1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1993, David Greenman 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_capsicum.h" 33 #include "opt_hwpmc_hooks.h" 34 #include "opt_ktrace.h" 35 #include "opt_vm.h" 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/acct.h> 40 #include <sys/asan.h> 41 #include <sys/capsicum.h> 42 #include <sys/compressor.h> 43 #include <sys/eventhandler.h> 44 #include <sys/exec.h> 45 #include <sys/fcntl.h> 46 #include <sys/filedesc.h> 47 #include <sys/imgact.h> 48 #include <sys/imgact_elf.h> 49 #include <sys/kernel.h> 50 #include <sys/lock.h> 51 #include <sys/malloc.h> 52 #include <sys/mman.h> 53 #include <sys/mount.h> 54 #include <sys/mutex.h> 55 #include <sys/namei.h> 56 #include <sys/priv.h> 57 #include <sys/proc.h> 58 #include <sys/ptrace.h> 59 #include <sys/reg.h> 60 #include <sys/resourcevar.h> 61 #include <sys/rwlock.h> 62 #include <sys/sched.h> 63 #include <sys/sdt.h> 64 #include <sys/sf_buf.h> 65 #include <sys/shm.h> 66 #include <sys/signalvar.h> 67 #include <sys/smp.h> 68 #include <sys/stat.h> 69 #include <sys/syscallsubr.h> 70 #include <sys/sysctl.h> 71 #include <sys/sysent.h> 72 #include <sys/sysproto.h> 73 #include <sys/timers.h> 74 #include <sys/umtxvar.h> 75 #include <sys/vnode.h> 76 #include <sys/wait.h> 77 #ifdef KTRACE 78 #include <sys/ktrace.h> 79 #endif 80 81 #include <vm/vm.h> 82 #include <vm/vm_param.h> 83 #include <vm/pmap.h> 84 #include <vm/vm_page.h> 85 #include <vm/vm_map.h> 86 #include <vm/vm_kern.h> 87 #include <vm/vm_extern.h> 88 #include <vm/vm_object.h> 89 #include <vm/vm_pager.h> 90 91 #ifdef HWPMC_HOOKS 92 #include <sys/pmckern.h> 93 #endif 94 95 #include <security/audit/audit.h> 96 #include <security/mac/mac_framework.h> 97 98 #ifdef KDTRACE_HOOKS 99 #include <sys/dtrace_bsd.h> 100 dtrace_execexit_func_t dtrace_fasttrap_exec; 101 #endif 102 103 SDT_PROVIDER_DECLARE(proc); 104 SDT_PROBE_DEFINE1(proc, , , exec, "char *"); 105 SDT_PROBE_DEFINE1(proc, , , exec__failure, "int"); 106 SDT_PROBE_DEFINE1(proc, , , exec__success, "char *"); 107 108 MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments"); 109 110 int coredump_pack_fileinfo = 1; 111 SYSCTL_INT(_kern, OID_AUTO, coredump_pack_fileinfo, CTLFLAG_RWTUN, 112 &coredump_pack_fileinfo, 0, 113 "Enable file path packing in 'procstat -f' coredump notes"); 114 115 int coredump_pack_vmmapinfo = 1; 116 SYSCTL_INT(_kern, OID_AUTO, coredump_pack_vmmapinfo, CTLFLAG_RWTUN, 117 &coredump_pack_vmmapinfo, 0, 118 "Enable file path packing in 'procstat -v' coredump notes"); 119 120 static int sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS); 121 static int sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS); 122 static int sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS); 123 static int do_execve(struct thread *td, struct image_args *args, 124 struct mac *mac_p, struct vmspace *oldvmspace); 125 126 /* XXX This should be vm_size_t. */ 127 SYSCTL_PROC(_kern, KERN_PS_STRINGS, ps_strings, CTLTYPE_ULONG|CTLFLAG_RD| 128 CTLFLAG_CAPRD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_ps_strings, "LU", 129 "Location of process' ps_strings structure"); 130 131 /* XXX This should be vm_size_t. */ 132 SYSCTL_PROC(_kern, KERN_USRSTACK, usrstack, CTLTYPE_ULONG|CTLFLAG_RD| 133 CTLFLAG_CAPRD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_usrstack, "LU", 134 "Top of process stack"); 135 136 SYSCTL_PROC(_kern, OID_AUTO, stackprot, CTLTYPE_INT|CTLFLAG_RD|CTLFLAG_MPSAFE, 137 NULL, 0, sysctl_kern_stackprot, "I", 138 "Stack memory permissions"); 139 140 u_long ps_arg_cache_limit = PAGE_SIZE / 16; 141 SYSCTL_ULONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW, 142 &ps_arg_cache_limit, 0, 143 "Process' command line characters cache limit"); 144 145 static int disallow_high_osrel; 146 SYSCTL_INT(_kern, OID_AUTO, disallow_high_osrel, CTLFLAG_RW, 147 &disallow_high_osrel, 0, 148 "Disallow execution of binaries built for higher version of the world"); 149 150 static int map_at_zero = 0; 151 SYSCTL_INT(_security_bsd, OID_AUTO, map_at_zero, CTLFLAG_RWTUN, &map_at_zero, 0, 152 "Permit processes to map an object at virtual address 0."); 153 154 static int 155 sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS) 156 { 157 struct proc *p; 158 int error; 159 160 p = curproc; 161 #ifdef SCTL_MASK32 162 if (req->flags & SCTL_MASK32) { 163 unsigned int val; 164 val = (unsigned int)p->p_sysent->sv_psstrings; 165 error = SYSCTL_OUT(req, &val, sizeof(val)); 166 } else 167 #endif 168 error = SYSCTL_OUT(req, &p->p_sysent->sv_psstrings, 169 sizeof(p->p_sysent->sv_psstrings)); 170 return error; 171 } 172 173 static int 174 sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS) 175 { 176 struct proc *p; 177 int error; 178 179 p = curproc; 180 #ifdef SCTL_MASK32 181 if (req->flags & SCTL_MASK32) { 182 unsigned int val; 183 val = (unsigned int)p->p_sysent->sv_usrstack; 184 error = SYSCTL_OUT(req, &val, sizeof(val)); 185 } else 186 #endif 187 error = SYSCTL_OUT(req, &p->p_sysent->sv_usrstack, 188 sizeof(p->p_sysent->sv_usrstack)); 189 return error; 190 } 191 192 static int 193 sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS) 194 { 195 struct proc *p; 196 197 p = curproc; 198 return (SYSCTL_OUT(req, &p->p_sysent->sv_stackprot, 199 sizeof(p->p_sysent->sv_stackprot))); 200 } 201 202 /* 203 * Each of the items is a pointer to a `const struct execsw', hence the 204 * double pointer here. 205 */ 206 static const struct execsw **execsw; 207 208 #ifndef _SYS_SYSPROTO_H_ 209 struct execve_args { 210 char *fname; 211 char **argv; 212 char **envv; 213 }; 214 #endif 215 216 int 217 sys_execve(struct thread *td, struct execve_args *uap) 218 { 219 struct image_args args; 220 struct vmspace *oldvmspace; 221 int error; 222 223 error = pre_execve(td, &oldvmspace); 224 if (error != 0) 225 return (error); 226 error = exec_copyin_args(&args, uap->fname, UIO_USERSPACE, 227 uap->argv, uap->envv); 228 if (error == 0) 229 error = kern_execve(td, &args, NULL, oldvmspace); 230 post_execve(td, error, oldvmspace); 231 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 232 return (error); 233 } 234 235 #ifndef _SYS_SYSPROTO_H_ 236 struct fexecve_args { 237 int fd; 238 char **argv; 239 char **envv; 240 }; 241 #endif 242 int 243 sys_fexecve(struct thread *td, struct fexecve_args *uap) 244 { 245 struct image_args args; 246 struct vmspace *oldvmspace; 247 int error; 248 249 error = pre_execve(td, &oldvmspace); 250 if (error != 0) 251 return (error); 252 error = exec_copyin_args(&args, NULL, UIO_SYSSPACE, 253 uap->argv, uap->envv); 254 if (error == 0) { 255 args.fd = uap->fd; 256 error = kern_execve(td, &args, NULL, oldvmspace); 257 } 258 post_execve(td, error, oldvmspace); 259 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 260 return (error); 261 } 262 263 #ifndef _SYS_SYSPROTO_H_ 264 struct __mac_execve_args { 265 char *fname; 266 char **argv; 267 char **envv; 268 struct mac *mac_p; 269 }; 270 #endif 271 272 int 273 sys___mac_execve(struct thread *td, struct __mac_execve_args *uap) 274 { 275 #ifdef MAC 276 struct image_args args; 277 struct vmspace *oldvmspace; 278 