xref: /freebsd/sys/kern/bus_if.m (revision 66e576525d35c68fcb86f142ebaa5a448555c0c7)
1#-
2# Copyright (c) 1998-2004 Doug Rabson
3# All rights reserved.
4#
5# Redistribution and use in source and binary forms, with or without
6# modification, are permitted provided that the following conditions
7# are met:
8# 1. Redistributions of source code must retain the above copyright
9#    notice, this list of conditions and the following disclaimer.
10# 2. Redistributions in binary form must reproduce the above copyright
11#    notice, this list of conditions and the following disclaimer in the
12#    documentation and/or other materials provided with the distribution.
13#
14# THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17# ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20# OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23# OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24# SUCH DAMAGE.
25#
26# $FreeBSD$
27#
28
29#include <sys/types.h>
30#include <sys/systm.h>
31#include <sys/bus.h>
32
33/**
34 * @defgroup BUS bus - KObj methods for drivers of devices with children
35 * @brief A set of methods required device drivers that support
36 * child devices.
37 * @{
38 */
39INTERFACE bus;
40
41#
42# Default implementations of some methods.
43#
44CODE {
45	static struct resource *
46	null_alloc_resource(device_t dev, device_t child,
47	    int type, int *rid, u_long start, u_long end,
48	    u_long count, u_int flags)
49	{
50	    return (0);
51	}
52
53	static int
54	null_remap_intr(device_t bus, device_t dev, u_int irq)
55	{
56
57		if (dev != NULL)
58			return (BUS_REMAP_INTR(dev, NULL, irq));
59		return (ENXIO);
60	}
61
62	static device_t
63	null_add_child(device_t bus, int order, const char *name,
64	    int unit)
65	{
66
67		panic("bus_add_child is not implemented");
68	}
69};
70
71/**
72 * @brief Print a description of a child device
73 *
74 * This is called from system code which prints out a description of a
75 * device. It should describe the attachment that the child has with
76 * the parent. For instance the TurboLaser bus prints which node the
77 * device is attached to. See bus_generic_print_child() for more
78 * information.
79 *
80 * @param _dev		the device whose child is being printed
81 * @param _child	the child device to describe
82 *
83 * @returns		the number of characters output.
84 */
85METHOD int print_child {
86	device_t _dev;
87	device_t _child;
88} DEFAULT bus_generic_print_child;
89
90/**
91 * @brief Print a notification about an unprobed child device.
92 *
93 * Called for each child device that did not succeed in probing for a
94 * driver.
95 *
96 * @param _dev		the device whose child was being probed
97 * @param _child	the child device which failed to probe
98 */
99METHOD void probe_nomatch {
100        device_t _dev;
101        device_t _child;
102};
103
104/**
105 * @brief Read the value of a bus-specific attribute of a device
106 *
107 * This method, along with BUS_WRITE_IVAR() manages a bus-specific set
108 * of instance variables of a child device.  The intention is that
109 * each different type of bus defines a set of appropriate instance
110 * variables (such as ports and irqs for ISA bus etc.)
111 *
112 * This information could be given to the child device as a struct but
113 * that makes it hard for a bus to add or remove variables without
114 * forcing an edit and recompile for all drivers which may not be
115 * possible for vendor supplied binary drivers.
116 *
117 * This method copies the value of an instance variable to the
118 * location specified by @p *_result.
119 *
120 * @param _dev		the device whose child was being examined
121 * @param _child	the child device whose instance variable is
122 *			being read
123 * @param _index	the instance variable to read
124 * @param _result	a loction to recieve the instance variable
125 *			value
126 *
127 * @retval 0		success
128 * @retval ENOENT	no such instance variable is supported by @p
129 *			_dev
130 */
131METHOD int read_ivar {
132	device_t _dev;
133	device_t _child;
134	int _index;
135	uintptr_t *_result;
136};
137
138/**
139 * @brief Write the value of a bus-specific attribute of a device
140 *
141 * This method sets the value of an instance variable to @p _value.
