1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2017 Dell EMC 5 * Copyright (c) 2000-2001, 2003 David O'Brien 6 * Copyright (c) 1995-1996 Søren Schmidt 7 * Copyright (c) 1996 Peter Wemm 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer 15 * in this position and unchanged. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. The name of the author may not be used to endorse or promote products 20 * derived from this software without specific prior written permission 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_capsicum.h" 38 39 #include <sys/param.h> 40 #include <sys/capsicum.h> 41 #include <sys/compressor.h> 42 #include <sys/exec.h> 43 #include <sys/fcntl.h> 44 #include <sys/imgact.h> 45 #include <sys/imgact_elf.h> 46 #include <sys/jail.h> 47 #include <sys/kernel.h> 48 #include <sys/lock.h> 49 #include <sys/malloc.h> 50 #include <sys/mount.h> 51 #include <sys/mman.h> 52 #include <sys/namei.h> 53 #include <sys/pioctl.h> 54 #include <sys/proc.h> 55 #include <sys/procfs.h> 56 #include <sys/ptrace.h> 57 #include <sys/racct.h> 58 #include <sys/resourcevar.h> 59 #include <sys/rwlock.h> 60 #include <sys/sbuf.h> 61 #include <sys/sf_buf.h> 62 #include <sys/smp.h> 63 #include <sys/systm.h> 64 #include <sys/signalvar.h> 65 #include <sys/stat.h> 66 #include <sys/sx.h> 67 #include <sys/syscall.h> 68 #include <sys/sysctl.h> 69 #include <sys/sysent.h> 70 #include <sys/vnode.h> 71 #include <sys/syslog.h> 72 #include <sys/eventhandler.h> 73 #include <sys/user.h> 74 75 #include <vm/vm.h> 76 #include <vm/vm_kern.h> 77 #include <vm/vm_param.h> 78 #include <vm/pmap.h> 79 #include <vm/vm_map.h> 80 #include <vm/vm_object.h> 81 #include <vm/vm_extern.h> 82 83 #include <machine/elf.h> 84 #include <machine/md_var.h> 85 86 #define ELF_NOTE_ROUNDSIZE 4 87 #define OLD_EI_BRAND 8 88 89 static int __elfN(check_header)(const Elf_Ehdr *hdr); 90 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 91 const char *interp, int interp_name_len, int32_t *osrel, uint32_t *fctl0); 92 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 93 u_long *entry, size_t pagesize); 94 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 95 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 96 size_t pagesize); 97 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 98 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note, 99 int32_t *osrel); 100 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 101 static boolean_t __elfN(check_note)(struct image_params *imgp, 102 Elf_Brandnote *checknote, int32_t *osrel, uint32_t *fctl0); 103 static vm_prot_t __elfN(trans_prot)(Elf_Word); 104 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 105 106 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0, 107 ""); 108 109 #define CORE_BUF_SIZE (16 * 1024) 110 111 int __elfN(fallback_brand) = -1; 112 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 113 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, 114 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 115 116 static int elf_legacy_coredump = 0; 117 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 118 &elf_legacy_coredump, 0, 119 "include all and only RW pages in core dumps"); 120 121 int __elfN(nxstack) = 122 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \ 123 (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \ 124 defined(__riscv) 125 1; 126 #else 127 0; 128 #endif 129 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 130 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 131 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 132 133 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 134 int i386_read_exec = 0; 135 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 136 "enable execution from readable segments"); 137 #endif 138 139 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr, CTLFLAG_RW, 0, 140 ""); 141 #define ASLR_NODE_OID __CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr) 142 143 static int __elfN(aslr_enabled) = 0; 144 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN, 145 &__elfN(aslr_enabled), 0, 146 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 147 ": enable address map randomization"); 148 149 static int __elfN(pie_aslr_enabled) = 0; 150 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN, 151 &__elfN(pie_aslr_enabled), 0, 152 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 153 ": enable address map randomization for PIE binaries"); 154 155 static int __elfN(aslr_honor_sbrk) = 1; 156 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW, 157 &__elfN(aslr_honor_sbrk), 0, 158 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used"); 159 160 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 161 162 #define trunc_page_ps(va, ps) rounddown2(va, ps) 163 #define round_page_ps(va, ps) roundup2(va, ps) 164 #define aligned(a, t) (trunc_page_ps((u_long)(a), sizeof(t)) == (u_long)(a)) 165 166 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD"; 167 168 Elf_Brandnote __elfN(freebsd_brandnote) = { 169 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 170 .hdr.n_descsz = sizeof(int32_t), 171 .hdr.n_type = NT_FREEBSD_ABI_TAG, 172 .vendor = FREEBSD_ABI_VENDOR, 173 .flags = BN_TRANSLATE_OSREL, 174 .trans_osrel = __elfN(freebsd_trans_osrel) 175 }; 176 177 static bool 178 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 179 { 180 uintptr_t p; 181 182 p = (uintptr_t)(note + 1); 183 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 184 *osrel = *(const int32_t *)(p); 185 186 return (true); 187 } 188 189 static const char GNU_ABI_VENDOR[] = "GNU"; 190 static int GNU_KFREEBSD_ABI_DESC = 3; 191 192 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 193 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 194 .hdr.n_descsz = 16, /* XXX at least 16 */ 195 .hdr.n_type = 1, 196 .vendor = GNU_ABI_VENDOR, 197 .flags = BN_TRANSLATE_OSREL, 198 .trans_osrel = kfreebsd_trans_osrel 199 }; 200 201 static bool 202 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 203 { 204 const Elf32_Word *desc; 205 uintptr_t p; 206 207 p = (uintptr_t)(note + 1); 208 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 209 210 desc = (const Elf32_Word *)p; 211 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 212 return (false); 213 214 /* 215 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 216 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 217 */ 218 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 219 220 return (true); 221 } 222 223 int 224 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 225 { 226 int i; 227 228 for (i = 0; i < MAX_BRANDS; i++) { 229 if (elf_brand_list[i] == NULL) { 230 elf_brand_list[i] = entry; 231 break; 232 } 233 } 234 if (i == MAX_BRANDS) { 235 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 236 __func__, entry); 237 return (-1); 238 } 239 return (0); 240 } 241 242 int 243 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 244 { 245 int i; 246 247 for (i = 0; i < MAX_BRANDS; i++) { 248 if (elf_brand_list[i] == entry) { 249 elf_brand_list[i] = NULL; 250 break; 251 } 252 } 253 if (i == MAX_BRANDS) 254 return (-1); 255 return (0); 256 } 257 258 int 259 __elfN(brand_inuse)(Elf_Brandinfo *entry) 260 { 261 struct proc *p; 262 int rval = FALSE; 263 264 sx_slock(&allproc_lock); 265 FOREACH_PROC_IN_SYSTEM(p) { 266 if (p->p_sysent == entry->sysvec) { 267 rval = TRUE; 268 break; 269 } 270 } 271 sx_sunlock(&allproc_lock); 272 273 return (rval); 274 } 275 276 static Elf_Brandinfo * 277 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 278 int interp_name_len, int32_t *osrel, uint32_t *fctl0) 279 { 280 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 281 Elf_Brandinfo *bi, *bi_m; 282 boolean_t ret; 283 int i; 284 285 /* 286 * We support four types of branding -- (1) the ELF EI_OSABI field 287 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 288 * branding w/in the ELF header, (3) path of the `interp_path' 289 * field, and (4) the ".note.ABI-tag" ELF section. 290 */ 291 292 /* Look for an ".note.ABI-tag" ELF section */ 293 bi_m = NULL; 294 for (i = 0; i < MAX_BRANDS; i++) { 295 bi = elf_brand_list[i]; 296 if (bi == NULL) 297 continue; 298 if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0) 299 continue; 300 if (hdr->e_machine == bi->machine && (bi->flags & 301 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 302 ret = __elfN(check_note)(imgp, bi->brand_note, osrel, 303 fctl0); 304 /* Give brand a chance to veto check_note's guess */ 305 if (ret && bi->header_supported) 306 ret = bi->header_supported(imgp); 307 /* 308 * If note checker claimed the binary, but the 309 * interpreter path in the image does not 310 * match default one for the brand, try to 311 * search for other brands with the same 312 * interpreter. Either there is better brand 313 * with the right interpreter, or, failing 314 * this, we return first brand which accepted 315 * our note and, optionally, header. 