int error; 279 280 error = pre_execve(td, &oldvmspace); 281 if (error != 0) 282 return (error); 283 error = exec_copyin_args(&args, uap->fname, UIO_USERSPACE, 284 uap->argv, uap->envv); 285 if (error == 0) 286 error = kern_execve(td, &args, uap->mac_p, oldvmspace); 287 post_execve(td, error, oldvmspace); 288 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 289 return (error); 290 #else 291 return (ENOSYS); 292 #endif 293 } 294 295 int 296 pre_execve(struct thread *td, struct vmspace **oldvmspace) 297 { 298 struct proc *p; 299 int error; 300 301 KASSERT(td == curthread, ("non-current thread %p", td)); 302 error = 0; 303 p = td->td_proc; 304 if ((p->p_flag & P_HADTHREADS) != 0) { 305 PROC_LOCK(p); 306 if (thread_single(p, SINGLE_BOUNDARY) != 0) 307 error = ERESTART; 308 PROC_UNLOCK(p); 309 } 310 KASSERT(error != 0 || (td->td_pflags & TDP_EXECVMSPC) == 0, 311 ("nested execve")); 312 *oldvmspace = p->p_vmspace; 313 return (error); 314 } 315 316 void 317 post_execve(struct thread *td, int error, struct vmspace *oldvmspace) 318 { 319 struct proc *p; 320 321 KASSERT(td == curthread, ("non-current thread %p", td)); 322 p = td->td_proc; 323 if ((p->p_flag & P_HADTHREADS) != 0) { 324 PROC_LOCK(p); 325 /* 326 * If success, we upgrade to SINGLE_EXIT state to 327 * force other threads to suicide. 328 */ 329 if (error == EJUSTRETURN) 330 thread_single(p, SINGLE_EXIT); 331 else 332 thread_single_end(p, SINGLE_BOUNDARY); 333 PROC_UNLOCK(p); 334 } 335 exec_cleanup(td, oldvmspace); 336 } 337 338 /* 339 * kern_execve() has the astonishing property of not always returning to 340 * the caller. If sufficiently bad things happen during the call to 341 * do_execve(), it can end up calling exit1(); as a result, callers must 342 * avoid doing anything which they might need to undo (e.g., allocating 343 * memory). 344 */ 345 int 346 kern_execve(struct thread *td, struct image_args *args, struct mac *mac_p, 347 struct vmspace *oldvmspace) 348 { 349 350 AUDIT_ARG_ARGV(args->begin_argv, args->argc, 351 exec_args_get_begin_envv(args) - args->begin_argv); 352 AUDIT_ARG_ENVV(exec_args_get_begin_envv(args), args->envc, 353 args->endp - exec_args_get_begin_envv(args)); 354 return (do_execve(td, args, mac_p, oldvmspace)); 355 } 356 357 static void 358 execve_nosetid(struct image_params *imgp) 359 { 360 imgp->credential_setid = false; 361 if (imgp->newcred != NULL) { 362 crfree(imgp->newcred); 363 imgp->newcred = NULL; 364 } 365 } 366 367 /* 368 * In-kernel implementation of execve(). All arguments are assumed to be 369 * userspace pointers from the passed thread. 370 */ 371 static int 372 do_execve(struct thread *td, struct image_args *args, struct mac *mac_p, 373 struct vmspace *oldvmspace) 374 { 375 struct proc *p = td->td_proc; 376 struct nameidata nd; 377 struct ucred *oldcred; 378 struct uidinfo *euip = NULL; 379 uintptr_t stack_base; 380 struct image_params image_params, *imgp; 381 struct vattr attr; 382 int (*img_first)(struct image_params *); 383 struct pargs *oldargs = NULL, *newargs = NULL; 384 struct sigacts *oldsigacts = NULL, *newsigacts = NULL; 385 #ifdef KTRACE 386 struct ktr_io_params *kiop; 387 #endif 388 struct vnode *oldtextvp = NULL, *newtextvp; 389 int credential_changing; 390 #ifdef MAC 391 struct label *interpvplabel = NULL; 392 int will_transition; 393 #endif 394 #ifdef HWPMC_HOOKS 395 struct pmckern_procexec pe; 396 #endif 397 int error, i, orig_osrel; 398 uint32_t orig_fctl0; 399 Elf_Brandinfo *orig_brandinfo; 400 static const char fexecv_proc_title[] = "(fexecv)"; 401 402 imgp = &image_params; 403 #ifdef KTRACE 404 kiop = NULL; 405 #endif 406 407 /* 408 * Lock the process and set the P_INEXEC flag to indicate that 409 * it should be left alone until we're done here. This is 410 * necessary to avoid race conditions - e.g. in ptrace() - 411 * that might allow a local user to illicitly obtain elevated 412 * privileges. 413 */ 414 PROC_LOCK(p); 415 KASSERT((p->p_flag & P_INEXEC) == 0, 416 ("%s(): process already has P_INEXEC flag", __func__)); 417 p->p_flag |= P_INEXEC; 418 PROC_UNLOCK(p); 419 420 /* 421 * Initialize part of the common data 422 */ 423 bzero(imgp, sizeof(*imgp)); 424 imgp->proc = p; 425 imgp->attr = &attr; 426 imgp->args = args; 427 oldcred = p->p_ucred; 428 orig_osrel = p->p_osrel; 429 orig_fctl0 = p->p_fctl0; 430 orig_brandinfo = p->p_elf_brandinfo; 431 432 #ifdef MAC 433 error = mac_execve_enter(imgp, mac_p); 434 if (error) 435 goto exec_fail; 436 #endif 437 438 /* 439 * Translate the file name. namei() returns a vnode pointer 440 * in ni_vp among other things. 441 * 442 * XXXAUDIT: It would be desirable to also audit the name of the 443 * interpreter if this is an interpreted binary. 444 */ 445 if (args->fname != NULL) { 446 NDINIT(&nd, LOOKUP, ISOPEN | LOCKLEAF | LOCKSHARED | FOLLOW | 447 SAVENAME | AUDITVNODE1, UIO_SYSSPACE, args->fname, td); 448 } 449 450 SDT_PROBE1(proc, , , exec, args->fname); 451 452 interpret: 453 if (args->fname != NULL) { 454 #ifdef CAPABILITY_MODE 455 /* 456 * While capability mode can't reach this point via direct 457 * path arguments to execve(), we also don't allow 458 * interpreters to be used in capability mode (for now). 459 * Catch indirect lookups and return a permissions error. 460 */ 461 if (IN_CAPABILITY_MODE(td)) { 462 error = ECAPMODE; 463 goto exec_fail; 464 } 465 #endif 466 error = namei(&nd); 467 if (error) 468 goto exec_fail; 469 470 newtextvp = nd.ni_vp; 471 imgp->vp = newtextvp; 472 } else { 473 AUDIT_ARG_FD(args->fd); 474 /* 475 * Descriptors opened only with O_EXEC or O_RDONLY are allowed. 476 */ 477 error = fgetvp_exec(td, args->fd, &cap_fexecve_rights, &newtextvp); 478 if (error) 479 goto exec_fail; 480 vn_lock(newtextvp, LK_SHARED | LK_RETRY); 481 AUDIT_ARG_VNODE1(newtextvp); 482 imgp->vp = newtextvp; 483 } 484 485 /* 486 * Check file permissions. Also 'opens' file and sets its vnode to 487 * text mode. 488 */ 489 error = exec_check_permissions(imgp); 490 if (error) 491 goto exec_fail_dealloc; 492 493 imgp->object = imgp->vp->v_object; 494 if (imgp->object != NULL) 495 vm_object_reference(imgp->object); 496 497 error = exec_map_first_page(imgp); 498 if (error) 499 goto exec_fail_dealloc; 500 501 imgp->proc->p_osrel = 0; 502 imgp->proc->p_fctl0 = 0; 503 imgp->proc->p_elf_brandinfo = NULL; 504 505 /* 506 * Implement image setuid/setgid. 507 * 508 * Determine new credentials before attempting image activators 509 * so that it can be used by process_exec handlers to determine 510 * credential/setid changes. 511 * 512 * Don't honor setuid/setgid if the filesystem prohibits it or if 513 * the process is being traced. 514 * 515 * We disable setuid/setgid/etc in capability mode on the basis 516 * that most setugid applications are not written with that 517 * environment in mind, and will therefore almost certainly operate 518 * incorrectly. In principle there's no reason that setugid 519 * applications might not be useful in capability mode, so we may want 520 * to reconsider this conservative design choice in the future. 521 * 522 * XXXMAC: For the time being, use NOSUID to also prohibit 523 * transitions on the file system. 