1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/bio.h> 34 #include <sys/diskmbr.h> 35 #include <sys/gsb_crc32.h> 36 #include <sys/endian.h> 37 #include <sys/gpt.h> 38 #include <sys/kernel.h> 39 #include <sys/kobj.h> 40 #include <sys/limits.h> 41 #include <sys/lock.h> 42 #include <sys/malloc.h> 43 #include <sys/mutex.h> 44 #include <sys/queue.h> 45 #include <sys/sbuf.h> 46 #include <sys/systm.h> 47 #include <sys/sysctl.h> 48 #include <sys/uuid.h> 49 #include <geom/geom.h> 50 #include <geom/geom_int.h> 51 #include <geom/part/g_part.h> 52 53 #include "g_part_if.h" 54 55 FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support"); 56 57 SYSCTL_DECL(_kern_geom_part); 58 static SYSCTL_NODE(_kern_geom_part, OID_AUTO, gpt, 59 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 60 "GEOM_PART_GPT GUID Partition Table"); 61 62 static u_int allow_nesting = 0; 63 SYSCTL_UINT(_kern_geom_part_gpt, OID_AUTO, allow_nesting, 64 CTLFLAG_RWTUN, &allow_nesting, 0, "Allow GPT to be nested inside other schemes"); 65 66 CTASSERT(offsetof(struct gpt_hdr, padding) == 92); 67 CTASSERT(sizeof(struct gpt_ent) == 128); 68 69 #define EQUUID(a,b) (memcmp(a, b, sizeof(struct uuid)) == 0) 70 71 #define MBRSIZE 512 72 73 enum gpt_elt { 74 GPT_ELT_PRIHDR, 75 GPT_ELT_PRITBL, 76 GPT_ELT_SECHDR, 77 GPT_ELT_SECTBL, 78 GPT_ELT_COUNT 79 }; 80 81 enum gpt_state { 82 GPT_STATE_UNKNOWN, /* Not determined. */ 83 GPT_STATE_MISSING, /* No signature found. */ 84 GPT_STATE_CORRUPT, /* Checksum mismatch. */ 85 GPT_STATE_INVALID, /* Nonconformant/invalid. */ 86 GPT_STATE_OK /* Perfectly fine. */ 87 }; 88 89 struct g_part_gpt_table { 90 struct g_part_table base; 91 u_char mbr[MBRSIZE]; 92 struct gpt_hdr *hdr; 93 quad_t lba[GPT_ELT_COUNT]; 94 enum gpt_state state[GPT_ELT_COUNT]; 95 int bootcamp; 96 }; 97 98 struct g_part_gpt_entry { 99 struct g_part_entry base; 100 struct gpt_ent ent; 101 }; 102 103 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t); 104 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t); 105 static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *); 106 107 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *, 108 struct g_part_parms *); 109 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *); 110 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *); 111 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *); 112 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *, 113 struct sbuf *, const char *); 114 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *); 115 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *, 116 struct g_part_parms *); 117 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *, 118 char *, size_t); 119 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *); 120 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *); 121 static int g_part_gpt_setunset(struct g_part_table *table, 122 struct g_part_entry *baseentry, const char *attrib, unsigned int set); 123 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *, 124 char *, size_t); 125 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *); 126 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *, 127 struct g_part_parms *); 128 static int g_part_gpt_recover(struct g_part_table *); 129 130 static kobj_method_t g_part_gpt_methods[] = { 131 KOBJMETHOD(g_part_add, g_part_gpt_add), 132 KOBJMETHOD(g_part_bootcode, g_part_gpt_bootcode), 133 KOBJMETHOD(g_part_create, g_part_gpt_create), 134 KOBJMETHOD(g_part_destroy, g_part_gpt_destroy), 135 KOBJMETHOD(g_part_dumpconf, g_part_gpt_dumpconf), 136 KOBJMETHOD(g_part_dumpto, g_part_gpt_dumpto), 137 KOBJMETHOD(g_part_modify, g_part_gpt_modify), 138 KOBJMETHOD(g_part_resize, g_part_gpt_resize), 139 KOBJMETHOD(g_part_name, g_part_gpt_name), 140 KOBJMETHOD(g_part_probe, g_part_gpt_probe), 141 KOBJMETHOD(g_part_read, g_part_gpt_read), 142 KOBJMETHOD(g_part_recover, g_part_gpt_recover), 143 KOBJMETHOD(g_part_setunset, g_part_gpt_setunset), 144 KOBJMETHOD(g_part_type, g_part_gpt_type), 145 KOBJMETHOD(g_part_write, g_part_gpt_write), 146 { 0, 0 } 147 }; 148 149 static struct g_part_scheme g_part_gpt_scheme = { 150 "GPT", 151 g_part_gpt_methods, 152 sizeof(struct g_part_gpt_table), 153 .gps_entrysz = sizeof(struct g_part_gpt_entry), 154 .gps_minent = 128, 155 .gps_maxent = 4096, 156 .gps_bootcodesz = MBRSIZE, 157 }; 158 G_PART_SCHEME_DECLARE(g_part_gpt); 159 MODULE_VERSION(geom_part_gpt, 0); 160 161 static struct uuid gpt_uuid_apple_apfs = GPT_ENT_TYPE_APPLE_APFS; 162 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT; 163 static struct uuid gpt_uuid_apple_core_storage = 164 GPT_ENT_TYPE_APPLE_CORE_STORAGE; 165 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS; 166 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL; 167 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID; 168 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE; 169 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY; 170 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS; 171 static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT; 172 static struct uuid gpt_uuid_chromeos_firmware = GPT_ENT_TYPE_CHROMEOS_FIRMWARE; 173 static struct uuid gpt_uuid_chromeos_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL; 174 static struct uuid gpt_uuid_chromeos_reserved = GPT_ENT_TYPE_CHROMEOS_RESERVED; 175 static struct uuid gpt_uuid_chromeos_root = GPT_ENT_TYPE_CHROMEOS_ROOT; 176 static struct uuid gpt_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD; 177 static struct uuid gpt_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER; 178 static struct uuid gpt_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2; 179 static struct uuid gpt_uuid_dfbsd_label32 = GPT_ENT_TYPE_DRAGONFLY_LABEL32; 180 static struct uuid gpt_uuid_dfbsd_label64 = GPT_ENT_TYPE_DRAGONFLY_LABEL64; 181 static struct uuid gpt_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY; 182 static