1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/bio.h> 34 #include <sys/diskmbr.h> 35 #include <sys/gsb_crc32.h> 36 #include <sys/endian.h> 37 #include <sys/gpt.h> 38 #include <sys/kernel.h> 39 #include <sys/kobj.h> 40 #include <sys/limits.h> 41 #include <sys/lock.h> 42 #include <sys/malloc.h> 43 #include <sys/mutex.h> 44 #include <sys/queue.h> 45 #include <sys/sbuf.h> 46 #include <sys/systm.h> 47 #include <sys/sysctl.h> 48 #include <sys/uuid.h> 49 #include <geom/geom.h> 50 #include <geom/geom_int.h> 51 #include <geom/part/g_part.h> 52 53 #include "g_part_if.h" 54 55 FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support"); 56 57 SYSCTL_DECL(_kern_geom_part); 58 static SYSCTL_NODE(_kern_geom_part, OID_AUTO, gpt, 59 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 60 "GEOM_PART_GPT GUID Partition Table"); 61 62 static u_int allow_nesting = 0; 63 SYSCTL_UINT(_kern_geom_part_gpt, OID_AUTO, allow_nesting, 64 CTLFLAG_RWTUN, &allow_nesting, 0, "Allow GPT to be nested inside other schemes"); 65 66 CTASSERT(offsetof(struct gpt_hdr, padding) == 92); 67 CTASSERT(sizeof(struct gpt_ent) == 128); 68 69 extern u_int geom_part_check_integrity; 70 71 #define EQUUID(a,b) (memcmp(a, b, sizeof(struct uuid)) == 0) 72 73 #define MBRSIZE 512 74 75 enum gpt_elt { 76 GPT_ELT_PRIHDR, 77 GPT_ELT_PRITBL, 78 GPT_ELT_SECHDR, 79 GPT_ELT_SECTBL, 80 GPT_ELT_COUNT 81 }; 82 83 enum gpt_state { 84 GPT_STATE_UNKNOWN, /* Not determined. */ 85 GPT_STATE_MISSING, /* No signature found. */ 86 GPT_STATE_CORRUPT, /* Checksum mismatch. */ 87 GPT_STATE_INVALID, /* Nonconformant/invalid. */ 88 GPT_STATE_OK /* Perfectly fine. */ 89 }; 90 91 struct g_part_gpt_table { 92 struct g_part_table base; 93 u_char mbr[MBRSIZE]; 94 struct gpt_hdr *hdr; 95 quad_t lba[GPT_ELT_COUNT]; 96 enum gpt_state state[GPT_ELT_COUNT]; 97 int bootcamp; 98 }; 99 100 struct g_part_gpt_entry { 101 struct g_part_entry base; 102 struct gpt_ent ent; 103 }; 104 105 static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t); 106 static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t); 107 static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *); 108 109 static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *, 110 struct g_part_parms *); 111 static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *); 112 static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *); 113 static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *); 114 static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *, 115 struct sbuf *, const char *); 116 static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *); 117 static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *, 118 struct g_part_parms *); 119 static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *, 120 char *, size_t); 121 static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *); 122 static int g_part_gpt_read(struct g_part_table *, struct g_consumer *); 123 static int g_part_gpt_setunset(struct g_part_table *table, 124 struct g_part_entry *baseentry, const char *attrib, unsigned int set); 125 static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *, 126 char *, size_t); 127 static int g_part_gpt_write(struct g_part_table *, struct g_consumer *); 128 static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *, 129 struct g_part_parms *); 130 static int g_part_gpt_recover(struct g_part_table *); 131 132 static kobj_method_t g_part_gpt_methods[] = { 133 KOBJMETHOD(g_part_add, g_part_gpt_add), 134 KOBJMETHOD(g_part_bootcode, g_part_gpt_bootcode), 135 KOBJMETHOD(g_part_create, g_part_gpt_create), 136 KOBJMETHOD(g_part_destroy, g_part_gpt_destroy), 137 KOBJMETHOD(g_part_dumpconf, g_part_gpt_dumpconf), 138 KOBJMETHOD(g_part_dumpto, g_part_gpt_dumpto), 