1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 Alexander Motin <mav@FreeBSD.org> 5 * Copyright (c) 2000 - 2008 Søren Schmidt <sos@FreeBSD.org> 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bio.h> 35 #include <sys/endian.h> 36 #include <sys/kernel.h> 37 #include <sys/kobj.h> 38 #include <sys/limits.h> 39 #include <sys/lock.h> 40 #include <sys/malloc.h> 41 #include <sys/mutex.h> 42 #include <sys/systm.h> 43 #include <geom/geom.h> 44 #include "geom/raid/g_raid.h" 45 #include "g_raid_md_if.h" 46 47 static MALLOC_DEFINE(M_MD_PROMISE, "md_promise_data", "GEOM_RAID Promise metadata"); 48 49 #define PROMISE_MAX_DISKS 8 50 #define PROMISE_MAX_SUBDISKS 2 51 #define PROMISE_META_OFFSET 14 52 53 struct promise_raid_disk { 54 uint8_t flags; /* Subdisk status. */ 55 #define PROMISE_F_VALID 0x01 56 #define PROMISE_F_ONLINE 0x02 57 #define PROMISE_F_ASSIGNED 0x04 58 #define PROMISE_F_SPARE 0x08 59 #define PROMISE_F_DUPLICATE 0x10 60 #define PROMISE_F_REDIR 0x20 61 #define PROMISE_F_DOWN 0x40 62 #define PROMISE_F_READY 0x80 63 64 uint8_t number; /* Position in a volume. */ 65 uint8_t channel; /* ATA channel number. */ 66 uint8_t device; /* ATA device number. */ 67 uint64_t id __packed; /* Subdisk ID. */ 68 } __packed; 69 70 struct promise_raid_conf { 71 char promise_id[24]; 72 #define PROMISE_MAGIC "Promise Technology, Inc." 73 #define FREEBSD_MAGIC "FreeBSD ATA driver RAID " 74 75 uint32_t dummy_0; 76 uint64_t magic_0; 77 #define PROMISE_MAGIC0(x) (((uint64_t)(x.channel) << 48) | \ 78 ((uint64_t)(x.device != 0) << 56)) 79 uint16_t magic_1; 80 uint32_t magic_2; 81 uint8_t filler1[470]; 82 83 uint32_t integrity; 84 #define PROMISE_I_VALID 0x00000080 85 86 struct promise_raid_disk disk; /* This subdisk info. */ 87 uint32_t disk_offset; /* Subdisk offset. */ 88 uint32_t disk_sectors; /* Subdisk size */ 89 uint32_t disk_rebuild; /* Rebuild position. */ 90 uint16_t generation; /* Generation number. */ 91 uint8_t status; /* Volume status. */ 92 #define PROMISE_S_VALID 0x01 93 #define PROMISE_S_ONLINE 0x02 94 #define PROMISE_S_INITED 0x04 95 #define PROMISE_S_READY 0x08 96 #define PROMISE_S_DEGRADED 0x10 97 #define PROMISE_S_MARKED 0x20 98 #define PROMISE_S_MIGRATING 0x40 99 #define PROMISE_S_FUNCTIONAL 0x80 100 101 uint8_t type; /* Voluem type. */ 102 #define PROMISE_T_RAID0 0x00 103 #define PROMISE_T_RAID1 0x01 104 #define PROMISE_T_RAID3 0x02 105 #define PROMISE_T_RAID5 0x04 106 #define PROMISE_T_SPAN 0x08 107 #define PROMISE_T_JBOD 0x10 108 109 uint8_t total_disks; /* Disks in this volume. */ 110 uint8_t stripe_shift; /* Strip size. */ 111 uint8_t array_width; /* Number of RAID0 stripes. */ 112 uint8_t array_number; /* Global volume number. */ 113 uint32_t total_sectors; /* Volume size. */ 114 uint16_t cylinders; /* Volume geometry: C. */ 115 uint8_t heads; /* Volume geometry: H. */ 116 uint8_t sectors; /* Volume geometry: S. */ 117 uint64_t volume_id __packed; /* Volume ID, */ 118 struct promise_raid_disk disks[PROMISE_MAX_DISKS]; 119 /* Subdisks in this volume. */ 120 char name[32]; /* Volume label. */ 121 122 uint32_t filler2[8]; 123 uint32_t magic_3; /* Something related to rebuild. */ 124 uint64_t rebuild_lba64; /* Per-volume rebuild position. */ 125 uint32_t magic_4; 126 uint32_t magic_5; 127 uint32_t total_sectors_high; 128 uint8_t magic_6; 129 uint8_t sector_size; 130 uint16_t magic_7; 131 uint32_t magic_8[31]; 132 uint32_t backup_time; 133 uint16_t magic_9; 134 uint32_t disk_offset_high; 135 uint32_t disk_sectors_high; 136 uint32_t disk_rebuild_high; 137 uint16_t magic_10; 138 uint32_t magic_11[3]; 139 uint32_t filler3[284]; 140 uint32_t checksum; 141 } __packed; 142 143 struct g_raid_md_promise_perdisk { 144 int pd_updated; 145 int pd_subdisks; 146 struct promise_raid_conf *pd_meta[PROMISE_MAX_SUBDISKS]; 147 }; 148 149 struct g_raid_md_promise_pervolume { 150 struct promise_raid_conf *pv_meta; 151 uint64_t pv_id; 152 uint16_t pv_generation; 153 int pv_disks_present; 154 int pv_started; 155 struct callout pv_start_co; /* STARTING state timer. */ 156 }; 157 158 static g_raid_md_create_t g_raid_md_create_promise; 159 static g_raid_md_taste_t g_raid_md_taste_promise; 160 static g_raid_md_event_t g_raid_md_event_promise; 161 static g_raid_md_volume_event_t g_raid_md_volume_event_promise; 162 static g_raid_md_ctl_t g_raid_md_ctl_promise; 163 static g_raid_md_write_t g_raid_md_write_promise; 164 static g_raid_md_fail_disk_t g_raid_md_fail_disk_promise; 165 static g_raid_md_free_disk_t g_raid_md_free_disk_promise; 166 static g_raid_md_free_volume_t g_raid_md_free_volume_promise; 167 static g_raid_md_free_t g_raid_md_free_promise; 168 169 static kobj_method_t g_raid_md_promise_methods[] = { 170 KOBJMETHOD(g_raid_md_create, g_raid_md_create_promise), 171 KOBJMETHOD(g_raid_md_taste, g_raid_md_taste_promise), 172 KOBJMETHOD(g_raid_md_event, g_raid_md_event_promise), 173 KOBJMETHOD(g_raid_md_volume_event, g_raid_md_volume_event_promise), 174 KOBJMETHOD(g_raid_md_ctl, g_raid_md_ctl_promise), 175 KOBJMETHOD(g_raid_md_write, g_raid_md_write_promise), 176 KOBJMETHOD(g_raid_md_fail_disk, g_raid_md_fail_disk_promise), 177 KOBJMETHOD(g_raid_md_free_disk, g_raid_md_free_disk_promise), 178 KOBJMETHOD(g_raid_md_free_volume, g_raid_md_free_volume_promise), 179 KOBJMETHOD(g_raid_md_free, g_raid_md_free_promise), 180 { 0, 0 } 181 }; 182 183 static struct g_raid_md_class g_raid_md_promise_class = { 184 "Promise", 185 g_raid_md_promise_methods, 186 sizeof(struct g_raid_md_object), 187 .mdc_enable = 1, 188 .mdc_priority = 100 189 }; 190 191 192 static void 193 g_raid_md_promise_print(struct promise_raid_conf *meta) 194 { 195 int i; 196 197 if (g_raid_debug < 1) 198 return; 199 200 printf("********* ATA Promise Metadata *********\n"); 201 printf("promise_id <%.24s>\n", meta->promise_id); 202 printf("disk %02x %02x %02x %02x %016jx\n", 203 meta->disk.flags, meta->disk.number, meta->disk.channel, 204 meta->disk.device, meta->disk.id); 205 printf("disk_offset %u\n", meta->disk_offset); 206 printf("disk_sectors %u\n", meta->disk_sectors); 207 printf("disk_rebuild %u\n", meta->disk_rebuild); 208 printf("generation %u\n", meta->generation); 209 printf("status 0x%02x\n", meta->status); 210 printf("type %u\n", meta->type); 211 printf("total_disks %u\n", meta->total_disks); 212 printf("stripe_shift %u\n", meta->stripe_shift); 213 printf("array_width %u\n", meta->array_width); 214 printf("array_number %u\n", meta->array_number); 215 printf("total_sectors %u\n", meta->total_sectors); 216 printf("cylinders %u\n", meta->cylinders); 217 printf("heads %u\n", meta->heads); 218 printf("sectors %u\n", meta->sectors); 219 printf("volume_id 0x%016jx\n", meta->volume_id); 220 printf("disks:\n"); 221 for (i = 0; i < PROMISE_MAX_DISKS; i++ ) { 222 printf(" %02x %02x %02x %02x %016jx\n", 223 meta->disks[i].flags, meta->disks[i].number, 224 meta->disks[i].channel, meta->disks[i].device, 225 meta->disks[i].id); 226 } 227 printf("name <%.32s>\n", meta->name); 228 printf("magic_3 0x%08x\n", meta->magic_3); 229 printf("rebuild_lba64 %ju\n", meta->rebuild_lba64); 230 printf("magic_4 0x%08x\n", meta->magic_4); 231 printf("magic_5 0x%08x\n", meta->magic_5); 232 printf("total_sectors_high 0x%08x\n", meta->total_sectors_high); 233 printf("sector_size %u\n", meta->sector_size); 234 printf("backup_time %d\n", meta->backup_time); 235 printf("disk_offset_high 0x%08x\n", meta->disk_offset_high); 236 printf("disk_sectors_high 0x%08x\n", meta->disk_sectors_high); 237 printf("disk_rebuild_high 0x%08x\n", meta->disk_rebuild_high); 238 