struct uuid gpt_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP; 183 static struct uuid gpt_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1; 184 static struct uuid gpt_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM; 185 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI; 186 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD; 187 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT; 188 static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS; 189 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP; 190 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS; 191 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM; 192 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS; 193 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA; 194 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM; 195 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID; 196 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP; 197 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR; 198 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA; 199 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA; 200 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA; 201 static struct uuid gpt_uuid_ms_recovery = GPT_ENT_TYPE_MS_RECOVERY; 202 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED; 203 static struct uuid gpt_uuid_ms_spaces = GPT_ENT_TYPE_MS_SPACES; 204 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD; 205 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD; 206 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS; 207 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS; 208 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID; 209 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP; 210 static struct uuid gpt_uuid_openbsd_data = GPT_ENT_TYPE_OPENBSD_DATA; 211 static struct uuid gpt_uuid_prep_boot = GPT_ENT_TYPE_PREP_BOOT; 212 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED; 213 static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS; 214 static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG; 215 static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED; 216 static struct uuid gpt_uuid_vmvsanhdr = GPT_ENT_TYPE_VMVSANHDR; 217 218 static struct g_part_uuid_alias { 219 struct uuid *uuid; 220 int alias; 221 int mbrtype; 222 } gpt_uuid_alias_match[] = { 223 { &gpt_uuid_apple_apfs, G_PART_ALIAS_APPLE_APFS, 0 }, 224 { &gpt_uuid_apple_boot, G_PART_ALIAS_APPLE_BOOT, 0xab }, 225 { &gpt_uuid_apple_core_storage, G_PART_ALIAS_APPLE_CORE_STORAGE, 0 }, 226 { &gpt_uuid_apple_hfs, G_PART_ALIAS_APPLE_HFS, 0xaf }, 227 { &gpt_uuid_apple_label, G_PART_ALIAS_APPLE_LABEL, 0 }, 228 { &gpt_uuid_apple_raid, G_PART_ALIAS_APPLE_RAID, 0 }, 229 { &gpt_uuid_apple_raid_offline, G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 }, 230 { &gpt_uuid_apple_tv_recovery, G_PART_ALIAS_APPLE_TV_RECOVERY, 0 }, 231 { &gpt_uuid_apple_ufs, G_PART_ALIAS_APPLE_UFS, 0 }, 232 { &gpt_uuid_bios_boot, G_PART_ALIAS_BIOS_BOOT, 0 }, 233 { &gpt_uuid_chromeos_firmware, G_PART_ALIAS_CHROMEOS_FIRMWARE, 0 }, 234 { &gpt_uuid_chromeos_kernel, G_PART_ALIAS_CHROMEOS_KERNEL, 0 }, 235 { &gpt_uuid_chromeos_reserved, G_PART_ALIAS_CHROMEOS_RESERVED, 0 }, 236 { &gpt_uuid_chromeos_root, G_PART_ALIAS_CHROMEOS_ROOT, 0 }, 237 { &gpt_uuid_dfbsd_ccd, G_PART_ALIAS_DFBSD_CCD, 0 }, 238 { &gpt_uuid_dfbsd_hammer, G_PART_ALIAS_DFBSD_HAMMER, 0 }, 239 { &gpt_uuid_dfbsd_hammer2, G_PART_ALIAS_DFBSD_HAMMER2, 0 }, 240 { &gpt_uuid_dfbsd_label32, G_PART_ALIAS_DFBSD, 0xa5 }, 241 { &gpt_uuid_dfbsd_label64, G_PART_ALIAS_DFBSD64, 0xa5 }, 242 { &gpt_uuid_dfbsd_legacy, G_PART_ALIAS_DFBSD_LEGACY, 0 }, 243 { &gpt_uuid_dfbsd_swap, G_PART_ALIAS_DFBSD_SWAP, 0 }, 244 { &gpt_uuid_dfbsd_ufs1, G_PART_ALIAS_DFBSD_UFS, 0 }, 245 { &gpt_uuid_dfbsd_vinum, G_PART_ALIAS_DFBSD_VINUM, 0 }, 246 { &gpt_uuid_efi, G_PART_ALIAS_EFI, 0xee }, 247 { &gpt_uuid_freebsd, G_PART_ALIAS_FREEBSD, 0xa5 }, 248 { &gpt_uuid_freebsd_boot, G_PART_ALIAS_FREEBSD_BOOT, 0 }, 249 { &gpt_uuid_freebsd_nandfs, G_PART_ALIAS_FREEBSD_NANDFS, 0 }, 250 { &gpt_uuid_freebsd_swap, G_PART_ALIAS_FREEBSD_SWAP, 0 }, 251 { &gpt_uuid_freebsd_ufs, G_PART_ALIAS_FREEBSD_UFS, 0 }, 252 { &gpt_uuid_freebsd_vinum, G_PART_ALIAS_FREEBSD_VINUM, 0 }, 253 { &gpt_uuid_freebsd_zfs, G_PART_ALIAS_FREEBSD_ZFS, 0 }, 254 { &gpt_uuid_linux_data, G_PART_ALIAS_LINUX_DATA, 0x0b }, 255 { &gpt_uuid_linux_lvm, G_PART_ALIAS_LINUX_LVM, 0 }, 256 { &gpt_uuid_linux_raid, G_PART_ALIAS_LINUX_RAID, 0 }, 257 { &gpt_uuid_linux_swap, G_PART_ALIAS_LINUX_SWAP, 0 }, 258 { &gpt_uuid_mbr, G_PART_ALIAS_MBR, 0 }, 259 { &gpt_uuid_ms_basic_data, G_PART_ALIAS_MS_BASIC_DATA, 0x0b }, 260 { &gpt_uuid_ms_ldm_data, G_PART_ALIAS_MS_LDM_DATA, 0 }, 261 { &gpt_uuid_ms_ldm_metadata, G_PART_ALIAS_MS_LDM_METADATA, 0 }, 262 { &gpt_uuid_ms_recovery, G_PART_ALIAS_MS_RECOVERY, 0 }, 263 { &gpt_uuid_ms_reserved, G_PART_ALIAS_MS_RESERVED, 0 }, 264 { &gpt_uuid_ms_spaces, G_PART_ALIAS_MS_SPACES, 0 }, 265 { &gpt_uuid_netbsd_ccd, G_PART_ALIAS_NETBSD_CCD, 0 }, 266 { &gpt_uuid_netbsd_cgd, G_PART_ALIAS_NETBSD_CGD, 0 }, 267 { &gpt_uuid_netbsd_ffs, G_PART_ALIAS_NETBSD_FFS, 0 }, 268 { &gpt_uuid_netbsd_lfs, G_PART_ALIAS_NETBSD_LFS, 0 }, 269 { &gpt_uuid_netbsd_raid, G_PART_ALIAS_NETBSD_RAID, 0 }, 270 { &gpt_uuid_netbsd_swap, G_PART_ALIAS_NETBSD_SWAP, 0 }, 271 { &gpt_uuid_openbsd_data, G_PART_ALIAS_OPENBSD_DATA, 0 }, 272 { &gpt_uuid_prep_boot, G_PART_ALIAS_PREP_BOOT, 0x41 }, 273 { &gpt_uuid_vmfs, G_PART_ALIAS_VMFS, 0 }, 274 { &gpt_uuid_vmkdiag, G_PART_ALIAS_VMKDIAG, 0 }, 275 { &gpt_uuid_vmreserved, G_PART_ALIAS_VMRESERVED, 0 }, 276 { &gpt_uuid_vmvsanhdr, G_PART_ALIAS_VMVSANHDR, 0 }, 277 { NULL, 0, 0 } 278 }; 279 280 static int 281 gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start, 282 quad_t end) 283 { 284 285 if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX) 286 return (EINVAL); 287 288 mbr += DOSPARTOFF + idx * DOSPARTSIZE; 289 mbr[0] = 0; 290 if (start == 1) { 291 /* 292 * Treat the PMBR partition specially to maximize 293 * interoperability with BIOSes. 