139 KOBJMETHOD(g_part_modify, g_part_gpt_modify), 140 KOBJMETHOD(g_part_resize, g_part_gpt_resize), 141 KOBJMETHOD(g_part_name, g_part_gpt_name), 142 KOBJMETHOD(g_part_probe, g_part_gpt_probe), 143 KOBJMETHOD(g_part_read, g_part_gpt_read), 144 KOBJMETHOD(g_part_recover, g_part_gpt_recover), 145 KOBJMETHOD(g_part_setunset, g_part_gpt_setunset), 146 KOBJMETHOD(g_part_type, g_part_gpt_type), 147 KOBJMETHOD(g_part_write, g_part_gpt_write), 148 { 0, 0 } 149 }; 150 151 static struct g_part_scheme g_part_gpt_scheme = { 152 "GPT", 153 g_part_gpt_methods, 154 sizeof(struct g_part_gpt_table), 155 .gps_entrysz = sizeof(struct g_part_gpt_entry), 156 .gps_minent = 128, 157 .gps_maxent = 4096, 158 .gps_bootcodesz = MBRSIZE, 159 }; 160 G_PART_SCHEME_DECLARE(g_part_gpt); 161 MODULE_VERSION(geom_part_gpt, 0); 162 163 static struct uuid gpt_uuid_apple_apfs = GPT_ENT_TYPE_APPLE_APFS; 164 static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT; 165 static struct uuid gpt_uuid_apple_core_storage = 166 GPT_ENT_TYPE_APPLE_CORE_STORAGE; 167 static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS; 168 static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL; 169 static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID; 170 static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE; 171 static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY; 172 static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS; 173 static struct uuid gpt_uuid_apple_zfs = GPT_ENT_TYPE_APPLE_ZFS; 174 static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT; 175 static struct uuid gpt_uuid_chromeos_firmware = GPT_ENT_TYPE_CHROMEOS_FIRMWARE; 176 static struct uuid gpt_uuid_chromeos_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL; 177 static struct uuid gpt_uuid_chromeos_reserved = GPT_ENT_TYPE_CHROMEOS_RESERVED; 178 static struct uuid gpt_uuid_chromeos_root = GPT_ENT_TYPE_CHROMEOS_ROOT; 179 static struct uuid gpt_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD; 180 static struct uuid gpt_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER; 181 static struct uuid gpt_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2; 182 static struct uuid gpt_uuid_dfbsd_label32 = GPT_ENT_TYPE_DRAGONFLY_LABEL32; 183 static struct uuid gpt_uuid_dfbsd_label64 = GPT_ENT_TYPE_DRAGONFLY_LABEL64; 184 static struct uuid gpt_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY; 185 static struct uuid gpt_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP; 186 static struct uuid gpt_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1; 187 static struct uuid gpt_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM; 188 static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI; 189 static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD; 190 static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT; 191 static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS; 192 static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP; 193 static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS; 194 static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM; 195 static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS; 196 static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA; 197 static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM; 198 static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID; 199 static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP; 200 static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR; 201 static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA; 202 static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA; 203 static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA; 204 static