printf("=================================================\n"); 239 } 240 241 static struct promise_raid_conf * 242 promise_meta_copy(struct promise_raid_conf *meta) 243 { 244 struct promise_raid_conf *nmeta; 245 246 nmeta = malloc(sizeof(*nmeta), M_MD_PROMISE, M_WAITOK); 247 memcpy(nmeta, meta, sizeof(*nmeta)); 248 return (nmeta); 249 } 250 251 static int 252 promise_meta_find_disk(struct promise_raid_conf *meta, uint64_t id) 253 { 254 int pos; 255 256 for (pos = 0; pos < meta->total_disks; pos++) { 257 if (meta->disks[pos].id == id) 258 return (pos); 259 } 260 return (-1); 261 } 262 263 static int 264 promise_meta_unused_range(struct promise_raid_conf **metaarr, int nsd, 265 off_t sectors, off_t *off, off_t *size) 266 { 267 off_t coff, csize, tmp; 268 int i, j; 269 270 sectors -= 131072; 271 *off = 0; 272 *size = 0; 273 coff = 0; 274 csize = sectors; 275 i = 0; 276 while (1) { 277 for (j = 0; j < nsd; j++) { 278 tmp = ((off_t)metaarr[j]->disk_offset_high << 32) + 279 metaarr[j]->disk_offset; 280 if (tmp >= coff) 281 csize = MIN(csize, tmp - coff); 282 } 283 if (csize > *size) { 284 *off = coff; 285 *size = csize; 286 } 287 if (i >= nsd) 288 break; 289 coff = ((off_t)metaarr[i]->disk_offset_high << 32) + 290 metaarr[i]->disk_offset + 291 ((off_t)metaarr[i]->disk_sectors_high << 32) + 292 metaarr[i]->disk_sectors; 293 csize = sectors - coff; 294 i++; 295 } 296 return ((*size > 0) ? 1 : 0); 297 } 298 299 static int 300 promise_meta_translate_disk(struct g_raid_volume *vol, int md_disk_pos) 301 { 302 int disk_pos, width; 303 304 if (md_disk_pos >= 0 && vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E) { 305 width = vol->v_disks_count / 2; 306 disk_pos = (md_disk_pos / width) + 307 (md_disk_pos % width) * width; 308 } else 309 disk_pos = md_disk_pos; 310 return (disk_pos); 311 } 312 313 static void 314 promise_meta_get_name(struct promise_raid_conf *meta, char *buf) 315 { 316 int i; 317 318 strncpy(buf, meta->name, 32); 319 buf[32] = 0; 320 for (i = 31; i >= 0; i--) { 321 if (buf[i] > 0x20) 322 break; 323 buf[i] = 0; 324 } 325 } 326 327 static void 328 promise_meta_put_name(struct promise_raid_conf *meta, char *buf) 329 { 330 331 memset(meta->name, 0x20, 32); 332 memcpy(meta->name, buf, MIN(strlen(buf), 32)); 333 } 334 335 static int 336 promise_meta_read(struct g_consumer *cp, struct promise_raid_conf **metaarr) 337 { 338 struct g_provider *pp; 339 struct promise_raid_conf *meta; 340 char *buf; 341 int error, i, subdisks; 342 uint32_t checksum, *ptr; 343 344 pp = cp->provider; 345 subdisks = 0; 346 347 if (pp->sectorsize * 4 > MAXPHYS) { 348 G_RAID_DEBUG(1, "%s: Blocksize is too big.", pp->name); 349 return (subdisks); 350 } 351 next: 352 /* Read metadata block. */ 353 buf = g_read_data(cp, pp->mediasize - pp->sectorsize * 354 (63 - subdisks * PROMISE_META_OFFSET), 355 pp->sectorsize * 4, &error); 356 if (buf == NULL) { 357 G_RAID_DEBUG(1, "Cannot read metadata from %s (error=%d).", 358 pp->name, error); 359 return (subdisks); 360 } 361 meta = (struct promise_raid_conf *)buf; 362 363 /* Check if this is an Promise RAID struct */ 364 if (strncmp(meta->promise_id, PROMISE_MAGIC, strlen(PROMISE_MAGIC)) && 365 strncmp(meta->promise_id, FREEBSD_MAGIC, strlen(FREEBSD_MAGIC))) { 366 if (subdisks == 0) 367 G_RAID_DEBUG(1, 368 "Promise signature check failed on %s", pp->name); 369 g_free(buf); 370 return (subdisks); 371 } 372 meta = malloc(sizeof(*meta), M_MD_PROMISE, M_WAITOK); 373 memcpy(meta, buf, MIN(sizeof(*meta), pp->sectorsize * 4)); 374 g_free(buf); 375 376 /* Check metadata checksum. */ 377 for (checksum = 0, ptr = (uint32_t *)meta, i = 0; i < 511; i++) 378 checksum += *ptr++; 379 if (checksum != meta->checksum) { 380 G_RAID_DEBUG(1, "Promise checksum check failed on %s", pp->name); 381 free(meta, M_MD_PROMISE); 382 return (subdisks); 383 } 384 385 if ((meta->integrity & PROMISE_I_VALID) == 0) { 386 G_RAID_DEBUG(1, "Promise metadata is invalid on %s", pp->name); 387 free(meta, M_MD_PROMISE); 388 return (subdisks); 389 } 390 391 if (meta->total_disks > PROMISE_MAX_DISKS) { 392 G_RAID_DEBUG(1, "Wrong number of disks on %s (%d)", 393 pp->name, meta->total_disks); 394 free(meta, M_MD_PROMISE); 395 return (subdisks); 396 } 397 398 /* Remove filler garbage from fields used in newer metadata. */ 399 if (meta->disk_offset_high == 0x8b8c8d8e && 400 meta->disk_sectors_high == 0x8788898a && 401 meta->disk_rebuild_high == 0x83848586) { 402 meta->disk_offset_high = 0; 403 meta->disk_sectors_high = 0; 404 if (meta->disk_rebuild == UINT32_MAX) 405 meta->disk_rebuild_high = UINT32_MAX; 406 else 407 meta->disk_rebuild_high = 0; 408 if (meta->total_sectors_high == 0x15161718) { 409 meta->total_sectors_high = 0; 410 meta->backup_time = 0; 411 if (meta->rebuild_lba64 == 0x2122232425262728) 412 meta->rebuild_lba64 = UINT64_MAX; 413 } 414 } 415 if (meta->sector_size < 1 || meta->sector_size > 8) 416 meta->sector_size = 1; 417 418 /* Save this part and look for next. */ 419 *metaarr = meta; 420 metaarr++; 421 subdisks++; 422 if (subdisks < PROMISE_MAX_SUBDISKS) 423 goto next; 424 425 return (subdisks); 426 } 427 428 static int 429 promise_meta_write(struct g_consumer *cp, 430 struct promise_raid_conf **metaarr, int nsd) 431 { 432 struct g_provider *pp; 433 struct promise_raid_conf *meta; 434 char *buf; 435 off_t off, size; 436 int error, i, subdisk, fake; 437 uint32_t checksum, *ptr; 438 439 pp = cp->provider; 440 subdisk = 0; 441 fake = 0; 442 next: 443 buf = malloc(pp->sectorsize * 4, M_MD_PROMISE, M_WAITOK | M_ZERO); 444 meta = NULL; 445 if (subdisk < nsd) { 446 meta = metaarr[subdisk]; 447 } else if (!fake && promise_meta_unused_range(metaarr, nsd, 448 cp->provider->mediasize / cp->provider->sectorsize, 449 &off, &size)) { 450 /* Optionally add record for unused space. */ 451 meta = (struct promise_raid_conf *)buf; 452 memcpy(&meta->promise_id[0], PROMISE_MAGIC, 453 sizeof(PROMISE_MAGIC) - 1); 454 meta->dummy_0 = 0x00020000; 455 meta->integrity = PROMISE_I_VALID; 456 meta->disk.flags = PROMISE_F_ONLINE | PROMISE_F_VALID; 457 meta->disk.number = 0xff; 458 arc4rand(&meta->disk.id, sizeof(meta->disk.id), 0); 459 meta->disk_offset_high = off >> 32; 460 meta->disk_offset = (uint32_t)off; 461 meta->disk_sectors_high = size >> 32; 462 meta->disk_sectors = (uint32_t)size; 463 meta->disk_rebuild_high = UINT32_MAX; 464 meta->disk_rebuild = UINT32_MAX; 465 fake = 1; 466 } 467 if (meta != NULL) { 468 /* Recalculate checksum for case if metadata were changed. */ 469 meta->checksum = 0; 470 for (checksum = 0, ptr = (uint32_t *)meta, i = 0; i < 511; i++) 471 checksum += *ptr++; 472 meta->checksum = checksum; 473 memcpy(buf, meta, MIN(pp->sectorsize * 4, sizeof(*meta))); 474 } 475 error = g_write_data(cp, pp->mediasize - pp->sectorsize * 476 (63 - subdisk * PROMISE_META_OFFSET), 477 buf, pp->sectorsize * 4); 478 if (error != 0) { 479 G_RAID_DEBUG(1, "Cannot write metadata to %s (error=%d).", 480 pp->name, error); 481 } 482 free(buf, M_MD_PROMISE); 483 484 subdisk++; 485 if (subdisk < PROMISE_MAX_SUBDISKS) 486 goto next; 487 488 return (error); 489 } 490 491 static int 492 promise_meta_erase(struct g_consumer *cp) 493 { 494 struct g_provider *pp; 495 char *buf; 496 int error, subdisk; 497 498 pp = cp->provider; 499 buf = malloc(4 * pp->sectorsize, M_MD_PROMISE, M_WAITOK | M_ZERO); 500 for (subdisk = 0; subdisk < PROMISE_MAX_SUBDISKS; subdisk++) { 501 error = g_write_data(cp, pp->mediasize - pp->sectorsize * 502 (63 - subdisk * PROMISE_META_OFFSET), 503 buf, 4 * pp->sectorsize); 504 if (error != 0) { 505 G_RAID_DEBUG(1, "Cannot erase