524 */ 525 credential_changing = 0; 526 credential_changing |= (attr.va_mode & S_ISUID) && 527 oldcred->cr_uid != attr.va_uid; 528 credential_changing |= (attr.va_mode & S_ISGID) && 529 oldcred->cr_gid != attr.va_gid; 530 #ifdef MAC 531 will_transition = mac_vnode_execve_will_transition(oldcred, imgp->vp, 532 interpvplabel, imgp); 533 credential_changing |= will_transition; 534 #endif 535 536 /* Don't inherit PROC_PDEATHSIG_CTL value if setuid/setgid. */ 537 if (credential_changing) 538 imgp->proc->p_pdeathsig = 0; 539 540 if (credential_changing && 541 #ifdef CAPABILITY_MODE 542 ((oldcred->cr_flags & CRED_FLAG_CAPMODE) == 0) && 543 #endif 544 (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 && 545 (p->p_flag & P_TRACED) == 0) { 546 imgp->credential_setid = true; 547 VOP_UNLOCK(imgp->vp); 548 imgp->newcred = crdup(oldcred); 549 if (attr.va_mode & S_ISUID) { 550 euip = uifind(attr.va_uid); 551 change_euid(imgp->newcred, euip); 552 } 553 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 554 if (attr.va_mode & S_ISGID) 555 change_egid(imgp->newcred, attr.va_gid); 556 /* 557 * Implement correct POSIX saved-id behavior. 558 * 559 * XXXMAC: Note that the current logic will save the 560 * uid and gid if a MAC domain transition occurs, even 561 * though maybe it shouldn't. 562 */ 563 change_svuid(imgp->newcred, imgp->newcred->cr_uid); 564 change_svgid(imgp->newcred, imgp->newcred->cr_gid); 565 } else { 566 /* 567 * Implement correct POSIX saved-id behavior. 568 * 569 * XXX: It's not clear that the existing behavior is 570 * POSIX-compliant. A number of sources indicate that the 571 * saved uid/gid should only be updated if the new ruid is 572 * not equal to the old ruid, or the new euid is not equal 573 * to the old euid and the new euid is not equal to the old 574 * ruid. The FreeBSD code always updates the saved uid/gid. 575 * Also, this code uses the new (replaced) euid and egid as 576 * the source, which may or may not be the right ones to use. 577 */ 578 if (oldcred->cr_svuid != oldcred->cr_uid || 579 oldcred->cr_svgid != oldcred->cr_gid) { 580 VOP_UNLOCK(imgp->vp); 581 imgp->newcred = crdup(oldcred); 582 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 583 change_svuid(imgp->newcred, imgp->newcred->cr_uid); 584 change_svgid(imgp->newcred, imgp->newcred->cr_gid); 585 } 586 } 587 /* The new credentials are installed into the process later. */ 588 589 /* 590 * Do the best to calculate the full path to the image file. 591 */ 592 if (args->fname != NULL && args->fname[0] == '/') 593 imgp->execpath = args->fname; 594 else { 595 VOP_UNLOCK(imgp->vp); 596 if (vn_fullpath(imgp->vp, &imgp->execpath, &imgp->freepath) != 0) 597 imgp->execpath = args->fname; 598 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 599 } 600 601 /* 602 * If the current process has a special image activator it 603 * wants to try first, call it. For example, emulating shell 604 * scripts differently. 605 */ 606 error = -1; 607 if ((img_first = imgp->proc->p_sysent->sv_imgact_try) != NULL) 608 error = img_first(imgp); 609 610 /* 611 * Loop through the list of image activators, calling each one. 612 * An activator returns -1 if there is no match, 0 on success, 613 * and an error otherwise. 614 */ 615 for (i = 0; error == -1 && execsw[i]; ++i) { 616 if (execsw[i]->ex_imgact == NULL || 617 execsw[i]->ex_imgact == img_first) { 618 continue; 619 } 620 error = (*execsw[i]->ex_imgact)(imgp); 621 } 622 623 if (error) { 624 if (error == -1) 625 error = ENOEXEC; 626 goto exec_fail_dealloc; 627 } 628 629 /* 630 * Special interpreter operation, cleanup and loop up to try to 631 * activate the interpreter. 632 */ 633 if (imgp->interpreted) { 634 exec_unmap_first_page(imgp); 635 /* 636 * The text reference needs to be removed for scripts. 637 * There is a short period before we determine that 638 * something is a script where text reference is active. 639 * The vnode lock is held over this entire period 640 * so nothing should illegitimately be blocked. 641 */ 642 MPASS(imgp->textset); 643 VOP_UNSET_TEXT_CHECKED(newtextvp); 644 imgp->textset = false; 645 /* free name buffer and old vnode */ 646 if (args->fname != NULL) 647 NDFREE(&nd, NDF_ONLY_PNBUF); 648 #ifdef MAC 649 mac_execve_interpreter_enter(newtextvp, &interpvplabel); 650 #endif 651 if (imgp->opened) { 652 VOP_CLOSE(newtextvp, FREAD, td->td_ucred, td); 653 imgp->opened = 0; 654 } 655 vput(newtextvp); 656 vm_object_deallocate(imgp->object); 657 imgp->object = NULL; 658 execve_nosetid(imgp); 659 imgp->execpath = NULL; 660 free(imgp->freepath, M_TEMP); 661 imgp->freepath = NULL; 662 /* set new name to that of the interpreter */ 663 NDINIT(&nd, LOOKUP, ISOPEN | LOCKLEAF | LOCKSHARED | FOLLOW | 664 SAVENAME, UIO_SYSSPACE, imgp->interpreter_name, td); 665 args->fname = imgp->interpreter_name; 666 goto interpret; 667 } 668 669 /* 670 * NB: We unlock the vnode here because it is believed that none 671 * of the sv_copyout_strings/sv_fixup operations require the vnode. 672 */ 673 VOP_UNLOCK(imgp->vp); 674 675 if (disallow_high_osrel && 676 P_OSREL_MAJOR(p->p_osrel) > P_OSREL_MAJOR(__FreeBSD_version)) { 677 error = ENOEXEC; 678 uprintf("Osrel %d for image %s too high\n", p->p_osrel, 679 imgp->execpath != NULL ? imgp->execpath : "<unresolved>"); 680 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 681 goto exec_fail_dealloc; 682 } 683 684 /* 685 * Copy out strings (args and env) and initialize stack base. 686 */ 687 error = (*p->p_sysent->sv_copyout_strings)(imgp, &stack_base); 688 if (error != 0) { 689 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 690 goto exec_fail_dealloc; 691 } 692 693 /* 694 * Stack setup. 695 */ 696 error = (*p->p_sysent->sv_fixup)(&stack_base, imgp); 697 if (error != 0) { 698 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 699 goto exec_fail_dealloc; 700 } 701 702 if (args->fdp != NULL) { 703 /* Install a brand new file descriptor table. */ 704 fdinstall_remapped(td, args->fdp); 705 args->fdp = NULL; 706 } else { 707 /* 708 * Keep on using the existing file descriptor table. For 709 * security and other reasons, the file descriptor table 710 * cannot be shared after an exec. 711 */ 712 fdunshare(td); 713 pdunshare(td); 714 /* close files on exec */ 715 fdcloseexec(td); 716 } 717 718 /* 719 * Malloc things before we need locks. 720 */ 721 i = exec_args_get_begin_envv(imgp->args) - imgp->args->begin_argv; 722 /* Cache arguments if they fit inside our allowance */ 723 if (ps_arg_cache_limit >= i + sizeof(struct pargs)) { 724 newargs = pargs_alloc(i); 725 bcopy(imgp->args->begin_argv, newargs->ar_args, i); 726 } 727 728 /* 729 * For security and other reasons, signal handlers cannot 730 * be shared after an exec. The new process gets a copy of the old 731 * handlers. In execsigs(), the new process will have its signals 732 * reset. 