struct uuid gpt_uuid_ms_recovery = GPT_ENT_TYPE_MS_RECOVERY; 205 static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED; 206 static struct uuid gpt_uuid_ms_spaces = GPT_ENT_TYPE_MS_SPACES; 207 static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD; 208 static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD; 209 static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS; 210 static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS; 211 static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID; 212 static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP; 213 static struct uuid gpt_uuid_openbsd_data = GPT_ENT_TYPE_OPENBSD_DATA; 214 static struct uuid gpt_uuid_prep_boot = GPT_ENT_TYPE_PREP_BOOT; 215 static struct uuid gpt_uuid_solaris_boot = GPT_ENT_TYPE_SOLARIS_BOOT; 216 static struct uuid gpt_uuid_solaris_root = GPT_ENT_TYPE_SOLARIS_ROOT; 217 static struct uuid gpt_uuid_solaris_swap = GPT_ENT_TYPE_SOLARIS_SWAP; 218 static struct uuid gpt_uuid_solaris_backup = GPT_ENT_TYPE_SOLARIS_BACKUP; 219 static struct uuid gpt_uuid_solaris_var = GPT_ENT_TYPE_SOLARIS_VAR; 220 static struct uuid gpt_uuid_solaris_home = GPT_ENT_TYPE_SOLARIS_HOME; 221 static struct uuid gpt_uuid_solaris_altsec = GPT_ENT_TYPE_SOLARIS_ALTSEC; 222 static struct uuid gpt_uuid_solaris_reserved = GPT_ENT_TYPE_SOLARIS_RESERVED; 223 static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED; 224 static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS; 225 static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG; 226 static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED; 227 static struct uuid gpt_uuid_vmvsanhdr = GPT_ENT_TYPE_VMVSANHDR; 228 229 static struct g_part_uuid_alias { 230 struct uuid *uuid; 231 int alias; 232 int mbrtype; 233 } gpt_uuid_alias_match[] = { 234 { &gpt_uuid_apple_apfs, G_PART_ALIAS_APPLE_APFS, 0 }, 235 { &gpt_uuid_apple_boot, G_PART_ALIAS_APPLE_BOOT, 0xab }, 236 { &gpt_uuid_apple_core_storage, G_PART_ALIAS_APPLE_CORE_STORAGE, 0 }, 237 { &gpt_uuid_apple_hfs, G_PART_ALIAS_APPLE_HFS, 0xaf }, 238 { &gpt_uuid_apple_label, G_PART_ALIAS_APPLE_LABEL, 0 }, 239 { &gpt_uuid_apple_raid, G_PART_ALIAS_APPLE_RAID, 0 }, 240 { &gpt_uuid_apple_raid_offline, G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 }, 241 { &gpt_uuid_apple_tv_recovery, G_PART_ALIAS_APPLE_TV_RECOVERY, 0 }, 242 { &gpt_uuid_apple_ufs, G_PART_ALIAS_APPLE_UFS, 0 }, 243 { &gpt_uuid_apple_zfs, G_PART_ALIAS_APPLE_ZFS, 0 }, 244 { &gpt_uuid_bios_boot, G_PART_ALIAS_BIOS_BOOT, 0 }, 245 { &gpt_uuid_chromeos_firmware, G_PART_ALIAS_CHROMEOS_FIRMWARE, 0 }, 246 { &gpt_uuid_chromeos_kernel, G_PART_ALIAS_CHROMEOS_KERNEL, 0 }, 247 { &gpt_uuid_chromeos_reserved, G_PART_ALIAS_CHROMEOS_RESERVED, 0 }, 248 { &gpt_uuid_chromeos_root, G_PART_ALIAS_CHROMEOS_ROOT, 0 }, 249 { &gpt_uuid_dfbsd_ccd, G_PART_ALIAS_DFBSD_CCD, 0 }, 250 { &gpt_uuid_dfbsd_hammer, G_PART_ALIAS_DFBSD_HAMMER, 0 }, 251 { &gpt_uuid_dfbsd_hammer2, G_PART_ALIAS_DFBSD_HAMMER2, 0 }, 252 { &gpt_uuid_dfbsd_label32, G_PART_ALIAS_DFBSD, 0xa5 }, 253 { &gpt_uuid_dfbsd_label64, G_PART_ALIAS_DFBSD64, 0xa5 }, 254 { &gpt_uuid_dfbsd_legacy, G_PART_ALIAS_DFBSD_LEGACY, 0 }, 255 { &gpt_uuid_dfbsd_swap, G_PART_ALIAS_DFBSD_SWAP, 0 }, 256 { &gpt_uuid_dfbsd_ufs1, G_PART_ALIAS_DFBSD_UFS, 0 }, 257 { &gpt_uuid_dfbsd_vinum, G_PART_ALIAS_DFBSD_VINUM, 0 }, 258 { &gpt_uuid_efi, G_PART_ALIAS_EFI, 0xee }, 259 { &gpt_uuid_freebsd, G_PART_ALIAS_FREEBSD, 0xa5 }, 260 { &gpt_uuid_freebsd_boot, G_PART_ALIAS_FREEBSD_BOOT, 0 }, 261 { &gpt_uuid_freebsd_nandfs, G_PART_ALIAS_FREEBSD_NANDFS, 0 }, 262 { &gpt_uuid_freebsd_swap, G_PART_ALIAS_FREEBSD_SWAP, 0 }, 263 { &gpt_uuid_freebsd_ufs, G_PART_ALIAS_FREEBSD_UFS, 0 }, 264 { &gpt_uuid_freebsd_vinum, G_PART_ALIAS_FREEBSD_VINUM, 