xref: /freebsd/sys/i386/i386/vm_machdep.c (revision 8df8b2d3e51d1b816201d8a1fe8bc29fe192e562)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1982, 1986 The Regents of the University of California.
5  * Copyright (c) 1989, 1990 William Jolitz
6  * Copyright (c) 1994 John Dyson
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * the Systems Programming Group of the University of Utah Computer
11  * Science Department, and William Jolitz.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
42  *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include "opt_isa.h"
49 #include "opt_npx.h"
50 #include "opt_reset.h"
51 #include "opt_cpu.h"
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/bio.h>
56 #include <sys/buf.h>
57 #include <sys/kernel.h>
58 #include <sys/ktr.h>
59 #include <sys/lock.h>
60 #include <sys/malloc.h>
61 #include <sys/mbuf.h>
62 #include <sys/mutex.h>
63 #include <sys/pioctl.h>
64 #include <sys/proc.h>
65 #include <sys/sysent.h>
66 #include <sys/sf_buf.h>
67 #include <sys/smp.h>
68 #include <sys/sched.h>
69 #include <sys/sysctl.h>
70 #include <sys/unistd.h>
71 #include <sys/vnode.h>
72 #include <sys/vmmeter.h>
73 
74 #include <machine/cpu.h>
75 #include <machine/cputypes.h>
76 #include <machine/md_var.h>
77 #include <machine/pcb.h>
78 #include <machine/pcb_ext.h>
79 #include <machine/smp.h>
80 #include <machine/vm86.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_extern.h>
84 #include <vm/vm_kern.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_param.h>
88 
89 #ifndef NSFBUFS
90 #define	NSFBUFS		(512 + maxusers * 16)
91 #endif
92 
93 _Static_assert(OFFSETOF_CURTHREAD == offsetof(struct pcpu, pc_curthread),
94     "OFFSETOF_CURTHREAD does not correspond with offset of pc_curthread.");
95 _Static_assert(OFFSETOF_CURPCB == offsetof(struct pcpu, pc_curpcb),
96     "OFFSETOF_CURPCB does not correspond with offset of pc_curpcb.");
97 _Static_assert(__OFFSETOF_MONITORBUF == offsetof(struct pcpu, pc_monitorbuf),
98     "__OFFSETOF_MONINORBUF does not correspond with offset of pc_monitorbuf.");
99 
100 union savefpu *
101 get_pcb_user_save_td(struct thread *td)
102 {
103 	vm_offset_t p;
104 
105 	p = td->td_kstack + td->td_kstack_pages * PAGE_SIZE -
106 	    roundup2(cpu_max_ext_state_size, XSAVE_AREA_ALIGN);
107 	KASSERT((p % XSAVE_AREA_ALIGN) == 0, ("Unaligned pcb_user_save area"));
108 	return ((union savefpu *)p);
109 }
110 
111 union savefpu *
112 get_pcb_user_save_pcb(struct pcb *pcb)
113 {
114 	vm_offset_t p;
115 
116 	p = (vm_offset_t)(pcb + 1);
117 	return ((union savefpu *)p);
118 }
119 
120 struct pcb *
121 get_pcb_td(struct thread *td)
122 {
123 	vm_offset_t p;
124 
125 	p = td->td_kstack + td->td_kstack_pages * PAGE_SIZE -
126 	    roundup2(cpu_max_ext_state_size, XSAVE_AREA_ALIGN) -
127 	    sizeof(struct pcb);
128 	return ((struct pcb *)p);
129 }
130 
131 void *
132 alloc_fpusave(int flags)
133 {
134 	void *res;
135 	struct savefpu_ymm *sf;
136 
137 	res = malloc(cpu_max_ext_state_size, M_DEVBUF, flags);
138 	if (use_xsave) {
139 		sf = (struct savefpu_ymm *)res;
140 		bzero(&sf->sv_xstate.sx_hd, sizeof(sf->sv_xstate.sx_hd));
141 		sf->sv_xstate.sx_hd.xstate_bv = xsave_mask;
142 	}
143 	return (res);
144 }
145 /*
146  * Finish a fork operation, with process p2 nearly set up.