733 */ 734 if (sigacts_shared(p->p_sigacts)) { 735 oldsigacts = p->p_sigacts; 736 newsigacts = sigacts_alloc(); 737 sigacts_copy(newsigacts, oldsigacts); 738 } 739 740 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 741 742 PROC_LOCK(p); 743 if (oldsigacts) 744 p->p_sigacts = newsigacts; 745 /* Stop profiling */ 746 stopprofclock(p); 747 748 /* reset caught signals */ 749 execsigs(p); 750 751 /* name this process - nameiexec(p, ndp) */ 752 bzero(p->p_comm, sizeof(p->p_comm)); 753 if (args->fname) 754 bcopy(nd.ni_cnd.cn_nameptr, p->p_comm, 755 min(nd.ni_cnd.cn_namelen, MAXCOMLEN)); 756 else if (vn_commname(newtextvp, p->p_comm, sizeof(p->p_comm)) != 0) 757 bcopy(fexecv_proc_title, p->p_comm, sizeof(fexecv_proc_title)); 758 bcopy(p->p_comm, td->td_name, sizeof(td->td_name)); 759 #ifdef KTR 760 sched_clear_tdname(td); 761 #endif 762 763 /* 764 * mark as execed, wakeup the process that vforked (if any) and tell 765 * it that it now has its own resources back 766 */ 767 p->p_flag |= P_EXEC; 768 if ((p->p_flag2 & P2_NOTRACE_EXEC) == 0) 769 p->p_flag2 &= ~P2_NOTRACE; 770 if ((p->p_flag2 & P2_STKGAP_DISABLE_EXEC) == 0) 771 p->p_flag2 &= ~P2_STKGAP_DISABLE; 772 if (p->p_flag & P_PPWAIT) { 773 p->p_flag &= ~(P_PPWAIT | P_PPTRACE); 774 cv_broadcast(&p->p_pwait); 775 /* STOPs are no longer ignored, arrange for AST */ 776 signotify(td); 777 } 778 779 if ((imgp->sysent->sv_setid_allowed != NULL && 780 !(*imgp->sysent->sv_setid_allowed)(td, imgp)) || 781 (p->p_flag2 & P2_NO_NEW_PRIVS) != 0) 782 execve_nosetid(imgp); 783 784 /* 785 * Implement image setuid/setgid installation. 786 */ 787 if (imgp->credential_setid) { 788 /* 789 * Turn off syscall tracing for set-id programs, except for 790 * root. Record any set-id flags first to make sure that 791 * we do not regain any tracing during a possible block. 792 */ 793 setsugid(p); 794 #ifdef KTRACE 795 kiop = ktrprocexec(p); 796 #endif 797 /* 798 * Close any file descriptors 0..2 that reference procfs, 799 * then make sure file descriptors 0..2 are in use. 800 * 801 * Both fdsetugidsafety() and fdcheckstd() may call functions 802 * taking sleepable locks, so temporarily drop our locks. 803 */ 804 PROC_UNLOCK(p); 805 VOP_UNLOCK(imgp->vp); 806 fdsetugidsafety(td); 807 error = fdcheckstd(td); 808 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 809 if (error != 0) 810 goto exec_fail_dealloc; 811 PROC_LOCK(p); 812 #ifdef MAC 813 if (will_transition) { 814 mac_vnode_execve_transition(oldcred, imgp->newcred, 815 imgp->vp, interpvplabel, imgp); 816 } 817 #endif 818 } else { 819 if (oldcred->cr_uid == oldcred->cr_ruid && 820 oldcred->cr_gid == oldcred->cr_rgid) 821 p->p_flag &= ~P_SUGID; 822 } 823 /* 824 * Set the new credentials. 825 */ 826 if (imgp->newcred != NULL) { 827 proc_set_cred(p, imgp->newcred); 828 crfree(oldcred); 829 oldcred = NULL; 830 } 831 832 /* 833 * Store the vp for use in procfs. This vnode was referenced by namei 834 * or fgetvp_exec. 835 */ 836 oldtextvp = p->p_textvp; 837 p->p_textvp = newtextvp; 838 839 #ifdef KDTRACE_HOOKS 840 /* 841 * Tell the DTrace fasttrap provider about the exec if it 842 * has declared an interest. 843 */ 844 if (dtrace_fasttrap_exec) 845 dtrace_fasttrap_exec(p); 846 #endif 847 848 /* 849 * Notify others that we exec'd, and clear the P_INEXEC flag 850 * as we're now a bona fide freshly-execed process. 851 */ 852 KNOTE_LOCKED(p->p_klist, NOTE_EXEC); 853 p->p_flag &= ~P_INEXEC; 854 855 /* clear "fork but no exec" flag, as we _are_ execing */ 856 p->p_acflag &= ~AFORK; 857 858 /* 859 * Free any previous argument cache and replace it with 860 * the new argument cache, if any. 861 */ 862 oldargs = p->p_args; 863 p->p_args = newargs; 864 newargs = NULL; 865 866 PROC_UNLOCK(p); 867 868 #ifdef HWPMC_HOOKS 869 /* 870 * Check if system-wide sampling is in effect or if the 871 * current process is using PMCs. If so, do exec() time 872 * processing. This processing needs to happen AFTER the 873 * P_INEXEC flag is cleared. 874 */ 875 if (PMC_SYSTEM_SAMPLING_ACTIVE() || PMC_PROC_IS_USING_PMCS(p)) { 876 VOP_UNLOCK(imgp->vp); 877 pe.pm_credentialschanged = credential_changing; 878 pe.pm_entryaddr = imgp->entry_addr; 879 880 PMC_CALL_HOOK_X(td, PMC_FN_PROCESS_EXEC, (void *) &pe); 881 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 882 } 883 #endif 884 885 /* Set values passed into the program in registers. */ 886 (*p->p_sysent->sv_setregs)(td, imgp, stack_base); 887 888 VOP_MMAPPED(imgp->vp); 889 890 SDT_PROBE1(proc, , , exec__success, args->fname); 891 892 exec_fail_dealloc: 893 if (error != 0) { 894 p->p_osrel = orig_osrel; 895 p->p_fctl0 = orig_fctl0; 896 p->p_elf_brandinfo = orig_brandinfo; 897 } 898 899 if (imgp->firstpage != NULL) 900 exec_unmap_first_page(imgp); 901 902 if (imgp->vp != NULL) { 903 if (args->fname) 904 NDFREE(&nd, NDF_ONLY_PNBUF); 905 if (imgp->opened) 906 VOP_CLOSE(imgp->vp, FREAD, td->td_ucred, td); 907 if (imgp->textset) 908 VOP_UNSET_TEXT_CHECKED(imgp->vp); 909 if (error != 0) 910 vput(imgp->vp); 911 else 912 VOP_UNLOCK(imgp->vp); 913 } 914 915 if (imgp->object != NULL) 916 vm_object_deallocate(imgp->object); 917 918 free(imgp->freepath, M_TEMP); 919 920 if (error == 0) { 921 if (p->p_ptevents & PTRACE_EXEC) { 922 PROC_LOCK(p); 923 if (p->p_ptevents & PTRACE_EXEC) 924 td->td_dbgflags |= TDB_EXEC; 925 PROC_UNLOCK(p); 926 } 927 } else { 928 exec_fail: 929 /* we're done here, clear P_INEXEC */ 930 PROC_LOCK(p); 931 p->p_flag &= ~P_INEXEC; 932 PROC_UNLOCK(p); 933 934 SDT_PROBE1(proc, , , exec__failure, error); 935 } 936 937 if (imgp->newcred != NULL && oldcred != NULL) 938 crfree(imgp->newcred); 939 940 #ifdef MAC 941 mac_execve_exit(imgp); 942 mac_execve_interpreter_exit(interpvplabel); 943 #endif 944 exec_free_args(args); 945 946 /* 947 * Handle deferred decrement of ref counts. 948 */ 949 if (oldtextvp != NULL) 950 vrele(oldtextvp); 951 #ifdef KTRACE 952 ktr_io_params_free(kiop); 953 #endif 954 pargs_drop(oldargs); 955 pargs_drop(newargs); 956 if (oldsigacts != NULL) 957 sigacts_free(oldsigacts); 958 if (euip != NULL) 959 uifree(euip); 960 961 if (error && imgp->vmspace_destroyed) { 962 /* sorry, no more process anymore. exit gracefully */ 963 exec_cleanup(td, oldvmspace); 964 exit1(td, 0, SIGABRT); 965 /* NOT REACHED */ 966 } 967 968 #ifdef KTRACE 969 if (error == 0) 970 ktrprocctor(p); 971 #endif 972 973 /* 974 * We don't want cpu_set_syscall_retval() to overwrite any of 975 * the register values put in place by exec_setregs(). 976 * Implementations of cpu_set_syscall_retval() will leave 977 * registers unmodified when returning EJUSTRETURN. 