316 */ 317 if (ret && bi_m == NULL && interp != NULL && 318 (bi->interp_path == NULL || 319 (strlen(bi->interp_path) + 1 != interp_name_len || 320 strncmp(interp, bi->interp_path, interp_name_len) 321 != 0))) { 322 bi_m = bi; 323 ret = 0; 324 } 325 if (ret) 326 return (bi); 327 } 328 } 329 if (bi_m != NULL) 330 return (bi_m); 331 332 /* If the executable has a brand, search for it in the brand list. */ 333 for (i = 0; i < MAX_BRANDS; i++) { 334 bi = elf_brand_list[i]; 335 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 336 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 337 continue; 338 if (hdr->e_machine == bi->machine && 339 (hdr->e_ident[EI_OSABI] == bi->brand || 340 (bi->compat_3_brand != NULL && 341 strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 342 bi->compat_3_brand) == 0))) { 343 /* Looks good, but give brand a chance to veto */ 344 if (bi->header_supported == NULL || 345 bi->header_supported(imgp)) { 346 /* 347 * Again, prefer strictly matching 348 * interpreter path. 349 */ 350 if (interp_name_len == 0 && 351 bi->interp_path == NULL) 352 return (bi); 353 if (bi->interp_path != NULL && 354 strlen(bi->interp_path) + 1 == 355 interp_name_len && strncmp(interp, 356 bi->interp_path, interp_name_len) == 0) 357 return (bi); 358 if (bi_m == NULL) 359 bi_m = bi; 360 } 361 } 362 } 363 if (bi_m != NULL) 364 return (bi_m); 365 366 /* No known brand, see if the header is recognized by any brand */ 367 for (i = 0; i < MAX_BRANDS; i++) { 368 bi = elf_brand_list[i]; 369 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || 370 bi->header_supported == NULL) 371 continue; 372 if (hdr->e_machine == bi->machine) { 373 ret = bi->header_supported(imgp); 374 if (ret) 375 return (bi); 376 } 377 } 378 379 /* Lacking a known brand, search for a recognized interpreter. */ 380 if (interp != NULL) { 381 for (i = 0; i < MAX_BRANDS; i++) { 382 bi = elf_brand_list[i]; 383 if (bi == NULL || (bi->flags & 384 (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC)) 385 != 0) 386 continue; 387 if (hdr->e_machine == bi->machine && 388 bi->interp_path != NULL && 389 /* ELF image p_filesz includes terminating zero */ 390 strlen(bi->interp_path) + 1 == interp_name_len && 391 strncmp(interp, bi->interp_path, interp_name_len) 392 == 0 && (bi->header_supported == NULL || 393 bi->header_supported(imgp))) 394 return (bi); 395 } 396 } 397 398 /* Lacking a recognized interpreter, try the default brand */ 399 for (i = 0; i < MAX_BRANDS; i++) { 400 bi = elf_brand_list[i]; 401 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 402 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 403 continue; 404 if (hdr->e_machine == bi->machine && 405 __elfN(fallback_brand) == bi->brand && 406 (bi->header_supported == NULL || 407 bi->header_supported(imgp))) 408 return (bi); 409 } 410 return (NULL); 411 } 412 413 static int 414 __elfN(check_header)(const Elf_Ehdr *hdr) 415 { 416 Elf_Brandinfo *bi; 417 int i; 418 419 if (!IS_ELF(*hdr) || 420 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 421 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 422 hdr->e_ident[EI_VERSION] != EV_CURRENT || 423 hdr->e_phentsize != sizeof(Elf_Phdr) || 424 hdr->e_version != ELF_TARG_VER) 425 return (ENOEXEC); 426 427 /* 428 * Make sure we have at least one brand for this machine. 429 */ 430 431 for (i = 0; i < MAX_BRANDS; i++) { 432 bi = elf_brand_list[i]; 433 if (bi != NULL && bi->machine == hdr->e_machine) 434 break; 435 } 436 if (i == MAX_BRANDS) 437 return (ENOEXEC); 438 439 return (0); 440 } 441 442 static int 443 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 444 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 445 { 446 struct sf_buf *sf; 447 int error; 448 vm_offset_t off; 449 450 /* 451 * Create the page if it doesn't exist yet. Ignore errors. 452 */ 453 vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) - 454 trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL); 455 456 /* 457 * Find the page from the underlying object. 458 */ 459 if (object != NULL) { 460 sf = vm_imgact_map_page(object, offset); 461 if (sf == NULL) 462 return (KERN_FAILURE); 463 off = offset - trunc_page(offset); 464 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 465 end - start); 466 vm_imgact_unmap_page(sf); 467 if (error != 0) 468 return (KERN_FAILURE); 469 } 470 471 return (KERN_SUCCESS); 472 } 473 474 static int 475 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object, 476 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot, 477 int cow) 478 { 479 struct sf_buf *sf; 480 vm_offset_t off; 481 vm_size_t sz; 482 int error, locked, rv; 483 484 if (start != trunc_page(start)) { 485 rv = __elfN(map_partial)(map, object, offset, start, 486 round_page(start), prot); 487 if (rv != KERN_SUCCESS) 488 return (rv); 489 offset += round_page(start) - start; 490 start = round_page(start); 491 } 492 if (end != round_page(end)) { 493 rv = __elfN(map_partial)(map, object, offset + 494 trunc_page(end) - start, trunc_page(end), end, prot); 495 if (rv != KERN_SUCCESS) 496 return (rv); 497 end = trunc_page(end); 498 } 499 if (start >= end) 500 return (KERN_SUCCESS); 501 if ((offset & PAGE_MASK) != 0) { 502 /* 503 * The mapping is not page aligned. This means that we have 504 * to copy the data. 505 */ 506 rv = vm_map_fixed(map, NULL, 0, start, end - start, 507 prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL); 508 if (rv != KERN_SUCCESS) 509 return (rv); 510 if (object == NULL) 511 return (KERN_SUCCESS); 512 for (; start < end; start += sz) { 513 sf = vm_imgact_map_page(object, offset); 514 if (sf == NULL) 515 return (KERN_FAILURE); 516 off = offset - trunc_page(offset); 517 sz = end - start; 518 if (sz > PAGE_SIZE - off) 519 sz = PAGE_SIZE - off; 520 error = copyout((caddr_t)sf_buf_kva(sf) + off, 521 (caddr_t)start, sz); 522 vm_imgact_unmap_page(sf); 523 if (error != 0) 524 return (KERN_FAILURE); 525 offset += sz; 526 } 527 } else { 528 vm_object_reference(object); 529 rv = vm_map_fixed(map, object, offset, start, end - start, 530 prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL); 531 if (rv != KERN_SUCCESS) { 532 locked = VOP_ISLOCKED(imgp->vp); 533 VOP_UNLOCK(imgp->vp, 0); 534 vm_object_deallocate(object); 535 vn_lock(imgp->vp, locked | LK_RETRY); 536 return (rv); 537 } 538 } 539 return (KERN_SUCCESS); 540 } 541 542 static int 543 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 544 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 545 size_t pagesize) 546 { 547 struct sf_buf *sf; 548 size_t map_len; 549 vm_map_t map; 550 vm_object_t object; 551 vm_offset_t off, map_addr; 552 int error, rv, cow; 553 size_t copy_len; 554 vm_ooffset_t file_addr; 555 556 /* 557 * It's necessary to fail if the filsz + offset taken from the 558 * header is greater than the actual file pager object's size. 559 * If we were to allow this, then the vm_map_find() below would 560 * walk right off the end of the file object and into the ether. 561 * 562 * While I'm here, might as well check for something else that 563 * is invalid: filsz cannot be greater than memsz. 564 */ 565 if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) || 566 filsz > memsz) { 567 uprintf("elf_load_section: truncated ELF file\n"); 568 return (ENOEXEC); 569 } 570 571 object = imgp->object; 572 map = &imgp->proc->p_vmspace->vm_map; 573 map_addr = trunc_page_ps((vm_offset_t)vmaddr, pagesize); 574 file_addr = trunc_page_ps(offset, pagesize); 575 576 /* 577 * We have two choices. We can either clear the data in the last page 578 * of an oversized mapping, or we can start the anon mapping a page 579 * early and copy the initialized data into that first page. We 580 * choose the second. 581 */ 582 if (filsz == 0) 583 map_len = 0; 584 else if (memsz > filsz) 585 map_len = trunc_page_ps(offset + filsz, pagesize) - file_addr; 586 else 587 map_len = round_page_ps(offset + filsz, pagesize) - file_addr; 588 589 if (map_len != 0) { 590 /* cow flags: don't dump readonly sections in core */ 591 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 592 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 593 594 rv = __elfN(map_insert)(imgp, map, 595 object, 596 file_addr, /* file offset */ 597 map_addr, /* virtual start */ 598 map_addr + map_len,/* virtual end */ 599 prot, 600 cow); 601 if (rv != KERN_SUCCESS) 602 return (EINVAL); 603 604 /* we can stop now if we've covered it all */ 605 if (memsz == filsz) 606 return (0); 607 } 608 609 610 /* 611 * We have to get the remaining bit of the file into the first part 612 * of the oversized map segment. This is normally because the .data 613 * segment in the file is extended to provide bss. It's a neat idea 614 * to try and save a page, but it's a pain in the behind to implement. 615 */ 616 copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page_ps(offset + 617 filsz, pagesize); 618 map_addr = trunc_page_ps((vm_offset_t)vmaddr + filsz, pagesize); 619 map_len = round_page_ps((vm_offset_t)vmaddr + memsz, pagesize) - 620 map_addr; 621 622 /* This had damn well better be true! */ 623 if (map_len != 0) { 624 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr, 625 map_addr + map_len, prot, 0); 626 if (rv != KERN_SUCCESS) 627 return (EINVAL); 628 } 629 630 if (copy_len != 0) { 631 sf = vm_imgact_map_page(object, offset + filsz); 632 if (sf == NULL) 633 return (EIO); 634 635 /* send the page fragment to user space */ 636 off = trunc_page_ps(offset + filsz, pagesize) - 637 trunc_page(offset + filsz); 638 error = copyout((caddr_t)sf_buf_kva(sf) + off, 639 (caddr_t)map_addr, copy_len); 640 vm_imgact_unmap_page(sf); 641 if (error != 0) 642 return (error); 643 } 644 645 /* 646 * Remove write access to the page if it was only granted by map_insert 647 * to allow copyout. 648 */ 649 if ((prot & VM_PROT_WRITE) == 0) 650 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 651 map_len), prot, FALSE); 652 653 return (0); 654 } 655 656 /* 657 * Load the file "file" into memory. It may be either a shared object 658 * or an executable. 659 * 660 * The "addr" reference parameter is in/out. On entry, it specifies 661 * the address where a shared object should be loaded. If the file is 662 * an executable, this value is ignored. On exit, "addr" specifies 663 * where the file was actually loaded. 664 * 665 * The "entry" reference parameter is out only. On exit, it specifies 666 * the entry point for the loaded file. 667 */ 668 static int 669 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 670 u_long *entry, size_t pagesize) 671 { 672 struct { 673 struct nameidata nd; 674 struct vattr attr; 675 struct image_params image_params; 676 } *tempdata; 677 const Elf_Ehdr *hdr = NULL; 678 const Elf_Phdr *phdr = NULL; 679 struct nameidata *nd; 680 struct vattr *attr; 681 struct image_params *imgp; 682 vm_prot_t prot; 683 u_long rbase; 684 u_long base_addr = 0; 685 int error, i, numsegs; 686 687 #ifdef CAPABILITY_MODE 688 /* 689 * XXXJA: This check can go away once we are sufficiently confident 690 * that the checks in namei() are correct. 