294 */ 295 mbr[1] = mbr[3] = 0; 296 mbr[2] = 2; 297 } else 298 mbr[1] = mbr[2] = mbr[3] = 0xff; 299 mbr[4] = typ; 300 mbr[5] = mbr[6] = mbr[7] = 0xff; 301 le32enc(mbr + 8, (uint32_t)start); 302 le32enc(mbr + 12, (uint32_t)(end - start + 1)); 303 return (0); 304 } 305 306 static int 307 gpt_map_type(struct uuid *t) 308 { 309 struct g_part_uuid_alias *uap; 310 311 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 312 if (EQUUID(t, uap->uuid)) 313 return (uap->mbrtype); 314 } 315 return (0); 316 } 317 318 static void 319 gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp) 320 { 321 322 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 323 gpt_write_mbr_entry(table->mbr, 0, 0xee, 1, 324 MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX)); 325 le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC); 326 } 327 328 /* 329 * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the 330 * whole disk anymore. Rather, it covers the GPT table and the EFI 331 * system partition only. This way the HFS+ partition and any FAT 332 * partitions can be added to the MBR without creating an overlap. 333 */ 334 static int 335 gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname) 336 { 337 uint8_t *p; 338 339 p = table->mbr + DOSPARTOFF; 340 if (p[4] != 0xee || le32dec(p + 8) != 1) 341 return (0); 342 343 p += DOSPARTSIZE; 344 if (p[4] != 0xaf) 345 return (0); 346 347 printf("GEOM: %s: enabling Boot Camp\n", provname); 348 return (1); 349 } 350 351 static void 352 gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp) 353 { 354 struct g_part_entry *baseentry; 355 struct g_part_gpt_entry *entry; 356 struct g_part_gpt_table *table; 357 int bootable, error, index, slices, typ; 358 359 table = (struct g_part_gpt_table *)basetable; 360 361 bootable = -1; 362 for (index = 0; index < NDOSPART; index++) { 363 if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index]) 364 bootable = index; 365 } 366 367 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 368 slices = 0; 369 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 370 if (baseentry->gpe_deleted) 371 continue; 372 index = baseentry->gpe_index - 1; 373 if (index >= NDOSPART) 374 continue; 375 376 entry = (struct g_part_gpt_entry *)baseentry; 377 378 switch (index) { 379 case 0: /* This must be the EFI system partition. */ 380 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi)) 381 goto disable; 382 error = gpt_write_mbr_entry(table->mbr, index, 0xee, 383 1ull, entry->ent.ent_lba_end); 384 break; 385 case 1: /* This must be the HFS+ partition. */ 386 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs)) 387 goto disable; 388 error = gpt_write_mbr_entry(table->mbr, index, 0xaf, 389 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 390 break; 391 default: 392 typ = gpt_map_type(&entry->ent.ent_type); 393 error = gpt_write_mbr_entry(table->mbr, index, typ, 394 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 395 break; 396 } 397 if (error) 398 continue; 399 400 if (index == bootable) 401 table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80; 402 slices |= 1 << index; 403 } 404 if ((slices & 3) == 3) 405 return; 406 407 disable: 408 table->bootcamp = 0; 409 gpt_create_pmbr(table, pp); 410 } 411 412 static struct gpt_hdr * 413 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp, 414 enum gpt_elt elt) 415 { 416 struct gpt_hdr *buf, *hdr; 417 struct g_provider *pp; 418 quad_t lba, last; 419 int error; 420 uint32_t crc, sz; 421 422 pp = cp->provider; 423 last = (pp->mediasize / pp->sectorsize) - 1; 424 table->state[elt] = GPT_STATE_MISSING; 425 /* 426 * If the primary header is valid look for secondary 427 * header in AlternateLBA, otherwise in the last medium's LBA. 428 */ 429 if (elt == GPT_ELT_SECHDR) { 430 if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK) 431 table->lba[elt] = last; 432 } else 433 table->lba[elt] = 1; 434 buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize, 435 &error); 436 if (buf == NULL) 437 return (NULL); 438 hdr = NULL; 439 if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0) 440 goto fail; 441 442 table->state[elt] = GPT_STATE_CORRUPT; 443 sz = le32toh(buf->hdr_size); 444 if (sz < 92 || sz > pp->sectorsize) 445 goto fail; 446 447 hdr = g_malloc(sz, M_WAITOK | M_ZERO); 448 bcopy(buf, hdr, sz); 449 hdr->hdr_size = sz; 450 451 crc = le32toh(buf->hdr_crc_self); 452 buf->hdr_crc_self = 0; 453 if (crc32(buf, sz) != crc) 454 goto fail; 455 hdr->hdr_crc_self = crc; 456 457 table->state[elt] = GPT_STATE_INVALID; 458 hdr->hdr_revision = le32toh(buf->hdr_revision); 459 if (hdr->hdr_revision < GPT_HDR_REVISION) 460 goto fail; 461 hdr->hdr_lba_self = le64toh(buf->hdr_lba_self); 462 if (hdr->hdr_lba_self != table->lba[elt]) 463 goto fail; 464 hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt); 465 if (hdr->hdr_lba_alt == hdr->hdr_lba_self || 466 hdr->hdr_lba_alt > last) 467 goto fail; 468 469 /* Check the managed area. */ 470 hdr->hdr_lba_start = le64toh(buf->hdr_lba_start); 471 if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last) 472 goto fail; 473 hdr->hdr_lba_end = le64toh(buf->hdr_lba_end); 474 if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last) 475 goto fail; 476 477 /* Check the table location and size of the table. */ 478 hdr->hdr_entries = le32toh(buf->hdr_entries); 479 hdr->hdr_entsz = le32toh(buf->hdr_entsz); 480 if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 || 481 (hdr->hdr_entsz & 7) != 0) 482 goto fail; 483 hdr->hdr_lba_table = le64toh(buf->hdr_lba_table); 484 if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last) 485 goto fail; 486 if (hdr->hdr_lba_table >= hdr->hdr_lba_start && 487 hdr->hdr_lba_table <= hdr->hdr_lba_end) 488 goto fail; 489 lba = hdr->hdr_lba_table + 490 howmany(hdr->hdr_entries * hdr->hdr_entsz, pp->sectorsize) - 1; 491 if (lba >= last) 492 goto fail; 493 if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end) 494 goto fail; 495 496 table->state[elt] = GPT_STATE_OK; 497 le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid); 498 hdr->hdr_crc_table = le32toh(buf->hdr_crc_table); 499 500 /* save LBA for secondary header */ 501 if (elt == GPT_ELT_PRIHDR) 502 table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt; 503 504 g_free(buf); 505 return (hdr); 506 507 fail: 508 if (hdr != NULL) 509 g_free(hdr); 510 g_free(buf); 511 return (NULL); 512 } 513 514 static struct gpt_ent * 515 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp, 516 enum gpt_elt elt, struct gpt_hdr *hdr) 517 { 518 struct g_provider *pp; 519 struct gpt_ent *ent, *tbl; 520 char *buf, *p; 521 unsigned int idx, sectors, tblsz, size; 522 int error; 523 524 if (hdr == NULL) 525 return (NULL); 526 527 pp = cp->provider; 528 table->lba[elt] = hdr->hdr_lba_table; 529 530 table->state[elt] = GPT_STATE_MISSING; 531 tblsz = hdr->hdr_entries * hdr->hdr_entsz; 532 sectors = howmany(tblsz, pp->sectorsize); 533 buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO); 534 for (idx = 0; idx < sectors; idx += MAXPHYS / pp->sectorsize) { 535 size = (sectors - idx > MAXPHYS / pp->sectorsize) ? MAXPHYS: 536 (sectors - idx) * pp->sectorsize; 537 p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize, 538 size, &error); 539 if (p == NULL) { 540 g_free(buf); 541 return (NULL); 542 } 543 bcopy(p, buf + idx * pp->sectorsize, size); 544 g_free(p); 545 } 546 table->state[elt] = GPT_STATE_CORRUPT; 547 if (crc32(buf, tblsz) != hdr->hdr_crc_table) { 548 g_free(buf); 549 return (NULL); 550 } 551 552 table->state[elt] = GPT_STATE_OK; 553 tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent), 554 M_WAITOK | M_ZERO); 555 556 for (idx = 0, ent = tbl, p = buf; 557 idx < hdr->hdr_entries; 558 idx++, ent++, p += hdr->hdr_entsz) { 559 le_uuid_dec(p, &ent->ent_type); 560 le_uuid_dec(p + 16, &ent->ent_uuid); 561 ent->ent_lba_start = le64dec(p + 32); 562 ent->ent_lba_end = le64dec(p + 40); 563 ent->ent_attr = le64dec(p + 48); 564 /* Keep UTF-16 in little-endian. */ 565 bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name)); 566 } 567 568 g_free(buf); 569 return (tbl); 570 } 571 572 static int 573 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec) 574 { 575 576 if (pri == NULL || sec == NULL) 577 return (0); 578 579 if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid)) 580 return (0); 581 return ((pri->hdr_revision == sec->hdr_revision && 582 pri->hdr_size == sec->hdr_size && 583 pri->hdr_lba_start == sec->hdr_lba_start && 584 pri->hdr_lba_end == sec->hdr_lba_end && 585 pri->hdr_entries == sec->hdr_entries && 586 pri->hdr_entsz == sec->hdr_entsz && 587 pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0); 588 } 589 590 static int 591 gpt_parse_type(const char *type, struct uuid *uuid) 592 { 593 struct uuid tmp; 594 const char *alias; 595 int error; 596 struct g_part_uuid_alias *uap; 597 598 if (type[0] == '!') { 599 error = parse_uuid(type + 1, &tmp); 600 if (error) 601 return (error); 602 if (EQUUID(&tmp, &gpt_uuid_unused)) 603 return (EINVAL); 604 *uuid = tmp; 605 return (0); 606 } 607 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 608 alias = g_part_alias_name(uap->alias); 609 if (!strcasecmp(type, alias)) { 610 *uuid = *uap->uuid; 611 return (0); 612 } 613 } 614 return (EINVAL); 615 } 616 617 static int 618 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry, 619 struct g_part_parms *gpp) 620 { 621 struct g_part_gpt_entry *entry; 622 int error; 623 624 entry = (struct g_part_gpt_entry *)baseentry; 625 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 626 if (error) 627 return (error); 628 kern_uuidgen(&entry->ent.ent_uuid, 1); 629 entry->ent.ent_lba_start = baseentry->gpe_start; 630 entry->ent.ent_lba_end = baseentry->gpe_end; 631 if (baseentry->gpe_deleted) { 632 entry->ent.ent_attr = 0; 633 bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name)); 634 } 635 if (gpp->gpp_parms & G_PART_PARM_LABEL) 636 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 637 sizeof(entry->ent.ent_name) / 638 sizeof(entry->ent.ent_name[0])); 639 return (0); 640 } 641 642 static int 643 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp) 644 { 645 struct g_part_gpt_table *table; 646 size_t codesz; 647 648 codesz = DOSPARTOFF; 649 table = (struct g_part_gpt_table *)basetable; 650 bzero(table->mbr, codesz); 651 codesz = MIN(codesz, gpp->gpp_codesize); 652 if (codesz > 0) 653 bcopy(gpp->gpp_codeptr, table->mbr, codesz); 654 return (0); 655 } 656 657 static int 658 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp) 659 { 660 struct g_provider *pp; 661 struct g_part_gpt_table *table; 662 size_t tblsz; 663 664 /* Our depth should be 0 unless nesting was explicitly enabled. */ 665 if (!allow_nesting && basetable->gpt_depth != 0) 666 return (ENXIO); 667 668 table = (struct g_part_gpt_table *)basetable; 669 pp = gpp->gpp_provider; 670 tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent), 671 pp->sectorsize); 672 if (pp->sectorsize < MBRSIZE || 673 pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) * 674 pp->sectorsize) 675 return (ENOSPC); 676 677 gpt_create_pmbr(table, pp); 678 679 /* Allocate space for the header */ 680 table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO); 681 682 bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 683 table->hdr->hdr_revision = GPT_HDR_REVISION; 684 table->hdr->hdr_size = offsetof(struct gpt_hdr, padding); 685 kern_uuidgen(&table->hdr->hdr_uuid, 1); 686 table->hdr->hdr_entries = basetable->gpt_entries; 687 table->hdr->hdr_entsz = sizeof(struct gpt_ent); 688 689 g_gpt_set_defaults(basetable, pp); 690 return (0); 691 } 692 693 static int 694 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp) 695 { 696 struct g_part_gpt_table *table; 697 struct g_provider *pp; 698 699 table = (struct g_part_gpt_table *)basetable; 700 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 701 g_free(table->hdr); 702 table->hdr = NULL; 703 704 /* 705 * Wipe the first 2 sectors and last one to clear the partitioning. 