978 */ 979 return (error == 0 ? EJUSTRETURN : error); 980 } 981 982 void 983 exec_cleanup(struct thread *td, struct vmspace *oldvmspace) 984 { 985 if ((td->td_pflags & TDP_EXECVMSPC) != 0) { 986 KASSERT(td->td_proc->p_vmspace != oldvmspace, 987 ("oldvmspace still used")); 988 vmspace_free(oldvmspace); 989 td->td_pflags &= ~TDP_EXECVMSPC; 990 } 991 } 992 993 int 994 exec_map_first_page(struct image_params *imgp) 995 { 996 vm_object_t object; 997 vm_page_t m; 998 int error; 999 1000 if (imgp->firstpage != NULL) 1001 exec_unmap_first_page(imgp); 1002 1003 object = imgp->vp->v_object; 1004 if (object == NULL) 1005 return (EACCES); 1006 #if VM_NRESERVLEVEL > 0 1007 if ((object->flags & OBJ_COLORED) == 0) { 1008 VM_OBJECT_WLOCK(object); 1009 vm_object_color(object, 0); 1010 VM_OBJECT_WUNLOCK(object); 1011 } 1012 #endif 1013 error = vm_page_grab_valid_unlocked(&m, object, 0, 1014 VM_ALLOC_COUNT(VM_INITIAL_PAGEIN) | 1015 VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED); 1016 1017 if (error != VM_PAGER_OK) 1018 return (EIO); 1019 imgp->firstpage = sf_buf_alloc(m, 0); 1020 imgp->image_header = (char *)sf_buf_kva(imgp->firstpage); 1021 1022 return (0); 1023 } 1024 1025 void 1026 exec_unmap_first_page(struct image_params *imgp) 1027 { 1028 vm_page_t m; 1029 1030 if (imgp->firstpage != NULL) { 1031 m = sf_buf_page(imgp->firstpage); 1032 sf_buf_free(imgp->firstpage); 1033 imgp->firstpage = NULL; 1034 vm_page_unwire(m, PQ_ACTIVE); 1035 } 1036 } 1037 1038 void 1039 exec_onexec_old(struct thread *td) 1040 { 1041 sigfastblock_clear(td); 1042 umtx_exec(td->td_proc); 1043 } 1044 1045 /* 1046 * Destroy old address space, and allocate a new stack. 1047 * The new stack is only sgrowsiz large because it is grown 1048 * automatically on a page fault. 1049 */ 1050 int 1051 exec_new_vmspace(struct image_params *imgp, struct sysentvec *sv) 1052 { 1053 int error; 1054 struct proc *p = imgp->proc; 1055 struct vmspace *vmspace = p->p_vmspace; 1056 struct thread *td = curthread; 1057 vm_object_t obj; 1058 struct rlimit rlim_stack; 1059 vm_offset_t sv_minuser, stack_addr; 1060 vm_map_t map; 1061 vm_prot_t stack_prot; 1062 u_long ssiz; 1063 1064 imgp->vmspace_destroyed = 1; 1065 imgp->sysent = sv; 1066 1067 if (p->p_sysent->sv_onexec_old != NULL) 1068 p->p_sysent->sv_onexec_old(td); 1069 itimers_exec(p); 1070 1071 EVENTHANDLER_DIRECT_INVOKE(process_exec, p, imgp); 1072 1073 /* 1074 * Blow away entire process VM, if address space not shared, 1075 * otherwise, create a new VM space so that other threads are 1076 * not disrupted 1077 */ 1078 map = &vmspace->vm_map; 1079 if (map_at_zero) 1080 sv_minuser = sv->sv_minuser; 1081 else 1082 sv_minuser = MAX(sv->sv_minuser, PAGE_SIZE); 1083 if (refcount_load(&vmspace->vm_refcnt) == 1 && 1084 vm_map_min(map) == sv_minuser && 1085 vm_map_max(map) == sv->sv_maxuser && 1086 cpu_exec_vmspace_reuse(p, map)) { 1087 shmexit(vmspace); 1088 pmap_remove_pages(vmspace_pmap(vmspace)); 1089 vm_map_remove(map, vm_map_min(map), vm_map_max(map)); 1090 /* 1091 * An exec terminates mlockall(MCL_FUTURE). 1092 * ASLR and W^X states must be re-evaluated. 1093 */ 1094 vm_map_lock(map); 1095 vm_map_modflags(map, 0, MAP_WIREFUTURE | MAP_ASLR | 1096 MAP_ASLR_IGNSTART | MAP_WXORX); 1097 vm_map_unlock(map); 1098 } else { 1099 error = vmspace_exec(p, sv_minuser, sv->sv_maxuser); 1100 if (error) 1101 return (error); 1102 vmspace = p->p_vmspace; 1103 map = &vmspace->vm_map; 1104 } 1105 map->flags |= imgp->map_flags; 1106 1107 /* Map a shared page */ 1108 obj = sv->sv_shared_page_obj; 1109 if (obj != NULL) { 1110 vm_object_reference(obj); 1111 error = vm_map_fixed(map, obj, 0, 1112 sv->sv_shared_page_base, sv->sv_shared_page_len, 1113 VM_PROT_READ | VM_PROT_EXECUTE, 1114 VM_PROT_READ | VM_PROT_EXECUTE, 1115 MAP_INHERIT_SHARE | MAP_ACC_NO_CHARGE); 1116 if (error != KERN_SUCCESS) { 1117 vm_object_deallocate(obj); 1118 return (vm_mmap_to_errno(error)); 1119 } 1120 } 1121 1122 /* Allocate a new stack */ 1123 if (imgp->stack_sz != 0) { 1124 ssiz = trunc_page(imgp->stack_sz); 1125 PROC_LOCK(p); 1126 lim_rlimit_proc(p, RLIMIT_STACK, &rlim_stack); 1127 PROC_UNLOCK(p); 1128 if (ssiz > rlim_stack.rlim_max) 1129 ssiz = rlim_stack.rlim_max; 1130 if (ssiz > rlim_stack.rlim_cur) { 1131 rlim_stack.rlim_cur = ssiz; 1132 kern_setrlimit(curthread, RLIMIT_STACK, &rlim_stack); 1133 } 1134 } else if (sv->sv_maxssiz != NULL) { 1135 ssiz = *sv->sv_maxssiz; 1136 } else { 1137 ssiz = maxssiz; 1138 } 1139 imgp->eff_stack_sz = lim_cur(curthread, RLIMIT_STACK); 1140 if (ssiz < imgp->eff_stack_sz) 1141 imgp->eff_stack_sz = ssiz; 1142 stack_addr = sv->sv_usrstack - ssiz; 1143 stack_prot = obj != NULL && imgp->stack_prot != 0 ? 1144 imgp->stack_prot : sv->sv_stackprot; 1145 error = vm_map_stack(map, stack_addr, (vm_size_t)ssiz, stack_prot, 1146 VM_PROT_ALL, MAP_STACK_GROWS_DOWN); 1147 if (error != KERN_SUCCESS) { 1148 uprintf("exec_new_vmspace: mapping stack size %#jx prot %#x " 1149 "failed mach error %d errno %d\n", (uintmax_t)ssiz, 1150 stack_prot, error, vm_mmap_to_errno(error)); 1151 return (vm_mmap_to_errno(error)); 1152 } 1153 1154 /* 1155 * vm_ssize and vm_maxsaddr are somewhat antiquated concepts, but they 1156 * are still used to enforce the stack rlimit on the process stack. 1157 */ 1158 vmspace->vm_ssize = sgrowsiz >> PAGE_SHIFT; 1159 vmspace->vm_maxsaddr = (char *)stack_addr; 1160 1161 return (sv->sv_onexec != NULL ? sv->sv_onexec(p, imgp) : 0); 1162 } 1163 1164 /* 1165 * Copy out argument and environment strings from the old process address 1166 * space into the temporary string buffer. 1167 */ 1168 int 1169 exec_copyin_args(struct image_args *args, const char *fname, 1170 enum uio_seg segflg, char **argv, char **envv) 1171 { 1172 u_long arg, env; 1173 int error; 1174 1175 bzero(args, sizeof(*args)); 1176 if (argv == NULL) 1177 return (EFAULT); 1178 1179 /* 1180 * Allocate demand-paged memory for the file name, argument, and 1181 * environment strings. 1182 */ 1183 error = exec_alloc_args(args); 1184 if (error != 0) 1185 return (error); 1186 1187 /* 1188 * Copy the file name. 1189 */ 1190 error = exec_args_add_fname(args, fname, segflg); 1191 if (error != 0) 1192 goto err_exit; 1193 1194 /* 1195 * extract arguments first 1196 */ 1197 for (;;) { 1198 error = fueword(argv++, &arg); 1199 if (error == -1) { 1200 error = EFAULT; 1201 goto err_exit; 1202 } 1203 if (arg == 0) 1204 break; 1205 error = exec_args_add_arg(args, (char *)(uintptr_t)arg, 1206 UIO_USERSPACE); 1207 if (error != 0) 1208 goto err_exit; 1209 } 1210 1211 /* 1212 * extract environment strings 1213 */ 1214 if (envv) { 1215 for (;;) { 1216 error = fueword(envv++, &env); 1217 if (error == -1) { 1218 error = EFAULT; 1219 goto err_exit; 1220 } 1221 if (env == 0) 1222 break; 1223 error = exec_args_add_env(args, 1224 (char *)(uintptr_t)env, UIO_USERSPACE); 1225 if (error != 0) 1226 goto err_exit; 1227 } 1228 } 1229 1230 return (0); 1231 1232 err_exit: 1233 exec_free_args(args); 1234 return (error); 1235 } 1236 1237 int 1238 exec_copyin_data_fds(struct thread *td, struct image_args *args, 1239 const void *data, size_t datalen, const int *fds, size_t fdslen) 1240 { 1241 struct filedesc *ofdp; 1242 const char *p; 1243 int *kfds; 1244 int error; 1245 1246 memset(args, '\0', sizeof(*args)); 1247 ofdp = td->td_proc->p_fd; 1248 if (datalen >= ARG_MAX || fdslen >= ofdp->fd_nfiles) 1249 return (E2BIG); 1250 error = exec_alloc_args(args); 1251 if (error != 0) 1252 return (error); 1253 1254 args->begin_argv = args->buf; 1255 args->stringspace = ARG_MAX; 1256 1257 if (datalen > 0) { 1258 /* 1259 * Argument buffer has been provided. Copy it into the 1260 * kernel as a single string and add a terminating null 1261 * byte. 1262 */ 1263 error = copyin(data, args->begin_argv, datalen); 1264 if (error != 0) 1265 goto err_exit; 1266 args->begin_argv[datalen] = '\0'; 1267 args->endp = args->begin_argv + datalen + 1; 1268 args->stringspace -= datalen + 1; 1269 1270 /* 1271 * Traditional argument counting. Count the number of 1272 * null bytes. 