691 */ 692 if (IN_CAPABILITY_MODE(curthread)) 693 return (ECAPMODE); 694 #endif 695 696 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK); 697 nd = &tempdata->nd; 698 attr = &tempdata->attr; 699 imgp = &tempdata->image_params; 700 701 /* 702 * Initialize part of the common data 703 */ 704 imgp->proc = p; 705 imgp->attr = attr; 706 imgp->firstpage = NULL; 707 imgp->image_header = NULL; 708 imgp->object = NULL; 709 imgp->execlabel = NULL; 710 711 NDINIT(nd, LOOKUP, LOCKLEAF | FOLLOW, UIO_SYSSPACE, file, curthread); 712 if ((error = namei(nd)) != 0) { 713 nd->ni_vp = NULL; 714 goto fail; 715 } 716 NDFREE(nd, NDF_ONLY_PNBUF); 717 imgp->vp = nd->ni_vp; 718 719 /* 720 * Check permissions, modes, uid, etc on the file, and "open" it. 721 */ 722 error = exec_check_permissions(imgp); 723 if (error) 724 goto fail; 725 726 error = exec_map_first_page(imgp); 727 if (error) 728 goto fail; 729 730 /* 731 * Also make certain that the interpreter stays the same, so set 732 * its VV_TEXT flag, too. 733 */ 734 VOP_SET_TEXT(nd->ni_vp); 735 736 imgp->object = nd->ni_vp->v_object; 737 738 hdr = (const Elf_Ehdr *)imgp->image_header; 739 if ((error = __elfN(check_header)(hdr)) != 0) 740 goto fail; 741 if (hdr->e_type == ET_DYN) 742 rbase = *addr; 743 else if (hdr->e_type == ET_EXEC) 744 rbase = 0; 745 else { 746 error = ENOEXEC; 747 goto fail; 748 } 749 750 /* Only support headers that fit within first page for now */ 751 if ((hdr->e_phoff > PAGE_SIZE) || 752 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 753 error = ENOEXEC; 754 goto fail; 755 } 756 757 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 758 if (!aligned(phdr, Elf_Addr)) { 759 error = ENOEXEC; 760 goto fail; 761 } 762 763 for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) { 764 if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) { 765 /* Loadable segment */ 766 prot = __elfN(trans_prot)(phdr[i].p_flags); 767 error = __elfN(load_section)(imgp, phdr[i].p_offset, 768 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 769 phdr[i].p_memsz, phdr[i].p_filesz, prot, pagesize); 770 if (error != 0) 771 goto fail; 772 /* 773 * Establish the base address if this is the 774 * first segment. 775 */ 776 if (numsegs == 0) 777 base_addr = trunc_page(phdr[i].p_vaddr + 778 rbase); 779 numsegs++; 780 } 781 } 782 *addr = base_addr; 783 *entry = (unsigned long)hdr->e_entry + rbase; 784 785 fail: 786 if (imgp->firstpage) 787 exec_unmap_first_page(imgp); 788 789 if (nd->ni_vp) 790 vput(nd->ni_vp); 791 792 free(tempdata, M_TEMP); 793 794 return (error); 795 } 796 797 static u_long 798 __CONCAT(rnd_, __elfN(base))(vm_map_t map __unused, u_long minv, u_long maxv, 799 u_int align) 800 { 801 u_long rbase, res; 802 803 MPASS(vm_map_min(map) <= minv); 804 MPASS(maxv <= vm_map_max(map)); 805 MPASS(minv < maxv); 806 MPASS(minv + align < maxv); 807 arc4rand(&rbase, sizeof(rbase), 0); 808 res = roundup(minv, (u_long)align) + rbase % (maxv - minv); 809 res &= ~((u_long)align - 1); 810 if (res >= maxv) 811 res -= align; 812 KASSERT(res >= minv, 813 ("res %#lx < minv %#lx, maxv %#lx rbase %#lx", 814 res, minv, maxv, rbase)); 815 KASSERT(res < maxv, 816 ("res %#lx > maxv %#lx, minv %#lx rbase %#lx", 817 res, maxv, minv, rbase)); 818 return (res); 819 } 820 821 /* 822 * Impossible et_dyn_addr initial value indicating that the real base 823 * must be calculated later with some randomization applied. 824 */ 825 #define ET_DYN_ADDR_RAND 1 826 827 static int 828 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 829 { 830 struct thread *td; 831 const Elf_Ehdr *hdr; 832 const Elf_Phdr *phdr; 833 Elf_Auxargs *elf_auxargs; 834 struct vmspace *vmspace; 835 vm_map_t map; 836 const char *err_str, *newinterp; 837 char *interp, *interp_buf, *path; 838 Elf_Brandinfo *brand_info; 839 struct sysentvec *sv; 840 vm_prot_t prot; 841 u_long text_size, data_size, total_size, text_addr, data_addr; 842 u_long seg_size, seg_addr, addr, baddr, et_dyn_addr, entry, proghdr; 843 u_long maxalign, mapsz, maxv, maxv1; 844 uint32_t fctl0; 845 int32_t osrel; 846 int error, i, n, interp_name_len, have_interp; 847 848 hdr = (const Elf_Ehdr *)imgp->image_header; 849 850 /* 851 * Do we have a valid ELF header ? 852 * 853 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 854 * if particular brand doesn't support it. 855 */ 856 if (__elfN(check_header)(hdr) != 0 || 857 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 858 return (-1); 859 860 /* 861 * From here on down, we return an errno, not -1, as we've 862 * detected an ELF file. 863 */ 864 865 if ((hdr->e_phoff > PAGE_SIZE) || 866 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 867 /* Only support headers in first page for now */ 868 uprintf("Program headers not in the first page\n"); 869 return (ENOEXEC); 870 } 871 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 872 if (!aligned(phdr, Elf_Addr)) { 873 uprintf("Unaligned program headers\n"); 874 return (ENOEXEC); 875 } 876 877 n = error = 0; 878 baddr = 0; 879 osrel = 0; 880 fctl0 = 0; 881 text_size = data_size = total_size = text_addr = data_addr = 0; 882 entry = proghdr = 0; 883 interp_name_len = 0; 884 err_str = newinterp = NULL; 885 interp = interp_buf = NULL; 886 td = curthread; 887 maxalign = PAGE_SIZE; 888 mapsz = 0; 889 890 for (i = 0; i < hdr->e_phnum; i++) { 891 switch (phdr[i].p_type) { 892 case PT_LOAD: 893 if (n == 0) 894 baddr = phdr[i].p_vaddr; 895 if (phdr[i].p_align > maxalign) 896 maxalign = phdr[i].p_align; 897 mapsz += phdr[i].p_memsz; 898 n++; 899 break; 900 case PT_INTERP: 901 /* Path to interpreter */ 902 if (phdr[i].p_filesz < 2 || 903 phdr[i].p_filesz > MAXPATHLEN) { 904 uprintf("Invalid PT_INTERP\n"); 905 error = ENOEXEC; 906 goto ret; 907 } 908 if (interp != NULL) { 909 uprintf("Multiple PT_INTERP headers\n"); 910 error = ENOEXEC; 911 goto ret; 912 } 913 interp_name_len = phdr[i].p_filesz; 914 if (phdr[i].p_offset > PAGE_SIZE || 915 interp_name_len > PAGE_SIZE - phdr[i].p_offset) { 916 VOP_UNLOCK(imgp->vp, 0); 917 interp_buf = malloc(interp_name_len + 1, M_TEMP, 918 M_WAITOK); 919 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 920 error = vn_rdwr(UIO_READ, imgp->vp, interp_buf, 921 interp_name_len, phdr[i].p_offset, 922 UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, 923 NOCRED, NULL, td); 924 if (error != 0) { 925 uprintf("i/o error PT_INTERP %d\n", 926 error); 927 goto ret; 928 } 929 interp_buf[interp_name_len] = '\0'; 930 interp = interp_buf; 931 } else { 932 interp = __DECONST(char *, imgp->image_header) + 933 phdr[i].p_offset; 934 if (interp[interp_name_len - 1] != '\0') { 935 uprintf("Invalid PT_INTERP\n"); 936 error = ENOEXEC; 937 goto ret; 938 } 939 } 940 break; 941 case PT_GNU_STACK: 942 if (__elfN(nxstack)) 943 imgp->stack_prot = 944 __elfN(trans_prot)(phdr[i].p_flags); 945 imgp->stack_sz = phdr[i].p_memsz; 946 break; 947 } 948 } 949 950 brand_info = __elfN(get_brandinfo)(imgp, interp, interp_name_len, 951 &osrel, &fctl0); 952 if (brand_info == NULL) { 953 uprintf("ELF binary type \"%u\" not known.\n", 954 hdr->e_ident[EI_OSABI]); 955 error = ENOEXEC; 956 goto ret; 957 } 958 sv = brand_info->sysvec; 959 et_dyn_addr = 0; 960 if (hdr->e_type == ET_DYN) { 961 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) { 962 uprintf("Cannot execute shared object\n"); 963 error = ENOEXEC; 964 goto ret; 965 } 966 /* 967 * Honour the base load address from the dso if it is 968 * non-zero for some reason. 969 */ 970 if (baddr == 0) { 971 if ((sv->sv_flags & SV_ASLR) == 0 || 972 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) 973 et_dyn_addr = ET_DYN_LOAD_ADDR; 974 else if ((__elfN(pie_aslr_enabled) && 975 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) || 976 (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0) 977 et_dyn_addr = ET_DYN_ADDR_RAND; 978 else 979 et_dyn_addr = ET_DYN_LOAD_ADDR; 980 } 981 } 982 if (interp != NULL && brand_info->interp_newpath != NULL) 983 newinterp = brand_info->interp_newpath; 984 985 /* 986 * Avoid a possible deadlock if the current address space is destroyed 987 * and that address space maps the locked vnode. In the common case, 988 * the locked vnode's v_usecount is decremented but remains greater 989 * than zero. Consequently, the vnode lock is not needed by vrele(). 990 * However, in cases where the vnode lock is external, such as nullfs, 991 * v_usecount may become zero. 992 * 993 * The VV_TEXT flag prevents modifications to the executable while 994 * the vnode is unlocked. 995 */ 996 VOP_UNLOCK(imgp->vp, 0); 997 998 /* 999 * Decide whether to enable randomization of user mappings. 1000 * First, reset user preferences for the setid binaries. 1001 * Then, account for the support of the randomization by the 1002 * ABI, by user preferences, and make special treatment for 1003 * PIE binaries. 1004 */ 1005 if (imgp->credential_setid) { 1006 PROC_LOCK(imgp->proc); 1007 imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE); 1008 PROC_UNLOCK(imgp->proc); 1009 } 1010 if ((sv->sv_flags & SV_ASLR) == 0 || 1011 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 || 1012 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) { 1013 KASSERT(et_dyn_addr != ET_DYN_ADDR_RAND, 1014 ("et_dyn_addr == RAND and !ASLR")); 1015 } else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 || 1016 (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) || 1017 et_dyn_addr == ET_DYN_ADDR_RAND) { 1018 imgp->map_flags |= MAP_ASLR; 1019 /* 1020 * If user does not care about sbrk, utilize the bss 1021 * grow region for mappings as well. We can select 1022 * the base for the image anywere and still not suffer 1023 * from the fragmentation. 1024 */ 1025 if (!