147  * Copy and update the pcb, set up the stack so that the child
148  * ready to run and return to user mode.
149  */
150 void
151 cpu_fork(struct thread *td1, struct proc *p2, struct thread *td2, int flags)
152 {
153 	struct proc *p1;
154 	struct pcb *pcb2;
155 	struct mdproc *mdp2;
156 
157 	p1 = td1->td_proc;
158 	if ((flags & RFPROC) == 0) {
159 		if ((flags & RFMEM) == 0) {
160 			/* unshare user LDT */
161 			struct mdproc *mdp1 = &p1->p_md;
162 			struct proc_ldt *pldt, *pldt1;
163 
164 			mtx_lock_spin(&dt_lock);
165 			if ((pldt1 = mdp1->md_ldt) != NULL &&
166 			    pldt1->ldt_refcnt > 1) {
167 				pldt = user_ldt_alloc(mdp1, pldt1->ldt_len);
168 				if (pldt == NULL)
169 					panic("could not copy LDT");
170 				mdp1->md_ldt = pldt;
171 				set_user_ldt(mdp1);
172 				user_ldt_deref(pldt1);
173 			} else
174 				mtx_unlock_spin(&dt_lock);
175 		}
176 		return;
177 	}
178 
179 	/* Ensure that td1's pcb is up to date. */
180 	if (td1 == curthread)
181 		td1->td_pcb->pcb_gs = rgs();
182 	critical_enter();
183 	if (PCPU_GET(fpcurthread) == td1)
184 		npxsave(td1->td_pcb->pcb_save);
185 	critical_exit();
186 
187 	/* Point the pcb to the top of the stack */
188 	pcb2 = get_pcb_td(td2);
189 	td2->td_pcb = pcb2;
190 
191 	/* Copy td1's pcb */
192 	bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
193 
194 	/* Properly initialize pcb_save */
195 	pcb2->pcb_save = get_pcb_user_save_pcb(pcb2);
196 	bcopy(get_pcb_user_save_td(td1), get_pcb_user_save_pcb(pcb2),
197 	    cpu_max_ext_state_size);
198 
199 	/* Point mdproc and then copy over td1's contents */
200 	mdp2 = &p2->p_md;
201 	bcopy(&p1->p_md, mdp2, sizeof(*mdp2));
202 
203 	/*
204 	 * Create a new fresh stack for the new process.
205 	 * Copy the trap frame for the return to user mode as if from a
206 	 * syscall.  This copies most of the user mode register values.
207 	 * The -VM86_STACK_SPACE (-16) is so we can expand the trapframe
208 	 * if we go to vm86.
209 	 */
210 	td2->td_frame = (struct trapframe *)((caddr_t)td2->td_pcb -
211 	    VM86_STACK_SPACE) - 1;
212 	bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe));
213 
214 	td2->td_frame->tf_eax = 0;		/* Child returns zero */
215 	td2->td_frame->tf_eflags &= ~PSL_C;	/* success */
216 	td2->td_frame->tf_edx = 1;
217 
218 	/*
219 	 * If the parent process has the trap bit set (i.e. a debugger had
220 	 * single stepped the process to the system call), we need to clear
221 	 * the trap flag from the new frame unless the debugger had set PF_FORK
222 	 * on the parent.  Otherwise, the child will receive a (likely
223 	 * unexpected) SIGTRAP when it executes the first instruction after
224 	 * returning  to userland.
225 	 */
226 	if ((p1->p_pfsflags & PF_FORK) == 0)
227 		td2->td_frame->tf_eflags &= ~PSL_T;
228 
229 	/*
230 	 * Set registers for trampoline to user mode.  Leave space for the
231 	 * return address on stack.  These are the kernel mode register values.
