredump_pack_fileinfo, CTLFLAG_RWTUN,
112     &coredump_pack_fileinfo, 0,
113     "Enable file path packing in 'procstat -f' coredump notes");
114 
115 int coredump_pack_vmmapinfo = 1;
116 SYSCTL_INT(_kern, OID_AUTO, coredump_pack_vmmapinfo, CTLFLAG_RWTUN,
117     &coredump_pack_vmmapinfo, 0,
118     "Enable file path packing in 'procstat -v' coredump notes");
119 
120 static int sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS);
121 static int sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS);
122 static int sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS);
123 static int do_execve(struct thread *td, struct image_args *args,
124     struct mac *mac_p, struct vmspace *oldvmspace);
125 
126 /* XXX This should be vm_size_t. */
127 SYSCTL_PROC(_kern, KERN_PS_STRINGS, ps_strings, CTLTYPE_ULONG|CTLFLAG_RD|
128     CTLFLAG_CAPRD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_ps_strings, "LU",
129     "Location of process' ps_strings structure");
130 
131 /* XXX This should be vm_size_t. */
132 SYSCTL_PROC(_kern, KERN_USRSTACK, usrstack, CTLTYPE_ULONG|CTLFLAG_RD|
133     CTLFLAG_CAPRD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_usrstack, "LU",
134     "Top of process stack");
135 
136 SYSCTL_PROC(_kern, OID_AUTO, stackprot, CTLTYPE_INT|CTLFLAG_RD|CTLFLAG_MPSAFE,
137     NULL, 0, sysctl_kern_stackprot, "I",
138     "Stack memory permissions");
139 
140 u_long ps_arg_cache_limit = PAGE_SIZE / 16;
141 SYSCTL_ULONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW,
142     &ps_arg_cache_limit, 0,
143     "Process' command line characters cache limit");
144 
145 static int disallow_high_osrel;
146 SYSCTL_INT(_kern, OID_AUTO, disallow_high_osrel, CTLFLAG_RW,
147     &disallow_high_osrel, 0,
148     "Disallow execution of binaries built for higher version of the world");
149 
150 static int map_at_zero = 0;
151 SYSCTL_INT(_security_bsd, OID_AUTO, map_at_zero, CTLFLAG_RWTUN, &map_at_zero, 0,
152     "Permit processes to map an object at virtual address 0.");
153 
154 static int core_dump_can_intr = 1;
155 SYSCTL_INT(_kern, OID_AUTO, core_dump_can_intr, CTLFLAG_RWTUN,
156     &core_dump_can_intr, 0,
157     "Core dumping interruptible with SIGKILL");
158 
159 static int
160 sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS)
161 {
162 	struct proc *p;
163 	vm_offset_t ps_strings;
164 
165 	p = curproc;
166 #ifdef SCTL_MASK32
167 	if (req->flags & SCTL_MASK32) {
168 		unsigned int val;
169 		val = (unsigned int)PROC_PS_STRINGS(p);
170 		return (SYSCTL_OUT(req, &val, sizeof(val)));
171 	}
172 #endif
173 	ps_strings = PROC_PS_STRINGS(p);
174 	return (SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)));
175 }
176 
177 static int
178 sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS)
179 {
180 	struct proc *p;
181 	vm_offset_t val;
182 
183 	p = curproc;
184 #ifdef SCTL_MASK32
185 	if (req->flags & SCTL_MASK32) {
186 		unsigned int val32;
187 
188 		val32 = round_page((unsigned int)p->p_vmspace->vm_stacktop);
189 		return (SYSCTL_OUT(req, &val32, sizeof(val32)));
190 	}
191 #endif
192 	val = round_page(p->p_vmspace->vm_stacktop);
193 	return (SYSCTL_OUT(req, &val, sizeof(val)));
194 }
195 
196 static int
197 sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS)
198 {
199 	struct proc *p;
200 
201 	p = curproc;
202 	return (SYSCTL_OUT(req, &p->p_sysent->sv_stackprot,
203 	    sizeof(p->p_sysent->sv_stackprot)));
204 }
205 
206 /*
207  * Each of the items is a pointer to a `const struct execsw', hence the
208  * double pointer here.
209  */
210 static const struct execsw **execsw;
211 
212 #ifndef _SYS_SYSPROTO_H_
213 struct execve_args {
214 	char    *fname;
215 	char    **argv;
216 	char    **envv;
217 };
218 #endif
219 
220 int
221 sys_execve(struct thread *td, struct execve_args *uap)
222 {
223 	struct image_args args;
224 	struct vmspace *oldvmspace;
225 	int error;
226 
227 	error = pre_execve(td, &oldvmspace);
228 	if (error != 0)
229 		return (error);
230 	error = exec_copyin_args(&args, uap->fname, UIO_USERSPACE,
231 	    uap->argv, uap->envv);
232 	if (error == 0)
233 		error = kern_execve(td, &args, NULL, oldvmspace);
234 	post_execve(td, error, oldvmspace);
235 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
236 	return (error);
237 }
238 
239 #ifndef _SYS_SYSPROTO_H_
240 struct fexecve_args {
241 	int	fd;
242 	char	**argv;
243 	char	**envv;
244 };
245 #endif
246 int
247 sys_fexecve(struct thread *td, struct fexecve_args *uap)
248 {
249 	struct image_args args;
250 	struct vmspace *oldvmspace;
251 	int error;
252 
253 	error = pre_execve(td, &oldvmspace);
254 	if (error != 0)
255 		return (error);
256 	error = exec_copyin_args(&args, NULL, UIO_SYSSPACE,
257 	    uap->argv, uap->envv);
258 	if (error == 0) {
259 		args.fd = uap->fd;
260 		error = kern_execve(td, &args, NULL, oldvmspace);
261 	}
262 	post_execve(td, error, oldvmspace);
263 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
264 	return (error);
265 }
266 
267 #ifndef _SYS_SYSPROTO_H_
268 struct __mac_execve_args {
269 	char	*fname;
270 	char	**argv;
271 	char	**envv;
272 	struct mac	*mac_p;
273 };
274 #endif
275 
276 int
277 sys___mac_execve(struct thread *td, struct __mac_execve_args *uap)
278 {
279 #ifdef MAC
280 	struct image_args args;
281 	struct vmspace *oldvmspace;
282 	int error;
283 
284 	error = pre_execve(td, &oldvmspace);
285 	if (error != 0)
286 		return (error);
287 	error = exec_copyin_args(&args, uap->fname, UIO_USERSPACE,
288 	    uap->argv, uap->envv);
289 	if (error == 0)
290 		error = kern_execve(td, &args, uap->mac_p, oldvmspace);
291 	post_execve(td, error, oldvmspace);
292 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
293 	return (error);
294 #else
295 	return (ENOSYS);
296 #endif
297 }
298 
299 int
300 pre_execve(struct thread *td, struct vmspace **oldvmspace)
301 {
302 	struct proc *p;
303 	int error;
304 
305 	KASSERT(td == curthread, ("non-current thread %p", td));
306 	error = 0;
307 	p = td->td_proc;
308 	if ((p->p_flag & P_HADTHREADS) != 0) {
309 		PROC_LOCK(p);
310 		if (thread_single(p, SINGLE_BOUNDARY) != 0)
311 			error = ERESTART;
312 		PROC_UNLOCK(p);
313 	}
314 	KASSERT(error != 0 || (td->td_pflags & TDP_EXECVMSPC) == 0,
315 	    ("nested execve"));
316 	*oldvmspace = p->p_vmspace;
317 	return (error);
318 }
319 
320 void
321 post_execve(struct thread *td, int error, struct vmspace *oldvmspace)
322 {
323 	struct proc *p;
324 
325 	KASSERT(td == curthread, ("non-current thread %p", td));
326 	p = td->td_proc;
327 	if ((p->p_flag & P_HADTHREADS) != 0) {
328 		PROC_LOCK(p);
329 		/*
330 		 * If success, we upgrade to SINGLE_EXIT state to
331 		 * force other threads to suicide.
332 		 */
333 		if (error == EJUSTRETURN)
334 			thread_single(p, SINGLE_EXIT);
335 		else
336 			thread_single_end(p, SINGLE_BOUNDARY);
337 		PROC_UNLOCK(p);
338 	}
339 	exec_cleanup(td, oldvmspace);
340 }
341 
342 /*
343  * kern_execve() has the astonishing property of not always returning to
344  * the caller.  If sufficiently bad things happen during the call to
345  * do_execve(), it can end up calling exit1(); as a result, callers must
346  * avoid doing anything which they might need to undo (e.g., allocating
347  * memory).
348  */
349 int
350 kern_execve(struct thread *td, struct image_args *args, struct mac *mac_p,
351     struct vmspace *oldvmspace)
352 {
353 
354 	TSEXEC(td->td_proc->p_pid, args->begin_argv);
355 	AUDIT_ARG_ARGV(args->begin_argv, args->argc,
356 	    exec_args_get_begin_envv(args) - args->begin_argv);
357 	AUDIT_ARG_ENVV(exec_args_get_begin_envv(args), args->envc,
358 	    args->endp - exec_args_get_begin_envv(args));
359 
360 	/* Must have at least one argument. */
361 	if (args->argc == 0) {
362 		exec_free_args(args);
363 		return (EINVAL);
364 	}
365 	return (do_execve(td, args, mac_p, oldvmspace));
366 }
367 
368 static void
369 execve_nosetid(struct image_params *imgp)
370 {
371 	imgp->credential_setid = false;
372 	if (imgp->newcred != NULL) {
373 		crfree(imgp->newcred);
374 		imgp->newcred = NULL;
375 	}
376 }
377 
378 /*
379  * In-kernel implementation of execve().  All arguments are assumed to be
380  * userspace pointers from the passed thread.