142 *
143 * @param _dev		the device whose child was being updated
144 * @param _child	the child device whose instance variable is
145 *			being written
146 * @param _index	the instance variable to write
147 * @param _value	the value to write to that instance variable
148 *
149 * @retval 0		success
150 * @retval ENOENT	no such instance variable is supported by @p
151 *			_dev
152 * @retval EINVAL	the instance variable was recognised but
153 *			contains a read-only value
154 */
155METHOD int write_ivar {
156	device_t _dev;
157	device_t _child;
158	int _indx;
159	uintptr_t _value;
160};
161
162/**
163 * @brief Notify a bus that a child was detached
164 *
165 * Called after the child's DEVICE_DETACH() method to allow the parent
166 * to reclaim any resources allocated on behalf of the child.
167 *
168 * @param _dev		the device whose child changed state
169 * @param _child	the child device which changed state
170 */
171METHOD void child_detached {
172	device_t _dev;
173	device_t _child;
174};
175
176/**
177 * @brief Notify a bus that a new driver was added
178 *
179 * Called when a new driver is added to the devclass which owns this
180 * bus. The generic implementation of this method attempts to probe and
181 * attach any un-matched children of the bus.
182 *
183 * @param _dev		the device whose devclass had a new driver
184 *			added to it
185 * @param _driver	the new driver which was added
186 */
187METHOD void driver_added {
188	device_t _dev;
189	driver_t *_driver;
190} DEFAULT bus_generic_driver_added;
191
192/**
193 * @brief Create a new child device
194 *
195 * For busses which use use drivers supporting DEVICE_IDENTIFY() to
196 * enumerate their devices, this method is used to create new
197 * device instances. The new device will be added after the last
198 * existing child with the same order.
199 *
200 * @param _dev		the bus device which will be the parent of the
201 *			new child device
202 * @param _order	a value which is used to partially sort the
203 *			children of @p _dev - devices created using
204 *			lower values of @p _order appear first in @p
205 *			_dev's list of children
206 * @param _name		devclass name for new device or @c NULL if not
207 *			specified
208 * @param _unit		unit number for new device or @c -1 if not
209 *			specified
210 */
211METHOD device_t add_child {
212	device_t _dev;
213	u_int _order;
214	const char *_name;
215	int _unit;
216} DEFAULT null_add_child;
217
218/**
219 * @brief Allocate a system resource
220 *
221 * This method is called by child devices of a bus to allocate resources.
222 * The types are defined in <machine/resource.h>; the meaning of the
223 * resource-ID field varies from bus to bus (but @p *rid == 0 is always
224 * valid if the resource type is). If a resource was allocated and the
225 * caller did not use the RF_ACTIVE to specify that it should be
226 * activated immediately, the caller is responsible for calling
227 * BUS_ACTIVATE_RESOURCE() when it actually uses the resource.
228 *
229 * @param _dev		the parent device of @p _child
230 * @param _child	the device which is requesting an allocation
231 * @param _type		the type of resource to allocate
232 * @param _rid		a pointer to the resource identifier
233 * @param _start	hint at the start of the resource range - pass
234 *			@c 0UL for any start address
235 * @param _end		hint at the end of the resource range - pass
236 *			@c ~0UL for any end address
237 * @param _count	hint at the size of range required - pass @c 1
238 *			for any size
239 * @param _flags	any extra flags to control the resource
240 *			allocation - see @c RF_XXX flags in
241 *			<sys/rman.h> for details
242 *
243 * @returns		the resource which was allocated or @c NULL if no
244 *			resource could be allocated
245 */
246METHOD struct resource * alloc_resource {
247	device_t	_dev;
248	device_t	_child;
249	int		_type;
250	int	       *_rid;
251	u_long		_start;
252	u_long		_end;
253	u_long		_count;
254	u_int		_flags;
255} DEFAULT null_alloc_resource;
256
257/**
258 * @brief Activate a resource
259 *
260 * Activate a resource previously allocated with
261 * BUS_ALLOC_RESOURCE(). This may for instance map a memory region
262 * into the kernel's virtual address space.