1273 */ 1274 for (p = args->begin_argv; p < args->endp; ++p) 1275 if (*p == '\0') 1276 ++args->argc; 1277 } else { 1278 /* No argument buffer provided. */ 1279 args->endp = args->begin_argv; 1280 } 1281 1282 /* Create new file descriptor table. */ 1283 kfds = malloc(fdslen * sizeof(int), M_TEMP, M_WAITOK); 1284 error = copyin(fds, kfds, fdslen * sizeof(int)); 1285 if (error != 0) { 1286 free(kfds, M_TEMP); 1287 goto err_exit; 1288 } 1289 error = fdcopy_remapped(ofdp, kfds, fdslen, &args->fdp); 1290 free(kfds, M_TEMP); 1291 if (error != 0) 1292 goto err_exit; 1293 1294 return (0); 1295 err_exit: 1296 exec_free_args(args); 1297 return (error); 1298 } 1299 1300 struct exec_args_kva { 1301 vm_offset_t addr; 1302 u_int gen; 1303 SLIST_ENTRY(exec_args_kva) next; 1304 }; 1305 1306 DPCPU_DEFINE_STATIC(struct exec_args_kva *, exec_args_kva); 1307 1308 static SLIST_HEAD(, exec_args_kva) exec_args_kva_freelist; 1309 static struct mtx exec_args_kva_mtx; 1310 static u_int exec_args_gen; 1311 1312 static void 1313 exec_prealloc_args_kva(void *arg __unused) 1314 { 1315 struct exec_args_kva *argkva; 1316 u_int i; 1317 1318 SLIST_INIT(&exec_args_kva_freelist); 1319 mtx_init(&exec_args_kva_mtx, "exec args kva", NULL, MTX_DEF); 1320 for (i = 0; i < exec_map_entries; i++) { 1321 argkva = malloc(sizeof(*argkva), M_PARGS, M_WAITOK); 1322 argkva->addr = kmap_alloc_wait(exec_map, exec_map_entry_size); 1323 argkva->gen = exec_args_gen; 1324 SLIST_INSERT_HEAD(&exec_args_kva_freelist, argkva, next); 1325 } 1326 } 1327 SYSINIT(exec_args_kva, SI_SUB_EXEC, SI_ORDER_ANY, exec_prealloc_args_kva, NULL); 1328 1329 static vm_offset_t 1330 exec_alloc_args_kva(void **cookie) 1331 { 1332 struct exec_args_kva *argkva; 1333 1334 argkva = (void *)atomic_readandclear_ptr( 1335 (uintptr_t *)DPCPU_PTR(exec_args_kva)); 1336 if (argkva == NULL) { 1337 mtx_lock(&exec_args_kva_mtx); 1338 while ((argkva = SLIST_FIRST(&exec_args_kva_freelist)) == NULL) 1339 (void)mtx_sleep(&exec_args_kva_freelist, 1340 &exec_args_kva_mtx, 0, "execkva", 0); 1341 SLIST_REMOVE_HEAD(&exec_args_kva_freelist, next); 1342 mtx_unlock(&exec_args_kva_mtx); 1343 } 1344 kasan_mark((void *)argkva->addr, exec_map_entry_size, 1345 exec_map_entry_size, 0); 1346 *(struct exec_args_kva **)cookie = argkva; 1347 return (argkva->addr); 1348 } 1349 1350 static void 1351 exec_release_args_kva(struct exec_args_kva *argkva, u_int gen) 1352 { 1353 vm_offset_t base; 1354 1355 base = argkva->addr; 1356 kasan_mark((void *)argkva->addr, 0, exec_map_entry_size, 1357 KASAN_EXEC_ARGS_FREED); 1358 if (argkva->gen != gen) { 1359 (void)vm_map_madvise(exec_map, base, base + exec_map_entry_size, 1360 MADV_FREE); 1361 argkva->gen = gen; 1362 } 1363 if (!atomic_cmpset_ptr((uintptr_t *)DPCPU_PTR(exec_args_kva), 1364 (uintptr_t)NULL, (uintptr_t)argkva)) { 1365 mtx_lock(&exec_args_kva_mtx); 1366 SLIST_INSERT_HEAD(&exec_args_kva_freelist, argkva, next); 1367 wakeup_one(&exec_args_kva_freelist); 1368 mtx_unlock(&exec_args_kva_mtx); 1369 } 1370 } 1371 1372 static void 1373 exec_free_args_kva(void *cookie) 1374 { 1375 1376 exec_release_args_kva(cookie, exec_args_gen); 1377 } 1378 1379 static void 1380 exec_args_kva_lowmem(void *arg __unused) 1381 { 1382 SLIST_HEAD(, exec_args_kva) head; 1383 struct exec_args_kva *argkva; 1384 u_int gen; 1385 int i; 1386 1387 gen = atomic_fetchadd_int(&exec_args_gen, 1) + 1; 1388 1389 /* 1390 * Force an madvise of each KVA range. Any currently allocated ranges 1391 * will have MADV_FREE applied once they are freed. 1392 */ 1393 SLIST_INIT(&head); 1394 mtx_lock(&exec_args_kva_mtx); 1395 SLIST_SWAP(&head, &exec_args_kva_freelist, exec_args_kva); 1396 mtx_unlock(&exec_args_kva_mtx); 1397 while ((argkva = SLIST_FIRST(&head)) != NULL) { 1398 SLIST_REMOVE_HEAD(&head, next); 1399 exec_release_args_kva(argkva, gen); 1400 } 1401 1402 CPU_FOREACH(i) { 1403 argkva = (void *)atomic_readandclear_ptr( 1404 (uintptr_t *)DPCPU_ID_PTR(i, exec_args_kva)); 1405 if (argkva != NULL) 1406 exec_release_args_kva(argkva, gen); 1407 } 1408 } 1409 EVENTHANDLER_DEFINE(vm_lowmem, exec_args_kva_lowmem, NULL, 1410 EVENTHANDLER_PRI_ANY); 1411 1412 /* 1413 * Allocate temporary demand-paged, zero-filled memory for the file name, 1414 * argument, and environment strings. 1415 */ 1416 int 1417 exec_alloc_args(struct image_args *args) 1418 { 1419 1420 args->buf = (char *)exec_alloc_args_kva(&args->bufkva); 1421 return (0); 1422 } 1423 1424 void 1425 exec_free_args(struct image_args *args) 1426 { 1427 1428 if (args->buf != NULL) { 1429 exec_free_args_kva(args->bufkva); 1430 args->buf = NULL; 1431 } 1432 if (args->fname_buf != NULL) { 1433 free(args->fname_buf, M_TEMP); 1434 args->fname_buf = NULL; 1435 } 1436 if (args->fdp != NULL) 1437 fdescfree_remapped(args->fdp); 1438 } 1439 1440 /* 1441 * A set to functions to fill struct image args. 1442 * 1443 * NOTE: exec_args_add_fname() must be called (possibly with a NULL 1444 * fname) before the other functions. All exec_args_add_arg() calls must 1445 * be made before any exec_args_add_env() calls. exec_args_adjust_args() 1446 * may be called any time after exec_args_add_fname(). 1447 * 1448 * exec_args_add_fname() - install path to be executed 1449 * exec_args_add_arg() - append an argument string 1450 * exec_args_add_env() - append an env string 1451 * exec_args_adjust_args() - adjust location of the argument list to 1452 * allow new arguments to be prepended 1453 */ 1454 int 1455 exec_args_add_fname(struct image_args *args, const char *fname, 1456 enum uio_seg segflg) 1457 { 1458 int error; 1459 size_t length; 1460 1461 KASSERT(args->fname == NULL, ("fname already appended")); 1462 KASSERT(args->endp == NULL, ("already appending to args")); 1463 1464 if (fname != NULL) { 1465 args->fname = args->buf; 1466 error = segflg == UIO_SYSSPACE ? 1467 copystr(fname, args->fname, PATH_MAX, &length) : 1468 copyinstr(fname, args->fname, PATH_MAX, &length); 1469 if (error != 0) 1470 return (error == ENAMETOOLONG ? E2BIG : error); 1471 } else 1472 length = 0; 1473 1474 /* Set up for _arg_*()/_env_*() */ 1475 args->endp = args->buf + length; 1476 /* begin_argv must be set and kept updated */ 1477 args->begin_argv = args->endp; 1478 KASSERT(exec_map_entry_size - length >= ARG_MAX, 1479 ("too little space remaining for arguments %zu < %zu", 1480 exec_map_entry_size - length, (size_t)ARG_MAX)); 1481 args->stringspace = ARG_MAX; 1482 1483 return (0); 1484 } 1485 1486 static int 1487 exec_args_add_str(struct image_args *args, const char *str, 1488 enum uio_seg segflg, int *countp) 1489 { 1490 int error; 1491 size_t length; 1492 1493 KASSERT(args->endp != NULL, ("endp not initialized")); 1494 KASSERT(args->begin_argv != NULL, ("begin_argp not initialized")); 1495 1496 error = (segflg == UIO_SYSSPACE) ? 