381  */
382 static int
383 do_execve(struct thread *td, struct image_args *args, struct mac *mac_p,
384     struct vmspace *oldvmspace)
385 {
386 	struct proc *p = td->td_proc;
387 	struct nameidata nd;
388 	struct ucred *oldcred;
389 	struct uidinfo *euip = NULL;
390 	uintptr_t stack_base;
391 	struct image_params image_params, *imgp;
392 	struct vattr attr;
393 	int (*img_first)(struct image_params *);
394 	struct pargs *oldargs = NULL, *newargs = NULL;
395 	struct sigacts *oldsigacts = NULL, *newsigacts = NULL;
396 #ifdef KTRACE
397 	struct ktr_io_params *kiop;
398 #endif
399 	struct vnode *oldtextvp, *newtextvp;
400 	struct vnode *oldtextdvp, *newtextdvp;
401 	char *oldbinname, *newbinname;
402 	bool credential_changing;
403 #ifdef MAC
404 	struct label *interpvplabel = NULL;
405 	bool will_transition;
406 #endif
407 #ifdef HWPMC_HOOKS
408 	struct pmckern_procexec pe;
409 #endif
410 	int error, i, orig_osrel;
411 	uint32_t orig_fctl0;
412 	Elf_Brandinfo *orig_brandinfo;
413 	size_t freepath_size;
414 	static const char fexecv_proc_title[] = "(fexecv)";
415 
416 	imgp = &image_params;
417 	oldtextvp = oldtextdvp = NULL;
418 	newtextvp = newtextdvp = NULL;
419 	newbinname = oldbinname = NULL;
420 #ifdef KTRACE
421 	kiop = NULL;
422 #endif
423 
424 	/*
425 	 * Lock the process and set the P_INEXEC flag to indicate that
426 	 * it should be left alone until we're done here.  This is
427 	 * necessary to avoid race conditions - e.g. in ptrace() -
428 	 * that might allow a local user to illicitly obtain elevated
429 	 * privileges.
430 	 */
431 	PROC_LOCK(p);
432 	KASSERT((p->p_flag & P_INEXEC) == 0,
433 	    ("%s(): process already has P_INEXEC flag", __func__));
434 	p->p_flag |= P_INEXEC;
435 	PROC_UNLOCK(p);
436 
437 	/*
438 	 * Initialize part of the common data
439 	 */
440 	bzero(imgp, sizeof(*imgp));
441 	imgp->proc = p;
442 	imgp->attr = &attr;
443 	imgp->args = args;
444 	oldcred = p->p_ucred;
445 	orig_osrel = p->p_osrel;
446 	orig_fctl0 = p->p_fctl0;
447 	orig_brandinfo = p->p_elf_brandinfo;
448 
449 #ifdef MAC
450 	error = mac_execve_enter(imgp, mac_p);
451 	if (error)
452 		goto exec_fail;
453 #endif
454 
455 	SDT_PROBE1(proc, , , exec, args->fname);
456 
457 interpret:
458 	if (args->fname != NULL) {
459 #ifdef CAPABILITY_MODE
460 		/*
461 		 * While capability mode can't reach this point via direct
462 		 * path arguments to execve(), we also don't allow
463 		 * interpreters to be used in capability mode (for now).
464 		 * Catch indirect lookups and return a permissions error.
465 		 */
466 		if (IN_CAPABILITY_MODE(td)) {
467 			error = ECAPMODE;
468 			goto exec_fail;
469 		}
470 #endif
471 
472 		/*
473 		 * Translate the file name. namei() returns a vnode
474 		 * pointer in ni_vp among other things.
475 		 */
476 		NDINIT(&nd, LOOKUP, ISOPEN | LOCKLEAF | LOCKSHARED | FOLLOW |
477 		    SAVENAME | AUDITVNODE1 | WANTPARENT, UIO_SYSSPACE,
478 		    args->fname);
479 
480 		error = namei(&nd);
481 		if (error)
482 			goto exec_fail;
483 
484 		newtextvp = nd.ni_vp;
485 		newtextdvp = nd.ni_dvp;
486 		nd.ni_dvp = NULL;
487 		newbinname = malloc(nd.ni_cnd.cn_namelen + 1, M_PARGS,
488 		    M_WAITOK);
489 		memcpy(newbinname, nd.ni_cnd.cn_nameptr, nd.ni_cnd.cn_namelen);
490 		newbinname[nd.ni_cnd.cn_namelen] = '\0';
491 		imgp->vp = newtextvp;
492 
493 		/*
494 		 * Do the best to calculate the full path to the image file.
495 		 */
496 		if (args->fname[0] == '/') {
497 			imgp->execpath = args->fname;
498 		} else {
499 			VOP_UNLOCK(imgp->vp);
500 			freepath_size = MAXPATHLEN;
501 			if (vn_fullpath_hardlink(newtextvp, newtextdvp,
502 			    newbinname, nd.ni_cnd.cn_namelen, &imgp->execpath,
503 			    &imgp->freepath, &freepath_size) != 0)
504 				imgp->execpath = args->fname;
505 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
506 		}
507 	} else {
508 		AUDIT_ARG_FD(args->fd);
509 
510 		/*
511 		 * If the descriptors was not opened with O_PATH, then
512 		 * we require that it was opened with O_EXEC or
513 		 * O_RDONLY.  In either case, exec_check_permissions()
514 		 * below checks _current_ file access mode regardless
515 		 * of the permissions additionally checked at the
516 		 * open(2).
517 		 */
518 		error = fgetvp_exec(td, args->fd, &cap_fexecve_rights,
519 		    &newtextvp);
520 		if (error != 0)
521 			goto exec_fail;
522 
523 		if (vn_fullpath(newtextvp, &imgp->execpath,
524 		    &imgp->freepath) != 0)
525 			imgp->execpath = args->fname;
526 		vn_lock(newtextvp, LK_SHARED | LK_RETRY);
527 		AUDIT_ARG_VNODE1(newtextvp);
528 		imgp->vp = newtextvp;
529 	}
530 
531 	/*
532 	 * Check file permissions.  Also 'opens' file and sets its vnode to
533 	 * text mode.
534 	 */
535 	error = exec_check_permissions(imgp);
536 	if (error)
537 		goto exec_fail_dealloc;
538 
539 	imgp->object = imgp->vp->v_object;
540 	if (imgp->object != NULL)
541 		vm_object_reference(imgp->object);
542 
543 	error = exec_map_first_page(imgp);
544 	if (error)
545 		goto exec_fail_dealloc;
546 
547 	imgp->proc->p_osrel = 0;
548 	imgp->proc->p_fctl0 = 0;
549 	imgp->proc->p_elf_brandinfo = NULL;
550 
551 	/*
552 	 * Implement image setuid/setgid.
553 	 *
554 	 * Determine new credentials before attempting image activators
555 	 * so that it can be used by process_exec handlers to determine
556 	 * credential/setid changes.
557 	 *
558 	 * Don't honor setuid/setgid if the filesystem prohibits it or if
559 	 * the process is being traced.
560 	 *
561 	 * We disable setuid/setgid/etc in capability mode on the basis
562 	 * that most setugid applications are not written with that
563 	 * environment in mind, and will therefore almost certainly operate
564 	 * incorrectly. In principle there's no reason that setugid
565 	 * applications might not be useful in capability mode, so we may want
566 	 * to reconsider this conservative design choice in the future.
567 	 *
568 	 * XXXMAC: For the time being, use NOSUID to also prohibit
569 	 * transitions on the file system.
570 	 */
571 	credential_changing = false;
572 	credential_changing |= (attr.va_mode & S_ISUID) &&
573 	    oldcred->cr_uid != attr.va_uid;
574 	credential_changing |= (attr.va_mode & S_ISGID) &&
575 	    oldcred->cr_gid != attr.va_gid;
576 #ifdef MAC
577 	will_transition = mac_vnode_execve_will_transition(oldcred, imgp->vp,
578 	    interpvplabel, imgp) != 0;
579 	credential_changing |= will_transition;
580 #endif
581 
582 	/* Don't inherit PROC_PDEATHSIG_CTL value if setuid/setgid. */
583 	if (credential_changing)
584 		imgp->proc->p_pdeathsig = 0;
585 
586 	if (credential_changing &&
587 #ifdef CAPABILITY_MODE
588 	    ((oldcred->cr_flags & CRED_FLAG_CAPMODE) == 0) &&
589 #endif
590 	    (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 &&
591 	    (p->p_flag & P_TRACED) == 0) {
592 		imgp->credential_setid = true;
593 		VOP_UNLOCK(imgp->vp);
594 		imgp->newcred = crdup(oldcred);
595 		if (attr.va_mode & S_ISUID) {
596 			euip = uifind(attr.va_uid);
597 			change_euid(imgp->newcred, euip);
598 		}
599 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
600 		if (attr.va_mode & S_ISGID)
601 			change_egid(imgp->newcred, attr.va_gid);
602 		/*
603 		 * Implement correct POSIX saved-id behavior.