metadata on %s (error=%d).", 506 pp->name, error); 507 } 508 } 509 free(buf, M_MD_PROMISE); 510 return (error); 511 } 512 513 static int 514 promise_meta_write_spare(struct g_consumer *cp) 515 { 516 struct promise_raid_conf *meta; 517 off_t tmp; 518 int error; 519 520 meta = malloc(sizeof(*meta), M_MD_PROMISE, M_WAITOK | M_ZERO); 521 memcpy(&meta->promise_id[0], PROMISE_MAGIC, sizeof(PROMISE_MAGIC) - 1); 522 meta->dummy_0 = 0x00020000; 523 meta->integrity = PROMISE_I_VALID; 524 meta->disk.flags = PROMISE_F_SPARE | PROMISE_F_ONLINE | PROMISE_F_VALID; 525 meta->disk.number = 0xff; 526 arc4rand(&meta->disk.id, sizeof(meta->disk.id), 0); 527 tmp = cp->provider->mediasize / cp->provider->sectorsize - 131072; 528 meta->disk_sectors_high = tmp >> 32; 529 meta->disk_sectors = (uint32_t)tmp; 530 meta->disk_rebuild_high = UINT32_MAX; 531 meta->disk_rebuild = UINT32_MAX; 532 error = promise_meta_write(cp, &meta, 1); 533 free(meta, M_MD_PROMISE); 534 return (error); 535 } 536 537 static struct g_raid_volume * 538 g_raid_md_promise_get_volume(struct g_raid_softc *sc, uint64_t id) 539 { 540 struct g_raid_volume *vol; 541 struct g_raid_md_promise_pervolume *pv; 542 543 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 544 pv = vol->v_md_data; 545 if (pv->pv_id == id) 546 break; 547 } 548 return (vol); 549 } 550 551 static int 552 g_raid_md_promise_purge_volumes(struct g_raid_softc *sc) 553 { 554 struct g_raid_volume *vol, *tvol; 555 struct g_raid_md_promise_pervolume *pv; 556 int i, res; 557 558 res = 0; 559 TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tvol) { 560 pv = vol->v_md_data; 561 if (!pv->pv_started || vol->v_stopping) 562 continue; 563 for (i = 0; i < vol->v_disks_count; i++) { 564 if (vol->v_subdisks[i].sd_state != G_RAID_SUBDISK_S_NONE) 565 break; 566 } 567 if (i >= vol->v_disks_count) { 568 g_raid_destroy_volume(vol); 569 res = 1; 570 } 571 } 572 return (res); 573 } 574 575 static int 576 g_raid_md_promise_purge_disks(struct g_raid_softc *sc) 577 { 578 struct g_raid_disk *disk, *tdisk; 579 struct g_raid_volume *vol; 580 struct g_raid_md_promise_perdisk *pd; 581 int i, j, res; 582 583 res = 0; 584 TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tdisk) { 585 if (disk->d_state == G_RAID_DISK_S_SPARE) 586 continue; 587 pd = (struct g_raid_md_promise_perdisk *)disk->d_md_data; 588 589 /* Scan for deleted volumes. */ 590 for (i = 0; i < pd->pd_subdisks; ) { 591 vol = g_raid_md_promise_get_volume(sc, 592 pd->pd_meta[i]->volume_id); 593 if (vol != NULL && !vol->v_stopping) { 594 i++; 595 continue; 596 } 597 free(pd->pd_meta[i], M_MD_PROMISE); 598 for (j = i; j < pd->pd_subdisks - 1; j++) 599 pd->pd_meta[j] = pd->pd_meta[j + 1]; 600 pd->pd_meta[pd->pd_subdisks - 1] = NULL; 601 pd->pd_subdisks--; 602 pd->pd_updated = 1; 603 } 604 605 /* If there is no metadata left - erase and delete disk. */ 606 if (pd->pd_subdisks == 0) { 607 promise_meta_erase(disk->d_consumer); 608 g_raid_destroy_disk(disk); 609 res = 1; 610 } 611 } 612 return (res); 613 } 614 615 static int 616 g_raid_md_promise_supported(int level, int qual, int disks, int force) 617 { 618 619 if (disks > PROMISE_MAX_DISKS) 620 return (0); 621 switch (level) { 622 case G_RAID_VOLUME_RL_RAID0: 623 if (disks < 1) 624 return (0); 625 if (!force && disks < 2) 626 return (0); 627 break; 628 case G_RAID_VOLUME_RL_RAID1: 629 if (disks < 1) 630 return (0); 631 if (!force && (disks != 2)) 632 return (0); 633 break; 634 case G_RAID_VOLUME_RL_RAID1E: 635 if (disks < 2) 636 return (0); 637 if (disks % 2 != 0) 638 return (0); 639 if (!force && (disks != 4)) 640 return (0); 641 break; 642 case G_RAID_VOLUME_RL_SINGLE: 643 if (disks != 1) 644 return (0); 645 break; 646 case G_RAID_VOLUME_RL_CONCAT: 647 if (disks < 2) 648 return (0); 649 break; 650 case G_RAID_VOLUME_RL_RAID5: 651 if (disks < 3) 652 return (0); 653 if (qual != G_RAID_VOLUME_RLQ_R5LA) 654 return (0); 655 break; 656 default: 657 return (0); 658 } 659 if (level != G_RAID_VOLUME_RL_RAID5 && qual != G_RAID_VOLUME_RLQ_NONE) 660 return (0); 661 return (1); 662 } 663 664 static int 665 g_raid_md_promise_start_disk(struct g_raid_disk *disk, int sdn, 666 struct g_raid_volume *vol) 667 { 668 struct g_raid_softc *sc; 669 struct g_raid_subdisk *sd; 670 struct g_raid_md_promise_perdisk *pd; 671 struct g_raid_md_promise_pervolume *pv; 672 struct promise_raid_conf *meta; 673 off_t eoff, esize, size; 674 int disk_pos, md_disk_pos, i, resurrection = 0; 675 676 sc = disk->d_softc; 677 pd = (struct g_raid_md_promise_perdisk *)disk->d_md_data; 678 679 pv = vol->v_md_data; 680 meta = pv->pv_meta; 681 682 if (sdn >= 0) { 683 /* Find disk position in metadata by its serial. */ 684 md_disk_pos = promise_meta_find_disk(meta, pd->pd_meta[sdn]->disk.id); 685 /* For RAID0+1 we need to translate order. */ 686 disk_pos = promise_meta_translate_disk(vol, md_disk_pos); 687 } else { 688 md_disk_pos = -1; 689 disk_pos = -1; 690 } 691 if (disk_pos < 0) { 692 G_RAID_DEBUG1(1, sc, "Disk %s is not part of the volume %s", 693 g_raid_get_diskname(disk), vol->v_name); 694 /* Failed stale disk is useless for us. */ 695 if (sdn >= 0 && 696 pd->pd_meta[sdn]->disk.flags & PROMISE_F_DOWN) { 697 g_raid_change_disk_state(disk, G_RAID_DISK_S_STALE_FAILED); 698 return (0); 699 } 700 /* If we were given specific metadata subdisk - erase it. */ 701 if (sdn >= 0) { 702 free(pd->pd_meta[sdn], M_MD_PROMISE); 703 for (i = sdn; i < pd->pd_subdisks - 1; i++) 704 pd->pd_meta[i] = pd->pd_meta[i + 1]; 705 pd->pd_meta[pd->pd_subdisks - 1] = NULL; 706 pd->pd_subdisks--; 707 } 708 /* If we are in the start process, that's all for now. */ 709 if (!pv->pv_started) 710 goto nofit; 711 /* 712 * If we have already started - try to get use of the disk. 713 * Try to replace OFFLINE disks first, then FAILED. 714 */ 715 promise_meta_unused_range(pd->pd_meta, pd->pd_subdisks, 716 disk->d_consumer->provider->mediasize / 717 disk->d_consumer->provider->sectorsize, 718 &eoff, &esize); 719 if (esize == 0) { 720 G_RAID_DEBUG1(1, sc, "No free space on disk %s", 721 g_raid_get_diskname(disk)); 722 goto nofit; 723 } 724 size = INT64_MAX; 725 for (i = 0; i < vol->v_disks_count; i++) { 726 sd = &vol->v_subdisks[i]; 727 if (sd->sd_state != G_RAID_SUBDISK_S_NONE) 728 size = sd->sd_size; 729 if (sd->sd_state <= G_RAID_SUBDISK_S_FAILED && 730 (disk_pos < 0 || 731 vol->v_subdisks[i].sd_state < sd->sd_state)) 732 disk_pos = i; 733 } 734 if (disk_pos >= 0 && 735 vol->v_raid_level != G_RAID_VOLUME_RL_CONCAT && 736 (off_t)esize * 512 < size) { 737 G_RAID_DEBUG1(1, sc, "Disk %s free space " 738 "is too small (%ju < %ju)", 739 g_raid_get_diskname(disk), 740 (off_t)esize * 512, size); 741 disk_pos = -1; 742 } 743 if (disk_pos >= 0) { 744 if (vol->v_raid_level != G_RAID_VOLUME_RL_CONCAT) 745 esize = size / 512; 746 /* For RAID0+1 we need to translate order. */ 747 md_disk_pos = promise_meta_translate_disk(vol, disk_pos); 748 } else { 749 nofit: 750 if (pd->pd_subdisks == 0) { 751 g_raid_change_disk_state(disk, 752 G_RAID_DISK_S_SPARE); 753 } 754 return (0); 755 } 756 G_RAID_DEBUG1(1, sc, "Disk %s takes pos %d in the volume %s", 757 g_raid_get_diskname(disk), disk_pos, vol->v_name); 758 resurrection = 1; 759 } 760 761 sd = &vol->v_subdisks[disk_pos]; 762 763 if (resurrection && sd->sd_disk != NULL) { 764 g_raid_change_disk_state(sd->sd_disk, 765 G_RAID_DISK_S_STALE_FAILED); 766 TAILQ_REMOVE(&sd->sd_disk->d_subdisks, 767 sd, sd_next); 768 } 769 vol->v_subdisks[disk_pos].sd_disk = disk; 770 TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next); 771 772 /* Welcome the