263 *
264 * @param _dev		the parent device of @p _child
265 * @param _child	the device which allocated the resource
266 * @param _type		the type of resource
267 * @param _rid		the resource identifier
268 * @param _r		the resource to activate
269 */
270METHOD int activate_resource {
271	device_t	_dev;
272	device_t	_child;
273	int		_type;
274	int		_rid;
275	struct resource *_r;
276};
277
278/**
279 * @brief Deactivate a resource
280 *
281 * Deactivate a resource previously allocated with
282 * BUS_ALLOC_RESOURCE(). This may for instance unmap a memory region
283 * from the kernel's virtual address space.
284 *
285 * @param _dev		the parent device of @p _child
286 * @param _child	the device which allocated the resource
287 * @param _type		the type of resource
288 * @param _rid		the resource identifier
289 * @param _r		the resource to deactivate
290 */
291METHOD int deactivate_resource {
292	device_t	_dev;
293	device_t	_child;
294	int		_type;
295	int		_rid;
296	struct resource *_r;
297};
298
299/**
300 * @brief Release a resource
301 *
302 * Free a resource allocated by the BUS_ALLOC_RESOURCE.  The @p _rid
303 * value must be the same as the one returned by BUS_ALLOC_RESOURCE()
304 * (which is not necessarily the same as the one the client passed).
305 *
306 * @param _dev		the parent device of @p _child
307 * @param _child	the device which allocated the resource
308 * @param _type		the type of resource
309 * @param _rid		the resource identifier
310 * @param _r		the resource to release
311 */
312METHOD int release_resource {
313	device_t	_dev;
314	device_t	_child;
315	int		_type;
316	int		_rid;
317	struct resource *_res;
318};
319
320/**
321 * @brief Install an interrupt handler
322 *
323 * This method is used to associate an interrupt handler function with
324 * an irq resource. When the interrupt triggers, the function @p _intr
325 * will be called with the value of @p _arg as its single
326 * argument. The value returned in @p *_cookiep is used to cancel the
327 * interrupt handler - the caller should save this value to use in a
328 * future call to BUS_TEARDOWN_INTR().
329 *
330 * @param _dev		the parent device of @p _child
331 * @param _child	the device which allocated the resource
332 * @param _irq		the resource representing the interrupt
333 * @param _flags	a set of bits from enum intr_type specifying
334 *			the class of interrupt
335 * @param _intr		the function to call when the interrupt
336 *			triggers
337 * @param _arg		a value to use as the single argument in calls
338 *			to @p _intr
339 * @param _cookiep	a pointer to a location to recieve a cookie
340 *			value that may be used to remove the interrupt
341 *			handler
342 */
343METHOD int setup_intr {
344	device_t	_dev;
345	device_t	_child;
346	struct resource *_irq;
347	int		_flags;
348	driver_filter_t	*_filter;
349	driver_intr_t	*_intr;
350	void		*_arg;
351	void		**_cookiep;
352};
353
354/**
355 * @brief Uninstall an interrupt handler
356 *
357 * This method is used to disassociate an interrupt handler function
358 * with an irq resource. The value of @p _cookie must be the value
359 * returned from a previous call to BUS_SETUP_INTR().
360 *
361 * @param _dev		the parent device of @p _child
362 * @param _child	the device which allocated the resource
363 * @param _irq		the resource representing the interrupt
364 * @param _cookie	the cookie value returned when the interrupt
365 *			was originally registered
366 */
367METHOD int teardown_intr {
368	device_t	_dev;
369	device_t	_child;
370	struct resource	*_irq;
371	void		*_cookie;
372};
373
374/**
375 * @brief Define a resource which can be allocated with
376 * BUS_ALLOC_RESOURCE().