604 		 *
605 		 * XXXMAC: Note that the current logic will save the
606 		 * uid and gid if a MAC domain transition occurs, even
607 		 * though maybe it shouldn't.
608 		 */
609 		change_svuid(imgp->newcred, imgp->newcred->cr_uid);
610 		change_svgid(imgp->newcred, imgp->newcred->cr_gid);
611 	} else {
612 		/*
613 		 * Implement correct POSIX saved-id behavior.
614 		 *
615 		 * XXX: It's not clear that the existing behavior is
616 		 * POSIX-compliant.  A number of sources indicate that the
617 		 * saved uid/gid should only be updated if the new ruid is
618 		 * not equal to the old ruid, or the new euid is not equal
619 		 * to the old euid and the new euid is not equal to the old
620 		 * ruid.  The FreeBSD code always updates the saved uid/gid.
621 		 * Also, this code uses the new (replaced) euid and egid as
622 		 * the source, which may or may not be the right ones to use.
623 		 */
624 		if (oldcred->cr_svuid != oldcred->cr_uid ||
625 		    oldcred->cr_svgid != oldcred->cr_gid) {
626 			VOP_UNLOCK(imgp->vp);
627 			imgp->newcred = crdup(oldcred);
628 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
629 			change_svuid(imgp->newcred, imgp->newcred->cr_uid);
630 			change_svgid(imgp->newcred, imgp->newcred->cr_gid);
631 		}
632 	}
633 	/* The new credentials are installed into the process later. */
634 
635 	/*
636 	 *	If the current process has a special image activator it
637 	 *	wants to try first, call it.   For example, emulating shell
638 	 *	scripts differently.
639 	 */
640 	error = -1;
641 	if ((img_first = imgp->proc->p_sysent->sv_imgact_try) != NULL)
642 		error = img_first(imgp);
643 
644 	/*
645 	 *	Loop through the list of image activators, calling each one.
646 	 *	An activator returns -1 if there is no match, 0 on success,
647 	 *	and an error otherwise.
648 	 */
649 	for (i = 0; error == -1 && execsw[i]; ++i) {
650 		if (execsw[i]->ex_imgact == NULL ||
651 		    execsw[i]->ex_imgact == img_first) {
652 			continue;
653 		}
654 		error = (*execsw[i]->ex_imgact)(imgp);
655 	}
656 
657 	if (error) {
658 		if (error == -1)
659 			error = ENOEXEC;
660 		goto exec_fail_dealloc;
661 	}
662 
663 	/*
664 	 * Special interpreter operation, cleanup and loop up to try to
665 	 * activate the interpreter.
666 	 */
667 	if (imgp->interpreted) {
668 		exec_unmap_first_page(imgp);
669 		/*
670 		 * The text reference needs to be removed for scripts.
671 		 * There is a short period before we determine that
672 		 * something is a script where text reference is active.
673 		 * The vnode lock is held over this entire period
674 		 * so nothing should illegitimately be blocked.
675 		 */
676 		MPASS(imgp->textset);
677 		VOP_UNSET_TEXT_CHECKED(newtextvp);
678 		imgp->textset = false;
679 		/* free name buffer and old vnode */
680 #ifdef MAC
681 		mac_execve_interpreter_enter(newtextvp, &interpvplabel);
682 #endif
683 		if (imgp->opened) {
684 			VOP_CLOSE(newtextvp, FREAD, td->td_ucred, td);
685 			imgp->opened = false;
686 		}
687 		vput(newtextvp);
688 		imgp->vp = newtextvp = NULL;
689 		if (args->fname != NULL) {
690 			if (newtextdvp != NULL) {
691 				vrele(newtextdvp);
692 				newtextdvp = NULL;
693 			}
694 			NDFREE_PNBUF(&nd);
695 			free(newbinname, M_PARGS);
696 			newbinname = NULL;
697 		}
698 		vm_object_deallocate(imgp->object);
699 		imgp->object = NULL;
700 		execve_nosetid(imgp);
701 		imgp->execpath = NULL;
702 		free(imgp->freepath, M_TEMP);
703 		imgp->freepath = NULL;
704 		/* set new name to that of the interpreter */
705 		args->fname = imgp->interpreter_name;
706 		goto interpret;
707 	}
708 
709 	/*
710 	 * NB: We unlock the vnode here because it is believed that none
711 	 * of the sv_copyout_strings/sv_fixup operations require the vnode.
712 	 */
713 	VOP_UNLOCK(imgp->vp);
714 
715 	if (disallow_high_osrel &&
716 	    P_OSREL_MAJOR(p->p_osrel) > P_OSREL_MAJOR(__FreeBSD_version)) {
717 		error = ENOEXEC;
718 		uprintf("Osrel %d for image %s too high\n", p->p_osrel,
719 		    imgp->execpath != NULL ? imgp->execpath : "<unresolved>");
720 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
721 		goto exec_fail_dealloc;
722 	}
723 
724 	/*
725 	 * Copy out strings (args and env) and initialize stack base.
726 	 */
727 	error = (*p->p_sysent->sv_copyout_strings)(imgp, &stack_base);
728 	if (error != 0) {
729 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
730 		goto exec_fail_dealloc;
731 	}
732 
733 	/*
734 	 * Stack setup.
735 	 */
736 	error = (*p->p_sysent->sv_fixup)(&stack_base, imgp);
737 	if (error != 0) {
738 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
739 		goto exec_fail_dealloc;
740 	}
741 
742 	/*
743 	 * For security and other reasons, the file descriptor table cannot be
744 	 * shared after an exec.
745 	 */
746 	fdunshare(td);
747 	pdunshare(td);
748 	/* close files on exec */
749 	fdcloseexec(td);
750 
751 	/*
752 	 * Malloc things before we need locks.
753 	 */
754 	i = exec_args_get_begin_envv(imgp->args) - imgp->args->begin_argv;
755 	/* Cache arguments if they fit inside our allowance */
756 	if (ps_arg_cache_limit >= i + sizeof(struct pargs)) {
757 		newargs = pargs_alloc(i);
758 		bcopy(imgp->args->begin_argv, newargs->ar_args, i);
759 	}
760 
761 	/*
762 	 * For security and other reasons, signal handlers cannot
763 	 * be shared after an exec. The new process gets a copy of the old
764 	 * handlers. In execsigs(), the new process will have its signals
765 	 * reset.
766 	 */
767 	if (sigacts_shared(p->p_sigacts)) {
768 		oldsigacts = p->p_sigacts;
769 		newsigacts = sigacts_alloc();
770 		sigacts_copy(newsigacts, oldsigacts);
771 	}
772 
773 	vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
774 
775 	PROC_LOCK(p);
776 	if (oldsigacts)
777 		p->p_sigacts = newsigacts;
778 	/* Stop profiling */
779 	stopprofclock(p);
780 
781 	/* reset caught signals */
782 	execsigs(p);
783 
784 	/* name this process - nameiexec(p, ndp) */
785 	bzero(p->p_comm, sizeof(p->p_comm));
786 	if (args->fname)
787 		bcopy(nd.ni_cnd.cn_nameptr, p->p_comm,
788 		    min(nd.ni_cnd.cn_namelen, MAXCOMLEN));
789 	else if (vn_commname(newtextvp, p->p_comm, sizeof(p->p_comm)) != 0)
790 		bcopy(fexecv_proc_title, p->p_comm, sizeof(fexecv_proc_title));
791 	bcopy(p->p_comm, td->td_name, sizeof(td->td_name));
792 #ifdef KTR
793 	sched_clear_tdname(td);
794 #endif
795 
796 	/*
797 	 * mark as execed, wakeup the process that vforked (if any) and tell
798 	 * it that it now has its own resources back
799 	 */
800 	p->p_flag |= P_EXEC;
801 	if ((p->p_flag2 & P2_NOTRACE_EXEC) == 0)
802 		p->p_flag2 &= ~P2_NOTRACE;
803 	if ((p->p_flag2 & P2_STKGAP_DISABLE_EXEC) == 0)
804 		p->p_flag2 &= ~P2_STKGAP_DISABLE;
805 	if (p->p_flag & P_PPWAIT) {
806 		p->p_flag &= ~(P_PPWAIT | P_PPTRACE);
807 		cv_broadcast(&p->p_pwait);
808 		/* STOPs are no longer ignored, arrange for AST */
809 		signotify(td);
810 	}
811 
812 	if ((imgp->sysent->sv_setid_allowed != NULL &&
813 	    !(*imgp->sysent->sv_setid_allowed)(td, imgp)) ||
814 	    (p->p_flag2 & P2_NO_NEW_PRIVS) != 0)
815 		execve_nosetid(imgp);
816 
817 	/*
818 	 * Implement image setuid/setgid installation.
819 	 */
820 	if (imgp->credential_setid) {
821 		/*
822 		 * Turn off syscall tracing for set-id programs, except for
823 		 * root.  Record any set-id flags first to make sure that
824 		 * we do not regain any tracing during a possible block.