0 }, 265 { &gpt_uuid_freebsd_zfs, G_PART_ALIAS_FREEBSD_ZFS, 0 }, 266 { &gpt_uuid_linux_data, G_PART_ALIAS_LINUX_DATA, 0x0b }, 267 { &gpt_uuid_linux_lvm, G_PART_ALIAS_LINUX_LVM, 0 }, 268 { &gpt_uuid_linux_raid, G_PART_ALIAS_LINUX_RAID, 0 }, 269 { &gpt_uuid_linux_swap, G_PART_ALIAS_LINUX_SWAP, 0 }, 270 { &gpt_uuid_mbr, G_PART_ALIAS_MBR, 0 }, 271 { &gpt_uuid_ms_basic_data, G_PART_ALIAS_MS_BASIC_DATA, 0x0b }, 272 { &gpt_uuid_ms_ldm_data, G_PART_ALIAS_MS_LDM_DATA, 0 }, 273 { &gpt_uuid_ms_ldm_metadata, G_PART_ALIAS_MS_LDM_METADATA, 0 }, 274 { &gpt_uuid_ms_recovery, G_PART_ALIAS_MS_RECOVERY, 0 }, 275 { &gpt_uuid_ms_reserved, G_PART_ALIAS_MS_RESERVED, 0 }, 276 { &gpt_uuid_ms_spaces, G_PART_ALIAS_MS_SPACES, 0 }, 277 { &gpt_uuid_netbsd_ccd, G_PART_ALIAS_NETBSD_CCD, 0 }, 278 { &gpt_uuid_netbsd_cgd, G_PART_ALIAS_NETBSD_CGD, 0 }, 279 { &gpt_uuid_netbsd_ffs, G_PART_ALIAS_NETBSD_FFS, 0 }, 280 { &gpt_uuid_netbsd_lfs, G_PART_ALIAS_NETBSD_LFS, 0 }, 281 { &gpt_uuid_netbsd_raid, G_PART_ALIAS_NETBSD_RAID, 0 }, 282 { &gpt_uuid_netbsd_swap, G_PART_ALIAS_NETBSD_SWAP, 0 }, 283 { &gpt_uuid_openbsd_data, G_PART_ALIAS_OPENBSD_DATA, 0 }, 284 { &gpt_uuid_prep_boot, G_PART_ALIAS_PREP_BOOT, 0x41 }, 285 { &gpt_uuid_solaris_boot, G_PART_ALIAS_SOLARIS_BOOT, 0 }, 286 { &gpt_uuid_solaris_root, G_PART_ALIAS_SOLARIS_ROOT, 0 }, 287 { &gpt_uuid_solaris_swap, G_PART_ALIAS_SOLARIS_SWAP, 0 }, 288 { &gpt_uuid_solaris_backup, G_PART_ALIAS_SOLARIS_BACKUP, 0 }, 289 { &gpt_uuid_solaris_var, G_PART_ALIAS_SOLARIS_VAR, 0 }, 290 { &gpt_uuid_solaris_home, G_PART_ALIAS_SOLARIS_HOME, 0 }, 291 { &gpt_uuid_solaris_altsec, G_PART_ALIAS_SOLARIS_ALTSEC, 0 }, 292 { &gpt_uuid_solaris_reserved, G_PART_ALIAS_SOLARIS_RESERVED, 0 }, 293 { &gpt_uuid_vmfs, G_PART_ALIAS_VMFS, 0 }, 294 { &gpt_uuid_vmkdiag, G_PART_ALIAS_VMKDIAG, 0 }, 295 { &gpt_uuid_vmreserved, G_PART_ALIAS_VMRESERVED, 0 }, 296 { &gpt_uuid_vmvsanhdr, G_PART_ALIAS_VMVSANHDR, 0 }, 297 { NULL, 0, 0 } 298 }; 299 300 static int 301 gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start, 302 quad_t end) 303 { 304 305 if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX) 306 return (EINVAL); 307 308 mbr += DOSPARTOFF + idx * DOSPARTSIZE; 309 mbr[0] = 0; 310 if (start == 1) { 311 /* 312 * Treat the PMBR partition specially to maximize 313 * interoperability with BIOSes. 314 */ 315 mbr[1] = mbr[3] = 0; 316 mbr[2] = 2; 317 } else 318 mbr[1] = mbr[2] = mbr[3] = 0xff; 319 mbr[4] = typ; 320 mbr[5] = mbr[6] = mbr[7] = 0xff; 321 le32enc(mbr + 8, (uint32_t)start); 322 le32enc(mbr + 12, (uint32_t)(end - start + 1)); 323 return (0); 324 } 325 326 static int 327 gpt_map_type(struct uuid *t) 328 { 329 struct g_part_uuid_alias *uap; 330 331 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 332 if (EQUUID(t, uap->uuid)) 333 return (uap->mbrtype); 334 } 335 return (0); 336 } 337 338 static void 339 gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp) 340 { 341 342 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 343 gpt_write_mbr_entry(table->mbr, 0, 0xee, 1, 344 MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX)); 345 le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC); 346 } 347 348 /* 349 * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the 350 * whole disk anymore. Rather, it covers the GPT table and the EFI 351 * system partition only. This way the HFS+ partition and any FAT 352 * partitions can be added to the MBR without creating an overlap. 