706 * Wipe sectors only if they have valid metadata. 707 */ 708 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) 709 basetable->gpt_smhead |= 3; 710 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 711 table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1) 712 basetable->gpt_smtail |= 1; 713 return (0); 714 } 715 716 static void 717 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry, 718 struct sbuf *sb, const char *indent) 719 { 720 struct g_part_gpt_entry *entry; 721 722 entry = (struct g_part_gpt_entry *)baseentry; 723 if (indent == NULL) { 724 /* conftxt: libdisk compatibility */ 725 sbuf_cat(sb, " xs GPT xt "); 726 sbuf_printf_uuid(sb, &entry->ent.ent_type); 727 } else if (entry != NULL) { 728 /* confxml: partition entry information */ 729 sbuf_printf(sb, "%s<label>", indent); 730 g_gpt_printf_utf16(sb, entry->ent.ent_name, 731 sizeof(entry->ent.ent_name) >> 1); 732 sbuf_cat(sb, "</label>\n"); 733 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME) 734 sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent); 735 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) { 736 sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n", 737 indent); 738 } 739 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) { 740 sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n", 741 indent); 742 } 743 sbuf_printf(sb, "%s<rawtype>", indent); 744 sbuf_printf_uuid(sb, &entry->ent.ent_type); 745 sbuf_cat(sb, "</rawtype>\n"); 746 sbuf_printf(sb, "%s<rawuuid>", indent); 747 sbuf_printf_uuid(sb, &entry->ent.ent_uuid); 748 sbuf_cat(sb, "</rawuuid>\n"); 749 sbuf_printf(sb, "%s<efimedia>", indent); 750 sbuf_printf(sb, "HD(%d,GPT,", entry->base.gpe_index); 751 sbuf_printf_uuid(sb, &entry->ent.ent_uuid); 752 sbuf_printf(sb, ",%#jx,%#jx)", (intmax_t)entry->base.gpe_start, 753 (intmax_t)(entry->base.gpe_end - entry->base.gpe_start + 1)); 754 sbuf_cat(sb, "</efimedia>\n"); 755 } else { 756 /* confxml: scheme information */ 757 } 758 } 759 760 static int 761 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry) 762 { 763 struct g_part_gpt_entry *entry; 764 765 entry = (struct g_part_gpt_entry *)baseentry; 766 return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) || 767 EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap) || 768 EQUUID(&entry->ent.ent_type, &gpt_uuid_dfbsd_swap)) ? 1 : 0); 769 } 770 771 static int 772 g_part_gpt_modify(struct g_part_table *basetable, 773 struct g_part_entry *baseentry, struct g_part_parms *gpp) 774 { 775 struct g_part_gpt_entry *entry; 776 int error; 777 778 entry = (struct g_part_gpt_entry *)baseentry; 779 if (gpp->gpp_parms & G_PART_PARM_TYPE) { 780 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 781 if (error) 782 return (error); 783 } 784 if (gpp->gpp_parms & G_PART_PARM_LABEL) 785 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 786 sizeof(entry->ent.ent_name) / 787 sizeof(entry->ent.ent_name[0])); 788 return (0); 789 } 790 791 static int 792 g_part_gpt_resize(struct g_part_table *basetable, 793 struct g_part_entry *baseentry, struct g_part_parms *gpp) 794 { 795 struct g_part_gpt_entry *entry; 796 797 if (baseentry == NULL) 798 return (g_part_gpt_recover(basetable)); 799 800 entry = (struct g_part_gpt_entry *)baseentry; 801 baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1; 802 entry->ent.ent_lba_end = baseentry->gpe_end; 803 804 return (0); 805 } 806 807 static const char * 808 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry, 809 char *buf, size_t bufsz) 810 { 811 struct g_part_gpt_entry *entry; 812 char c; 813 814 entry = (struct g_part_gpt_entry *)baseentry; 815 c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p'; 816 snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index); 817 return (buf); 818 } 819 820 static int 821 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp) 822 { 823 struct g_provider *pp; 824 u_char *buf; 825 int error, index, pri, res; 826 827 /* Our depth should be 0 unless nesting was explicitly enabled. */ 828 if (!allow_nesting && table->gpt_depth != 0) 829 return (ENXIO); 830 831 pp = cp->provider; 832 833 /* 834 * Sanity-check the provider. Since the first sector on the provider 835 * must be a PMBR and a PMBR is 512 bytes large, the sector size 836 * must be at least 512 bytes. Also, since the theoretical minimum 837 * number of sectors needed by GPT is 6, any medium that has less 838 * than 6 sectors is never going to be able to hold a GPT. The 839 * number 6 comes from: 840 * 1 sector for the PMBR 841 * 2 sectors for the GPT headers (each 1 sector) 842 * 2 sectors for the GPT tables (each 1 sector) 843 * 1 sector for an actual partition 844 * It's better to catch this pathological case early than behaving 845 * pathologically later on... 846 */ 847 if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize) 848 return (ENOSPC); 849 850 /* 851 * Check that there's a MBR or a PMBR. If it's a PMBR, we return 852 * as the highest priority on a match, otherwise we assume some 853 * GPT-unaware tool has destroyed the GPT by recreating a MBR and 854 * we really want the MBR scheme to take precedence. 