1497 copystr(str, args->endp, args->stringspace, &length) : 1498 copyinstr(str, args->endp, args->stringspace, &length); 1499 if (error != 0) 1500 return (error == ENAMETOOLONG ? E2BIG : error); 1501 args->stringspace -= length; 1502 args->endp += length; 1503 (*countp)++; 1504 1505 return (0); 1506 } 1507 1508 int 1509 exec_args_add_arg(struct image_args *args, const char *argp, 1510 enum uio_seg segflg) 1511 { 1512 1513 KASSERT(args->envc == 0, ("appending args after env")); 1514 1515 return (exec_args_add_str(args, argp, segflg, &args->argc)); 1516 } 1517 1518 int 1519 exec_args_add_env(struct image_args *args, const char *envp, 1520 enum uio_seg segflg) 1521 { 1522 1523 if (args->envc == 0) 1524 args->begin_envv = args->endp; 1525 1526 return (exec_args_add_str(args, envp, segflg, &args->envc)); 1527 } 1528 1529 int 1530 exec_args_adjust_args(struct image_args *args, size_t consume, ssize_t extend) 1531 { 1532 ssize_t offset; 1533 1534 KASSERT(args->endp != NULL, ("endp not initialized")); 1535 KASSERT(args->begin_argv != NULL, ("begin_argp not initialized")); 1536 1537 offset = extend - consume; 1538 if (args->stringspace < offset) 1539 return (E2BIG); 1540 memmove(args->begin_argv + extend, args->begin_argv + consume, 1541 args->endp - args->begin_argv + consume); 1542 if (args->envc > 0) 1543 args->begin_envv += offset; 1544 args->endp += offset; 1545 args->stringspace -= offset; 1546 return (0); 1547 } 1548 1549 char * 1550 exec_args_get_begin_envv(struct image_args *args) 1551 { 1552 1553 KASSERT(args->endp != NULL, ("endp not initialized")); 1554 1555 if (args->envc > 0) 1556 return (args->begin_envv); 1557 return (args->endp); 1558 } 1559 1560 void 1561 exec_stackgap(struct image_params *imgp, uintptr_t *dp) 1562 { 1563 if (imgp->sysent->sv_stackgap == NULL || 1564 (imgp->proc->p_fctl0 & (NT_FREEBSD_FCTL_ASLR_DISABLE | 1565 NT_FREEBSD_FCTL_ASG_DISABLE)) != 0 || 1566 (imgp->map_flags & MAP_ASLR) == 0) 1567 return; 1568 imgp->sysent->sv_stackgap(imgp, dp); 1569 } 1570 1571 /* 1572 * Copy strings out to the new process address space, constructing new arg 1573 * and env vector tables. Return a pointer to the base so that it can be used 1574 * as the initial stack pointer. 1575 */ 1576 int 1577 exec_copyout_strings(struct image_params *imgp, uintptr_t *stack_base) 1578 { 1579 int argc, envc; 1580 char **vectp; 1581 char *stringp; 1582 uintptr_t destp, ustringp; 1583 struct ps_strings *arginfo; 1584 struct proc *p; 1585 size_t execpath_len; 1586 int error, szsigcode, szps; 1587 char canary[sizeof(long) * 8]; 1588 1589 szps = sizeof(pagesizes[0]) * MAXPAGESIZES; 1590 /* 1591 * Calculate string base and vector table pointers. 1592 * Also deal with signal trampoline code for this exec type. 1593 */ 1594 if (imgp->execpath != NULL && imgp->auxargs != NULL) 1595 execpath_len = strlen(imgp->execpath) + 1; 1596 else 1597 execpath_len = 0; 1598 p = imgp->proc; 1599 szsigcode = 0; 1600 arginfo = (struct ps_strings *)p->p_sysent->sv_psstrings; 1601 imgp->ps_strings = arginfo; 1602 if (p->p_sysent->sv_sigcode_base == 0) { 1603 if (p->p_sysent->sv_szsigcode != NULL) 1604 szsigcode = *(p->p_sysent->sv_szsigcode); 1605 } 1606 destp = (uintptr_t)arginfo; 1607 1608 /* 1609 * install sigcode 1610 */ 1611 if (szsigcode != 0) { 1612 destp -= szsigcode; 1613 destp = rounddown2(destp, sizeof(void *)); 1614 error = copyout(p->p_sysent->sv_sigcode, (void *)destp, 1615 szsigcode); 1616 if (error != 0) 1617 return (error); 1618 } 1619 1620 /* 1621 * Copy the image path for the rtld. 1622 */ 1623 if (execpath_len != 0) { 1624 destp -= execpath_len; 1625 destp = rounddown2(destp, sizeof(void *)); 1626 imgp->execpathp = (void *)destp; 1627 error = copyout(imgp->execpath, imgp->execpathp, execpath_len); 1628 if (error != 0) 1629 return (error); 1630 } 1631 1632 /* 1633 * Prepare the canary for SSP. 1634 */ 1635 arc4rand(canary, sizeof(canary), 0); 1636 destp -= sizeof(canary); 1637 imgp->canary = (void *)destp; 1638 error = copyout(canary, imgp->canary, sizeof(canary)); 1639 if (error != 0) 1640 return (error); 1641 imgp->canarylen = sizeof(canary); 1642 1643 /* 1644 * Prepare the pagesizes array. 1645 */ 1646 destp -= szps; 1647 destp = rounddown2(destp, sizeof(void *)); 1648 imgp->pagesizes = (void *)destp; 1649 error = copyout(pagesizes, imgp->pagesizes, szps); 1650 if (error != 0) 1651 return (error); 1652 imgp->pagesizeslen = szps; 1653 1654 /* 1655 * Allocate room for the argument and environment strings. 1656 */ 1657 destp -= ARG_MAX - imgp->args->stringspace; 1658 destp = rounddown2(destp, sizeof(void *)); 1659 ustringp = destp; 1660 1661 exec_stackgap(imgp, &destp); 1662 1663 if (imgp->auxargs) { 1664 /* 1665 * Allocate room on the stack for the ELF auxargs 1666 * array. It has up to AT_COUNT entries. 1667 */ 1668 destp -= AT_COUNT * sizeof(Elf_Auxinfo); 1669 destp = rounddown2(destp, sizeof(void *)); 1670 } 1671 1672 vectp = (char **)destp; 1673 1674 /* 1675 * Allocate room for the argv[] and env vectors including the 1676 * terminating NULL pointers. 1677 */ 1678 vectp -= imgp->args->argc + 1 + imgp->args->envc + 1; 1679 1680 /* 1681 * vectp also becomes our initial stack base 1682 */ 1683 *stack_base = (uintptr_t)vectp; 1684 1685 stringp = imgp->args->begin_argv; 1686 argc = imgp->args->argc; 1687 envc = imgp->args->envc; 1688 1689 /* 1690 * Copy out strings - arguments and environment. 1691 */ 1692 error = copyout(stringp, (void *)ustringp, 1693 ARG_MAX - imgp->args->stringspace); 1694 if (error != 0) 1695 return (error); 1696 1697 /* 1698 * Fill in "ps_strings" struct for ps, w, etc. 1699 */ 1700 imgp->argv = vectp; 1701 if (suword(&arginfo->ps_argvstr, (long)(intptr_t)vectp) != 0 || 1702 suword32(&arginfo->ps_nargvstr, argc) != 0) 1703 return (EFAULT); 1704 1705 /* 1706 * Fill in argument portion of vector table. 1707 */ 1708 for (; argc > 0; --argc) { 1709 if (suword(vectp++, ustringp) != 0) 1710 return (EFAULT); 1711 while (*stringp++ != 0) 1712 ustringp++; 1713 ustringp++; 1714 } 1715 1716 /* a null vector table pointer separates the argp's from the envp's */ 1717 if (suword(vectp++, 0) != 0) 1718 return (EFAULT); 1719 1720 imgp->envv = vectp; 1721 if (suword(&arginfo->ps_envstr, (long)(intptr_t)vectp) != 0 || 1722 suword32(&arginfo->ps_nenvstr, envc) != 0) 1723 return (EFAULT); 1724 1725 /* 1726 * Fill in environment portion of vector table. 1727 */ 1728 for (; envc > 0; --envc) { 1729 if (suword(vectp++, ustringp) != 0) 1730 return (EFAULT); 1731 while (*stringp++ != 0) 1732 ustringp++; 1733 ustringp++; 1734 } 1735 1736 /* end of vector table is a null pointer */ 1737 if (suword(vectp, 0) != 0) 1738 return (EFAULT); 1739 1740 if (imgp->auxargs) { 1741 vectp++; 1742 error = imgp->sysent->sv_copyout_auxargs(imgp, 1743 (uintptr_t)vectp); 1744 if (error != 0) 1745 return (error); 1746 } 1747 1748 return (0); 1749 } 1750 1751 /* 1752 * Check permissions of file to execute. 1753 * Called with imgp->vp locked. 1754 * Return 0 for success or error code on failure. 