232 	 */
233 	pcb2->pcb_cr3 = pmap_get_cr3(vmspace_pmap(p2->p_vmspace));
234 	pcb2->pcb_edi = 0;
235 	pcb2->pcb_esi = (int)fork_return;	/* fork_trampoline argument */
236 	pcb2->pcb_ebp = 0;
237 	pcb2->pcb_esp = (int)td2->td_frame - sizeof(void *);
238 	pcb2->pcb_ebx = (int)td2;		/* fork_trampoline argument */
239 	pcb2->pcb_eip = (int)fork_trampoline + setidt_disp;
240 	/*-
241 	 * pcb2->pcb_dr*:	cloned above.
242 	 * pcb2->pcb_savefpu:	cloned above.
243 	 * pcb2->pcb_flags:	cloned above.
244 	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
245 	 * pcb2->pcb_gs:	cloned above.
246 	 * pcb2->pcb_ext:	cleared below.
247 	 */
248 
249 	/*
250 	 * XXX don't copy the i/o pages.  this should probably be fixed.
251 	 */
252 	pcb2->pcb_ext = 0;
253 
254 	/* Copy the LDT, if necessary. */
255 	mtx_lock_spin(&dt_lock);
256 	if (mdp2->md_ldt != NULL) {
257 		if (flags & RFMEM) {
258 			mdp2->md_ldt->ldt_refcnt++;
259 		} else {
260 			mdp2->md_ldt = user_ldt_alloc(mdp2,
261 			    mdp2->md_ldt->ldt_len);
262 			if (mdp2->md_ldt == NULL)
263 				panic("could not copy LDT");
264 		}
265 	}
266 	mtx_unlock_spin(&dt_lock);
267 
268 	/* Setup to release spin count in fork_exit(). */
269 	td2->td_md.md_spinlock_count = 1;
270 	td2->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
271 
272 	/*
273 	 * Now, cpu_switch() can schedule the new process.
274 	 * pcb_esp is loaded pointing to the cpu_switch() stack frame
275 	 * containing the return address when exiting cpu_switch.
276 	 * This will normally be to fork_trampoline(), which will have
277 	 * %ebx loaded with the new proc's pointer.  fork_trampoline()
278 	 * will set up a stack to call fork_return(p, frame); to complete
279 	 * the return to user-mode.
280 	 */
281 }
282 
283 /*
284  * Intercept the return address from a freshly forked process that has NOT
285  * been scheduled yet.
286  *
287  * This is needed to make kernel threads stay in kernel mode.
288  */
289 void
290 cpu_fork_kthread_handler(struct thread *td, void (*func)(void *), void *arg)
291 {
292 	/*
293 	 * Note that the trap frame follows the args, so the function
294 	 * is really called like this:  func(arg, frame);
295 	 */
296 	td->td_pcb->pcb_esi = (int) func;	/* function */
297 	td->td_pcb->pcb_ebx = (int) arg;	/* first arg */
298 }
299 
300 void
301 cpu_exit(struct thread *td)
302 {
303 
304 	/*
305 	 * If this process has a custom LDT, release it.  Reset pc->pcb_gs
306 	 * and %gs before we free it in case they refer to an LDT entry.