825 		 */
826 		setsugid(p);
827 #ifdef KTRACE
828 		kiop = ktrprocexec(p);
829 #endif
830 		/*
831 		 * Close any file descriptors 0..2 that reference procfs,
832 		 * then make sure file descriptors 0..2 are in use.
833 		 *
834 		 * Both fdsetugidsafety() and fdcheckstd() may call functions
835 		 * taking sleepable locks, so temporarily drop our locks.
836 		 */
837 		PROC_UNLOCK(p);
838 		VOP_UNLOCK(imgp->vp);
839 		fdsetugidsafety(td);
840 		error = fdcheckstd(td);
841 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
842 		if (error != 0)
843 			goto exec_fail_dealloc;
844 		PROC_LOCK(p);
845 #ifdef MAC
846 		if (will_transition) {
847 			mac_vnode_execve_transition(oldcred, imgp->newcred,
848 			    imgp->vp, interpvplabel, imgp);
849 		}
850 #endif
851 	} else {
852 		if (oldcred->cr_uid == oldcred->cr_ruid &&
853 		    oldcred->cr_gid == oldcred->cr_rgid)
854 			p->p_flag &= ~P_SUGID;
855 	}
856 	/*
857 	 * Set the new credentials.
858 	 */
859 	if (imgp->newcred != NULL) {
860 		proc_set_cred(p, imgp->newcred);
861 		crfree(oldcred);
862 		oldcred = NULL;
863 	}
864 
865 	/*
866 	 * Store the vp for use in kern.proc.pathname.  This vnode was
867 	 * referenced by namei() or by fexecve variant of fname handling.
868 	 */
869 	oldtextvp = p->p_textvp;
870 	p->p_textvp = newtextvp;
871 	oldtextdvp = p->p_textdvp;
872 	p->p_textdvp = newtextdvp;
873 	newtextdvp = NULL;
874 	oldbinname = p->p_binname;
875 	p->p_binname = newbinname;
876 	newbinname = NULL;
877 
878 #ifdef KDTRACE_HOOKS
879 	/*
880 	 * Tell the DTrace fasttrap provider about the exec if it
881 	 * has declared an interest.
882 	 */
883 	if (dtrace_fasttrap_exec)
884 		dtrace_fasttrap_exec(p);
885 #endif
886 
887 	/*
888 	 * Notify others that we exec'd, and clear the P_INEXEC flag
889 	 * as we're now a bona fide freshly-execed process.
890 	 */
891 	KNOTE_LOCKED(p->p_klist, NOTE_EXEC);
892 	p->p_flag &= ~P_INEXEC;
893 
894 	/* clear "fork but no exec" flag, as we _are_ execing */
895 	p->p_acflag &= ~AFORK;
896 
897 	/*
898 	 * Free any previous argument cache and replace it with
899 	 * the new argument cache, if any.
900 	 */
901 	oldargs = p->p_args;
902 	p->p_args = newargs;
903 	newargs = NULL;
904 
905 	PROC_UNLOCK(p);
906 
907 #ifdef	HWPMC_HOOKS
908 	/*
909 	 * Check if system-wide sampling is in effect or if the
910 	 * current process is using PMCs.  If so, do exec() time
911 	 * processing.  This processing needs to happen AFTER the
912 	 * P_INEXEC flag is cleared.
913 	 */
914 	if (PMC_SYSTEM_SAMPLING_ACTIVE() || PMC_PROC_IS_USING_PMCS(p)) {
915 		VOP_UNLOCK(imgp->vp);
916 		pe.pm_credentialschanged = credential_changing;
917 		pe.pm_entryaddr = imgp->entry_addr;
918 
919 		PMC_CALL_HOOK_X(td, PMC_FN_PROCESS_EXEC, (void *) &pe);
920 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
921 	}
922 #endif
923 
924 	/* Set values passed into the program in registers. */
925 	(*p->p_sysent->sv_setregs)(td, imgp, stack_base);
926 
927 	VOP_MMAPPED(imgp->vp);
928 
929 	SDT_PROBE1(proc, , , exec__success, args->fname);
930 
931 exec_fail_dealloc:
932 	if (error != 0) {
933 		p->p_osrel = orig_osrel;
934 		p->p_fctl0 = orig_fctl0;
935 		p->p_elf_brandinfo = orig_brandinfo;
936 	}
937 
938 	if (imgp->firstpage != NULL)
939 		exec_unmap_first_page(imgp);
940 
941 	if (imgp->vp != NULL) {
942 		if (imgp->opened)
943 			VOP_CLOSE(imgp->vp, FREAD, td->td_ucred, td);
944 		if (imgp->textset)
945 			VOP_UNSET_TEXT_CHECKED(imgp->vp);
946 		if (error != 0)
947 			vput(imgp->vp);
948 		else
949 			VOP_UNLOCK(imgp->vp);
950 		if (args->fname != NULL)
951 			NDFREE_PNBUF(&nd);
952 		if (newtextdvp != NULL)
953 			vrele(newtextdvp);
954 		free(newbinname, M_PARGS);
955 	}
956 
957 	if (imgp->object != NULL)
958 		vm_object_deallocate(imgp->object);
959 
960 	free(imgp->freepath, M_TEMP);
961 
962 	if (error == 0) {
963 		if (p->p_ptevents & PTRACE_EXEC) {
964 			PROC_LOCK(p);
965 			if (p->p_ptevents & PTRACE_EXEC)
966 				td->td_dbgflags |= TDB_EXEC;
967 			PROC_UNLOCK(p);
968 		}
969 	} else {
970 exec_fail:
971 		/* we're done here, clear P_INEXEC */
972 		PROC_LOCK(p);
973 		p->p_flag &= ~P_INEXEC;
974 		PROC_UNLOCK(p);
975 
976 		SDT_PROBE1(proc, , , exec__failure, error);
977 	}
978 
979 	if (imgp->newcred != NULL && oldcred != NULL)
980 		crfree(imgp->newcred);
981 
982 #ifdef MAC
983 	mac_execve_exit(imgp);
984 	mac_execve_interpreter_exit(interpvplabel);
985 #endif
986 	exec_free_args(args);
987 
988 	/*
989 	 * Handle deferred decrement of ref counts.
990 	 */
991 	if (oldtextvp != NULL)
992 		vrele(oldtextvp);
993 	if (oldtextdvp != NULL)
994 		vrele(oldtextdvp);
995 	free(oldbinname, M_PARGS);
996 #ifdef KTRACE
997 	ktr_io_params_free(kiop);
998 #endif
999 	pargs_drop(oldargs);
1000 	pargs_drop(newargs);
1001 	if (oldsigacts != NULL)
1002 		sigacts_free(oldsigacts);
1003 	if (euip != NULL)
1004 		uifree(euip);
1005 
1006 	if (error && imgp->vmspace_destroyed) {
1007 		/* sorry, no more process anymore. exit gracefully */
1008 		exec_cleanup(td, oldvmspace);
1009 		exit1(td, 0, SIGABRT);
1010 		/* NOT REACHED */
1011 	}
1012 
1013 #ifdef KTRACE
1014 	if (error == 0)
1015 		ktrprocctor(p);
1016 #endif
1017 
1018 	/*
1019 	 * We don't want cpu_set_syscall_retval() to overwrite any of
1020 	 * the register values put in place by exec_setregs().
1021 	 * Implementations of cpu_set_syscall_retval() will leave
1022 	 * registers unmodified when returning EJUSTRETURN.
1023 	 */
1024 	return (error == 0 ? EJUSTRETURN : error);
1025 }
1026 
1027 void
1028 exec_cleanup(struct thread *td, struct vmspace *oldvmspace)
1029 {
1030 	if ((td->td_pflags & TDP_EXECVMSPC) != 0) {
1031 		KASSERT(td->td_proc->p_vmspace != oldvmspace,
1032 		    ("oldvmspace still used"));
1033 		vmspace_free(oldvmspace);
1034 		td->td_pflags &= ~TDP_EXECVMSPC;
1035 	}
1036 }
1037 
1038 int
1039 exec_map_first_page(struct image_params *imgp)
1040 {
1041 	vm_object_t object;
1042 	vm_page_t m;
1043 	int error;
1044 
1045 	if (imgp->firstpage != NULL)
1046 		exec_unmap_first_page(imgp);
1047 
1048 	object = imgp->vp->v_object;
1049 	if (object == NULL)
1050 		return (EACCES);
1051 #if VM_NRESERVLEVEL > 0
1052 	if ((object->flags & OBJ_COLORED) == 0) {
1053 		VM_OBJECT_WLOCK(object);
1054 		vm_object_color(object, 0);
1055 		VM_OBJECT_WUNLOCK(object);
1056 	}
1057 #endif
1058 	error = vm_page_grab_valid_unlocked(&m, object, 0,
1059 	    VM_ALLOC_COUNT(VM_INITIAL_PAGEIN) |
1060 	    VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
1061 
1062 	if (error != VM_PAGER_OK)
1063 		return (EIO);
1064 	imgp->firstpage = sf_buf_alloc(m, 0);
1065 	imgp->image_header = (char *)sf_buf_kva(imgp->firstpage);
1066 
1067 	return (0);
1068 }
1069 
1070 void
1071 exec_unmap_first_page(struct image_params *imgp)
1072 {
1073 	vm_page_t m;
1074 
1075 	if (imgp->firstpage != NULL) {
1076 		m = sf_buf_page(imgp->firstpage);
1077 		sf_buf_free(imgp->firstpage);
1078 		imgp->firstpage = NULL;
1079 		vm_page_unwire(m, PQ_ACTIVE);
1080 	}
1081 }
1082 
1083 void
1084 exec_onexec_old(struct thread *td)
1085 {
1086 	sigfastblock_clear(td);
1087 	umtx_exec(td->td_proc);
1088 }
1089 
1090 /*
1091  * This is an optimization which removes the unmanaged shared page
1092  * mapping. In combination with pmap_remove_pages(), which cleans all
1093  * managed mappings in the process' vmspace pmap, no work will be left
1094  * for pmap_remove(min, max).