1755 */ 1756 int 1757 exec_check_permissions(struct image_params *imgp) 1758 { 1759 struct vnode *vp = imgp->vp; 1760 struct vattr *attr = imgp->attr; 1761 struct thread *td; 1762 int error; 1763 1764 td = curthread; 1765 1766 /* Get file attributes */ 1767 error = VOP_GETATTR(vp, attr, td->td_ucred); 1768 if (error) 1769 return (error); 1770 1771 #ifdef MAC 1772 error = mac_vnode_check_exec(td->td_ucred, imgp->vp, imgp); 1773 if (error) 1774 return (error); 1775 #endif 1776 1777 /* 1778 * 1) Check if file execution is disabled for the filesystem that 1779 * this file resides on. 1780 * 2) Ensure that at least one execute bit is on. Otherwise, a 1781 * privileged user will always succeed, and we don't want this 1782 * to happen unless the file really is executable. 1783 * 3) Ensure that the file is a regular file. 1784 */ 1785 if ((vp->v_mount->mnt_flag & MNT_NOEXEC) || 1786 (attr->va_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0 || 1787 (attr->va_type != VREG)) 1788 return (EACCES); 1789 1790 /* 1791 * Zero length files can't be exec'd 1792 */ 1793 if (attr->va_size == 0) 1794 return (ENOEXEC); 1795 1796 /* 1797 * Check for execute permission to file based on current credentials. 1798 */ 1799 error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td); 1800 if (error) 1801 return (error); 1802 1803 /* 1804 * Check number of open-for-writes on the file and deny execution 1805 * if there are any. 1806 * 1807 * Add a text reference now so no one can write to the 1808 * executable while we're activating it. 1809 * 1810 * Remember if this was set before and unset it in case this is not 1811 * actually an executable image. 1812 */ 1813 error = VOP_SET_TEXT(vp); 1814 if (error != 0) 1815 return (error); 1816 imgp->textset = true; 1817 1818 /* 1819 * Call filesystem specific open routine (which does nothing in the 1820 * general case). 1821 */ 1822 error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL); 1823 if (error == 0) 1824 imgp->opened = 1; 1825 return (error); 1826 } 1827 1828 /* 1829 * Exec handler registration 1830 */ 1831 int 1832 exec_register(const struct execsw *execsw_arg) 1833 { 1834 const struct execsw **es, **xs, **newexecsw; 1835 u_int count = 2; /* New slot and trailing NULL */ 1836 1837 if (execsw) 1838 for (es = execsw; *es; es++) 1839 count++; 1840 newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK); 1841 xs = newexecsw; 1842 if (execsw) 1843 for (es = execsw; *es; es++) 1844 *xs++ = *es; 1845 *xs++ = execsw_arg; 1846 *xs = NULL; 1847 if (execsw) 1848 free(execsw, M_TEMP); 1849 execsw = newexecsw; 1850 return (0); 1851 } 1852 1853 int 1854 exec_unregister(const struct execsw *execsw_arg) 1855 { 1856 const struct execsw **es, **xs, **newexecsw; 1857 int count = 1; 1858 1859 if (execsw == NULL) 1860 panic("unregister with no handlers left?\n"); 1861 1862 for (es = execsw; *es; es++) { 1863 if (*es == execsw_arg) 1864 break; 1865 } 1866 if (*es == NULL) 1867 return (ENOENT); 1868 for (es = execsw; *es; es++) 1869 if (*es != execsw_arg) 1870 count++; 1871 newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK); 1872 xs = newexecsw; 1873 for (es = execsw; *es; es++) 1874 if (*es != execsw_arg) 1875 *xs++ = *es; 1876 *xs = NULL; 1877 if (execsw) 1878 free(execsw, M_TEMP); 1879 execsw = newexecsw; 1880 return (0); 1881 } 1882 1883 /* 1884 * Write out a core segment to the compression stream. 1885 */ 1886 static int 1887 compress_chunk(struct coredump_params *cp, char *base, char *buf, u_int len) 1888 { 1889 u_int chunk_len; 1890 int error; 1891 1892 while (len > 0) { 1893 chunk_len = MIN(len, CORE_BUF_SIZE); 1894 1895 /* 1896 * We can get EFAULT error here. 1897 * In that case zero out the current chunk of the segment. 1898 */ 1899 error = copyin(base, buf, chunk_len); 1900 if (error != 0) 1901 bzero(buf, chunk_len); 1902 error = compressor_write(cp->comp, buf, chunk_len); 1903 if (error != 0) 1904 break; 1905 base += chunk_len; 1906 len -= chunk_len; 1907 } 1908 return (error); 1909 } 1910 1911 int 1912 core_write(struct coredump_params *cp, const void *base, size_t len, 1913 off_t offset, enum uio_seg seg, size_t *resid) 1914 { 1915 1916 return (vn_rdwr_inchunks(UIO_WRITE, cp->vp, __DECONST(void *, base), 1917 len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED, 1918 cp->active_cred, cp->file_cred, resid, cp->td)); 1919 } 1920 1921 int 1922 core_output(char *base, size_t len, off_t offset, struct coredump_params *cp, 1923 void *tmpbuf) 1924 { 1925 vm_map_t map; 1926 struct mount *mp; 1927 size_t resid, runlen; 1928 int error; 1929 bool success; 1930 1931 KASSERT((uintptr_t)base % PAGE_SIZE == 0, 1932 ("%s: user address %p is not page-aligned", __func__, base)); 1933 1934 if (cp->comp != NULL) 1935 return (compress_chunk(cp, base, tmpbuf, len)); 1936 1937 map = &cp->td->td_proc->p_vmspace->vm_map; 1938 for (; len > 0; base += runlen, offset += runlen, len -= runlen) { 1939 /* 1940 * Attempt to page in all virtual pages in the range. If a 1941 * virtual page is not backed by the pager, it is represented as 1942 * a hole in the file. This can occur with zero-filled 1943 * anonymous memory or truncated files, for example. 1944 */ 1945 for (runlen = 0; runlen < len; runlen += PAGE_SIZE) { 1946 error = vm_fault(map, (uintptr_t)base + runlen, 1947 VM_PROT_READ, VM_FAULT_NOFILL, NULL); 1948 if (runlen == 0) 1949 success = error == KERN_SUCCESS; 1950 else if ((error == KERN_SUCCESS) != success) 1951 break; 1952 } 1953 1954 if (success) { 1955 error = core_write(cp, base, runlen, offset, 1956 UIO_USERSPACE, &resid); 1957 if (error != 0) { 1958 if (error != EFAULT) 1959 break; 1960 1961 /* 1962 * EFAULT may be returned if the user mapping 1963 * could not be accessed, e.g., because a mapped 1964 * file has been truncated. Skip the page if no 1965 * progress was made, to protect against a 1966 * hypothetical scenario where vm_fault() was 1967 * successful but core_write() returns EFAULT 1968 * anyway. 1969 */ 1970 runlen -= resid; 1971 if (runlen == 0) { 1972 success = false; 1973 runlen = PAGE_SIZE; 1974 } 1975 } 1976 } 1977 if (!success) { 1978 error = vn_start_write(cp->vp, &mp, V_WAIT); 1979 if (error != 0) 1980 break; 1981 vn_lock(cp->vp, LK_EXCLUSIVE | LK_RETRY); 1982 error = vn_truncate_locked(cp->vp, offset + runlen, 1983 false, cp->td->td_ucred); 1984 VOP_UNLOCK(cp->vp); 1985 vn_finished_write(mp); 1986 if (error != 0) 1987 break; 1988 } 1989 } 1990 return (error); 1991 } 1992 1993 /* 1994 * Drain into a core file. 1995 */ 1996 int 1997 sbuf_drain_core_output(void *arg, const char *data, int len) 1998 { 1999 struct coredump_params *cp; 2000 struct proc *p; 2001 int error, locked; 2002 2003 cp = arg; 2004 p = cp->td->td_proc; 2005 2006 /* 2007 * Some kern_proc out routines that print to this sbuf may 2008 * call us with the process lock held. Draining with the 2009 * non-sleepable lock held is unsafe. The lock is needed for 2010 * those routines when dumping a live process. In our case we 2011 * can safely release the lock before draining and acquire 2012 * again after. 2013 */ 2014 locked = PROC_LOCKED(p); 2015 if (locked) 2016 PROC_UNLOCK(p); 2017 if (cp->comp != NULL) 2018 error = compressor_write(cp->comp, __DECONST(char *, data), len); 2019 else 2020 error = core_write(cp, __DECONST(void *, data), len, cp->offset, 2021 UIO_SYSSPACE, NULL); 2022 if (locked) 2023 PROC_LOCK(p); 2024 if (error != 0) 2025 return (-error); 2026 cp->offset += len; 2027 return (len); 2028 } 2029