307 	 */
308 	mtx_lock_spin(&dt_lock);
309 	if (td->td_proc->p_md.md_ldt) {
310 		td->td_pcb->pcb_gs = _udatasel;
311 		load_gs(_udatasel);
312 		user_ldt_free(td);
313 	} else
314 		mtx_unlock_spin(&dt_lock);
315 }
316 
317 void
318 cpu_thread_exit(struct thread *td)
319 {
320 
321 	critical_enter();
322 	if (td == PCPU_GET(fpcurthread))
323 		npxdrop();
324 	critical_exit();
325 
326 	/* Disable any hardware breakpoints. */
327 	if (td->td_pcb->pcb_flags & PCB_DBREGS) {
328 		reset_dbregs();
329 		td->td_pcb->pcb_flags &= ~PCB_DBREGS;
330 	}
331 }
332 
333 void
334 cpu_thread_clean(struct thread *td)
335 {
336 	struct pcb *pcb;
337 
338 	pcb = td->td_pcb;
339 	if (pcb->pcb_ext != NULL) {
340 		/* if (pcb->pcb_ext->ext_refcount-- == 1) ?? */
341 		/*
342 		 * XXX do we need to move the TSS off the allocated pages
343 		 * before freeing them?  (not done here)
344 		 */
345 		pmap_trm_free(pcb->pcb_ext, ctob(IOPAGES + 1));
346 		pcb->pcb_ext = NULL;
347 	}
348 }
349 
350 void
351 cpu_thread_swapin(struct thread *td)
352 {
353 }
354 
355 void
356 cpu_thread_swapout(struct thread *td)
357 {
358 }
359 
360 void
361 cpu_thread_alloc(struct thread *td)
362 {
363 	struct pcb *pcb;
364 	struct xstate_hdr *xhdr;
365 
366 	td->td_pcb = pcb = get_pcb_td(td);
367 	td->td_frame = (struct trapframe *)((caddr_t)pcb -
368 	    VM86_STACK_SPACE) - 1;
369 	pcb->pcb_ext = NULL;
370 	pcb->pcb_save = get_pcb_user_save_pcb(pcb);
371 	if (use_xsave) {
372 		xhdr = (struct xstate_hdr *)(pcb->pcb_save + 1);
373 		bzero(xhdr, sizeof(*xhdr));
374 		xhdr->xstate_bv = xsave_mask;
375 	}
376 }
377 
378 void
379 cpu_thread_free(struct thread *td)
380 {
381 
382 	cpu_thread_clean(td);
383 }
384 
385 void
386 cpu_set_syscall_retval(struct thread *td, int error)
387 {
388 
389 	switch (error) {
390 	case 0:
391 		td->td_frame->tf_eax = td->td_retval[0];
392 		td->td_frame->tf_edx = td->td_retval[1];
393 		td->td_frame->tf_eflags &= ~PSL_C;
394 		break;
395 
396 	case ERESTART:
397 		/*
398 		 * Reconstruct pc, assuming lcall $X,y is 7 bytes, int
399 		 * 0x80 is 2 bytes. We saved this in tf_err.
400 		 */
401 		td->td_frame->tf_eip -= td->td_frame->tf_err;
402 		break;
403 
404 	case EJUSTRETURN:
405 		break;
406 
407 	default:
408 		td->td_frame->tf_eax = SV_ABI_ERRNO(td->td_proc, error);
409 		td->td_frame->tf_eflags |= PSL_C;
410 		break;
411 	}
412 }
413 
414 /*
415  * Initialize machine state, mostly pcb and trap frame for a new
416  * thread, about to return to userspace.  Put enough state in the new
417  * thread's PCB to get it to go back to the fork_return(), which
418  * finalizes the thread state and handles peculiarities of the first
419  * return to userspace for the new thread.
420  */
421 void
422 cpu_copy_thread(struct thread *td, struct thread *td0)
423 {
424 	struct pcb *pcb2;
425 
426 	/* Point the pcb to the top of the stack. */
427 	pcb2 = td->td_pcb;
428 
429 	/*
430 	 * Copy the upcall pcb.  This loads kernel regs.
431 	 * Those not loaded individually below get their default
432 	 * values here.
433 	 */
434 	bcopy(td0->td_pcb, pcb2, sizeof(*pcb2));
435 	pcb2->pcb_flags &= ~(PCB_NPXINITDONE | PCB_NPXUSERINITDONE |
436 	    PCB_KERNNPX);
437 	pcb2->pcb_save = get_pcb_user_save_pcb(pcb2);
438 	bcopy(get_pcb_user_save_td(td0), pcb2->pcb_save,
439 	    cpu_max_ext_state_size);
440 
441 	/*
442 	 * Create a new fresh stack for the new thread.