__elfN(aslr_honor_sbrk) || 1026 (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0) 1027 imgp->map_flags |= MAP_ASLR_IGNSTART; 1028 } 1029 1030 error = exec_new_vmspace(imgp, sv); 1031 vmspace = imgp->proc->p_vmspace; 1032 map = &vmspace->vm_map; 1033 1034 imgp->proc->p_sysent = sv; 1035 1036 maxv = vm_map_max(map) - lim_max(td, RLIMIT_STACK); 1037 if (et_dyn_addr == ET_DYN_ADDR_RAND) { 1038 KASSERT((map->flags & MAP_ASLR) != 0, 1039 ("ET_DYN_ADDR_RAND but !MAP_ASLR")); 1040 et_dyn_addr = __CONCAT(rnd_, __elfN(base))(map, 1041 vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA), 1042 /* reserve half of the address space to interpreter */ 1043 maxv / 2, 1UL << flsl(maxalign)); 1044 } 1045 1046 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 1047 if (error != 0) 1048 goto ret; 1049 1050 for (i = 0; i < hdr->e_phnum; i++) { 1051 switch (phdr[i].p_type) { 1052 case PT_LOAD: /* Loadable segment */ 1053 if (phdr[i].p_memsz == 0) 1054 break; 1055 prot = __elfN(trans_prot)(phdr[i].p_flags); 1056 error = __elfN(load_section)(imgp, phdr[i].p_offset, 1057 (caddr_t)(uintptr_t)phdr[i].p_vaddr + et_dyn_addr, 1058 phdr[i].p_memsz, phdr[i].p_filesz, prot, 1059 sv->sv_pagesize); 1060 if (error != 0) 1061 goto ret; 1062 1063 /* 1064 * If this segment contains the program headers, 1065 * remember their virtual address for the AT_PHDR 1066 * aux entry. Static binaries don't usually include 1067 * a PT_PHDR entry. 1068 */ 1069 if (phdr[i].p_offset == 0 && 1070 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize 1071 <= phdr[i].p_filesz) 1072 proghdr = phdr[i].p_vaddr + hdr->e_phoff + 1073 et_dyn_addr; 1074 1075 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 1076 seg_size = round_page(phdr[i].p_memsz + 1077 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 1078 1079 /* 1080 * Make the largest executable segment the official 1081 * text segment and all others data. 1082 * 1083 * Note that obreak() assumes that data_addr + 1084 * data_size == end of data load area, and the ELF 1085 * file format expects segments to be sorted by 1086 * address. If multiple data segments exist, the 1087 * last one will be used. 1088 */ 1089 1090 if (phdr[i].p_flags & PF_X && text_size < seg_size) { 1091 text_size = seg_size; 1092 text_addr = seg_addr; 1093 } else { 1094 data_size = seg_size; 1095 data_addr = seg_addr; 1096 } 1097 total_size += seg_size; 1098 break; 1099 case PT_PHDR: /* Program header table info */ 1100 proghdr = phdr[i].p_vaddr + et_dyn_addr; 1101 break; 1102 default: 1103 break; 1104 } 1105 } 1106 1107 if (data_addr == 0 && data_size == 0) { 1108 data_addr = text_addr; 1109 data_size = text_size; 1110 } 1111 1112 entry = (u_long)hdr->e_entry + et_dyn_addr; 1113 1114 /* 1115 * Check limits. It should be safe to check the 1116 * limits after loading the segments since we do 1117 * not actually fault in all the segments pages. 1118 */ 1119 PROC_LOCK(imgp->proc); 1120 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA)) 1121 err_str = "Data segment size exceeds process limit"; 1122 else if (text_size > maxtsiz) 1123 err_str = "Text segment size exceeds system limit"; 1124 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM)) 1125 err_str = "Total segment size exceeds process limit"; 1126 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0) 1127 err_str = "Data segment size exceeds resource limit"; 1128 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) 1129 err_str = "Total segment size exceeds resource limit"; 1130 if (err_str != NULL) { 1131 PROC_UNLOCK(imgp->proc); 1132 uprintf("%s\n", err_str); 1133 error = ENOMEM; 1134 goto ret; 1135 } 1136 1137 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 1138 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 1139 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 1140 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 1141 1142 /* 1143 * We load the dynamic linker where a userland call 1144 * to mmap(0, ...) would put it. The rationale behind this 1145 * calculation is that it leaves room for the heap to grow to 1146 * its maximum allowed size. 1147 */ 1148 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td, 1149 RLIMIT_DATA)); 1150 if ((map->flags & MAP_ASLR) != 0) { 1151 maxv1 = maxv / 2 + addr / 2; 1152 MPASS(maxv1 >= addr); /* No overflow */ 1153 map->anon_loc = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1, 1154 MAXPAGESIZES > 1 ? pagesizes[1] : pagesizes[0]); 1155 } else { 1156 map->anon_loc = addr; 1157 } 1158 PROC_UNLOCK(imgp->proc); 1159 1160 imgp->entry_addr = entry; 1161 1162 if (interp != NULL) { 1163 have_interp = FALSE; 1164 VOP_UNLOCK(imgp->vp, 0); 1165 if ((map->flags & MAP_ASLR) != 0) { 1166 /* Assume that interpeter fits into 1/4 of AS */ 1167 maxv1 = maxv / 2 + addr / 2; 1168 MPASS(maxv1 >= addr); /* No overflow */ 1169 addr = __CONCAT(rnd_, __elfN(base))(map, addr, 1170 maxv1, PAGE_SIZE); 1171 } 1172 if (brand_info->emul_path != NULL && 1173 brand_info->emul_path[0] != '\0') { 1174 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 1175 snprintf(path, MAXPATHLEN, "%s%s", 1176 brand_info->emul_path, interp); 1177 error = __elfN(load_file)(imgp->proc, path, &addr, 1178 &imgp->entry_addr, sv->sv_pagesize); 1179 free(path, M_TEMP); 1180 if (error == 0) 1181 have_interp = TRUE; 1182 } 1183 if (!have_interp && newinterp != NULL && 1184 (brand_info->interp_path == NULL || 1185 strcmp(interp, brand_info->interp_path) == 0)) { 1186 error = __elfN(load_file)(imgp->proc, newinterp, &addr, 1187 &imgp->entry_addr, sv->sv_pagesize); 1188 if (error == 0) 1189 have_interp = TRUE; 1190 } 1191 if (!have_interp) { 1192 error = __elfN(load_file)(imgp->proc, interp, &addr, 1193 &imgp->entry_addr, sv->sv_pagesize); 1194 } 1195 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 1196 if (error != 0) { 1197 uprintf("ELF interpreter %s not found, error %d\n", 1198 interp, error); 1199 goto ret; 1200 } 1201 } else 1202 addr = et_dyn_addr; 1203 1204 /* 1205 * Construct auxargs table (used by the fixup routine) 1206 */ 1207 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 1208 elf_auxargs->execfd = -1; 1209 elf_auxargs->phdr = proghdr; 1210 elf_auxargs->phent = hdr->e_phentsize; 1211 elf_auxargs->phnum = hdr->e_phnum; 1212 elf_auxargs->pagesz = PAGE_SIZE; 1213 elf_auxargs->base = addr; 1214 elf_auxargs->flags = 0; 1215 elf_auxargs->entry = entry; 1216 elf_auxargs->hdr_eflags = hdr->e_flags; 1217 1218 imgp->auxargs = elf_auxargs; 1219 imgp->interpreted = 0; 1220 imgp->reloc_base = addr; 1221 imgp->proc->p_osrel = osrel; 1222 imgp->proc->p_fctl0 = fctl0; 1223 imgp->proc->p_elf_machine = hdr->e_machine; 1224 imgp->proc->p_elf_flags = hdr->e_flags; 1225 1226 ret: 1227 free(interp_buf, M_TEMP); 1228 return (error); 1229 } 1230 1231 #define suword __CONCAT(suword, __ELF_WORD_SIZE) 1232 1233 int 1234 __elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp) 1235 { 1236 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 1237 Elf_Auxinfo *argarray, *pos; 1238 Elf_Addr *base, *auxbase; 1239 int error; 1240 1241 base = (Elf_Addr *)*stack_base; 1242 auxbase = base + imgp->args->argc + 1 + imgp->args->envc + 1; 1243 argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP, 1244 M_WAITOK | M_ZERO); 1245 1246 if (args->execfd != -1) 1247 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 1248 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 1249 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1250 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1251 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1252 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1253 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1254 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1255 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags); 1256 if (imgp->execpathp != 0) 1257 AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp); 1258 AUXARGS_ENTRY(pos, AT_OSRELDATE, 1259 imgp->proc->p_ucred->cr_prison->pr_osreldate); 1260 if (imgp->canary != 0) { 1261 AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary); 1262 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1263 } 1264 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1265 if (imgp->pagesizes != 0) { 1266 AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes); 1267 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1268 } 1269 if (imgp->sysent->sv_timekeep_base != 0) { 1270 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1271 imgp->sysent->sv_timekeep_base); 1272 } 1273 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1274 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1275 imgp->sysent->sv_stackprot); 1276 if (imgp->sysent->sv_hwcap != NULL) 1277 AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap); 1278 if (imgp->sysent->sv_hwcap2 != NULL) 1279 AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2); 1280 AUXARGS_ENTRY(pos, AT_NULL, 0); 1281 1282 free(imgp->auxargs, M_TEMP); 1283 imgp->auxargs = NULL; 1284 KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs")); 1285 1286 error = copyout(argarray, auxbase, sizeof(*argarray) * AT_COUNT); 1287 free(argarray, M_TEMP); 1288 if (error != 0) 1289 return (error); 1290 1291 base--; 1292 if (suword(base, imgp->args->argc) == -1) 1293 return (EFAULT); 1294 *stack_base = (register_t *)base; 1295 return (0); 1296 } 1297 1298 /* 1299 * Code for generating ELF core dumps. 