1095  */
1096 void
1097 exec_free_abi_mappings(struct proc *p)
1098 {
1099 	struct vmspace *vmspace;
1100 	struct sysentvec *sv;
1101 
1102 	vmspace = p->p_vmspace;
1103 	if (refcount_load(&vmspace->vm_refcnt) != 1)
1104 		return;
1105 
1106 	sv = p->p_sysent;
1107 	if (sv->sv_shared_page_obj == NULL)
1108 		return;
1109 
1110 	pmap_remove(vmspace_pmap(vmspace), sv->sv_shared_page_base,
1111 	    sv->sv_shared_page_base + sv->sv_shared_page_len);
1112 }
1113 
1114 /*
1115  * Run down the current address space and install a new one.  Map the shared
1116  * page.
1117  */
1118 int
1119 exec_new_vmspace(struct image_params *imgp, struct sysentvec *sv)
1120 {
1121 	int error;
1122 	struct proc *p = imgp->proc;
1123 	struct vmspace *vmspace = p->p_vmspace;
1124 	struct thread *td = curthread;
1125 	vm_object_t obj;
1126 	vm_offset_t sv_minuser;
1127 	vm_map_t map;
1128 
1129 	imgp->vmspace_destroyed = true;
1130 	imgp->sysent = sv;
1131 
1132 	if (p->p_sysent->sv_onexec_old != NULL)
1133 		p->p_sysent->sv_onexec_old(td);
1134 	itimers_exec(p);
1135 
1136 	EVENTHANDLER_DIRECT_INVOKE(process_exec, p, imgp);
1137 
1138 	/*
1139 	 * Blow away entire process VM, if address space not shared,
1140 	 * otherwise, create a new VM space so that other threads are
1141 	 * not disrupted
1142 	 */
1143 	map = &vmspace->vm_map;
1144 	if (map_at_zero)
1145 		sv_minuser = sv->sv_minuser;
1146 	else
1147 		sv_minuser = MAX(sv->sv_minuser, PAGE_SIZE);
1148 	if (refcount_load(&vmspace->vm_refcnt) == 1 &&
1149 	    vm_map_min(map) == sv_minuser &&
1150 	    vm_map_max(map) == sv->sv_maxuser &&
1151 	    cpu_exec_vmspace_reuse(p, map)) {
1152 		exec_free_abi_mappings(p);
1153 		shmexit(vmspace);
1154 		pmap_remove_pages(vmspace_pmap(vmspace));
1155 		vm_map_remove(map, vm_map_min(map), vm_map_max(map));
1156 		/*
1157 		 * An exec terminates mlockall(MCL_FUTURE).
1158 		 * ASLR and W^X states must be re-evaluated.
1159 		 */
1160 		vm_map_lock(map);
1161 		vm_map_modflags(map, 0, MAP_WIREFUTURE | MAP_ASLR |
1162 		    MAP_ASLR_IGNSTART | MAP_ASLR_STACK | MAP_WXORX);
1163 		vm_map_unlock(map);
1164 	} else {
1165 		error = vmspace_exec(p, sv_minuser, sv->sv_maxuser);
1166 		if (error)
1167 			return (error);
1168 		vmspace = p->p_vmspace;
1169 		map = &vmspace->vm_map;
1170 	}
1171 	map->flags |= imgp->map_flags;
1172 
1173 	/* Map a shared page */
1174 	obj = sv->sv_shared_page_obj;
1175 	if (obj != NULL) {
1176 		vm_object_reference(obj);
1177 		error = vm_map_fixed(map, obj, 0,
1178 		    sv->sv_shared_page_base, sv->sv_shared_page_len,
1179 		    VM_PROT_READ | VM_PROT_EXECUTE,
1180 		    VM_PROT_READ | VM_PROT_EXECUTE,
1181 		    MAP_INHERIT_SHARE | MAP_ACC_NO_CHARGE);
1182 		if (error != KERN_SUCCESS) {
1183 			vm_object_deallocate(obj);
1184 			return (vm_mmap_to_errno(error));
1185 		}
1186 	}
1187 
1188 	return (sv->sv_onexec != NULL ? sv->sv_onexec(p, imgp) : 0);
1189 }
1190 
1191 /*
1192  * Compute the stack size limit and map the main process stack.
1193  */
1194 int
1195 exec_map_stack(struct image_params *imgp)
1196 {
1197 	struct rlimit rlim_stack;
1198 	struct sysentvec *sv;
1199 	struct proc *p;
1200 	vm_map_t map;
1201 	struct vmspace *vmspace;
1202 	vm_offset_t stack_addr, stack_top;
1203 	u_long ssiz;
1204 	int error, find_space, stack_off;
1205 	vm_prot_t stack_prot;
1206 
1207 	p = imgp->proc;
1208 	sv = p->p_sysent;
1209 
1210 	if (imgp->stack_sz != 0) {
1211 		ssiz = trunc_page(imgp->stack_sz);
1212 		PROC_LOCK(p);
1213 		lim_rlimit_proc(p, RLIMIT_STACK, &rlim_stack);
1214 		PROC_UNLOCK(p);
1215 		if (ssiz > rlim_stack.rlim_max)
1216 			ssiz = rlim_stack.rlim_max;
1217 		if (ssiz > rlim_stack.rlim_cur) {
1218 			rlim_stack.rlim_cur = ssiz;
1219 			kern_setrlimit(curthread, RLIMIT_STACK, &rlim_stack);
1220 		}
1221 	} else if (sv->sv_maxssiz != NULL) {
1222 		ssiz = *sv->sv_maxssiz;
1223 	} else {
1224 		ssiz = maxssiz;
1225 	}
1226 
1227 	vmspace = p->p_vmspace;
1228 	map = &vmspace->vm_map;
1229 
1230 	stack_prot = sv->sv_shared_page_obj != NULL && imgp->stack_prot != 0 ?
1231 	    imgp->stack_prot : sv->sv_stackprot;
1232 	if ((map->flags & MAP_ASLR_STACK) != 0) {
1233 		stack_addr = round_page((vm_offset_t)p->p_vmspace->vm_daddr +
1234 		    lim_max(curthread, RLIMIT_DATA));
1235 		find_space = VMFS_ANY_SPACE;
1236 	} else {
1237 		stack_addr = sv->sv_usrstack - ssiz;
1238 		find_space = VMFS_NO_SPACE;
1239 	}
1240 	error = vm_map_find(map, NULL, 0, &stack_addr, (vm_size_t)ssiz,
1241 	    sv->sv_usrstack, find_space, stack_prot, VM_PROT_ALL,
1242 	    MAP_STACK_GROWS_DOWN);
1243 	if (error != KERN_SUCCESS) {
1244 		uprintf("exec_new_vmspace: mapping stack size %#jx prot %#x "
1245 		    "failed, mach error %d errno %d\n", (uintmax_t)ssiz,
1246 		    stack_prot, error, vm_mmap_to_errno(error));
1247 		return (vm_mmap_to_errno(error));
1248 	}
1249 
1250 	stack_top = stack_addr + ssiz;
1251 	if ((map->flags & MAP_ASLR_STACK) != 0) {
1252 		/* Randomize within the first page of the stack. */
1253 		arc4rand(&stack_off, sizeof(stack_off), 0);
1254 		stack_top -= rounddown2(stack_off & PAGE_MASK, sizeof(void *));
1255 	}
1256 
1257 	/*
1258 	 * vm_ssize and vm_maxsaddr are somewhat antiquated concepts, but they
1259 	 * are still used to enforce the stack rlimit on the process stack.
1260 	 */
1261 	vmspace->vm_maxsaddr = (char *)stack_addr;
1262 	vmspace->vm_stacktop = stack_top;
1263 	vmspace->vm_ssize = sgrowsiz >> PAGE_SHIFT;
1264 
1265 	return (0);
1266 }
1267 
1268 /*
1269  * Copy out argument and environment strings from the old process address
1270  * space into the temporary string buffer.
1271  */
1272 int
1273 exec_copyin_args(struct image_args *args, const char *fname,
1274     enum uio_seg segflg, char **argv, char **envv)
1275 {
1276 	u_long arg, env;
1277 	int error;
1278 
1279 	bzero(args, sizeof(*args));
1280 	if (argv == NULL)
1281 		return (EFAULT);
1282 
1283 	/*
1284 	 * Allocate demand-paged memory for the file name, argument, and
1285 	 * environment strings.
1286 	 */
1287 	error = exec_alloc_args(args);
1288 	if (error != 0)
1289 		return (error);
1290 
1291 	/*
1292 	 * Copy the file name.