443 	 */
444 	bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
445 
446 	/* If the current thread has the trap bit set (i.e. a debugger had
447 	 * single stepped the process to the system call), we need to clear
448 	 * the trap flag from the new frame. Otherwise, the new thread will
449 	 * receive a (likely unexpected) SIGTRAP when it executes the first
450 	 * instruction after returning to userland.
451 	 */
452 	td->td_frame->tf_eflags &= ~PSL_T;
453 
454 	/*
455 	 * Set registers for trampoline to user mode.  Leave space for the
456 	 * return address on stack.  These are the kernel mode register values.
457 	 */
458 	pcb2->pcb_edi = 0;
459 	pcb2->pcb_esi = (int)fork_return;		    /* trampoline arg */
460 	pcb2->pcb_ebp = 0;
461 	pcb2->pcb_esp = (int)td->td_frame - sizeof(void *); /* trampoline arg */
462 	pcb2->pcb_ebx = (int)td;			    /* trampoline arg */
463 	pcb2->pcb_eip = (int)fork_trampoline + setidt_disp;
464 	pcb2->pcb_gs = rgs();
465 	/*
466 	 * If we didn't copy the pcb, we'd need to do the following registers:
467 	 * pcb2->pcb_cr3:	cloned above.
468 	 * pcb2->pcb_dr*:	cloned above.
469 	 * pcb2->pcb_savefpu:	cloned above.
470 	 * pcb2->pcb_flags:	cloned above.
471 	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
472 	 * pcb2->pcb_gs:	cloned above.
473 	 * pcb2->pcb_ext:	cleared below.
474 	 */
475 	pcb2->pcb_ext = NULL;
476 
477 	/* Setup to release spin count in fork_exit(). */
478 	td->td_md.md_spinlock_count = 1;
479 	td->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
480 }
481 
482 /*
483  * Set that machine state for performing an upcall that starts
484  * the entry function with the given argument.
485  */
486 void
487 cpu_set_upcall(struct thread *td, void (*entry)(void *), void *arg,
488     stack_t *stack)
489 {
490 
491 	/*
492 	 * Do any extra cleaning that needs to be done.
493 	 * The thread may have optional components
494 	 * that are not present in a fresh thread.
495 	 * This may be a recycled thread so make it look
496 	 * as though it's newly allocated.
497 	 */
498 	cpu_thread_clean(td);
499 
500 	/*
501 	 * Set the trap frame to point at the beginning of the entry
502 	 * function.
503 	 */
504 	td->td_frame->tf_ebp = 0;
505 	td->td_frame->tf_esp =
506 	    (((int)stack->ss_sp + stack->ss_size - 4) & ~0x0f) - 4;
507 	td->td_frame->tf_eip = (int)entry;
508 
509 	/* Return address sentinel value to stop stack unwinding. */
510 	suword((void *)td->td_frame->tf_esp, 0);
511 
512 	/* Pass the argument to the entry point. */
513 	suword((void *)(td->td_frame->tf_esp + sizeof(void *)),
514 	    (int)arg);
515 }
516 
517 int
518 cpu_set_user_tls(struct thread *td, void *tls_base)
519 {
520 	struct segment_descriptor sd;
521 	uint32_t base;
522 
523 	/*
524 	 * Construct a descriptor and store it in the pcb for
525 	 * the next context switch.  Also store it in the gdt
526 	 * so that the load of tf_fs into %fs will activate it
527 	 * at return to userland.
528 	 */
529 	base = (uint32_t)tls_base;
530 	sd.sd_lobase = base & 0xffffff;
531 	sd.sd_hibase = (base >> 24) & 0xff;
532 	sd.sd_lolimit = 0xffff;	/* 4GB limit, wraps around */
533 	sd.sd_hilimit = 0xf;
534 	sd.sd_type  = SDT_MEMRWA;
535 	sd.sd_dpl   = SEL_UPL;
536 	sd.sd_p     = 1;
537 	sd.sd_xx    = 0;
538 	sd.sd_def32 = 1;
539 	sd.sd_gran  = 1;
540 	critical_enter();
541 	/* set %gs */
542 	td->td_pcb->pcb_gsd = sd;
543 	if (td == curthread) {
544 		PCPU_GET(fsgs_gdt)[1] = sd;
545 		load_gs(GSEL(GUGS_SEL, SEL_UPL));
546 	}
547 	critical_exit();
548 	return (0);
549 }
550 
551 /*
552  * Convert kernel VA to physical address
553  */
554 vm_paddr_t
555 kvtop(void *addr)
556 {
557 	vm_paddr_t pa;
558 
559 	pa = pmap_kextract((vm_offset_t)addr);
560 	if (pa == 0)
561 		panic("kvtop: zero page frame");
562 	return (pa);
563 }
564 
565 /*
566  * Get an sf_buf from the freelist.  May block if none are available.