855 */ 856 buf = g_read_data(cp, 0L, pp->sectorsize, &error); 857 if (buf == NULL) 858 return (error); 859 res = le16dec(buf + DOSMAGICOFFSET); 860 pri = G_PART_PROBE_PRI_LOW; 861 if (res == DOSMAGIC) { 862 for (index = 0; index < NDOSPART; index++) { 863 if (buf[DOSPARTOFF + DOSPARTSIZE * index + 4] == 0xee) 864 pri = G_PART_PROBE_PRI_HIGH; 865 } 866 g_free(buf); 867 868 /* Check that there's a primary header. */ 869 buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error); 870 if (buf == NULL) 871 return (error); 872 res = memcmp(buf, GPT_HDR_SIG, 8); 873 g_free(buf); 874 if (res == 0) 875 return (pri); 876 } else 877 g_free(buf); 878 879 /* No primary? Check that there's a secondary. */ 880 buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, 881 &error); 882 if (buf == NULL) 883 return (error); 884 res = memcmp(buf, GPT_HDR_SIG, 8); 885 g_free(buf); 886 return ((res == 0) ? pri : ENXIO); 887 } 888 889 static int 890 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp) 891 { 892 struct gpt_hdr *prihdr, *sechdr; 893 struct gpt_ent *tbl, *pritbl, *sectbl; 894 struct g_provider *pp; 895 struct g_part_gpt_table *table; 896 struct g_part_gpt_entry *entry; 897 u_char *buf; 898 uint64_t last; 899 int error, index; 900 901 table = (struct g_part_gpt_table *)basetable; 902 pp = cp->provider; 903 last = (pp->mediasize / pp->sectorsize) - 1; 904 905 /* Read the PMBR */ 906 buf = g_read_data(cp, 0, pp->sectorsize, &error); 907 if (buf == NULL) 908 return (error); 909 bcopy(buf, table->mbr, MBRSIZE); 910 g_free(buf); 911 912 /* Read the primary header and table. */ 913 prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR); 914 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) { 915 pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr); 916 } else { 917 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 918 pritbl = NULL; 919 } 920 921 /* Read the secondary header and table. */ 922 sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR); 923 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) { 924 sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr); 925 } else { 926 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 927 sectbl = NULL; 928 } 929 930 /* Fail if we haven't got any good tables at all. */ 931 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK && 932 table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 933 printf("GEOM: %s: corrupt or invalid GPT detected.\n", 934 pp->name); 935 printf("GEOM: %s: GPT rejected -- may not be recoverable.\n", 936 pp->name); 937 if (prihdr != NULL) 938 g_free(prihdr); 939 if (pritbl != NULL) 940 g_free(pritbl); 941 if (sechdr != NULL) 942 g_free(sechdr); 943 if (sectbl != NULL) 944 g_free(sectbl); 945 return (EINVAL); 946 } 947 948 /* 949 * If both headers are good but they disagree with each other, 950 * then invalidate one. We prefer to keep the primary header, 951 * unless the primary table is corrupt. 952 */ 953 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK && 954 table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 955 !gpt_matched_hdrs(prihdr, sechdr)) { 956 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) { 957 table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID; 958 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 959 g_free(sechdr); 960 sechdr = NULL; 961 } else { 962 table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID; 963 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 964 g_free(prihdr); 965 prihdr = NULL; 966 } 967 } 968 969 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) { 970 printf("GEOM: %s: the primary GPT table is corrupt or " 971 "invalid.\n", pp->name); 972 printf("GEOM: %s: using the secondary instead -- recovery " 973 "strongly advised.\n", pp->name); 974 table->hdr = sechdr; 975 basetable->gpt_corrupt = 1; 976 if (prihdr != NULL) 977 g_free(prihdr); 978 tbl = sectbl; 979 if (pritbl != NULL) 980 g_free(pritbl); 981 } else { 982 if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 983 printf("GEOM: %s: the secondary GPT table is corrupt " 984 "or invalid.\n", pp->name); 985 printf("GEOM: %s: using the primary only -- recovery " 986 "suggested.\n", pp->name); 987 basetable->gpt_corrupt = 1; 988 } else if (table->lba[GPT_ELT_SECHDR] != last) { 989 printf( "GEOM: %s: the secondary GPT header is not in " 990 "the last LBA.\n", pp->name); 991 basetable->gpt_corrupt = 1; 992 } 993 table->hdr = prihdr; 994 if (sechdr != NULL) 995 g_free(sechdr); 996 tbl = pritbl; 997 if (sectbl != NULL) 998 g_free(sectbl); 999 } 1000 1001 basetable->gpt_first = table->hdr->hdr_lba_start; 1002 basetable->gpt_last = table->hdr->hdr_lba_end; 1003 basetable->gpt_entries = table->hdr->hdr_entries; 1004 1005 for (index = basetable->gpt_entries - 1; index >= 0; index--) { 1006 if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused)) 1007 continue; 1008 entry = (struct g_part_gpt_entry *)g_part_new_entry( 1009 basetable, index + 1, tbl[index].ent_lba_start, 1010 tbl[index].ent_lba_end); 1011 entry->ent = tbl[index]; 1012 } 1013 1014 g_free(tbl); 1015 1016 /* 1017 * Under Mac OS X, the MBR mirrors the first 4 GPT partitions 1018 * if (and only if) any FAT32 or FAT16 partitions have been 1019 * created. This happens irrespective of whether Boot Camp is 1020 * used/enabled, though it's generally understood to be done 1021 * to support legacy Windows under Boot Camp. We refer to this 1022 * mirroring simply as Boot Camp. We try to detect Boot Camp 1023 * so that we can update the MBR if and when GPT changes have 1024 * been made. Note that we do not enable Boot Camp if not 1025 * previously enabled because we can't assume that we're on a 1026 * Mac alongside Mac OS X. 1027 */ 1028 table->bootcamp = gpt_is_bootcamp(table, pp->name); 1029 1030 return (0); 1031 } 1032 1033 static int 1034 g_part_gpt_recover(struct g_part_table *basetable) 1035 { 1036 struct g_part_gpt_table *table; 1037 struct g_provider *pp; 1038 1039 table = (struct g_part_gpt_table *)basetable; 1040 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 1041 gpt_create_pmbr(table, pp); 1042 g_gpt_set_defaults(basetable, pp); 1043 basetable->gpt_corrupt = 0; 1044 return (0); 1045 } 1046 1047 static int 1048 g_part_gpt_setunset(struct g_part_table *basetable, 1049 struct g_part_entry *baseentry, const char *attrib, unsigned int set) 1050 { 1051 struct g_part_gpt_entry *entry; 1052 struct g_part_gpt_table *table; 1053 struct g_provider *pp; 1054 uint8_t *p; 1055 uint64_t attr; 1056 int i; 1057 1058 table = (struct g_part_gpt_table *)basetable; 1059 entry = (struct g_part_gpt_entry *)baseentry; 1060 1061 if (strcasecmp(attrib, "active") == 0) { 1062 if (table->bootcamp) { 1063 /* The active flag must be set on a valid entry. */ 1064 if (entry == NULL) 1065 return (ENXIO); 1066 if (baseentry->gpe_index > NDOSPART) 1067 return (EINVAL); 1068 for (i = 0; i < NDOSPART; i++) { 1069 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 1070 p[0] = (i == baseentry->gpe_index - 1) 1071 ? ((set) ? 