new disk. */ 773 if (resurrection) 774 g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE); 775 else if (meta->disks[md_disk_pos].flags & PROMISE_F_DOWN) 776 g_raid_change_disk_state(disk, G_RAID_DISK_S_FAILED); 777 else 778 g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE); 779 780 if (resurrection) { 781 sd->sd_offset = (off_t)eoff * 512; 782 sd->sd_size = (off_t)esize * 512; 783 } else { 784 sd->sd_offset = (((off_t)pd->pd_meta[sdn]->disk_offset_high 785 << 32) + pd->pd_meta[sdn]->disk_offset) * 512; 786 sd->sd_size = (((off_t)pd->pd_meta[sdn]->disk_sectors_high 787 << 32) + pd->pd_meta[sdn]->disk_sectors) * 512; 788 } 789 790 if (resurrection) { 791 /* Stale disk, almost same as new. */ 792 g_raid_change_subdisk_state(sd, 793 G_RAID_SUBDISK_S_NEW); 794 } else if (meta->disks[md_disk_pos].flags & PROMISE_F_DOWN) { 795 /* Failed disk. */ 796 g_raid_change_subdisk_state(sd, 797 G_RAID_SUBDISK_S_FAILED); 798 } else if (meta->disks[md_disk_pos].flags & PROMISE_F_REDIR) { 799 /* Rebuilding disk. */ 800 g_raid_change_subdisk_state(sd, 801 G_RAID_SUBDISK_S_REBUILD); 802 if (pd->pd_meta[sdn]->generation != meta->generation) 803 sd->sd_rebuild_pos = 0; 804 else { 805 sd->sd_rebuild_pos = 806 (((off_t)pd->pd_meta[sdn]->disk_rebuild_high << 32) + 807 pd->pd_meta[sdn]->disk_rebuild) * 512; 808 } 809 } else if (!(meta->disks[md_disk_pos].flags & PROMISE_F_ONLINE)) { 810 /* Rebuilding disk. */ 811 g_raid_change_subdisk_state(sd, 812 G_RAID_SUBDISK_S_NEW); 813 } else if (pd->pd_meta[sdn]->generation != meta->generation || 814 (meta->status & PROMISE_S_MARKED)) { 815 /* Stale disk or dirty volume (unclean shutdown). */ 816 g_raid_change_subdisk_state(sd, 817 G_RAID_SUBDISK_S_STALE); 818 } else { 819 /* Up to date disk. */ 820 g_raid_change_subdisk_state(sd, 821 G_RAID_SUBDISK_S_ACTIVE); 822 } 823 g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW, 824 G_RAID_EVENT_SUBDISK); 825 826 return (resurrection); 827 } 828 829 static void 830 g_raid_md_promise_refill(struct g_raid_softc *sc) 831 { 832 struct g_raid_volume *vol; 833 struct g_raid_subdisk *sd; 834 struct g_raid_disk *disk; 835 struct g_raid_md_object *md; 836 struct g_raid_md_promise_perdisk *pd; 837 struct g_raid_md_promise_pervolume *pv; 838 int update, updated, i, bad; 839 840 md = sc->sc_md; 841 restart: 842 updated = 0; 843 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 844 pv = vol->v_md_data; 845 if (!pv->pv_started || vol->v_stopping) 846 continue; 847 848 /* Search for subdisk that needs replacement. */ 849 bad = 0; 850 for (i = 0; i < vol->v_disks_count; i++) { 851 sd = &vol->v_subdisks[i]; 852 if (sd->sd_state == G_RAID_SUBDISK_S_NONE || 853 sd->sd_state == G_RAID_SUBDISK_S_FAILED) 854 bad = 1; 855 } 856 if (!bad) 857 continue; 858 859 G_RAID_DEBUG1(1, sc, "Volume %s is not complete, " 860 "trying to refill.", vol->v_name); 861 862 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 863 /* Skip failed. */ 864 if (disk->d_state < G_RAID_DISK_S_SPARE) 865 continue; 866 /* Skip already used by this volume. */ 867 for (i = 0; i < vol->v_disks_count; i++) { 868 sd = &vol->v_subdisks[i]; 869 if (sd->sd_disk == disk) 870 break; 871 } 872 if (i < vol->v_disks_count) 873 continue; 874 875 /* Try to use disk if it has empty extents. */ 876 pd = disk->d_md_data; 877 if (pd->pd_subdisks < PROMISE_MAX_SUBDISKS) { 878 update = 879 g_raid_md_promise_start_disk(disk, -1, vol); 880 } else 881 update = 0; 882 if (update) { 883 updated = 1; 884 g_raid_md_write_promise(md, vol, NULL, disk); 885 break; 886 } 887 } 888 } 889 if (updated) 890 goto restart; 891 } 892 893 static void 894 g_raid_md_promise_start(struct g_raid_volume *vol) 895 { 896 struct g_raid_softc *sc; 897 struct g_raid_subdisk *sd; 898 struct g_raid_disk *disk; 899 struct g_raid_md_object *md; 900 struct g_raid_md_promise_perdisk *pd; 901 struct g_raid_md_promise_pervolume *pv; 902 struct promise_raid_conf *meta; 903 u_int i; 904 905 sc = vol->v_softc; 906 md = sc->sc_md; 907 pv = vol->v_md_data; 908 meta = pv->pv_meta; 909 910 vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_NONE; 911 if (meta->type == PROMISE_T_RAID0) 912 vol->v_raid_level = G_RAID_VOLUME_RL_RAID0; 913 else if (meta->type == PROMISE_T_RAID1) { 914 if (meta->array_width == 1) 915 vol->v_raid_level = G_RAID_VOLUME_RL_RAID1; 916 else 917 vol->v_raid_level = G_RAID_VOLUME_RL_RAID1E; 918 } else if (meta->type == PROMISE_T_RAID3) 919 vol->v_raid_level = G_RAID_VOLUME_RL_RAID3; 920 else if (meta->type == PROMISE_T_RAID5) { 921 vol->v_raid_level = G_RAID_VOLUME_RL_RAID5; 922 vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_R5LA; 923 } else if (meta->type == PROMISE_T_SPAN) 924 vol->v_raid_level = G_RAID_VOLUME_RL_CONCAT; 925 else if (meta->type == PROMISE_T_JBOD) 926 vol->v_raid_level = G_RAID_VOLUME_RL_SINGLE; 927 else 928 vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN; 929 vol->v_strip_size = 512 << meta->stripe_shift; //ZZZ 930 vol->v_disks_count = meta->total_disks; 931 vol->v_mediasize = (off_t)meta->total_sectors * 512; //ZZZ 932 if (meta->total_sectors_high < 256) /* If value looks sane. */ 933 vol->v_mediasize += 934 ((off_t)meta->total_sectors_high << 32) * 512; //ZZZ 935 vol->v_sectorsize = 512 * meta->sector_size; 936 for (i = 0; i < vol->v_disks_count; i++) { 937 sd = &vol->v_subdisks[i]; 938 sd->sd_offset = (((off_t)meta->disk_offset_high << 32) + 939 meta->disk_offset) * 512; 940 sd->sd_size = (((off_t)meta->disk_sectors_high << 32) + 941 meta->disk_sectors) * 512; 942 } 943 g_raid_start_volume(vol); 944 945 /* Make all disks found till the moment take their places. */ 946 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 947 pd = disk->d_md_data; 948 for (i = 0; i < pd->pd_subdisks; i++) { 949 if (pd->pd_meta[i]->volume_id == meta->volume_id) 950 g_raid_md_promise_start_disk(disk, i, vol); 951 } 952 } 953 954 pv->pv_started = 1; 955 callout_stop(&pv->pv_start_co); 956 G_RAID_DEBUG1(0, sc, "Volume started."); 957 g_raid_md_write_promise(md, vol, NULL, NULL); 958 959 /* Pickup any STALE/SPARE disks to refill array if needed. */ 960 g_raid_md_promise_refill(sc); 961 962 g_raid_event_send(vol, G_RAID_VOLUME_E_START, G_RAID_EVENT_VOLUME); 963 } 964 965 static void 966 g_raid_promise_go(void *arg) 967 { 968 struct g_raid_volume *vol; 969 struct g_raid_softc *sc; 970 struct g_raid_md_promise_pervolume *pv; 971 972 vol = arg; 973 pv = vol->v_md_data; 974 sc = vol->v_softc; 975 if (!pv->pv_started) { 976 G_RAID_DEBUG1(0, sc, "Force volume start due to timeout."); 977 g_raid_event_send(vol, G_RAID_VOLUME_E_STARTMD, 978 G_RAID_EVENT_VOLUME); 979 } 980 } 981 982 static void 983 g_raid_md_promise_new_disk(struct g_raid_disk *disk) 984 { 985 struct g_raid_softc *sc; 986 struct g_raid_md_object *md; 987 struct promise_raid_conf *pdmeta; 988 struct g_raid_md_promise_perdisk *pd; 989 struct g_raid_md_promise_pervolume *pv; 990 struct g_raid_volume *vol; 991 int i; 992 char buf[33]; 993 994 sc = disk->d_softc; 995 md = sc->sc_md; 996 pd = (struct g_raid_md_promise_perdisk *)disk->d_md_data; 997 998 if (pd->pd_subdisks == 0) { 999 g_raid_change_disk_state(disk, G_RAID_DISK_S_SPARE); 1000 g_raid_md_promise_refill(sc); 1001 return; 1002 } 1003 1004 for (i = 0; i < pd->pd_subdisks; i++) { 1005 pdmeta = pd->pd_meta[i]; 1006 1007 /* Look for volume with matching ID. */ 1008 vol = g_raid_md_promise_get_volume(sc, pdmeta->volume_id); 1009 if (vol == NULL) { 1010 promise_meta_get_name(pdmeta, buf); 1011 vol = g_raid_create_volume(sc, buf, pdmeta->array_number); 1012 pv = malloc(sizeof(*pv), M_MD_PROMISE, M_WAITOK | M_ZERO); 1013 pv->pv_id = pdmeta->volume_id; 1014 vol->v_md_data = pv; 1015 callout_init(&pv->pv_start_co, 1); 1016 callout_reset(&pv->pv_start_co, 1017 g_raid_start_timeout * hz, 1018 g_raid_promise_go, vol); 1019 } else 1020 pv = vol->v_md_data; 1021 1022 /* If we haven't started yet - check metadata freshness. */ 1023 if (pv->pv_meta == NULL || !pv->pv_started) { 1024 if (pv->pv_meta == NULL || 1025 ((int16_t)(pdmeta->generation - pv->pv_generation)) > 0) { 1026 G_RAID_DEBUG1(1, sc, "Newer disk"); 1027 if (pv->pv_meta != NULL) 1028 free(pv->pv_meta, M_MD_PROMISE); 1029 pv->pv_meta = promise_meta_copy(pdmeta); 1030 pv->pv_generation = pv->pv_meta->generation; 1031 pv->pv_disks_present = 1; 1032 } else if (pdmeta->generation == pv->pv_generation) { 1033 pv->pv_disks_present++; 1034 G_RAID_DEBUG1(1, sc, "Matching disk (%d of %d up)", 1035 pv->pv_disks_present, 1036 pv->pv_meta->total_disks); 1037 } else { 1038 G_RAID_DEBUG1(1, sc, "Older disk"); 1039 } 1040 } 1041 } 1042 1043 for (i = 0; i < pd->pd_subdisks; i++) { 1044 pdmeta = pd->pd_meta[i]; 1045 1046 /* Look for volume with matching ID. */ 1047 vol = g_raid_md_promise_get_volume(sc, pdmeta->volume_id); 1048 if (vol == NULL) 1049 continue; 1050 pv = vol->v_md_data; 1051 1052 if (pv->pv_started) { 1053 if (g_raid_md_promise_start_disk(disk, i, vol)) 1054 g_raid_md_write_promise(md, vol, NULL, NULL); 1055 } else { 1056 /* If we collected all needed disks - start array. */ 1057 if (pv->pv_disks_present == pv->pv_meta->total_disks) 1058 g_raid_md_promise_start(vol); 1059 } 1060 } 1061 } 1062 1063 static int 1064 g_raid_md_create_promise(struct g_raid_md_object *md, struct g_class *mp, 1065 struct g_geom **gp) 1066 { 1067 struct g_geom *geom; 1068 struct g_raid_softc *sc; 1069 1070 /* Search for existing node. */ 1071 LIST_FOREACH(geom, &mp->geom, geom) { 1072 sc = geom->softc; 1073 if (sc == NULL) 1074 continue; 1075 if (sc->sc_stopping != 0) 1076 continue; 1077 if (sc->sc_md->mdo_class != md->mdo_class) 1078 continue; 1079 break; 1080 } 1081 if (geom != NULL) { 1082 *gp = geom; 1083 return (G_RAID_MD_TASTE_EXISTING); 1084 } 1085 1086 /* Create new one if not found. */ 1087 sc = g_raid_create_node(mp, "Promise", md); 1088 if (sc == NULL) 1089 return (G_RAID_MD_TASTE_FAIL); 1090 md->mdo_softc = sc; 1091 *gp = sc->sc_geom; 1092 return (G_RAID_MD_TASTE_NEW); 1093 } 1094 1095 static int 1096 g_raid_md_taste_promise(struct g_raid_md_object *md, struct g_class *mp, 1097 struct g_consumer *cp, struct g_geom **gp) 1098 { 1099 struct g_consumer *rcp; 1100 struct g_provider *pp; 1101 struct g_raid_softc *sc; 1102 struct g_raid_disk *disk; 1103 struct promise_raid_conf *metaarr[4]; 1104 struct g_raid_md_promise_perdisk *pd; 1105 struct g_geom *geom; 1106 int i, j, result, len, subdisks; 1107 char name[16]; 1108 uint16_t vendor; 1109 1110 G_RAID_DEBUG(1, "Tasting Promise on %s", cp->provider->name); 1111 pp = cp->provider; 1112 1113 /* Read metadata from device. */ 1114 g_topology_unlock(); 1115 vendor = 0xffff; 1116 len = sizeof(vendor); 1117 if (pp->geom->rank == 1) 1118 g_io_getattr("GEOM::hba_vendor", cp, &len, &vendor); 1119 subdisks = promise_meta_read(cp, metaarr); 1120 g_topology_lock(); 1121 if (subdisks == 0) { 1122 if (g_raid_aggressive_spare) { 1123 if (vendor == 0x105a || vendor == 0x1002) { 1124 G_RAID_DEBUG(1, 1125 "No Promise metadata, forcing spare."); 1126 goto search; 1127 } else { 1128 G_RAID_DEBUG(1, 1129 "Promise/ATI vendor mismatch " 1130 "0x%04x != 0x105a/0x1002", 1131 vendor); 1132 } 1133 } 1134 return (G_RAID_MD_TASTE_FAIL); 1135 } 1136 1137 /* Metadata valid. Print it. */ 1138 for (i = 0; i < subdisks; i++) 1139 g_raid_md_promise_print(metaarr[i]); 1140 1141 /* Purge meaningless (empty/spare) records. */ 1142 for (i = 0; i < subdisks; ) { 1143 if (metaarr[i]->disk.flags & PROMISE_F_ASSIGNED) { 1144 i++; 1145 continue; 1146 } 1147 free(metaarr[i], M_MD_PROMISE); 1148 for (j = i; j < subdisks - 1; j++) 1149 metaarr[i] = metaarr[j + 1]; 1150 metaarr[subdisks - 1] = NULL; 1151 subdisks--; 1152 } 1153 1154 search: 1155 /* Search for matching node. */ 1156 sc = NULL; 1157 LIST_FOREACH(geom, &mp->geom, geom) { 1158 sc = geom->softc; 1159 if (sc == NULL) 1160 continue; 1161 if (sc->sc_stopping != 0) 1162 continue; 1163 if (sc->sc_md->mdo_class != md->mdo_class) 1164 continue; 1165 break; 1166 } 1167 1168 /* Found matching node. */ 1169 if (geom != NULL) { 1170 G_RAID_DEBUG(1, "Found matching array %s", sc->sc_name); 1171 result = G_RAID_MD_TASTE_EXISTING; 1172 1173 } else { /* Not found matching node -- create one. */ 1174 result = G_RAID_MD_TASTE_NEW; 1175 snprintf(name, sizeof(name), "Promise"); 1176 sc = g_raid_create_node(mp, name, md); 1177 md->mdo_softc = sc; 1178 geom = sc->sc_geom; 1179 } 1180 1181 /* There is no return after this point, so we close passed consumer. */ 1182 g_access(cp, -1, 0, 0); 1183 1184 rcp = g_new_consumer(geom); 1185 rcp->flags |= G_CF_DIRECT_RECEIVE; 1186 g_attach(rcp, pp); 1187 if (g_access(rcp, 1, 1, 1) != 0) 1188 ; //goto fail1; 1189 1190 g_topology_unlock(); 1191 sx_xlock(&sc->sc_lock); 1192 1193 pd = malloc(sizeof(*pd), M_MD_PROMISE, M_WAITOK | M_ZERO); 1194 pd->pd_subdisks = subdisks; 1195 for (i = 0; i < subdisks; i++) 1196 pd->pd_meta[i] = metaarr[i]; 1197 disk = g_raid_create_disk(sc); 1198 disk->d_md_data = (void *)pd; 1199 disk->d_consumer = rcp; 1200 rcp->private = disk; 1201 1202 g_raid_get_disk_info(disk); 1203 1204 g_raid_md_promise_new_disk(disk); 1205 1206 sx_xunlock(&sc->sc_lock); 1207 g_topology_lock(); 1208 *gp = geom; 1209 return (result); 1210 } 1211 1212 static int 1213 g_raid_md_event_promise(struct g_raid_md_object *md, 1214 struct g_raid_disk *disk, u_int event) 1215 { 1216 struct g_raid_softc *sc; 1217 1218 sc = md->mdo_softc; 1219 if (disk == NULL) 1220 return (-1); 1221 switch (event) { 1222 case G_RAID_DISK_E_DISCONNECTED: 1223 /* Delete disk. */ 1224 g_raid_change_disk_state(disk, G_RAID_DISK_S_NONE); 1225 g_raid_destroy_disk(disk); 1226 g_raid_md_promise_purge_volumes(sc); 1227 1228 /* Write updated metadata to all disks. */ 1229 g_raid_md_write_promise(md, NULL, NULL, NULL); 1230 1231 /* Check if anything left. */ 1232 if (g_raid_ndisks(sc, -1) == 0) 1233 g_raid_destroy_node(sc, 0); 1234 else 1235 g_raid_md_promise_refill(sc); 1236 return (0); 1237 } 1238 return (-2); 1239 } 1240 1241 static int 1242 g_raid_md_volume_event_promise(struct g_raid_md_object *md, 1243 struct g_raid_volume *vol, u_int event) 1244 { 1245 struct g_raid_md_promise_pervolume *pv; 1246 1247 pv = (struct g_raid_md_promise_pervolume *)vol->v_md_data; 1248 switch (event) { 1249 case G_RAID_VOLUME_E_STARTMD: 1250 if (!pv->pv_started) 1251 g_raid_md_promise_start(vol); 1252 return (0); 1253 } 1254 return (-2); 1255 } 1256 1257 static int 1258 g_raid_md_ctl_promise(struct g_raid_md_object *md, 1259 struct gctl_req *req) 1260 { 1261 struct g_raid_softc *sc; 1262 struct g_raid_volume *vol, *vol1; 1263 struct g_raid_subdisk *sd; 1264 struct g_raid_disk *disk, *disks[PROMISE_MAX_DISKS]; 1265 struct g_raid_md_promise_perdisk *pd; 1266 struct g_raid_md_promise_pervolume *pv; 1267 struct g_consumer *cp; 1268 struct g_provider *pp; 1269 char arg[16]; 1270 const char *nodename, *verb, *volname, *levelname, *diskname; 1271 char *tmp; 1272 int *nargs, *force; 1273 off_t esize, offs[PROMISE_MAX_DISKS], size, sectorsize, strip; 1274 intmax_t *sizearg, *striparg; 1275 int numdisks, i, len, level, qual; 1276 int error; 1277 1278 sc = md->mdo_softc; 1279 verb = gctl_get_param(req, "verb", NULL); 