377 *
378 * This method is used by some busses (typically ISA) to allow a
379 * driver to describe a resource range that it would like to
380 * allocate. The resource defined by @p _type and @p _rid is defined
381 * to start at @p _start and to include @p _count indices in its
382 * range.
383 *
384 * @param _dev		the parent device of @p _child
385 * @param _child	the device which owns the resource
386 * @param _type		the type of resource
387 * @param _rid		the resource identifier
388 * @param _start	the start of the resource range
389 * @param _count	the size of the resource range
390 */
391METHOD int set_resource {
392	device_t	_dev;
393	device_t	_child;
394	int		_type;
395	int		_rid;
396	u_long		_start;
397	u_long		_count;
398};
399
400/**
401 * @brief Describe a resource
402 *
403 * This method allows a driver to examine the range used for a given
404 * resource without actually allocating it.
405 *
406 * @param _dev		the parent device of @p _child
407 * @param _child	the device which owns the resource
408 * @param _type		the type of resource
409 * @param _rid		the resource identifier
410 * @param _start	the address of a location to recieve the start
411 *			index of the resource range
412 * @param _count	the address of a location to recieve the size
413 *			of the resource range
414 */
415METHOD int get_resource {
416	device_t	_dev;
417	device_t	_child;
418	int		_type;
419	int		_rid;
420	u_long		*_startp;
421	u_long		*_countp;
422};
423
424/**
425 * @brief Delete a resource.
426 *
427 * Use this to delete a resource (possibly one previously added with
428 * BUS_SET_RESOURCE()).
429 *
430 * @param _dev		the parent device of @p _child
431 * @param _child	the device which owns the resource
432 * @param _type		the type of resource
433 * @param _rid		the resource identifier
434 */
435METHOD void delete_resource {
436	device_t	_dev;
437	device_t	_child;
438	int		_type;
439	int		_rid;
440};
441
442/**
443 * @brief Return a struct resource_list.
444 *
445 * Used by drivers which use bus_generic_rl_alloc_resource() etc. to
446 * implement their resource handling. It should return the resource
447 * list of the given child device.
448 *
449 * @param _dev		the parent device of @p _child
450 * @param _child	the device which owns the resource list
451 */
452METHOD struct resource_list * get_resource_list {
453	device_t	_dev;
454	device_t	_child;
455} DEFAULT bus_generic_get_resource_list;
456
457/**
458 * @brief Is the hardware described by @p _child still attached to the
459 * system?
460 *
461 * This method should return 0 if the device is not present.  It
462 * should return -1 if it is present.  Any errors in determining
463 * should be returned as a normal errno value.  Client drivers are to
464 * assume that the device is present, even if there is an error
465 * determining if it is there.  Busses are to try to avoid returning
466 * errors, but newcard will return an error if the device fails to
467 * implement this method.
468 *
469 * @param _dev		the parent device of @p _child
470 * @param _child	the device which is being examined
471 */
472METHOD int child_present {
473	device_t	_dev;
474	device_t	_child;
475} DEFAULT bus_generic_child_present;
476
477/**
478 * @brief Returns the pnp info for this device.
479 *
480 * Return it as a string.  If the string is insufficient for the
481 * storage, then return EOVERFLOW.
482 *
483 * @param _dev		the parent device of @p _child
484 * @param _child	the device which is being examined
485 * @param _buf		the address of a buffer to receive the pnp
486 *			string
487 * @param _buflen	the size of the buffer pointed to by @p _buf
488 */
489METHOD int child_pnpinfo_str {
490	device_t	_dev;
491	device_t	_child;
492	char		*_buf;
493	size_t		_buflen;
494};
495
496/**
497 * @brief Returns the location for this device.
498 *
499 * Return it as a string.  If the string is insufficient for the
500 * storage, then return EOVERFLOW.
501 *
502 * @param _dev		the parent device of @p _child
503 * @param _child	the device which is being examined
504 * @param _buf		the address of a buffer to receive the location
505 *			string
506 * @param _buflen	the size of the buffer pointed to by @p _buf
507 */
508METHOD int child_location_str {
509	device_t	_dev;
510	device_t	_child;
511	char		*_buf;
512	size_t		_buflen;
513};
514
515/**
516 * @brief Allow drivers to request that an interrupt be bound to a specific
517 * CPU.