0x80 : 0) : 0; 1072 } 1073 } else { 1074 /* The PMBR is marked as active without an entry. */ 1075 if (entry != NULL) 1076 return (ENXIO); 1077 for (i = 0; i < NDOSPART; i++) { 1078 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 1079 p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0; 1080 } 1081 } 1082 return (0); 1083 } else if (strcasecmp(attrib, "lenovofix") == 0) { 1084 /* 1085 * Write the 0xee GPT entry to slot #1 (2nd slot) in the pMBR. 1086 * This workaround allows Lenovo X220, T420, T520, etc to boot 1087 * from GPT Partitions in BIOS mode. 1088 */ 1089 1090 if (entry != NULL) 1091 return (ENXIO); 1092 1093 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 1094 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 1095 gpt_write_mbr_entry(table->mbr, ((set) ? 1 : 0), 0xee, 1, 1096 MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX)); 1097 return (0); 1098 } 1099 1100 if (entry == NULL) 1101 return (ENODEV); 1102 1103 attr = 0; 1104 if (strcasecmp(attrib, "bootme") == 0) { 1105 attr |= GPT_ENT_ATTR_BOOTME; 1106 } else if (strcasecmp(attrib, "bootonce") == 0) { 1107 attr |= GPT_ENT_ATTR_BOOTONCE; 1108 if (set) 1109 attr |= GPT_ENT_ATTR_BOOTME; 1110 } else if (strcasecmp(attrib, "bootfailed") == 0) { 1111 /* 1112 * It should only be possible to unset BOOTFAILED, but it might 1113 * be useful for test purposes to also be able to set it. 1114 */ 1115 attr |= GPT_ENT_ATTR_BOOTFAILED; 1116 } 1117 if (attr == 0) 1118 return (EINVAL); 1119 1120 if (set) 1121 attr = entry->ent.ent_attr | attr; 1122 else 1123 attr = entry->ent.ent_attr & ~attr; 1124 if (attr != entry->ent.ent_attr) { 1125 entry->ent.ent_attr = attr; 1126 if (!baseentry->gpe_created) 1127 baseentry->gpe_modified = 1; 1128 } 1129 return (0); 1130 } 1131 1132 static const char * 1133 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry, 1134 char *buf, size_t bufsz) 1135 { 1136 struct g_part_gpt_entry *entry; 1137 struct uuid *type; 1138 struct g_part_uuid_alias *uap; 1139 1140 entry = (struct g_part_gpt_entry *)baseentry; 1141 type = &entry->ent.ent_type; 1142 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) 1143 if (EQUUID(type, uap->uuid)) 1144 return (g_part_alias_name(uap->alias)); 1145 buf[0] = '!'; 1146 snprintf_uuid(buf + 1, bufsz - 1, type); 1147 1148 return (buf); 1149 } 1150 1151 static int 1152 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp) 1153 { 1154 unsigned char *buf, *bp; 1155 struct g_provider *pp; 1156 struct g_part_entry *baseentry; 1157 struct g_part_gpt_entry *entry; 1158 struct g_part_gpt_table *table; 1159 size_t tblsz; 1160 uint32_t crc; 1161 int error, index; 1162 1163 pp = cp->provider; 1164 table = (struct g_part_gpt_table *)basetable; 1165 tblsz = howmany(table->hdr->hdr_entries * table->hdr->hdr_entsz, 1166 pp->sectorsize); 1167 1168 /* Reconstruct the MBR from the GPT if under Boot Camp. */ 1169 if (table->bootcamp) 1170 gpt_update_bootcamp(basetable, pp); 1171 1172 /* Write the PMBR */ 1173 buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO); 1174 bcopy(table->mbr, buf, MBRSIZE); 1175 error = g_write_data(cp, 0, buf, pp->sectorsize); 1176 g_free(buf); 1177 if (error) 1178 return (error); 1179 1180 /* Allocate space for the header and entries. */ 1181 buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO); 1182 1183 memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 1184 le32enc(buf + 8, table->hdr->hdr_revision); 1185 le32enc(buf + 12, table->hdr->hdr_size); 1186 le64enc(buf + 40, table->hdr->hdr_lba_start); 1187 le64enc(buf + 48, table->hdr->hdr_lba_end); 1188 le_uuid_enc(buf + 56, &table->hdr->hdr_uuid); 1189 le32enc(buf + 80, table->hdr->hdr_entries); 1190 le32enc(buf + 84, table->hdr->hdr_entsz); 1191 1192 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1193 if (baseentry->gpe_deleted) 1194 continue; 1195 entry = (struct g_part_gpt_entry *)baseentry; 1196 index = baseentry->gpe_index - 1; 1197 bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index; 1198 le_uuid_enc(bp, &entry->ent.ent_type); 1199 le_uuid_enc(bp + 16, &entry->ent.ent_uuid); 1200 le64enc(bp + 32, entry->ent.ent_lba_start); 1201 le64enc(bp + 40, entry->ent.ent_lba_end); 1202 le64enc(bp + 48, entry->ent.ent_attr); 1203 memcpy(bp + 56, entry->ent.ent_name, 1204 sizeof(entry->ent.ent_name)); 1205 } 1206 1207 crc = crc32(buf + pp->sectorsize, 1208 table->hdr->hdr_entries * table->hdr->hdr_entsz); 1209 le32enc(buf + 88, crc); 1210 1211 /* Write primary meta-data. */ 1212 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1213 le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_self. */ 1214 le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_alt. */ 1215 le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]); /* hdr_lba_table. */ 1216 crc = crc32(buf, table->hdr->hdr_size); 1217 le32enc(buf + 16, crc); 1218 1219 for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { 1220 error = g_write_data(cp, 1221 (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize, 1222 buf + (index + 1) * pp->sectorsize, 1223 (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: 1224 (tblsz - index) * pp->sectorsize); 1225 if (error) 1226 goto out; 1227 } 1228 