1300 */ 1301 1302 typedef void (*segment_callback)(vm_map_entry_t, void *); 1303 1304 /* Closure for cb_put_phdr(). */ 1305 struct phdr_closure { 1306 Elf_Phdr *phdr; /* Program header to fill in */ 1307 Elf_Off offset; /* Offset of segment in core file */ 1308 }; 1309 1310 /* Closure for cb_size_segment(). */ 1311 struct sseg_closure { 1312 int count; /* Count of writable segments. */ 1313 size_t size; /* Total size of all writable segments. */ 1314 }; 1315 1316 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *); 1317 1318 struct note_info { 1319 int type; /* Note type. */ 1320 outfunc_t outfunc; /* Output function. */ 1321 void *outarg; /* Argument for the output function. */ 1322 size_t outsize; /* Output size. */ 1323 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1324 }; 1325 1326 TAILQ_HEAD(note_info_list, note_info); 1327 1328 /* Coredump output parameters. */ 1329 struct coredump_params { 1330 off_t offset; 1331 struct ucred *active_cred; 1332 struct ucred *file_cred; 1333 struct thread *td; 1334 struct vnode *vp; 1335 struct compressor *comp; 1336 }; 1337 1338 extern int compress_user_cores; 1339 extern int compress_user_cores_level; 1340 1341 static void cb_put_phdr(vm_map_entry_t, void *); 1342 static void cb_size_segment(vm_map_entry_t, void *); 1343 static int core_write(struct coredump_params *, const void *, size_t, off_t, 1344 enum uio_seg); 1345 static void each_dumpable_segment(struct thread *, segment_callback, void *); 1346 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t, 1347 struct note_info_list *, size_t); 1348 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *, 1349 size_t *); 1350 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t); 1351 static void __elfN(putnote)(struct note_info *, struct sbuf *); 1352 static size_t register_note(struct note_info_list *, int, outfunc_t, void *); 1353 static int sbuf_drain_core_output(void *, const char *, int); 1354 static int sbuf_drain_count(void *arg, const char *data, int len); 1355 1356 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *); 1357 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1358 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *); 1359 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1360 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *); 1361 static void __elfN(note_ptlwpinfo)(void *, struct sbuf *, size_t *); 1362 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1363 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1364 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1365 static void note_procstat_files(void *, struct sbuf *, size_t *); 1366 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1367 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1368 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1369 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1370 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1371 1372 /* 1373 * Write out a core segment to the compression stream. 1374 */ 1375 static int 1376 compress_chunk(struct coredump_params *p, char *base, char *buf, u_int len) 1377 { 1378 u_int chunk_len; 1379 int error; 1380 1381 while (len > 0) { 1382 chunk_len = MIN(len, CORE_BUF_SIZE); 1383 1384 /* 1385 * We can get EFAULT error here. 1386 * In that case zero out the current chunk of the segment. 1387 */ 1388 error = copyin(base, buf, chunk_len); 1389 if (error != 0) 1390 bzero(buf, chunk_len); 1391 error = compressor_write(p->comp, buf, chunk_len); 1392 if (error != 0) 1393 break; 1394 base += chunk_len; 1395 len -= chunk_len; 1396 } 1397 return (error); 1398 } 1399 1400 static int 1401 core_compressed_write(void *base, size_t len, off_t offset, void *arg) 1402 { 1403 1404 return (core_write((struct coredump_params *)arg, base, len, offset, 1405 UIO_SYSSPACE)); 1406 } 1407 1408 static int 1409 core_write(struct coredump_params *p, const void *base, size_t len, 1410 off_t offset, enum uio_seg seg) 1411 { 1412 1413 return (vn_rdwr_inchunks(UIO_WRITE, p->vp, __DECONST(void *, base), 1414 len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED, 1415 p->active_cred, p->file_cred, NULL, p->td)); 1416 } 1417 1418 static int 1419 core_output(void *base, size_t len, off_t offset, struct coredump_params *p, 1420 void *tmpbuf) 1421 { 1422 int error; 1423 1424 if (p->comp != NULL) 1425 return (compress_chunk(p, base, tmpbuf, len)); 1426 1427 /* 1428 * EFAULT is a non-fatal error that we can get, for example, 1429 * if the segment is backed by a file but extends beyond its 1430 * end. 1431 */ 1432 error = core_write(p, base, len, offset, UIO_USERSPACE); 1433 if (error == EFAULT) { 1434 log(LOG_WARNING, "Failed to fully fault in a core file segment " 1435 "at VA %p with size 0x%zx to be written at offset 0x%jx " 1436 "for process %s\n", base, len, offset, curproc->p_comm); 1437 1438 /* 1439 * Write a "real" zero byte at the end of the target region 1440 * in the case this is the last segment. 1441 * The intermediate space will be implicitly zero-filled. 1442 */ 1443 error = core_write(p, zero_region, 1, offset + len - 1, 1444 UIO_SYSSPACE); 1445 } 1446 return (error); 1447 } 1448 1449 /* 1450 * Drain into a core file. 1451 */ 1452 static int 1453 sbuf_drain_core_output(void *arg, const char *data, int len) 1454 { 1455 struct coredump_params *p; 1456 int error, locked; 1457 1458 p = (struct coredump_params *)arg; 1459 1460 /* 1461 * Some kern_proc out routines that print to this sbuf may 1462 * call us with the process lock held. Draining with the 1463 * non-sleepable lock held is unsafe. The lock is needed for 1464 * those routines when dumping a live process. In our case we 1465 * can safely release the lock before draining and acquire 1466 * again after. 1467 */ 1468 locked = PROC_LOCKED(p->td->td_proc); 1469 if (locked) 1470 PROC_UNLOCK(p->td->td_proc); 1471 if (p->comp != NULL) 1472 error = compressor_write(p->comp, __DECONST(char *, data), len); 1473 else 1474 error = core_write(p, __DECONST(void *, data), len, p->offset, 1475 UIO_SYSSPACE); 1476 if (locked) 1477 PROC_LOCK(p->td->td_proc); 1478 if (error != 0) 1479 return (-error); 1480 p->offset += len; 1481 return (len); 1482 } 1483 1484 /* 1485 * Drain into a counter. 1486 */ 1487 static int 1488 sbuf_drain_count(void *arg, const char *data __unused, int len) 1489 { 1490 size_t *sizep; 1491 1492 sizep = (size_t *)arg; 1493 *sizep += len; 1494 return (len); 1495 } 1496 1497 int 1498 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1499 { 1500 struct ucred *cred = td->td_ucred; 1501 int error = 0; 1502 struct sseg_closure seginfo; 1503 struct note_info_list notelst; 1504 struct coredump_params params; 1505 struct note_info *ninfo; 1506 void *hdr, *tmpbuf; 1507 size_t hdrsize, notesz, coresize; 1508 1509 hdr = NULL; 1510 tmpbuf = NULL; 1511 TAILQ_INIT(¬elst); 1512 1513 /* Size the program segments. */ 1514 seginfo.count = 0; 1515 seginfo.size = 0; 1516 each_dumpable_segment(td, cb_size_segment, &seginfo); 1517 1518 /* 1519 * Collect info about the core file header area. 1520 */ 1521 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1522 if (seginfo.count + 1 >= PN_XNUM) 1523 hdrsize += sizeof(Elf_Shdr); 1524 __elfN(prepare_notes)(td, ¬elst, ¬esz); 1525 coresize = round_page(hdrsize + notesz) + seginfo.size; 1526 1527 /* Set up core dump parameters. */ 1528 params.offset = 0; 1529 params.active_cred = cred; 1530 params.file_cred = NOCRED; 1531 params.td = td; 1532 params.vp = vp; 1533 params.comp = NULL; 1534 1535 #ifdef RACCT 1536 if (racct_enable) { 1537 PROC_LOCK(td->td_proc); 1538 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1539 PROC_UNLOCK(td->td_proc); 1540 if (error != 0) { 1541 error = EFAULT; 1542 goto done; 1543 } 1544 } 1545 #endif 1546 if (coresize >= limit) { 1547 error = EFAULT; 1548 goto done; 1549 } 1550 1551 /* Create a compression stream if necessary. */ 1552 if (compress_user_cores != 0) { 1553 params.comp = compressor_init(core_compressed_write, 1554 compress_user_cores, CORE_BUF_SIZE, 1555 compress_user_cores_level, ¶ms); 1556 if (params.comp == NULL) { 1557 error = EFAULT; 1558 goto done; 1559 } 1560 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1561 } 1562 1563 /* 1564 * Allocate memory for building the header, fill it up, 1565 * and write it out following the notes. 1566 */ 1567 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1568 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst, 1569 notesz); 1570 1571 /* Write the contents of all of the writable segments. */ 1572 if (error == 0) { 1573 Elf_Phdr *php; 1574 off_t offset; 1575 int i; 1576 1577 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1578 offset = round_page(hdrsize + notesz); 1579 for (i = 0; i < seginfo.count; i++) { 1580 error = core_output((caddr_t)(uintptr_t)php->p_vaddr, 1581 php->p_filesz, offset, ¶ms, tmpbuf); 1582 if (error != 0) 1583 break; 1584 offset += php->p_filesz; 1585 php++; 1586 } 1587 if (error == 0 && params.comp != NULL) 1588 error = compressor_flush(params.comp); 1589 } 1590 if (error) { 1591 log(LOG_WARNING, 1592 "Failed to write core file for process %s (error %d)\n", 1593 curproc->p_comm, error); 1594 } 1595 1596 done: 1597 free(tmpbuf, M_TEMP); 1598 if (params.comp != NULL) 1599 compressor_fini(params.comp); 1600 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1601 TAILQ_REMOVE(¬elst, ninfo, link); 1602 free(ninfo, M_TEMP); 1603 } 1604 if (hdr != NULL) 1605 free(hdr, M_TEMP); 1606 1607 return (error); 1608 } 1609 1610 /* 1611 * A callback for each_dumpable_segment() to write out the segment's 1612 * program header entry. 1613 */ 1614 static void 1615 cb_put_phdr(vm_map_entry_t entry, void *closure) 1616 { 1617 struct phdr_closure *phc = (struct phdr_closure *)closure; 1618 Elf_Phdr *phdr = phc->phdr; 1619 1620 phc->offset = round_page(phc->offset); 1621 1622 phdr->p_type = PT_LOAD; 1623 phdr->p_offset = phc->offset; 1624 phdr->p_vaddr = entry->start; 1625 phdr->p_paddr = 0; 1626 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1627 phdr->p_align = PAGE_SIZE; 1628 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1629 1630 phc->offset += phdr->p_filesz; 1631 phc->phdr++; 1632 } 1633 1634 /* 1635 * A callback for each_dumpable_segment() to gather information about 1636 * the number of segments and their total size. 1637 */ 1638 static void 1639 cb_size_segment(vm_map_entry_t entry, void *closure) 1640 { 1641 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1642 1643 ssc->count++; 1644 ssc->size += entry->end - entry->start; 1645 } 1646 1647 /* 1648 * For each writable segment in the process's memory map, call the given 1649 * function with a pointer to the map entry and some arbitrary 1650 * caller-supplied data. 1651 */ 1652 static void 1653 each_dumpable_segment(struct thread *td, segment_callback func, void *closure) 1654 { 1655 struct proc *p = td->td_proc; 1656 vm_map_t map = &p->p_vmspace->vm_map; 1657 vm_map_entry_t entry; 1658 vm_object_t backing_object, object; 1659 boolean_t ignore_entry; 1660 1661 vm_map_lock_read(map); 1662 for (entry = map->header.next; entry != &map->header; 1663 entry = entry->next) { 1664 /* 1665 * Don't dump inaccessible mappings, deal with legacy 1666 * coredump mode. 1667 * 1668 * Note that read-only segments related to the elf binary 1669 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1670 * need to arbitrarily ignore such segments. 