518 *
519 * @param _dev		the parent device of @p _child
520 * @param _child	the device which allocated the resource
521 * @param _irq		the resource representing the interrupt
522 * @param _cpu		the CPU to bind the interrupt to
523 */
524METHOD int bind_intr {
525	device_t	_dev;
526	device_t	_child;
527	struct resource *_irq;
528	int		_cpu;
529} DEFAULT bus_generic_bind_intr;
530
531/**
532 * @brief Allow (bus) drivers to specify the trigger mode and polarity
533 * of the specified interrupt.
534 *
535 * @param _dev		the bus device
536 * @param _irq		the interrupt number to modify
537 * @param _trig		the trigger mode required
538 * @param _pol		the interrupt polarity required
539 */
540METHOD int config_intr {
541	device_t	_dev;
542	int		_irq;
543	enum intr_trigger _trig;
544	enum intr_polarity _pol;
545} DEFAULT bus_generic_config_intr;
546
547/**
548 * @brief Allow drivers to associate a description with an active
549 * interrupt handler.
550 *
551 * @param _dev		the parent device of @p _child
552 * @param _child	the device which allocated the resource
553 * @param _irq		the resource representing the interrupt
554 * @param _cookie	the cookie value returned when the interrupt
555 *			was originally registered
556 * @param _descr	the description to associate with the interrupt
557 */
558METHOD int describe_intr {
559	device_t	_dev;
560	device_t	_child;
561	struct resource *_irq;
562	void		*_cookie;
563	const char	*_descr;
564} DEFAULT bus_generic_describe_intr;
565
566/**
567 * @brief Notify a (bus) driver about a child that the hints mechanism
568 * believes it has discovered.
569 *
570 * The bus is responsible for then adding the child in the right order
571 * and discovering other things about the child.  The bus driver is
572 * free to ignore this hint, to do special things, etc.  It is all up
573 * to the bus driver to interpret.
574 *
575 * This method is only called in response to the parent bus asking for
576 * hinted devices to be enumerated.
577 *
578 * @param _dev		the bus device
579 * @param _dname	the name of the device w/o unit numbers
580 * @param _dunit	the unit number of the device
581 */
582METHOD void hinted_child {
583	device_t	_dev;
584	const char	*_dname;
585	int		_dunit;
586};
587
588/**
589 * @brief Returns bus_dma_tag_t for use w/ devices on the bus.
590 *
591 * @param _dev		the parent device of @p _child
592 * @param _child	the device to which the tag will belong
593 */
594METHOD bus_dma_tag_t get_dma_tag {
595	device_t	_dev;
596	device_t	_child;
597} DEFAULT bus_generic_get_dma_tag;
598
599/**
600 * @brief Allow the bus to determine the unit number of a device.
601 *
602 * @param _dev		the parent device of @p _child
603 * @param _child	the device whose unit is to be wired
604 * @param _name		the name of the device's new devclass
605 * @param _unitp	a pointer to the device's new unit value
606 */
607METHOD void hint_device_unit {
608	device_t	_dev;
609	device_t	_child;
610	const char	*_name;
611	int		*_unitp;
612};
613
614/**
615 * @brief Notify a bus that the bus pass level has been changed
616 *
617 * @param _dev		the bus device
618 */
619METHOD void new_pass {
620	device_t	_dev;
621} DEFAULT bus_generic_new_pass;
622
623/**
624 * @brief Notify a bus that specified child's IRQ should be remapped.
625 *
626 * @param _dev		the bus device
627 * @param _child	the child device
628 * @param _irq		the irq number
629 */
630METHOD int remap_intr {
631	device_t	_dev;
632	device_t	_child;
633	u_int		_irq;
634} DEFAULT null_remap_intr;
635