error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize, 1229 buf, pp->sectorsize); 1230 if (error) 1231 goto out; 1232 1233 /* Write secondary meta-data. */ 1234 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1235 le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_self. */ 1236 le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_alt. */ 1237 le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]); /* hdr_lba_table. */ 1238 crc = crc32(buf, table->hdr->hdr_size); 1239 le32enc(buf + 16, crc); 1240 1241 for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { 1242 error = g_write_data(cp, 1243 (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize, 1244 buf + (index + 1) * pp->sectorsize, 1245 (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: 1246 (tblsz - index) * pp->sectorsize); 1247 if (error) 1248 goto out; 1249 } 1250 error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize, 1251 buf, pp->sectorsize); 1252 1253 out: 1254 g_free(buf); 1255 return (error); 1256 } 1257 1258 static void 1259 g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp) 1260 { 1261 struct g_part_entry *baseentry; 1262 struct g_part_gpt_entry *entry; 1263 struct g_part_gpt_table *table; 1264 quad_t start, end, min, max; 1265 quad_t lba, last; 1266 size_t spb, tblsz; 1267 1268 table = (struct g_part_gpt_table *)basetable; 1269 last = pp->mediasize / pp->sectorsize - 1; 1270 tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent), 1271 pp->sectorsize); 1272 1273 table->lba[GPT_ELT_PRIHDR] = 1; 1274 table->lba[GPT_ELT_PRITBL] = 2; 1275 table->lba[GPT_ELT_SECHDR] = last; 1276 table->lba[GPT_ELT_SECTBL] = last - tblsz; 1277 table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK; 1278 table->state[GPT_ELT_PRITBL] = GPT_STATE_OK; 1279 table->state[GPT_ELT_SECHDR] = GPT_STATE_OK; 1280 table->state[GPT_ELT_SECTBL] = GPT_STATE_OK; 1281 1282 max = start = 2 + tblsz; 1283 min = end = last - tblsz - 1; 1284 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1285 if (baseentry->gpe_deleted) 1286 continue; 1287 entry = (struct g_part_gpt_entry *)baseentry; 1288 if (entry->ent.ent_lba_start < min) 1289 min = entry->ent.ent_lba_start; 1290 if (entry->ent.ent_lba_end > max) 1291 max = entry->ent.ent_lba_end; 1292 } 1293 spb = 4096 / pp->sectorsize; 1294 if (spb > 1) { 1295 lba = start + ((start % spb) ? spb - start % spb : 0); 1296 if (lba <= min) 1297 start = lba; 1298 lba = end - (end + 1) % spb; 1299 if (max <= lba) 1300 end = lba; 1301 } 1302 table->hdr->hdr_lba_start = start; 1303 table->hdr->hdr_lba_end = end; 1304 1305 basetable->gpt_first = start; 1306 basetable->gpt_last = end; 1307 } 1308 1309 static void 1310 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len) 1311 { 1312 u_int bo; 1313 uint32_t ch; 1314 uint16_t c; 1315 1316 bo = LITTLE_ENDIAN; /* GPT is little-endian */ 1317 while (len > 0 && *str != 0) { 1318 ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str); 1319 str++, len--; 1320 if ((ch & 0xf800) == 0xd800) { 1321 if (len > 0) { 1322 c = (bo == BIG_ENDIAN) ? be16toh(*str) 1323 : le16toh(*str); 1324 str++, len--; 1325 } else 1326 c = 0xfffd; 1327 if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) { 1328 ch = ((ch & 0x3ff) << 10) + (c & 0x3ff); 1329 ch += 0x10000; 1330 } else 1331 ch = 0xfffd; 1332 } else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */ 1333 bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN; 1334 continue; 1335 } else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */ 1336 continue; 1337 1338 /* Write the Unicode character in UTF-8 */ 1339 if (ch < 0x80) 1340 g_conf_printf_escaped(sb, "%c", ch); 1341 else if (ch < 0x800) 1342 g_conf_printf_escaped(sb, "%c%c", 0xc0 | (ch >> 6), 1343 0x80 | (ch & 0x3f)); 1344 else if (ch < 0x10000) 1345 g_conf_printf_escaped(sb, "%c%c%c", 0xe0 | (ch >> 12), 1346 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1347 else if (ch < 0x200000) 1348 g_conf_printf_escaped(sb, "%c%c%c%c", 0xf0 | 1349 (ch >> 18), 0x80 | ((ch >> 12) & 0x3f), 1350 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1351 } 1352 } 1353 1354 static void 1355 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len) 1356 { 1357 size_t s16idx, s8idx; 1358 uint32_t utfchar; 1359 unsigned int c, utfbytes; 1360 1361 s8idx = s16idx = 0; 1362 utfchar = 0; 1363 utfbytes = 0; 1364 bzero(s16, s16len << 1); 1365 while (s8[s8idx] != 0 && s16idx < s16len) { 1366 c = s8[s8idx++]; 1367 if ((c & 0xc0) != 0x80) { 1368 /* Initial characters. */ 1369 if (utfbytes != 0) { 1370 /* Incomplete encoding of previous char. */ 1371 s16[s16idx++] = htole16(0xfffd); 1372 } 1373 if ((c & 0xf8) == 0xf0) { 1374 utfchar = c & 0x07; 1375 utfbytes = 3; 1376 } else if ((c & 0xf0) == 0xe0) { 1377 utfchar = c & 0x0f; 1378 utfbytes = 2; 1379 } else if ((c & 0xe0) == 0xc0) { 1380 utfchar = c & 0x1f; 1381 utfbytes = 1; 1382 } else { 1383 utfchar = c & 0x7f; 1384 utfbytes = 0; 1385 } 1386 } else { 1387 /* Followup characters. */ 1388 if (utfbytes > 0) { 1389 utfchar = (utfchar << 6) + (c & 0x3f); 1390 utfbytes--; 1391 } else if (utfbytes == 0) 1392 utfbytes = ~0; 1393 } 1394 /* 1395 * Write the complete Unicode character as UTF-16 when we 1396 * have all the UTF-8 charactars collected. 1397 */ 1398 if (utfbytes == 0) { 1399 /* 1400 * If we need to write 2 UTF-16 characters, but 1401 * we only have room for 1, then we truncate the 1402 * string by writing a 0 instead. 1403 */ 1404 if (utfchar >= 0x10000 && s16idx < s16len - 1) { 1405 s16[s16idx++] = 1406 htole16(0xd800 | ((utfchar >> 10) - 0x40)); 1407 s16[s16idx++] = 1408 htole16(0xdc00 | (utfchar & 0x3ff)); 1409 } else 1410 s16[s16idx++] = (utfchar >= 0x10000) ? 0 : 1411 htole16(utfchar); 1412 } 1413 } 1414 /* 1415 * If our input string was truncated, append an invalid encoding 1416 * character to the output string. 1417 */ 1418 if (utfbytes != 0 && s16idx < s16len) 1419 s16[s16idx++] = htole16(0xfffd); 1420 } 1421