1293 	 */
1294 	error = exec_args_add_fname(args, fname, segflg);
1295 	if (error != 0)
1296 		goto err_exit;
1297 
1298 	/*
1299 	 * extract arguments first
1300 	 */
1301 	for (;;) {
1302 		error = fueword(argv++, &arg);
1303 		if (error == -1) {
1304 			error = EFAULT;
1305 			goto err_exit;
1306 		}
1307 		if (arg == 0)
1308 			break;
1309 		error = exec_args_add_arg(args, (char *)(uintptr_t)arg,
1310 		    UIO_USERSPACE);
1311 		if (error != 0)
1312 			goto err_exit;
1313 	}
1314 
1315 	/*
1316 	 * extract environment strings
1317 	 */
1318 	if (envv) {
1319 		for (;;) {
1320 			error = fueword(envv++, &env);
1321 			if (error == -1) {
1322 				error = EFAULT;
1323 				goto err_exit;
1324 			}
1325 			if (env == 0)
1326 				break;
1327 			error = exec_args_add_env(args,
1328 			    (char *)(uintptr_t)env, UIO_USERSPACE);
1329 			if (error != 0)
1330 				goto err_exit;
1331 		}
1332 	}
1333 
1334 	return (0);
1335 
1336 err_exit:
1337 	exec_free_args(args);
1338 	return (error);
1339 }
1340 
1341 struct exec_args_kva {
1342 	vm_offset_t addr;
1343 	u_int gen;
1344 	SLIST_ENTRY(exec_args_kva) next;
1345 };
1346 
1347 DPCPU_DEFINE_STATIC(struct exec_args_kva *, exec_args_kva);
1348 
1349 static SLIST_HEAD(, exec_args_kva) exec_args_kva_freelist;
1350 static struct mtx exec_args_kva_mtx;
1351 static u_int exec_args_gen;
1352 
1353 static void
1354 exec_prealloc_args_kva(void *arg __unused)
1355 {
1356 	struct exec_args_kva *argkva;
1357 	u_int i;
1358 
1359 	SLIST_INIT(&exec_args_kva_freelist);
1360 	mtx_init(&exec_args_kva_mtx, "exec args kva", NULL, MTX_DEF);
1361 	for (i = 0; i < exec_map_entries; i++) {
1362 		argkva = malloc(sizeof(*argkva), M_PARGS, M_WAITOK);
1363 		argkva->addr = kmap_alloc_wait(exec_map, exec_map_entry_size);
1364 		argkva->gen = exec_args_gen;
1365 		SLIST_INSERT_HEAD(&exec_args_kva_freelist, argkva, next);
1366 	}
1367 }
1368 SYSINIT(exec_args_kva, SI_SUB_EXEC, SI_ORDER_ANY, exec_prealloc_args_kva, NULL);
1369 
1370 static vm_offset_t
1371 exec_alloc_args_kva(void **cookie)
1372 {
1373 	struct exec_args_kva *argkva;
1374 
1375 	argkva = (void *)atomic_readandclear_ptr(
1376 	    (uintptr_t *)DPCPU_PTR(exec_args_kva));
1377 	if (argkva == NULL) {
1378 		mtx_lock(&exec_args_kva_mtx);
1379 		while ((argkva = SLIST_FIRST(&exec_args_kva_freelist)) == NULL)
1380 			(void)mtx_sleep(&exec_args_kva_freelist,
1381 			    &exec_args_kva_mtx, 0, "execkva", 0);
1382 		SLIST_REMOVE_HEAD(&exec_args_kva_freelist, next);
1383 		mtx_unlock(&exec_args_kva_mtx);
1384 	}
1385 	kasan_mark((void *)argkva->addr, exec_map_entry_size,
1386 	    exec_map_entry_size, 0);
1387 	*(struct exec_args_kva **)cookie = argkva;
1388 	return (argkva->addr);
1389 }
1390 
1391 static void
1392 exec_release_args_kva(struct exec_args_kva *argkva, u_int gen)
1393 {
1394 	vm_offset_t base;
1395 
1396 	base = argkva->addr;
1397 	kasan_mark((void *)argkva->addr, 0, exec_map_entry_size,
1398 	    KASAN_EXEC_ARGS_FREED);
1399 	if (argkva->gen != gen) {
1400 		(void)vm_map_madvise(exec_map, base, base + exec_map_entry_size,
1401 		    MADV_FREE);
1402 		argkva->gen = gen;
1403 	}
1404 	if (!atomic_cmpset_ptr((uintptr_t *)DPCPU_PTR(exec_args_kva),
1405 	    (uintptr_t)NULL, (uintptr_t)argkva)) {
1406 		mtx_lock(&exec_args_kva_mtx);
1407 		SLIST_INSERT_HEAD(&exec_args_kva_freelist, argkva, next);
1408 		wakeup_one(&exec_args_kva_freelist);
1409 		mtx_unlock(&exec_args_kva_mtx);
1410 	}
1411 }
1412 
1413 static void
1414 exec_free_args_kva(void *cookie)
1415 {
1416 
1417 	exec_release_args_kva(cookie, exec_args_gen);
1418 }
1419 
1420 static void
1421 exec_args_kva_lowmem(void *arg __unused)
1422 {
1423 	SLIST_HEAD(, exec_args_kva) head;
1424 	struct exec_args_kva *argkva;
1425 	u_int gen;
1426 	int i;
1427 
1428 	gen = atomic_fetchadd_int(&exec_args_gen, 1) + 1;
1429 
1430 	/*
1431 	 * Force an madvise of each KVA range. Any currently allocated ranges
1432 	 * will have MADV_FREE applied once they are freed.
1433 	 */
1434 	SLIST_INIT(&head);
1435 	mtx_lock(&exec_args_kva_mtx);
1436 	SLIST_SWAP(&head, &exec_args_kva_freelist, exec_args_kva);
1437 	mtx_unlock(&exec_args_kva_mtx);
1438 	while ((argkva = SLIST_FIRST(&head)) != NULL) {
1439 		SLIST_REMOVE_HEAD(&head, next);
1440 		exec_release_args_kva(argkva, gen);
1441 	}
1442 
1443 	CPU_FOREACH(i) {
1444 		argkva = (void *)atomic_readandclear_ptr(
1445 		    (uintptr_t *)DPCPU_ID_PTR(i, exec_args_kva));
1446 		if (argkva != NULL)
1447 			exec_release_args_kva(argkva, gen);
1448 	}
1449 }
1450 EVENTHANDLER_DEFINE(vm_lowmem, exec_args_kva_lowmem, NULL,
1451     EVENTHANDLER_PRI_ANY);
1452 
1453 /*
1454  * Allocate temporary demand-paged, zero-filled memory for the file name,
1455  * argument, and environment strings.
1456  */
1457 int
1458 exec_alloc_args(struct image_args *args)
1459 {
1460 
1461 	args->buf = (char *)exec_alloc_args_kva(&args->bufkva);
1462 	return (0);
1463 }
1464 
1465 void
1466 exec_free_args(struct image_args *args)
1467 {
1468 
1469 	if (args->buf != NULL) {
1470 		exec_free_args_kva(args->bufkva);
1471 		args->buf = NULL;
1472 	}
1473 	if (args->fname_buf != NULL) {
1474 		free(args->fname_buf, M_TEMP);
1475 		args->fname_buf = NULL;
1476 	}
1477 }
1478 
1479 /*
1480  * A set to functions to fill struct image args.
1481  *
1482  * NOTE: exec_args_add_fname() must be called (possibly with a NULL
1483  * fname) before the other functions.  All exec_args_add_arg() calls must
1484  * be made before any exec_args_add_env() calls.  exec_args_adjust_args()
1485  * may be called any time after exec_args_add_fname().
1486  *
1487  * exec_args_add_fname() - install path to be executed
1488  * exec_args_add_arg() - append an argument string
1489  * exec_args_add_env() - append an env string
1490  * exec_args_adjust_args() - adjust location of the argument list to
1491  *                           allow new arguments to be prepended
1492  */
1493 int
1494 exec_args_add_fname(struct image_args *args, const char *fname,
1495     enum uio_seg segflg)
1496 {
1497 	int error;
1498 	size_t length;
1499 
1500 	KASSERT(args->fname == NULL, ("fname already appended"));
1501 	KASSERT(args->endp == NULL, ("already appending to args"));
1502 
1503 	if (fname != NULL) {
1504 		args->fname = args->buf;
1505 		error = segflg == UIO_SYSSPACE ?
1506 		    copystr(fname, args->fname, PATH_MAX, &length) :
1507 		    copyinstr(fname, args->fname, PATH_MAX, &length);
1508 		if (error != 0)
1509 			return (error == ENAMETOOLONG ? E2BIG : error);
1510 	} else
1511 		length = 0;
1512 
1513 	/* Set up for _arg_*()/_env_*() */
1514 	args->endp = args->buf + length;
1515 	/* begin_argv must be set and kept updated */
1516 	args->begin_argv = args->endp;
1517 	KASSERT(exec_map_entry_size - length >= ARG_MAX,
1518 	    ("too little space remaining for arguments %zu < %zu",
1519 	    exec_map_entry_size - length, (size_t)ARG_MAX));
1520 	args->stringspace = ARG_MAX;
1521 
1522 	return (0);
1523 }
1524 
1525 static int
1526 exec_args_add_str(struct image_args *args, const char *str,
1527     enum uio_seg segflg, int *countp)
1528 {
1529 	int error;
1530 	size_t length;
1531 
1532 	KASSERT(args->endp != NULL, ("endp not initialized"));
1533 	KASSERT(args->begin_argv != NULL, ("begin_argp not initialized"));
1534 
1535 	error = (segflg == UIO_SYSSPACE) ?