1280 nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs)); 1281 error = 0; 1282 if (strcmp(verb, "label") == 0) { 1283 1284 if (*nargs < 4) { 1285 gctl_error(req, "Invalid number of arguments."); 1286 return (-1); 1287 } 1288 volname = gctl_get_asciiparam(req, "arg1"); 1289 if (volname == NULL) { 1290 gctl_error(req, "No volume name."); 1291 return (-2); 1292 } 1293 levelname = gctl_get_asciiparam(req, "arg2"); 1294 if (levelname == NULL) { 1295 gctl_error(req, "No RAID level."); 1296 return (-3); 1297 } 1298 if (strcasecmp(levelname, "RAID5") == 0) 1299 levelname = "RAID5-LA"; 1300 if (g_raid_volume_str2level(levelname, &level, &qual)) { 1301 gctl_error(req, "Unknown RAID level '%s'.", levelname); 1302 return (-4); 1303 } 1304 numdisks = *nargs - 3; 1305 force = gctl_get_paraml(req, "force", sizeof(*force)); 1306 if (!g_raid_md_promise_supported(level, qual, numdisks, 1307 force ? *force : 0)) { 1308 gctl_error(req, "Unsupported RAID level " 1309 "(0x%02x/0x%02x), or number of disks (%d).", 1310 level, qual, numdisks); 1311 return (-5); 1312 } 1313 1314 /* Search for disks, connect them and probe. */ 1315 size = INT64_MAX; 1316 sectorsize = 0; 1317 bzero(disks, sizeof(disks)); 1318 bzero(offs, sizeof(offs)); 1319 for (i = 0; i < numdisks; i++) { 1320 snprintf(arg, sizeof(arg), "arg%d", i + 3); 1321 diskname = gctl_get_asciiparam(req, arg); 1322 if (diskname == NULL) { 1323 gctl_error(req, "No disk name (%s).", arg); 1324 error = -6; 1325 break; 1326 } 1327 if (strcmp(diskname, "NONE") == 0) 1328 continue; 1329 1330 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 1331 if (disk->d_consumer != NULL && 1332 disk->d_consumer->provider != NULL && 1333 strcmp(disk->d_consumer->provider->name, 1334 diskname) == 0) 1335 break; 1336 } 1337 if (disk != NULL) { 1338 if (disk->d_state != G_RAID_DISK_S_ACTIVE) { 1339 gctl_error(req, "Disk '%s' is in a " 1340 "wrong state (%s).", diskname, 1341 g_raid_disk_state2str(disk->d_state)); 1342 error = -7; 1343 break; 1344 } 1345 pd = disk->d_md_data; 1346 if (pd->pd_subdisks >= PROMISE_MAX_SUBDISKS) { 1347 gctl_error(req, "Disk '%s' already " 1348 "used by %d volumes.", 1349 diskname, pd->pd_subdisks); 1350 error = -7; 1351 break; 1352 } 1353 pp = disk->d_consumer->provider; 1354 disks[i] = disk; 1355 promise_meta_unused_range(pd->pd_meta, 1356 pd->pd_subdisks, 1357 pp->mediasize / pp->sectorsize, 1358 &offs[i], &esize); 1359 size = MIN(size, (off_t)esize * pp->sectorsize); 1360 sectorsize = MAX(sectorsize, pp->sectorsize); 1361 continue; 1362 } 1363 1364 g_topology_lock(); 1365 cp = g_raid_open_consumer(sc, diskname); 1366 if (cp == NULL) { 1367 gctl_error(req, "Can't open disk '%s'.", 1368 diskname); 1369 g_topology_unlock(); 1370 error = -8; 1371 break; 1372 } 1373 pp = cp->provider; 1374 pd = malloc(sizeof(*pd), M_MD_PROMISE, M_WAITOK | M_ZERO); 1375 disk = g_raid_create_disk(sc); 1376 disk->d_md_data = (void *)pd; 1377 disk->d_consumer = cp; 1378 disks[i] = disk; 1379 cp->private = disk; 1380 g_topology_unlock(); 1381 1382 g_raid_get_disk_info(disk); 1383 1384 /* Reserve some space for metadata. */ 1385 size = MIN(size, pp->mediasize - 131072llu * pp->sectorsize); 1386 sectorsize = MAX(sectorsize, pp->sectorsize); 1387 } 1388 if (error != 0) { 1389 for (i = 0; i < numdisks; i++) { 1390 if (disks[i] != NULL && 1391 disks[i]->d_state == G_RAID_DISK_S_NONE) 1392 g_raid_destroy_disk(disks[i]); 1393 } 1394 return (error); 1395 } 1396 1397 if (sectorsize <= 0) { 1398 gctl_error(req, "Can't get sector size."); 1399 return (-8); 1400 } 1401 1402 /* Handle size argument. */ 1403 len = sizeof(*sizearg); 1404 sizearg = gctl_get_param(req, "size", &len); 1405 if (sizearg != NULL && len == sizeof(*sizearg) && 1406 *sizearg > 0) { 1407 if (*sizearg > size) { 1408 gctl_error(req, "Size too big %lld > %lld.", 1409 (long long)*sizearg, (long long)size); 1410 return (-9); 1411 } 1412 size = *sizearg; 1413 } 1414 1415 /* Handle strip argument. */ 1416 strip = 131072; 1417 len = sizeof(*striparg); 1418 striparg = gctl_get_param(req, "strip", &len); 1419 if (striparg != NULL && len == sizeof(*striparg) && 1420 *striparg > 0) { 1421 if (*striparg < sectorsize) { 1422 gctl_error(req, "Strip size too small."); 1423 return (-10); 1424 } 1425 if (*striparg % sectorsize != 0) { 1426 gctl_error(req, "Incorrect strip size."); 1427 return (-11); 1428 } 1429 strip = *striparg; 1430 } 1431 1432 /* Round size down to strip or sector. */ 1433 if (level == G_RAID_VOLUME_RL_RAID1 || 1434 level == G_RAID_VOLUME_RL_SINGLE || 1435 level == G_RAID_VOLUME_RL_CONCAT) 1436 size -= (size % sectorsize); 1437 else if (level == G_RAID_VOLUME_RL_RAID1E && 1438 (numdisks & 1) != 0) 1439 size -= (size % (2 * strip)); 1440 else 1441 size -= (size % strip); 1442 if (size <= 0) { 1443 gctl_error(req, "Size too small."); 1444 return (-13); 1445 } 1446 1447 /* We have all we need, create things: volume, ... */ 1448 pv = malloc(sizeof(*pv), M_MD_PROMISE, M_WAITOK | M_ZERO); 1449 arc4rand(&pv->pv_id, sizeof(pv->pv_id), 0); 1450 pv->pv_generation = 0; 1451 pv->pv_started = 1; 1452 vol = g_raid_create_volume(sc, volname, -1); 1453 vol->v_md_data = pv; 1454 vol->v_raid_level = level; 1455 vol->v_raid_level_qualifier = qual; 1456 vol->v_strip_size = strip; 1457 vol->v_disks_count = numdisks; 1458 if (level == G_RAID_VOLUME_RL_RAID0 || 1459 level == G_RAID_VOLUME_RL_CONCAT || 1460 level == G_RAID_VOLUME_RL_SINGLE) 1461 vol->v_mediasize = size * numdisks; 1462 else if (level == G_RAID_VOLUME_RL_RAID1) 1463 vol->v_mediasize = size; 1464 else if (level == G_RAID_VOLUME_RL_RAID3 || 1465 level == G_RAID_VOLUME_RL_RAID5) 1466 vol->v_mediasize = size * (numdisks - 1); 1467 else { /* RAID1E */ 1468 vol->v_mediasize = ((size * numdisks) / strip / 2) * 1469 strip; 1470 } 1471 vol->v_sectorsize = sectorsize; 1472 g_raid_start_volume(vol); 1473 1474 /* , and subdisks. */ 1475 for (i = 0; i < numdisks; i++) { 1476 disk = disks[i]; 1477 sd = &vol->v_subdisks[i]; 1478 sd->sd_disk = disk; 1479 sd->sd_offset = (off_t)offs[i] * 512; 1480 sd->sd_size = size; 1481 if (disk == NULL) 1482 continue; 1483 TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next); 1484 g_raid_change_disk_state(disk, 1485 G_RAID_DISK_S_ACTIVE); 1486 g_raid_change_subdisk_state(sd, 1487 G_RAID_SUBDISK_S_ACTIVE); 1488 g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW, 1489 G_RAID_EVENT_SUBDISK); 1490 } 1491 1492 /* Write metadata based on created entities. */ 1493 G_RAID_DEBUG1(0, sc, "Array started."); 1494 g_raid_md_write_promise(md, vol, NULL, NULL); 1495 1496 /* Pickup any STALE/SPARE disks to refill array if needed. */ 1497 g_raid_md_promise_refill(sc); 1498 1499 g_raid_event_send(vol, G_RAID_VOLUME_E_START, 1500 G_RAID_EVENT_VOLUME); 1501 return (0); 1502 } 1503 if (strcmp(verb, "add") == 0) { 1504 1505 gctl_error(req, "`add` command is not applicable, " 1506 "use `label` instead."); 1507 return (-99); 1508 } 1509 if (strcmp(verb, "delete") == 0) { 1510 1511 nodename = gctl_get_asciiparam(req, "arg0"); 1512 if (nodename != NULL && strcasecmp(sc->sc_name, nodename) != 0) 1513 nodename = NULL; 1514 1515 /* Full node destruction. */ 1516 if (*nargs == 1 && nodename != NULL) { 1517 /* Check if some volume is still open. */ 1518 force = gctl_get_paraml(req, "force", sizeof(*force)); 1519 if (force != NULL && *force == 0 && 1520 g_raid_nopens(sc) != 0) { 1521 gctl_error(req, "Some volume is still open."); 1522 return (-4); 1523 } 1524 1525 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 1526 if (disk->d_consumer) 1527 