1671 */ 1672 if (elf_legacy_coredump) { 1673 if ((entry->protection & VM_PROT_RW) != VM_PROT_RW) 1674 continue; 1675 } else { 1676 if ((entry->protection & VM_PROT_ALL) == 0) 1677 continue; 1678 } 1679 1680 /* 1681 * Dont include memory segment in the coredump if 1682 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1683 * madvise(2). Do not dump submaps (i.e. parts of the 1684 * kernel map). 1685 */ 1686 if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP)) 1687 continue; 1688 1689 if ((object = entry->object.vm_object) == NULL) 1690 continue; 1691 1692 /* Ignore memory-mapped devices and such things. */ 1693 VM_OBJECT_RLOCK(object); 1694 while ((backing_object = object->backing_object) != NULL) { 1695 VM_OBJECT_RLOCK(backing_object); 1696 VM_OBJECT_RUNLOCK(object); 1697 object = backing_object; 1698 } 1699 ignore_entry = object->type != OBJT_DEFAULT && 1700 object->type != OBJT_SWAP && object->type != OBJT_VNODE && 1701 object->type != OBJT_PHYS; 1702 VM_OBJECT_RUNLOCK(object); 1703 if (ignore_entry) 1704 continue; 1705 1706 (*func)(entry, closure); 1707 } 1708 vm_map_unlock_read(map); 1709 } 1710 1711 /* 1712 * Write the core file header to the file, including padding up to 1713 * the page boundary. 1714 */ 1715 static int 1716 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr, 1717 size_t hdrsize, struct note_info_list *notelst, size_t notesz) 1718 { 1719 struct note_info *ninfo; 1720 struct sbuf *sb; 1721 int error; 1722 1723 /* Fill in the header. */ 1724 bzero(hdr, hdrsize); 1725 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz); 1726 1727 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1728 sbuf_set_drain(sb, sbuf_drain_core_output, p); 1729 sbuf_start_section(sb, NULL); 1730 sbuf_bcat(sb, hdr, hdrsize); 1731 TAILQ_FOREACH(ninfo, notelst, link) 1732 __elfN(putnote)(ninfo, sb); 1733 /* Align up to a page boundary for the program segments. */ 1734 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1735 error = sbuf_finish(sb); 1736 sbuf_delete(sb); 1737 1738 return (error); 1739 } 1740 1741 static void 1742 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1743 size_t *sizep) 1744 { 1745 struct proc *p; 1746 struct thread *thr; 1747 size_t size; 1748 1749 p = td->td_proc; 1750 size = 0; 1751 1752 size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p); 1753 1754 /* 1755 * To have the debugger select the right thread (LWP) as the initial 1756 * thread, we dump the state of the thread passed to us in td first. 1757 * This is the thread that causes the core dump and thus likely to 1758 * be the right thread one wants to have selected in the debugger. 1759 */ 1760 thr = td; 1761 while (thr != NULL) { 1762 size += register_note(list, NT_PRSTATUS, 1763 __elfN(note_prstatus), thr); 1764 size += register_note(list, NT_FPREGSET, 1765 __elfN(note_fpregset), thr); 1766 size += register_note(list, NT_THRMISC, 1767 __elfN(note_thrmisc), thr); 1768 size += register_note(list, NT_PTLWPINFO, 1769 __elfN(note_ptlwpinfo), thr); 1770 size += register_note(list, -1, 1771 __elfN(note_threadmd), thr); 1772 1773 thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) : 1774 TAILQ_NEXT(thr, td_plist); 1775 if (thr == td) 1776 thr = TAILQ_NEXT(thr, td_plist); 1777 } 1778 1779 size += register_note(list, NT_PROCSTAT_PROC, 1780 __elfN(note_procstat_proc), p); 1781 size += register_note(list, NT_PROCSTAT_FILES, 1782 note_procstat_files, p); 1783 size += register_note(list, NT_PROCSTAT_VMMAP, 1784 note_procstat_vmmap, p); 1785 size += register_note(list, NT_PROCSTAT_GROUPS, 1786 note_procstat_groups, p); 1787 size += register_note(list, NT_PROCSTAT_UMASK, 1788 note_procstat_umask, p); 1789 size += register_note(list, NT_PROCSTAT_RLIMIT, 1790 note_procstat_rlimit, p); 1791 size += register_note(list, NT_PROCSTAT_OSREL, 1792 note_procstat_osrel, p); 1793 size += register_note(list, NT_PROCSTAT_PSSTRINGS, 1794 __elfN(note_procstat_psstrings), p); 1795 size += register_note(list, NT_PROCSTAT_AUXV, 1796 __elfN(note_procstat_auxv), p); 1797 1798 *sizep = size; 1799 } 1800 1801 static void 1802 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1803 size_t notesz) 1804 { 1805 Elf_Ehdr *ehdr; 1806 Elf_Phdr *phdr; 1807 Elf_Shdr *shdr; 1808 struct phdr_closure phc; 1809 1810 ehdr = (Elf_Ehdr *)hdr; 1811 1812 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1813 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1814 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1815 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1816 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1817 ehdr->e_ident[EI_DATA] = ELF_DATA; 1818 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1819 ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD; 1820 ehdr->e_ident[EI_ABIVERSION] = 0; 1821 ehdr->e_ident[EI_PAD] = 0; 1822 ehdr->e_type = ET_CORE; 1823 ehdr->e_machine = td->td_proc->p_elf_machine; 1824 ehdr->e_version = EV_CURRENT; 1825 ehdr->e_entry = 0; 1826 ehdr->e_phoff = sizeof(Elf_Ehdr); 1827 ehdr->e_flags = td->td_proc->p_elf_flags; 1828 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1829 ehdr->e_phentsize = sizeof(Elf_Phdr); 1830 ehdr->e_shentsize = sizeof(Elf_Shdr); 1831 ehdr->e_shstrndx = SHN_UNDEF; 1832 if (numsegs + 1 < PN_XNUM) { 1833 ehdr->e_phnum = numsegs + 1; 1834 ehdr->e_shnum = 0; 1835 } else { 1836 ehdr->e_phnum = PN_XNUM; 1837 ehdr->e_shnum = 1; 1838 1839 ehdr->e_shoff = ehdr->e_phoff + 1840 (numsegs + 1) * ehdr->e_phentsize; 1841 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr), 1842 ("e_shoff: %zu, hdrsize - shdr: %zu", 1843 (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr))); 1844 1845 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff); 1846 memset(shdr, 0, sizeof(*shdr)); 1847 /* 1848 * A special first section is used to hold large segment and 1849 * section counts. This was proposed by Sun Microsystems in 1850 * Solaris and has been adopted by Linux; the standard ELF 1851 * tools are already familiar with the technique. 1852 * 1853 * See table 7-7 of the Solaris "Linker and Libraries Guide" 1854 * (or 12-7 depending on the version of the document) for more 1855 * details. 1856 */ 1857 shdr->sh_type = SHT_NULL; 1858 shdr->sh_size = ehdr->e_shnum; 1859 shdr->sh_link = ehdr->e_shstrndx; 1860 shdr->sh_info = numsegs + 1; 1861 } 1862 1863 /* 1864 * Fill in the program header entries. 1865 */ 1866 phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff); 1867 1868 /* The note segement. */ 1869 phdr->p_type = PT_NOTE; 1870 phdr->p_offset = hdrsize; 1871 phdr->p_vaddr = 0; 1872 phdr->p_paddr = 0; 1873 phdr->p_filesz = notesz; 1874 phdr->p_memsz = 0; 1875 phdr->p_flags = PF_R; 1876 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1877 phdr++; 1878 1879 /* All the writable segments from the program. */ 1880 phc.phdr = phdr; 1881 phc.offset = round_page(hdrsize + notesz); 1882 each_dumpable_segment(td, cb_put_phdr, &phc); 1883 } 1884 1885 static size_t 1886 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg) 1887 { 1888 struct note_info *ninfo; 1889 size_t size, notesize; 1890 1891 size = 0; 1892 out(arg, NULL, &size); 1893 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 1894 ninfo->type = type; 1895 ninfo->outfunc = out; 1896 ninfo->outarg = arg; 1897 ninfo->outsize = size; 1898 TAILQ_INSERT_TAIL(list, ninfo, link); 1899 1900 if (type == -1) 1901 return (size); 1902 1903 notesize = sizeof(Elf_Note) + /* note header */ 1904 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1905 /* note name */ 1906 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1907 1908 return (notesize); 1909 } 1910 1911 static size_t 1912 append_note_data(const void *src, void *dst, size_t len) 1913 { 1914 size_t padded_len; 1915 1916 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE); 1917 if (dst != NULL) { 1918 bcopy(src, dst, len); 1919 bzero((char *)dst + len, padded_len - len); 1920 } 1921 return (padded_len); 1922 } 1923 1924 size_t 1925 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp) 1926 { 1927 Elf_Note *note; 1928 char *buf; 1929 size_t notesize; 1930 1931 buf = dst; 1932 if (buf != NULL) { 1933 note = (Elf_Note *)buf; 1934 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR); 1935 note->n_descsz = size; 1936 note->n_type = type; 1937 buf += sizeof(*note); 1938 buf += append_note_data(FREEBSD_ABI_VENDOR, buf, 1939 sizeof(FREEBSD_ABI_VENDOR)); 1940 append_note_data(src, buf, size); 1941 if (descp != NULL) 1942 *descp = buf; 1943 } 1944 1945 notesize = sizeof(Elf_Note) + /* note header */ 1946 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1947 /* note name */ 1948 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1949 1950 return (notesize); 1951 } 1952 1953 static void 1954 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb) 1955 { 1956 Elf_Note note; 1957 ssize_t old_len, sect_len; 1958 size_t new_len, descsz, i; 1959 1960 if (ninfo->type == -1) { 1961 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1962 return; 1963 } 1964 1965 note.n_namesz = sizeof(FREEBSD_ABI_VENDOR); 1966 note.n_descsz = ninfo->outsize; 1967 note.n_type = ninfo->type; 1968 1969 sbuf_bcat(sb, ¬e, sizeof(note)); 1970 sbuf_start_section(sb, &old_len); 1971 sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR)); 1972 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1973 if (note.n_descsz == 0) 1974 return; 1975 sbuf_start_section(sb, &old_len); 1976 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1977 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1978 if (sect_len < 0) 1979 return; 1980 1981 new_len = (size_t)sect_len; 1982 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE); 1983 if (new_len < descsz) { 1984 /* 1985 * It is expected that individual note emitters will correctly 1986 * predict their expected output size and fill up to that size 1987 * themselves, padding in a format-specific way if needed. 