1536 	    copystr(str, args->endp, args->stringspace, &length) :
1537 	    copyinstr(str, args->endp, args->stringspace, &length);
1538 	if (error != 0)
1539 		return (error == ENAMETOOLONG ? E2BIG : error);
1540 	args->stringspace -= length;
1541 	args->endp += length;
1542 	(*countp)++;
1543 
1544 	return (0);
1545 }
1546 
1547 int
1548 exec_args_add_arg(struct image_args *args, const char *argp,
1549     enum uio_seg segflg)
1550 {
1551 
1552 	KASSERT(args->envc == 0, ("appending args after env"));
1553 
1554 	return (exec_args_add_str(args, argp, segflg, &args->argc));
1555 }
1556 
1557 int
1558 exec_args_add_env(struct image_args *args, const char *envp,
1559     enum uio_seg segflg)
1560 {
1561 
1562 	if (args->envc == 0)
1563 		args->begin_envv = args->endp;
1564 
1565 	return (exec_args_add_str(args, envp, segflg, &args->envc));
1566 }
1567 
1568 int
1569 exec_args_adjust_args(struct image_args *args, size_t consume, ssize_t extend)
1570 {
1571 	ssize_t offset;
1572 
1573 	KASSERT(args->endp != NULL, ("endp not initialized"));
1574 	KASSERT(args->begin_argv != NULL, ("begin_argp not initialized"));
1575 
1576 	offset = extend - consume;
1577 	if (args->stringspace < offset)
1578 		return (E2BIG);
1579 	memmove(args->begin_argv + extend, args->begin_argv + consume,
1580 	    args->endp - args->begin_argv + consume);
1581 	if (args->envc > 0)
1582 		args->begin_envv += offset;
1583 	args->endp += offset;
1584 	args->stringspace -= offset;
1585 	return (0);
1586 }
1587 
1588 char *
1589 exec_args_get_begin_envv(struct image_args *args)
1590 {
1591 
1592 	KASSERT(args->endp != NULL, ("endp not initialized"));
1593 
1594 	if (args->envc > 0)
1595 		return (args->begin_envv);
1596 	return (args->endp);
1597 }
1598 
1599 /*
1600  * Copy strings out to the new process address space, constructing new arg
1601  * and env vector tables. Return a pointer to the base so that it can be used
1602  * as the initial stack pointer.
1603  */
1604 int
1605 exec_copyout_strings(struct image_params *imgp, uintptr_t *stack_base)
1606 {
1607 	int argc, envc;
1608 	char **vectp;
1609 	char *stringp;
1610 	uintptr_t destp, ustringp;
1611 	struct ps_strings *arginfo;
1612 	struct proc *p;
1613 	struct sysentvec *sysent;
1614 	size_t execpath_len;
1615 	int error, szsigcode;
1616 	char canary[sizeof(long) * 8];
1617 
1618 	p = imgp->proc;
1619 	sysent = p->p_sysent;
1620 
1621 	destp =	PROC_PS_STRINGS(p);
1622 	arginfo = imgp->ps_strings = (void *)destp;
1623 
1624 	/*
1625 	 * Install sigcode.
1626 	 */
1627 	if (sysent->sv_sigcode_base == 0 && sysent->sv_szsigcode != NULL) {
1628 		szsigcode = *(sysent->sv_szsigcode);
1629 		destp -= szsigcode;
1630 		destp = rounddown2(destp, sizeof(void *));
1631 		error = copyout(sysent->sv_sigcode, (void *)destp, szsigcode);
1632 		if (error != 0)
1633 			return (error);
1634 	}
1635 
1636 	/*
1637 	 * Copy the image path for the rtld.
1638 	 */
1639 	if (imgp->execpath != NULL && imgp->auxargs != NULL) {
1640 		execpath_len = strlen(imgp->execpath) + 1;
1641 		destp -= execpath_len;
1642 		destp = rounddown2(destp, sizeof(void *));
1643 		imgp->execpathp = (void *)destp;
1644 		error = copyout(imgp->execpath, imgp->execpathp, execpath_len);
1645 		if (error != 0)
1646 			return (error);
1647 	}
1648 
1649 	/*
1650 	 * Prepare the canary for SSP.
1651 	 */
1652 	arc4rand(canary, sizeof(canary), 0);
1653 	destp -= sizeof(canary);
1654 	imgp->canary = (void *)destp;
1655 	error = copyout(canary, imgp->canary, sizeof(canary));
1656 	if (error != 0)
1657 		return (error);
1658 	imgp->canarylen = sizeof(canary);
1659 
1660 	/*
1661 	 * Prepare the pagesizes array.
1662 	 */
1663 	imgp->pagesizeslen = sizeof(pagesizes[0]) * MAXPAGESIZES;
1664 	destp -= imgp->pagesizeslen;
1665 	destp = rounddown2(destp, sizeof(void *));
1666 	imgp->pagesizes = (void *)destp;
1667 	error = copyout(pagesizes, imgp->pagesizes, imgp->pagesizeslen);
1668 	if (error != 0)
1669 		return (error);
1670 
1671 	/*
1672 	 * Allocate room for the argument and environment strings.
1673 	 */
1674 	destp -= ARG_MAX - imgp->args->stringspace;
1675 	destp = rounddown2(destp, sizeof(void *));
1676 	ustringp = destp;
1677 
1678 	if (imgp->auxargs) {
1679 		/*
1680 		 * Allocate room on the stack for the ELF auxargs
1681 		 * array.  It has up to AT_COUNT entries.
1682 		 */
1683 		destp -= AT_COUNT * sizeof(Elf_Auxinfo);
1684 		destp = rounddown2(destp, sizeof(void *));
1685 	}
1686 
1687 	vectp = (char **)destp;
1688 
1689 	/*
1690 	 * Allocate room for the argv[] and env vectors including the
1691 	 * terminating NULL pointers.
1692 	 */
1693 	vectp -= imgp->args->argc + 1 + imgp->args->envc + 1;
1694 
1695 	/*
1696 	 * vectp also becomes our initial stack base
1697 	 */
1698 	*stack_base = (uintptr_t)vectp;
1699 
1700 	stringp = imgp->args->begin_argv;
1701 	argc = imgp->args->argc;
1702 	envc = imgp->args->envc;
1703 
1704 	/*
1705 	 * Copy out strings - arguments and environment.
1706 	 */
1707 	error = copyout(stringp, (void *)ustringp,
1708 	    ARG_MAX - imgp->args->stringspace);
1709 	if (error != 0)
1710 		return (error);
1711 
1712 	/*
1713 	 * Fill in "ps_strings" struct for ps, w, etc.
1714 	 */
1715 	imgp->argv = vectp;
1716 	if (suword(&arginfo->ps_argvstr, (long)(intptr_t)vectp) != 0 ||
1717 	    suword32(&arginfo->ps_nargvstr, argc) != 0)
1718 		return (EFAULT);
1719 
1720 	/*
1721 	 * Fill in argument portion of vector table.
1722 	 */
1723 	for (; argc > 0; --argc) {
1724 		if (suword(vectp++, ustringp) != 0)
1725 			return (EFAULT);
1726 		while (*stringp++ != 0)
1727 			ustringp++;
1728 		ustringp++;
1729 	}
1730 
1731 	/* a null vector table pointer separates the argp's from the envp's */
1732 	if (suword(vectp++, 0) != 0)
1733 		return (EFAULT);
1734 
1735 	imgp->envv = vectp;
1736 	if (suword(&arginfo->ps_envstr, (long)(intptr_t)vectp) != 0 ||
1737 	    suword32(&arginfo->ps_nenvstr, envc) != 0)
1738 		return (EFAULT);
1739 
1740 	/*
1741 	 * Fill in environment portion of vector table.
1742 	 */
1743 	for (; envc > 0; --envc) {
1744 		if (suword(vectp++, ustringp) != 0)
1745 			return (EFAULT);
1746 		while (*stringp++ != 0)
1747 			ustringp++;
1748 		ustringp++;
1749 	}
1750 
1751 	/* end of vector table is a null pointer */
1752 	if (suword(vectp, 0) != 0)
1753 		return (EFAULT);
1754 
1755 	if (imgp->auxargs) {
1756 		vectp++;
1757 		error = imgp->sysent->sv_copyout_auxargs(imgp,
1758 		    (uintptr_t)vectp);
1759 		if (error != 0)
1760 			return (error);
1761 	}
1762 
1763 	return (0);
1764 }
1765 
1766 /*
1767  * Check permissions of file to execute.
1768  *	Called with imgp->vp locked.
1769  *	Return 0 for success or error code on failure.