promise_meta_erase(disk->d_consumer); 1528 } 1529 g_raid_destroy_node(sc, 0); 1530 return (0); 1531 } 1532 1533 /* Destroy specified volume. If it was last - all node. */ 1534 if (*nargs > 2) { 1535 gctl_error(req, "Invalid number of arguments."); 1536 return (-1); 1537 } 1538 volname = gctl_get_asciiparam(req, 1539 nodename != NULL ? "arg1" : "arg0"); 1540 if (volname == NULL) { 1541 gctl_error(req, "No volume name."); 1542 return (-2); 1543 } 1544 1545 /* Search for volume. */ 1546 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 1547 if (strcmp(vol->v_name, volname) == 0) 1548 break; 1549 pp = vol->v_provider; 1550 if (pp == NULL) 1551 continue; 1552 if (strcmp(pp->name, volname) == 0) 1553 break; 1554 if (strncmp(pp->name, "raid/", 5) == 0 && 1555 strcmp(pp->name + 5, volname) == 0) 1556 break; 1557 } 1558 if (vol == NULL) { 1559 i = strtol(volname, &tmp, 10); 1560 if (verb != volname && tmp[0] == 0) { 1561 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 1562 if (vol->v_global_id == i) 1563 break; 1564 } 1565 } 1566 } 1567 if (vol == NULL) { 1568 gctl_error(req, "Volume '%s' not found.", volname); 1569 return (-3); 1570 } 1571 1572 /* Check if volume is still open. */ 1573 force = gctl_get_paraml(req, "force", sizeof(*force)); 1574 if (force != NULL && *force == 0 && 1575 vol->v_provider_open != 0) { 1576 gctl_error(req, "Volume is still open."); 1577 return (-4); 1578 } 1579 1580 /* Destroy volume and potentially node. */ 1581 i = 0; 1582 TAILQ_FOREACH(vol1, &sc->sc_volumes, v_next) 1583 i++; 1584 if (i >= 2) { 1585 g_raid_destroy_volume(vol); 1586 g_raid_md_promise_purge_disks(sc); 1587 g_raid_md_write_promise(md, NULL, NULL, NULL); 1588 } else { 1589 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 1590 if (disk->d_consumer) 1591 promise_meta_erase(disk->d_consumer); 1592 } 1593 g_raid_destroy_node(sc, 0); 1594 } 1595 return (0); 1596 } 1597 if (strcmp(verb, "remove") == 0 || 1598 strcmp(verb, "fail") == 0) { 1599 if (*nargs < 2) { 1600 gctl_error(req, "Invalid number of arguments."); 1601 return (-1); 1602 } 1603 for (i = 1; i < *nargs; i++) { 1604 snprintf(arg, sizeof(arg), "arg%d", i); 1605 diskname = gctl_get_asciiparam(req, arg); 1606 if (diskname == NULL) { 1607 gctl_error(req, "No disk name (%s).", arg); 1608 error = -2; 1609 break; 1610 } 1611 if (strncmp(diskname, "/dev/", 5) == 0) 1612 diskname += 5; 1613 1614 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 1615 if (disk->d_consumer != NULL && 1616 disk->d_consumer->provider != NULL && 1617 strcmp(disk->d_consumer->provider->name, 1618 diskname) == 0) 1619 break; 1620 } 1621 if (disk == NULL) { 1622 gctl_error(req, "Disk '%s' not found.", 1623 diskname); 1624 error = -3; 1625 break; 1626 } 1627 1628 if (strcmp(verb, "fail") == 0) { 1629 g_raid_md_fail_disk_promise(md, NULL, disk); 1630 continue; 1631 } 1632 1633 /* Erase metadata on deleting disk and destroy it. */ 1634 promise_meta_erase(disk->d_consumer); 1635 g_raid_destroy_disk(disk); 1636 } 1637 g_raid_md_promise_purge_volumes(sc); 1638 1639 /* Write updated metadata to remaining disks. */ 1640 g_raid_md_write_promise(md, NULL, NULL, NULL); 1641 1642 /* Check if anything left. */ 1643 if (g_raid_ndisks(sc, -1) == 0) 1644 g_raid_destroy_node(sc, 0); 1645 else 1646 g_raid_md_promise_refill(sc); 1647 return (error); 1648 } 1649 if (strcmp(verb, "insert") == 0) { 1650 if (*nargs < 2) { 1651 gctl_error(req, "Invalid number of arguments."); 1652 return (-1); 1653 } 1654 for (i = 1; i < *nargs; i++) { 1655 /* Get disk name. */ 1656 snprintf(arg, sizeof(arg), "arg%d", i); 1657 diskname = gctl_get_asciiparam(req, arg); 1658 if (diskname == NULL) { 1659 gctl_error(req, "No disk name (%s).", arg); 1660 error = -3; 1661 break; 1662 } 1663 1664 /* Try to find provider with specified name. */ 1665 g_topology_lock(); 1666 cp = g_raid_open_consumer(sc, diskname); 1667 if (cp == NULL) { 1668 gctl_error(req, "Can't open disk '%s'.", 1669 diskname); 1670 g_topology_unlock(); 1671 error = -4; 1672 break; 1673 } 1674 pp = cp->provider; 1675 g_topology_unlock(); 1676 1677 pd = malloc(sizeof(*pd), M_MD_PROMISE, M_WAITOK | M_ZERO); 1678 1679 disk = g_raid_create_disk(sc); 1680 disk->d_consumer = cp; 1681 disk->d_md_data = (void *)pd; 1682 cp->private = disk; 1683 1684 g_raid_get_disk_info(disk); 1685 1686 /* Welcome the "new" disk. */ 1687 g_raid_change_disk_state(disk, G_RAID_DISK_S_SPARE); 1688 promise_meta_write_spare(cp); 1689 g_raid_md_promise_refill(sc); 1690 } 1691 return (error); 1692 } 1693 return (-100); 1694 } 1695 1696 static int 1697 g_raid_md_write_promise(struct g_raid_md_object *md, struct g_raid_volume *tvol, 1698 struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk) 1699 { 1700 struct g_raid_softc *sc; 1701 struct g_raid_volume *vol; 1702 struct g_raid_subdisk *sd; 1703 struct g_raid_disk *disk; 1704 struct g_raid_md_promise_perdisk *pd; 1705 struct g_raid_md_promise_pervolume *pv; 1706 struct promise_raid_conf *meta; 1707 off_t rebuild_lba64; 1708 int i, j, pos, rebuild; 1709 1710 sc = md->mdo_softc; 1711 1712 if (sc->sc_stopping == G_RAID_DESTROY_HARD) 1713 return (0); 1714 1715 /* Generate new per-volume metadata for affected volumes. */ 1716 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 1717 if (vol->v_stopping) 1718 continue; 1719 1720 /* Skip volumes not related to specified targets. */ 1721 if (tvol != NULL && vol != tvol) 1722 continue; 1723 if (tsd != NULL && vol != tsd->sd_volume) 1724 continue; 1725 if (tdisk != NULL) { 1726 for (i = 0; i < vol->v_disks_count; i++) { 1727 if (vol->v_subdisks[i].sd_disk == tdisk) 1728 break; 1729 } 1730 if (i >= vol->v_disks_count) 1731 continue; 1732 } 1733 1734 pv = (struct g_raid_md_promise_pervolume *)vol->v_md_data; 1735 pv->pv_generation++; 1736 1737 meta = malloc(sizeof(*meta), M_MD_PROMISE, M_WAITOK | M_ZERO); 1738 if (pv->pv_meta != NULL) 1739 memcpy(meta, pv->pv_meta, sizeof(*meta)); 1740 memcpy(meta->promise_id, PROMISE_MAGIC, 1741 sizeof(PROMISE_MAGIC) - 1); 1742 meta->dummy_0 = 0x00020000; 1743 meta->integrity = PROMISE_I_VALID; 1744 1745 meta->generation = pv->pv_generation; 1746 meta->status = PROMISE_S_VALID | PROMISE_S_ONLINE | 1747 PROMISE_S_INITED | PROMISE_S_READY; 1748 if (vol->v_state <= G_RAID_VOLUME_S_DEGRADED) 1749 meta->status |= PROMISE_S_DEGRADED; 1750 if (vol->v_dirty) 1751 meta->status |= PROMISE_S_MARKED; /* XXX: INVENTED! */ 1752 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID0 || 1753 vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE) 1754 meta->type = PROMISE_T_RAID0; 1755 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 || 1756 vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E) 1757 meta->type = PROMISE_T_RAID1; 1758 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3) 1759 meta->type = PROMISE_T_RAID3; 1760 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID5) 1761 meta->type = PROMISE_T_RAID5; 1762 else if (vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT) 1763 meta->type = PROMISE_T_SPAN; 1764 else 1765 meta->type = PROMISE_T_JBOD; 1766 meta->total_disks = vol->v_disks_count; 1767 meta->stripe_shift = ffs(vol->v_strip_size / 1024); 1768 meta->array_width = vol->v_disks_count; 1769 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 || 1770 vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E) 1771 meta->array_width /= 2; 1772 meta->array_number = vol->v_global_id; 1773 meta->total_sectors = vol->v_mediasize / 512; 1774 meta->total_sectors_high = (vol->v_mediasize / 512) >> 32; 1775 meta->sector_size = vol->v_sectorsize / 512; 1776 meta->cylinders = meta->total_sectors / (255 * 63) - 1; 1777 meta->heads = 254; 1778 meta->sectors = 63; 1779 meta->volume_id = pv->pv_id; 1780 rebuild_lba64 = UINT64_MAX; 1781 rebuild = 0; 1782 for (i = 0; i < vol->v_disks_count; i++) { 1783 sd = &vol->v_subdisks[i]; 1784 /* For RAID0+1 we need to translate order. */ 1785 pos = promise_meta_translate_disk(vol, i); 1786 meta->disks[pos].flags = PROMISE_F_VALID | 1787 PROMISE_F_ASSIGNED; 1788 if (sd->sd_state == G_RAID_SUBDISK_S_NONE) { 1789 meta->disks[pos].flags |= 0; 1790 } else if (sd->sd_state == G_RAID_SUBDISK_S_FAILED) { 1791 meta->disks[pos].flags |= 1792 PROMISE_F_DOWN | PROMISE_F_REDIR; 1793 } else if (sd->sd_state <= G_RAID_SUBDISK_S_REBUILD) { 1794 meta->disks[pos].flags |= 1795 PROMISE_F_ONLINE | PROMISE_F_REDIR; 1796 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD) { 1797 rebuild_lba64 = MIN(rebuild_lba64, 1798 sd->sd_rebuild_pos / 512); 1799 } else 1800 rebuild_lba64 = 0; 1801 rebuild = 1; 1802 } else { 1803 meta->disks[pos].flags |= PROMISE_F_ONLINE; 1804 if (sd->sd_state < G_RAID_SUBDISK_S_ACTIVE) { 1805 meta->status |= PROMISE_S_MARKED; 1806 if (sd->sd_state == G_RAID_SUBDISK_S_RESYNC) { 1807 rebuild_lba64 = MIN(rebuild_lba64, 1808 sd->sd_rebuild_pos / 512); 1809 } else 1810 rebuild_lba64 = 0; 1811 } 1812 } 1813 if (pv->pv_meta != NULL) { 1814 meta->disks[pos].id = pv->pv_meta->disks[pos].id; 1815 } else { 1816 meta->disks[pos].number = i * 2; 1817 arc4rand(&meta->disks[pos].id, 1818 sizeof(meta->disks[pos].id), 0); 1819 } 1820 } 1821 promise_meta_put_name(meta, vol->v_name); 1822 1823 /* Try to mimic AMD BIOS rebuild/resync behavior. */ 1824 if (rebuild_lba64 != UINT64_MAX) { 1825 if (rebuild) 1826 meta->magic_3 = 0x03040010UL; /* Rebuild? */ 1827 else 1828 meta->magic_3 = 0x03040008UL; /* Resync? */ 1829 /* Translate from per-disk to per-volume LBA. */ 1830 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 || 1831 vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E) { 1832 rebuild_lba64 *= meta->array_width; 1833 } else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3 || 1834 vol->v_raid_level == G_RAID_VOLUME_RL_RAID5) { 1835 rebuild_lba64 *= meta->array_width - 1; 1836 } else 1837 rebuild_lba64 = 0; 1838 } else 1839 meta->magic_3 = 0x03000000UL; 1840 meta->rebuild_lba64 = rebuild_lba64; 1841 meta->magic_4 = 0x04010101UL; 1842 1843 /* Replace per-volume metadata with new. */ 1844 if (pv->pv_meta != NULL) 1845 free(pv->pv_meta, M_MD_PROMISE); 1846 pv->pv_meta = meta; 1847 1848 /* Copy new metadata to the disks, adding or replacing old. */ 1849 for (i = 0; i < vol->v_disks_count; i++) { 1850 sd = &vol->v_subdisks[i]; 1851 disk = sd->sd_disk; 1852 if (disk == NULL) 1853 continue; 1854 /* For RAID0+1 we need to translate order. */ 1855 pos = promise_meta_translate_disk(vol, i); 1856 pd = (struct g_raid_md_promise_perdisk *)disk->d_md_data; 1857 for (j = 0; j < pd->pd_subdisks; j++) { 1858 if (pd->pd_meta[j]->volume_id == meta->volume_id) 1859 break; 1860 } 1861 if (j == pd->pd_subdisks) 1862 pd->pd_subdisks++; 1863 if (pd->pd_meta[j] != NULL) 1864 free(pd->pd_meta[j], M_MD_PROMISE); 1865 pd->pd_meta[j] = promise_meta_copy(meta); 1866 pd->pd_meta[j]->disk = meta->disks[pos]; 1867 pd->pd_meta[j]->disk.number = pos; 1868 pd->pd_meta[j]->disk_offset_high = 1869 (sd->sd_offset / 512) >> 32; 1870 pd->pd_meta[j]->disk_offset = sd->sd_offset / 512; 1871 pd->pd_meta[j]->disk_sectors_high = 1872 (sd->sd_size / 512) >> 32; 1873 pd->pd_meta[j]->disk_sectors = sd->sd_size / 512; 1874 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD) { 1875 pd->pd_meta[j]->disk_rebuild_high = 1876 (sd->sd_rebuild_pos / 512) >> 32; 1877 pd->pd_meta[j]->disk_rebuild = 1878 sd->sd_rebuild_pos / 512; 1879 } else if (sd->sd_state < G_RAID_SUBDISK_S_REBUILD) { 1880 pd->pd_meta[j]->disk_rebuild_high = 0; 1881 pd->pd_meta[j]->disk_rebuild = 0; 1882 } else { 1883 pd->pd_meta[j]->disk_rebuild_high = UINT32_MAX; 1884 pd->pd_meta[j]->disk_rebuild = UINT32_MAX; 1885 } 1886 pd->pd_updated = 1; 1887 } 1888 } 1889 1890 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 1891 pd = (struct g_raid_md_promise_perdisk *)disk->d_md_data; 1892 if (disk->d_state != G_RAID_DISK_S_ACTIVE) 1893 continue; 1894 if (!pd->pd_updated) 1895 continue; 1896 G_RAID_DEBUG(1, "Writing Promise metadata to %s", 1897 g_raid_get_diskname(disk)); 1898 for (i = 0; i < pd->pd_subdisks; i++) 1899 g_raid_md_promise_print(pd->pd_meta[i]); 1900 promise_meta_write(disk->d_consumer, 1901 pd->pd_meta, pd->pd_subdisks); 1902 pd->pd_updated = 0; 1903 } 1904 1905 return (0); 1906 } 1907 1908 static int 1909 g_raid_md_fail_disk_promise(struct g_raid_md_object *md, 1910 struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk) 1911 { 1912 struct g_raid_softc *sc; 1913 struct g_raid_md_promise_perdisk *pd; 1914 struct g_raid_subdisk *sd; 1915 int i, pos; 1916 1917 sc = md->mdo_softc; 1918 pd = (struct g_raid_md_promise_perdisk *)tdisk->d_md_data; 1919 1920 /* We can't fail disk that is not a part of array now. */ 1921 if (tdisk->d_state != G_RAID_DISK_S_ACTIVE) 1922 return (-1); 1923 1924 /* 1925 * Mark disk as failed in metadata and try to write that metadata 1926 * to the disk itself to prevent it's later resurrection as STALE. 1927 */ 1928 if (pd->pd_subdisks > 0 && tdisk->d_consumer != NULL) 1929 G_RAID_DEBUG(1, "Writing Promise metadata to %s", 1930 g_raid_get_diskname(tdisk)); 1931 for (i = 0; i < pd->pd_subdisks; i++) { 1932 pd->pd_meta[i]->disk.flags |= 1933 PROMISE_F_DOWN | PROMISE_F_REDIR; 1934 pos = pd->pd_meta[i]->disk.number; 1935 if (pos >= 0 && pos < PROMISE_MAX_DISKS) { 1936 pd->pd_meta[i]->disks[pos].flags |= 1937 PROMISE_F_DOWN | PROMISE_F_REDIR; 1938 } 1939 g_raid_md_promise_print(pd->pd_meta[i]); 1940 } 1941 if (tdisk->d_consumer != NULL) 1942 promise_meta_write(tdisk->d_consumer, 1943 pd->pd_meta, pd->pd_subdisks); 1944 1945 /* Change states. */ 1946 g_raid_change_disk_state(tdisk, G_RAID_DISK_S_FAILED); 1947 TAILQ_FOREACH(sd, &tdisk->d_subdisks, sd_next) { 1948 g_raid_change_subdisk_state(sd, 1949 G_RAID_SUBDISK_S_FAILED); 1950 g_raid_event_send(sd, G_RAID_SUBDISK_E_FAILED, 1951 G_RAID_EVENT_SUBDISK); 1952 } 1953 1954 /* Write updated metadata to remaining disks. */ 1955 g_raid_md_write_promise(md, NULL, NULL, tdisk); 1956 1957 g_raid_md_promise_refill(sc); 1958 return (0); 1959 } 1960 1961 static int 1962 g_raid_md_free_disk_promise(struct g_raid_md_object *md, 1963 struct g_raid_disk *disk) 1964 { 1965 struct g_raid_md_promise_perdisk *pd; 1966 int i; 1967 1968 pd = (struct g_raid_md_promise_perdisk *)disk->d_md_data; 1969 for (i = 0; i < pd->pd_subdisks; i++) { 1970 if (pd->pd_meta[i] != NULL) { 1971 free(pd->pd_meta[i], M_MD_PROMISE); 1972 pd->pd_meta[i] = NULL; 1973 } 1974 } 1975 free(pd, M_MD_PROMISE); 1976 disk->d_md_data = NULL; 1977 return (0); 1978 } 1979 1980 static int 1981 g_raid_md_free_volume_promise(struct g_raid_md_object *md, 1982 struct g_raid_volume *vol) 1983 { 1984 struct g_raid_md_promise_pervolume *pv; 1985 1986 pv = (struct g_raid_md_promise_pervolume *)vol->v_md_data; 1987 if (pv && pv->pv_meta != NULL) { 1988 free(pv->pv_meta, M_MD_PROMISE); 1989 pv->pv_meta = NULL; 1990 } 1991 if (pv && !pv->pv_started) { 1992 pv->pv_started = 1; 1993 callout_stop(&pv->pv_start_co); 1994 } 1995 free(pv, M_MD_PROMISE); 1996 vol->v_md_data = NULL; 1997 return (0); 1998 } 1999 2000 static int 2001 g_raid_md_free_promise(struct g_raid_md_object *md) 2002 { 2003 2004 return (0); 2005 } 2006 2007 G_RAID_MD_DECLARE(promise, "Promise"); 2008