1988 * However, in case they don't, just do it here with zeros. 1989 */ 1990 for (i = 0; i < descsz - new_len; i++) 1991 sbuf_putc(sb, 0); 1992 } else if (new_len > descsz) { 1993 /* 1994 * We can't always truncate sb -- we may have drained some 1995 * of it already. 1996 */ 1997 KASSERT(new_len == descsz, ("%s: Note type %u changed as we " 1998 "read it (%zu > %zu). Since it is longer than " 1999 "expected, this coredump's notes are corrupt. THIS " 2000 "IS A BUG in the note_procstat routine for type %u.\n", 2001 __func__, (unsigned)note.n_type, new_len, descsz, 2002 (unsigned)note.n_type)); 2003 } 2004 } 2005 2006 /* 2007 * Miscellaneous note out functions. 2008 */ 2009 2010 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2011 #include <compat/freebsd32/freebsd32.h> 2012 #include <compat/freebsd32/freebsd32_signal.h> 2013 2014 typedef struct prstatus32 elf_prstatus_t; 2015 typedef struct prpsinfo32 elf_prpsinfo_t; 2016 typedef struct fpreg32 elf_prfpregset_t; 2017 typedef struct fpreg32 elf_fpregset_t; 2018 typedef struct reg32 elf_gregset_t; 2019 typedef struct thrmisc32 elf_thrmisc_t; 2020 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 2021 typedef struct kinfo_proc32 elf_kinfo_proc_t; 2022 typedef uint32_t elf_ps_strings_t; 2023 #else 2024 typedef prstatus_t elf_prstatus_t; 2025 typedef prpsinfo_t elf_prpsinfo_t; 2026 typedef prfpregset_t elf_prfpregset_t; 2027 typedef prfpregset_t elf_fpregset_t; 2028 typedef gregset_t elf_gregset_t; 2029 typedef thrmisc_t elf_thrmisc_t; 2030 #define ELF_KERN_PROC_MASK 0 2031 typedef struct kinfo_proc elf_kinfo_proc_t; 2032 typedef vm_offset_t elf_ps_strings_t; 2033 #endif 2034 2035 static void 2036 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2037 { 2038 struct sbuf sbarg; 2039 size_t len; 2040 char *cp, *end; 2041 struct proc *p; 2042 elf_prpsinfo_t *psinfo; 2043 int error; 2044 2045 p = (struct proc *)arg; 2046 if (sb != NULL) { 2047 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 2048 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 2049 psinfo->pr_version = PRPSINFO_VERSION; 2050 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 2051 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 2052 PROC_LOCK(p); 2053 if (p->p_args != NULL) { 2054 len = sizeof(psinfo->pr_psargs) - 1; 2055 if (len > p->p_args->ar_length) 2056 len = p->p_args->ar_length; 2057 memcpy(psinfo->pr_psargs, p->p_args->ar_args, len); 2058 PROC_UNLOCK(p); 2059 error = 0; 2060 } else { 2061 _PHOLD(p); 2062 PROC_UNLOCK(p); 2063 sbuf_new(&sbarg, psinfo->pr_psargs, 2064 sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN); 2065 error = proc_getargv(curthread, p, &sbarg); 2066 PRELE(p); 2067 if (sbuf_finish(&sbarg) == 0) 2068 len = sbuf_len(&sbarg) - 1; 2069 else 2070 len = sizeof(psinfo->pr_psargs) - 1; 2071 sbuf_delete(&sbarg); 2072 } 2073 if (error || len == 0) 2074 strlcpy(psinfo->pr_psargs, p->p_comm, 2075 sizeof(psinfo->pr_psargs)); 2076 else { 2077 KASSERT(len < sizeof(psinfo->pr_psargs), 2078 ("len is too long: %zu vs %zu", len, 2079 sizeof(psinfo->pr_psargs))); 2080 cp = psinfo->pr_psargs; 2081 end = cp + len - 1; 2082 for (;;) { 2083 cp = memchr(cp, '\0', end - cp); 2084 if (cp == NULL) 2085 break; 2086 *cp = ' '; 2087 } 2088 } 2089 psinfo->pr_pid = p->p_pid; 2090 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 2091 free(psinfo, M_TEMP); 2092 } 2093 *sizep = sizeof(*psinfo); 2094 } 2095 2096 static void 2097 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep) 2098 { 2099 struct thread *td; 2100 elf_prstatus_t *status; 2101 2102 td = (struct thread *)arg; 2103 if (sb != NULL) { 2104 KASSERT(*sizep == sizeof(*status), ("invalid size")); 2105 status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK); 2106 status->pr_version = PRSTATUS_VERSION; 2107 status->pr_statussz = sizeof(elf_prstatus_t); 2108 status->pr_gregsetsz = sizeof(elf_gregset_t); 2109 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 2110 status->pr_osreldate = osreldate; 2111 status->pr_cursig = td->td_proc->p_sig; 2112 status->pr_pid = td->td_tid; 2113 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2114 fill_regs32(td, &status->pr_reg); 2115 #else 2116 fill_regs(td, &status->pr_reg); 2117 #endif 2118 sbuf_bcat(sb, status, sizeof(*status)); 2119 free(status, M_TEMP); 2120 } 2121 *sizep = sizeof(*status); 2122 } 2123 2124 static void 2125 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep) 2126 { 2127 struct thread *td; 2128 elf_prfpregset_t *fpregset; 2129 2130 td = (struct thread *)arg; 2131 if (sb != NULL) { 2132 KASSERT(*sizep == sizeof(*fpregset), ("invalid size")); 2133 fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK); 2134 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2135 fill_fpregs32(td, fpregset); 2136 #else 2137 fill_fpregs(td, fpregset); 2138 #endif 2139 sbuf_bcat(sb, fpregset, sizeof(*fpregset)); 2140 free(fpregset, M_TEMP); 2141 } 2142 *sizep = sizeof(*fpregset); 2143 } 2144 2145 static void 2146 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep) 2147 { 2148 struct thread *td; 2149 elf_thrmisc_t thrmisc; 2150 2151 td = (struct thread *)arg; 2152 if (sb != NULL) { 2153 KASSERT(*sizep == sizeof(thrmisc), ("invalid size")); 2154 bzero(&thrmisc._pad, sizeof(thrmisc._pad)); 2155 strcpy(thrmisc.pr_tname, td->td_name); 2156 sbuf_bcat(sb, &thrmisc, sizeof(thrmisc)); 2157 } 2158 *sizep = sizeof(thrmisc); 2159 } 2160 2161 static void 2162 __elfN(note_ptlwpinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2163 { 2164 struct thread *td; 2165 size_t size; 2166 int structsize; 2167 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2168 struct ptrace_lwpinfo32 pl; 2169 #else 2170 struct ptrace_lwpinfo pl; 2171 #endif 2172 2173 td = (struct thread *)arg; 2174 size = sizeof(structsize) + sizeof(pl); 2175 if (sb != NULL) { 2176 KASSERT(*sizep == size, ("invalid size")); 2177 structsize = sizeof(pl); 2178 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2179 bzero(&pl, sizeof(pl)); 2180 pl.pl_lwpid = td->td_tid; 2181 pl.pl_event = PL_EVENT_NONE; 2182 pl.pl_sigmask = td->td_sigmask; 2183 pl.pl_siglist = td->td_siglist; 2184 if (td->td_si.si_signo != 0) { 2185 pl.pl_event = PL_EVENT_SIGNAL; 2186 pl.pl_flags |= PL_FLAG_SI; 2187 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2188 siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo); 2189 #else 2190 pl.pl_siginfo = td->td_si; 2191 #endif 2192 } 2193 strcpy(pl.pl_tdname, td->td_name); 2194 /* XXX TODO: supply more information in struct ptrace_lwpinfo*/ 2195 sbuf_bcat(sb, &pl, sizeof(pl)); 2196 } 2197 *sizep = size; 2198 } 2199 2200 /* 2201 * Allow for MD specific notes, as well as any MD 2202 * specific preparations for writing MI notes. 2203 */ 2204 static void 2205 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 2206 { 2207 struct thread *td; 2208 void *buf; 2209 size_t size; 2210 2211 td = (struct thread *)arg; 2212 size = *sizep; 2213 if (size != 0 && sb != NULL) 2214 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 2215 else 2216 buf = NULL; 2217 size = 0; 2218 __elfN(dump_thread)(td, buf, &size); 2219 KASSERT(sb == NULL || *sizep == size, ("invalid size")); 2220 if (size != 0 && sb != NULL) 2221 sbuf_bcat(sb, buf, size); 2222 free(buf, M_TEMP); 2223 *sizep = size; 2224 } 2225 2226 #ifdef KINFO_PROC_SIZE 2227 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 2228 #endif 2229 2230 static void 2231 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 2232 { 2233 struct proc *p; 2234 size_t size; 2235 int structsize; 2236 2237 p = (struct proc *)arg; 2238 size = sizeof(structsize) + p->p_numthreads * 2239 sizeof(elf_kinfo_proc_t); 2240 2241 if (sb != NULL) { 2242 KASSERT(*sizep == size, ("invalid size")); 2243 structsize = sizeof(elf_kinfo_proc_t); 2244 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2245 PROC_LOCK(p); 2246 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 2247 } 2248 *sizep = size; 2249 } 2250 2251 #ifdef KINFO_FILE_SIZE 2252 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 2253 #endif 2254 2255 static void 2256 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 2257 { 2258 struct proc *p; 2259 size_t size, sect_sz, i; 2260 ssize_t start_len, sect_len; 2261 int structsize, filedesc_flags; 2262 2263 if (coredump_pack_fileinfo) 2264 filedesc_flags = KERN_FILEDESC_PACK_KINFO; 2265 else 2266 filedesc_flags = 0; 2267 2268 p = (struct proc *)arg; 2269 structsize = sizeof(struct kinfo_file); 2270 if (sb == NULL) { 2271 size = 0; 2272 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2273 sbuf_set_drain(sb, sbuf_drain_count, &size); 2274 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2275 PROC_LOCK(p); 2276 kern_proc_filedesc_out(p, sb, -1, filedesc_flags); 2277 sbuf_finish(sb); 2278 sbuf_delete(sb); 2279 *sizep = size; 2280 } else { 2281 sbuf_start_section(sb, &start_len); 2282 2283 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2284 PROC_LOCK(p); 2285 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize), 2286 filedesc_flags); 2287 2288 sect_len = sbuf_end_section(sb, start_len, 0, 0); 2289 if (sect_len < 0) 2290 return; 2291 sect_sz = sect_len; 2292 2293 KASSERT(sect_sz <= *sizep, 2294 ("kern_proc_filedesc_out did not respect maxlen; " 2295 "requested %zu, got %zu", *sizep - sizeof(structsize), 2296 sect_sz - sizeof(structsize))); 2297 2298 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++) 2299 sbuf_putc(sb, 0); 2300 } 2301 } 2302 2303 #ifdef KINFO_VMENTRY_SIZE 2304 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2305 #endif 2306 2307 static void 2308 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 2309 { 2310 struct proc *p; 2311 size_t size; 2312 int structsize, vmmap_flags; 