1770  */
1771 int
1772 exec_check_permissions(struct image_params *imgp)
1773 {
1774 	struct vnode *vp = imgp->vp;
1775 	struct vattr *attr = imgp->attr;
1776 	struct thread *td;
1777 	int error;
1778 
1779 	td = curthread;
1780 
1781 	/* Get file attributes */
1782 	error = VOP_GETATTR(vp, attr, td->td_ucred);
1783 	if (error)
1784 		return (error);
1785 
1786 #ifdef MAC
1787 	error = mac_vnode_check_exec(td->td_ucred, imgp->vp, imgp);
1788 	if (error)
1789 		return (error);
1790 #endif
1791 
1792 	/*
1793 	 * 1) Check if file execution is disabled for the filesystem that
1794 	 *    this file resides on.
1795 	 * 2) Ensure that at least one execute bit is on. Otherwise, a
1796 	 *    privileged user will always succeed, and we don't want this
1797 	 *    to happen unless the file really is executable.
1798 	 * 3) Ensure that the file is a regular file.
1799 	 */
1800 	if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
1801 	    (attr->va_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0 ||
1802 	    (attr->va_type != VREG))
1803 		return (EACCES);
1804 
1805 	/*
1806 	 * Zero length files can't be exec'd
1807 	 */
1808 	if (attr->va_size == 0)
1809 		return (ENOEXEC);
1810 
1811 	/*
1812 	 *  Check for execute permission to file based on current credentials.
1813 	 */
1814 	error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td);
1815 	if (error)
1816 		return (error);
1817 
1818 	/*
1819 	 * Check number of open-for-writes on the file and deny execution
1820 	 * if there are any.
1821 	 *
1822 	 * Add a text reference now so no one can write to the
1823 	 * executable while we're activating it.
1824 	 *
1825 	 * Remember if this was set before and unset it in case this is not
1826 	 * actually an executable image.
1827 	 */
1828 	error = VOP_SET_TEXT(vp);
1829 	if (error != 0)
1830 		return (error);
1831 	imgp->textset = true;
1832 
1833 	/*
1834 	 * Call filesystem specific open routine (which does nothing in the
1835 	 * general case).
1836 	 */
1837 	error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL);
1838 	if (error == 0)
1839 		imgp->opened = true;
1840 	return (error);
1841 }
1842 
1843 /*
1844  * Exec handler registration
1845  */
1846 int
1847 exec_register(const struct execsw *execsw_arg)
1848 {
1849 	const struct execsw **es, **xs, **newexecsw;
1850 	u_int count = 2;	/* New slot and trailing NULL */
1851 
1852 	if (execsw)
1853 		for (es = execsw; *es; es++)
1854 			count++;
1855 	newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1856 	xs = newexecsw;
1857 	if (execsw)
1858 		for (es = execsw; *es; es++)
1859 			*xs++ = *es;
1860 	*xs++ = execsw_arg;
1861 	*xs = NULL;
1862 	if (execsw)
1863 		free(execsw, M_TEMP);
1864 	execsw = newexecsw;
1865 	return (0);
1866 }
1867 
1868 int
1869 exec_unregister(const struct execsw *execsw_arg)
1870 {
1871 	const struct execsw **es, **xs, **newexecsw;
1872 	int count = 1;
1873 
1874 	if (execsw == NULL)
1875 		panic("unregister with no handlers left?\n");
1876 
1877 	for (es = execsw; *es; es++) {
1878 		if (*es == execsw_arg)
1879 			break;
1880 	}
1881 	if (*es == NULL)
1882 		return (ENOENT);
1883 	for (es = execsw; *es; es++)
1884 		if (*es != execsw_arg)
1885 			count++;
1886 	newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1887 	xs = newexecsw;
1888 	for (es = execsw; *es; es++)
1889 		if (*es != execsw_arg)
1890 			*xs++ = *es;
1891 	*xs = NULL;
1892 	if (execsw)
1893 		free(execsw, M_TEMP);
1894 	execsw = newexecsw;
1895 	return (0);
1896 }
1897 
1898 /*
1899  * Write out a core segment to the compression stream.
1900  */
1901 static int
1902 compress_chunk(struct coredump_params *cp, char *base, char *buf, size_t len)
1903 {
1904 	size_t chunk_len;
1905 	int error;
1906 
1907 	while (len > 0) {
1908 		chunk_len = MIN(len, CORE_BUF_SIZE);
1909 
1910 		/*
1911 		 * We can get EFAULT error here.
1912 		 * In that case zero out the current chunk of the segment.
1913 		 */
1914 		error = copyin(base, buf, chunk_len);
1915 		if (error != 0)
1916 			bzero(buf, chunk_len);
1917 		error = compressor_write(cp->comp, buf, chunk_len);
1918 		if (error != 0)
1919 			break;
1920 		base += chunk_len;
1921 		len -= chunk_len;
1922 	}
1923 	return (error);
1924 }
1925 
1926 int
1927 core_write(struct coredump_params *cp, const void *base, size_t len,
1928     off_t offset, enum uio_seg seg, size_t *resid)
1929 {
1930 
1931 	return (vn_rdwr_inchunks(UIO_WRITE, cp->vp, __DECONST(void *, base),
1932 	    len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED,
1933 	    cp->active_cred, cp->file_cred, resid, cp->td));
1934 }
1935 
1936 int
1937 core_output(char *base, size_t len, off_t offset, struct coredump_params *cp,
1938     void *tmpbuf)
1939 {
1940 	vm_map_t map;
1941 	struct mount *mp;
1942 	size_t resid, runlen;
1943 	int error;
1944 	bool success;
1945 
1946 	KASSERT((uintptr_t)base % PAGE_SIZE == 0,
1947 	    ("%s: user address %p is not page-aligned", __func__, base));
1948 
1949 	if (cp->comp != NULL)
1950 		return (compress_chunk(cp, base, tmpbuf, len));
1951 
1952 	map = &cp->td->td_proc->p_vmspace->vm_map;
1953 	for (; len > 0; base += runlen, offset += runlen, len -= runlen) {
1954 		/*
1955 		 * Attempt to page in all virtual pages in the range.  If a
1956 		 * virtual page is not backed by the pager, it is represented as
1957 		 * a hole in the file.  This can occur with zero-filled
1958 		 * anonymous memory or truncated files, for example.
1959 		 */
1960 		for (runlen = 0; runlen < len; runlen += PAGE_SIZE) {
1961 			if (core_dump_can_intr && curproc_sigkilled())
1962 				return (EINTR);
1963 			error = vm_fault(map, (uintptr_t)base + runlen,
1964 			    VM_PROT_READ, VM_FAULT_NOFILL, NULL);
1965 			if (runlen == 0)
1966 				success = error == KERN_SUCCESS;
1967 			else if ((error == KERN_SUCCESS) != success)
1968 				break;
1969 		}
1970 
1971 		if (success) {
1972 			error = core_write(cp, base, runlen, offset,
1973 			    UIO_USERSPACE, &resid);
1974 			if (error != 0) {
1975 				if (error != EFAULT)
1976 					break;
1977 
1978 				/*
1979 				 * EFAULT may be returned if the user mapping
1980 				 * could not be accessed, e.g., because a mapped
1981 				 * file has been truncated.  Skip the page if no
1982 				 * progress was made, to protect against a
1983 				 * hypothetical scenario where vm_fault() was
1984 				 * successful but core_write() returns EFAULT
1985 				 * anyway.
1986 				 */
1987 				runlen -= resid;
1988 				if (runlen == 0) {
1989 					success = false;
1990 					runlen = PAGE_SIZE;
1991 				}
1992 			}
1993 		}
1994 		if (!success) {
1995 			error = vn_start_write(cp->vp, &mp, V_WAIT);
1996 			if (error != 0)
1997 				break;
1998 			vn_lock(cp->vp, LK_EXCLUSIVE | LK_RETRY);
1999 			error = vn_truncate_locked(cp->vp, offset + runlen,
2000 			    false, cp->td->td_ucred);
2001 			VOP_UNLOCK(cp->vp);
2002 			vn_finished_write(mp);
2003 			if (error != 0)
2004 				break;
2005 		}
2006 	}
2007 	return (error);
2008 }
2009 
2010 /*
2011  * Drain into a core file.
2012  */
2013 int
2014 sbuf_drain_core_output(void *arg, const char *data, int len)
2015 {
2016 	struct coredump_params *cp;
2017 	struct proc *p;
2018 	int error, locked;
2019 
2020 	cp = arg;
2021 	p = cp->td->td_proc;
2022 
2023 	/*
2024 	 * Some kern_proc out routines that print to this sbuf may
2025 	 * call us with the process lock held. Draining with the
2026 	 * non-sleepable lock held is unsafe. The lock is needed for
2027 	 * those routines when dumping a live process. In our case we
2028 	 * can safely release the lock before draining and acquire
2029 	 * again after.
2030 	 */
2031 	locked = PROC_LOCKED(p);
2032 	if (locked)
2033 		PROC_UNLOCK(p);
2034 	if (cp->comp != NULL)
2035 		error = compressor_write(cp->comp, __DECONST(char *, data),
2036 		    len);
2037 	else
2038 		error = core_write(cp, __DECONST(void *, data), len, cp->offset,
2039 		    UIO_SYSSPACE, NULL);
2040 	if (locked)
2041 		PROC_LOCK(p);
2042 	if (error != 0)
2043 		return (-error);
2044 	cp->offset += len;
2045 	return (len);
2046 }
2047