567  */
568 void
569 sf_buf_map(struct sf_buf *sf, int flags)
570 {
571 
572 	pmap_sf_buf_map(sf);
573 #ifdef SMP
574 	sf_buf_shootdown(sf, flags);
575 #endif
576 }
577 
578 #ifdef SMP
579 void
580 sf_buf_shootdown(struct sf_buf *sf, int flags)
581 {
582 	cpuset_t other_cpus;
583 	u_int cpuid;
584 
585 	sched_pin();
586 	cpuid = PCPU_GET(cpuid);
587 	if (!CPU_ISSET(cpuid, &sf->cpumask)) {
588 		CPU_SET(cpuid, &sf->cpumask);
589 		invlpg(sf->kva);
590 	}
591 	if ((flags & SFB_CPUPRIVATE) == 0) {
592 		other_cpus = all_cpus;
593 		CPU_CLR(cpuid, &other_cpus);
594 		CPU_NAND(&other_cpus, &sf->cpumask);
595 		if (!CPU_EMPTY(&other_cpus)) {
596 			CPU_OR(&sf->cpumask, &other_cpus);
597 			smp_masked_invlpg(other_cpus, sf->kva, kernel_pmap);
598 		}
599 	}
600 	sched_unpin();
601 }
602 #endif
603 
604 /*
605  * MD part of sf_buf_free().
606  */
607 int
608 sf_buf_unmap(struct sf_buf *sf)
609 {
610 
611 	return (0);
612 }
613 
614 static void
615 sf_buf_invalidate(struct sf_buf *sf)
616 {
617 	vm_page_t m = sf->m;
618 
619 	/*
620 	 * Use pmap_qenter to update the pte for
621 	 * existing mapping, in particular, the PAT
622 	 * settings are recalculated.
623 	 */
624 	pmap_qenter(sf->kva, &m, 1);
625 	pmap_invalidate_cache_range(sf->kva, sf->kva + PAGE_SIZE);
626 }
627 
628 /*
629  * Invalidate the cache lines that may belong to the page, if
630  * (possibly old) mapping of the page by sf buffer exists.  Returns
631  * TRUE when mapping was found and cache invalidated.
632  */
633 boolean_t
634 sf_buf_invalidate_cache(vm_page_t m)
635 {
636 
637 	return (sf_buf_process_page(m, sf_buf_invalidate));
638 }
639 
640 /*
641  * Software interrupt handler for queued VM system processing.
642  */
643 void
644 swi_vm(void *dummy)
645 {
646 	if (busdma_swi_pending != 0)
647 		busdma_swi();
648 }
649 
650 /*
651  * Tell whether this address is in some physical memory region.
652  * Currently used by the kernel coredump code in order to avoid
653  * dumping the ``ISA memory hole'' which could cause indefinite hangs,
654  * or other unpredictable behaviour.
655  */
656 
657 int
658 is_physical_memory(vm_paddr_t addr)
659 {
660 
661 #ifdef DEV_ISA
662 	/* The ISA ``memory hole''. */
663 	if (addr >= 0xa0000 && addr < 0x100000)
664 		return 0;
665 #endif
666 
667 	/*
668 	 * stuff other tests for known memory-mapped devices (PCI?)
669 	 * here
670 	 */
671 
672 	return 1;
673 }
674