2313 2314 if (coredump_pack_vmmapinfo) 2315 vmmap_flags = KERN_VMMAP_PACK_KINFO; 2316 else 2317 vmmap_flags = 0; 2318 2319 p = (struct proc *)arg; 2320 structsize = sizeof(struct kinfo_vmentry); 2321 if (sb == NULL) { 2322 size = 0; 2323 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2324 sbuf_set_drain(sb, sbuf_drain_count, &size); 2325 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2326 PROC_LOCK(p); 2327 kern_proc_vmmap_out(p, sb, -1, vmmap_flags); 2328 sbuf_finish(sb); 2329 sbuf_delete(sb); 2330 *sizep = size; 2331 } else { 2332 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2333 PROC_LOCK(p); 2334 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize), 2335 vmmap_flags); 2336 } 2337 } 2338 2339 static void 2340 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 2341 { 2342 struct proc *p; 2343 size_t size; 2344 int structsize; 2345 2346 p = (struct proc *)arg; 2347 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 2348 if (sb != NULL) { 2349 KASSERT(*sizep == size, ("invalid size")); 2350 structsize = sizeof(gid_t); 2351 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2352 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 2353 sizeof(gid_t)); 2354 } 2355 *sizep = size; 2356 } 2357 2358 static void 2359 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 2360 { 2361 struct proc *p; 2362 size_t size; 2363 int structsize; 2364 2365 p = (struct proc *)arg; 2366 size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask); 2367 if (sb != NULL) { 2368 KASSERT(*sizep == size, ("invalid size")); 2369 structsize = sizeof(p->p_fd->fd_cmask); 2370 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2371 sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask)); 2372 } 2373 *sizep = size; 2374 } 2375 2376 static void 2377 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 2378 { 2379 struct proc *p; 2380 struct rlimit rlim[RLIM_NLIMITS]; 2381 size_t size; 2382 int structsize, i; 2383 2384 p = (struct proc *)arg; 2385 size = sizeof(structsize) + sizeof(rlim); 2386 if (sb != NULL) { 2387 KASSERT(*sizep == size, ("invalid size")); 2388 structsize = sizeof(rlim); 2389 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2390 PROC_LOCK(p); 2391 for (i = 0; i < RLIM_NLIMITS; i++) 2392 lim_rlimit_proc(p, i, &rlim[i]); 2393 PROC_UNLOCK(p); 2394 sbuf_bcat(sb, rlim, sizeof(rlim)); 2395 } 2396 *sizep = size; 2397 } 2398 2399 static void 2400 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 2401 { 2402 struct proc *p; 2403 size_t size; 2404 int structsize; 2405 2406 p = (struct proc *)arg; 2407 size = sizeof(structsize) + sizeof(p->p_osrel); 2408 if (sb != NULL) { 2409 KASSERT(*sizep == size, ("invalid size")); 2410 structsize = sizeof(p->p_osrel); 2411 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2412 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 2413 } 2414 *sizep = size; 2415 } 2416 2417 static void 2418 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 2419 { 2420 struct proc *p; 2421 elf_ps_strings_t ps_strings; 2422 size_t size; 2423 int structsize; 2424 2425 p = (struct proc *)arg; 2426 size = sizeof(structsize) + sizeof(ps_strings); 2427 if (sb != NULL) { 2428 KASSERT(*sizep == size, ("invalid size")); 2429 structsize = sizeof(ps_strings); 2430 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2431 ps_strings = PTROUT(p->p_sysent->sv_psstrings); 2432 #else 2433 ps_strings = p->p_sysent->sv_psstrings; 2434 #endif 2435 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2436 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 2437 } 2438 *sizep = size; 2439 } 2440 2441 static void 2442 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 2443 { 2444 struct proc *p; 2445 size_t size; 2446 int structsize; 2447 2448 p = (struct proc *)arg; 2449 if (sb == NULL) { 2450 size = 0; 2451 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2452 sbuf_set_drain(sb, sbuf_drain_count, &size); 2453 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2454 PHOLD(p); 2455 proc_getauxv(curthread, p, sb); 2456 PRELE(p); 2457 sbuf_finish(sb); 2458 sbuf_delete(sb); 2459 *sizep = size; 2460 } else { 2461 structsize = sizeof(Elf_Auxinfo); 2462 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2463 PHOLD(p); 2464 proc_getauxv(curthread, p, sb); 2465 PRELE(p); 2466 } 2467 } 2468 2469 static boolean_t 2470 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote, 2471 const char *note_vendor, const Elf_Phdr *pnote, 2472 boolean_t (*cb)(const Elf_Note *, void *, boolean_t *), void *cb_arg) 2473 { 2474 const Elf_Note *note, *note0, *note_end; 2475 const char *note_name; 2476 char *buf; 2477 int i, error; 2478 boolean_t res; 2479 2480 /* We need some limit, might as well use PAGE_SIZE. */ 2481 if (pnote == NULL || pnote->p_filesz > PAGE_SIZE) 2482 return (FALSE); 2483 ASSERT_VOP_LOCKED(imgp->vp, "parse_notes"); 2484 if (pnote->p_offset > PAGE_SIZE || 2485 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) { 2486 VOP_UNLOCK(imgp->vp, 0); 2487 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK); 2488 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 2489 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz, 2490 pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED, 2491 curthread->td_ucred, NOCRED, NULL, curthread); 2492 if (error != 0) { 2493 uprintf("i/o error PT_NOTE\n"); 2494 goto retf; 2495 } 2496 note = note0 = (const Elf_Note *)buf; 2497 note_end = (const Elf_Note *)(buf + pnote->p_filesz); 2498 } else { 2499 note = note0 = (const Elf_Note *)(imgp->image_header + 2500 pnote->p_offset); 2501 note_end = (const Elf_Note *)(imgp->image_header + 2502 pnote->p_offset + pnote->p_filesz); 2503 buf = NULL; 2504 } 2505 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 2506 if (!aligned(note, Elf32_Addr) || (const char *)note_end - 2507 (const char *)note < sizeof(Elf_Note)) { 2508 goto retf; 2509 } 2510 if (note->n_namesz != checknote->n_namesz || 2511 note->n_descsz != checknote->n_descsz || 2512 note->n_type != checknote->n_type) 2513 goto nextnote; 2514 note_name = (const char *)(note + 1); 2515 if (note_name + checknote->n_namesz >= 2516 (const char *)note_end || strncmp(note_vendor, 2517 note_name, checknote->n_namesz) != 0) 2518 goto nextnote; 2519 2520 if (cb(note, cb_arg, &res)) 2521 goto ret; 2522 nextnote: 2523 note = (const Elf_Note *)((const char *)(note + 1) + 2524 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2525 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2526 } 2527 retf: 2528 res = FALSE; 2529 ret: 2530 free(buf, M_TEMP); 2531 return (res); 2532 } 2533 2534 struct brandnote_cb_arg { 2535 Elf_Brandnote *brandnote; 2536 int32_t *osrel; 2537 }; 2538 2539 static boolean_t 2540 brandnote_cb(const Elf_Note *note, void *arg0, boolean_t *res) 2541 { 2542 struct brandnote_cb_arg *arg; 2543 2544 arg = arg0; 2545 2546 /* 2547 * Fetch the osreldate for binary from the ELF OSABI-note if 2548 * necessary. 2549 */ 2550 *res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 && 2551 arg->brandnote->trans_osrel != NULL ? 2552 arg->brandnote->trans_osrel(note, arg->osrel) : TRUE; 2553 2554 return (TRUE); 2555 } 2556 2557 static Elf_Note fctl_note = { 2558 .n_namesz = sizeof(FREEBSD_ABI_VENDOR), 2559 .n_descsz = sizeof(uint32_t), 2560 .n_type = NT_FREEBSD_FEATURE_CTL, 2561 }; 2562 2563 struct fctl_cb_arg { 2564 uint32_t *fctl0; 2565 }; 2566 2567 static boolean_t 2568 note_fctl_cb(const Elf_Note *note, void *arg0, boolean_t *res) 2569 { 2570 struct fctl_cb_arg *arg; 2571 const Elf32_Word *desc; 2572 uintptr_t p; 2573 2574 arg = arg0; 2575 p = (uintptr_t)(note + 1); 2576 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 2577 desc = (const Elf32_Word *)p; 2578 *arg->fctl0 = desc[0]; 2579 return (TRUE); 2580 } 2581 2582 /* 2583 * Try to find the appropriate ABI-note section for checknote, fetch 2584 * the osreldate and feature control flags for binary from the ELF 2585 * OSABI-note. Only the first page of the image is searched, the same 2586 * as for headers. 2587 */ 2588 static boolean_t 2589 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote, 2590 int32_t *osrel, uint32_t *fctl0) 2591 { 2592 const Elf_Phdr *phdr; 2593 const Elf_Ehdr *hdr; 2594 struct brandnote_cb_arg b_arg; 2595 struct fctl_cb_arg f_arg; 2596 int i, j; 2597 2598 hdr = (const Elf_Ehdr *)imgp->image_header; 2599 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2600 b_arg.brandnote = brandnote; 2601 b_arg.osrel = osrel; 2602 f_arg.fctl0 = fctl0; 2603 2604 for (i = 0; i < hdr->e_phnum; i++) { 2605 if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp, 2606 &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb, 2607 &b_arg)) { 2608 for (j = 0; j < hdr->e_phnum; j++) { 2609 if (phdr[j].p_type == PT_NOTE && 2610 __elfN(parse_notes)(imgp, &fctl_note, 2611 FREEBSD_ABI_VENDOR, &phdr[j], 2612 note_fctl_cb, &f_arg)) 2613 break; 2614 } 2615 return (TRUE); 2616 } 2617 } 2618 return (FALSE); 2619 2620 } 2621 2622 /* 2623 * Tell kern_execve.c about it, with a little help from the linker. 2624 */ 2625 static struct execsw __elfN(execsw) = { 2626 .ex_imgact = __CONCAT(exec_, __elfN(imgact)), 2627 .ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2628 }; 2629 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2630 2631 static vm_prot_t 2632 __elfN(trans_prot)(Elf_Word flags) 2633 { 2634 vm_prot_t prot; 2635 2636 prot = 0; 2637 if (flags & PF_X) 2638 prot |= VM_PROT_EXECUTE; 2639 if (flags & PF_W) 2640 prot |= VM_PROT_WRITE; 2641 if (flags & PF_R) 2642 prot |= VM_PROT_READ; 2643 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 2644 if (i386_read_exec && (flags & PF_R)) 2645 prot |= VM_PROT_EXECUTE; 2646 #endif 2647 return (prot); 2648 } 2649 2650 static Elf_Word 2651 __elfN(untrans_prot)(vm_prot_t prot) 2652 { 2653 Elf_Word flags; 2654 2655 flags = 0; 2656 if (prot & VM_PROT_EXECUTE) 2657 flags |= PF_X; 2658 if (prot & VM_PROT_READ) 2659 flags |= PF_R; 2660 if (prot & VM_PROT_WRITE) 2661 flags |= PF_W; 2662 return (flags); 2663 } 2664