353 */ 354 static int 355 gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname) 356 { 357 uint8_t *p; 358 359 p = table->mbr + DOSPARTOFF; 360 if (p[4] != 0xee || le32dec(p + 8) != 1) 361 return (0); 362 363 p += DOSPARTSIZE; 364 if (p[4] != 0xaf) 365 return (0); 366 367 printf("GEOM: %s: enabling Boot Camp\n", provname); 368 return (1); 369 } 370 371 static void 372 gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp) 373 { 374 struct g_part_entry *baseentry; 375 struct g_part_gpt_entry *entry; 376 struct g_part_gpt_table *table; 377 int bootable, error, index, slices, typ; 378 379 table = (struct g_part_gpt_table *)basetable; 380 381 bootable = -1; 382 for (index = 0; index < NDOSPART; index++) { 383 if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index]) 384 bootable = index; 385 } 386 387 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 388 slices = 0; 389 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 390 if (baseentry->gpe_deleted) 391 continue; 392 index = baseentry->gpe_index - 1; 393 if (index >= NDOSPART) 394 continue; 395 396 entry = (struct g_part_gpt_entry *)baseentry; 397 398 switch (index) { 399 case 0: /* This must be the EFI system partition. */ 400 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi)) 401 goto disable; 402 error = gpt_write_mbr_entry(table->mbr, index, 0xee, 403 1ull, entry->ent.ent_lba_end); 404 break; 405 case 1: /* This must be the HFS+ partition. */ 406 if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs)) 407 goto disable; 408 error = gpt_write_mbr_entry(table->mbr, index, 0xaf, 409 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 410 break; 411 default: 412 typ = gpt_map_type(&entry->ent.ent_type); 413 error = gpt_write_mbr_entry(table->mbr, index, typ, 414 entry->ent.ent_lba_start, entry->ent.ent_lba_end); 415 break; 416 } 417 if (error) 418 continue; 419 420 if (index == bootable) 421 table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80; 422 slices |= 1 << index; 423 } 424 if ((slices & 3) == 3) 425 return; 426 427 disable: 428 table->bootcamp = 0; 429 gpt_create_pmbr(table, pp); 430 } 431 432 static struct gpt_hdr * 433 gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp, 434 enum gpt_elt elt) 435 { 436 struct gpt_hdr *buf, *hdr; 437 struct g_provider *pp; 438 quad_t lba, last; 439 int error; 440 uint32_t crc, sz; 441 442 pp = cp->provider; 443 last = (pp->mediasize / pp->sectorsize) - 1; 444 table->state[elt] = GPT_STATE_MISSING; 445 /* 446 * If the primary header is valid look for secondary 447 * header in AlternateLBA, otherwise in the last medium's LBA. 448 */ 449 if (elt == GPT_ELT_SECHDR) { 450 if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK) 451 table->lba[elt] = last; 452 } else 453 table->lba[elt] = 1; 454 buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize, 455 &error); 456 if (buf == NULL) 457 return (NULL); 458 hdr = NULL; 459 if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0) 460 goto fail; 461 462 table->state[elt] = GPT_STATE_CORRUPT; 463 sz = le32toh(buf->hdr_size); 464 if (sz < 92 || sz > pp->sectorsize) 465 goto fail; 466 467 hdr = g_malloc(sz, M_WAITOK | M_ZERO); 468 bcopy(buf, hdr, sz); 469 hdr->hdr_size = sz; 470 471 crc = le32toh(buf->hdr_crc_self); 472 buf->hdr_crc_self = 0; 473 if (crc32(buf, sz) != crc) 474 goto fail; 475 hdr->hdr_crc_self = crc; 476 477 table->state[elt] = GPT_STATE_INVALID; 478 hdr->hdr_revision = le32toh(buf->hdr_revision); 479 if (hdr->hdr_revision < GPT_HDR_REVISION) 480 goto fail; 481 hdr->hdr_lba_self = le64toh(buf->hdr_lba_self); 482 if (hdr->hdr_lba_self != table->lba[elt]) 483 goto fail; 484 hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt); 485 if (hdr->hdr_lba_alt == hdr->hdr_lba_self) 486 goto fail; 487 if (hdr->hdr_lba_alt > last && geom_part_check_integrity) 488 goto fail; 489 490 /* Check the managed area. */ 491 hdr->hdr_lba_start = le64toh(buf->hdr_lba_start); 492 if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last) 493 goto fail; 494 hdr->hdr_lba_end = le64toh(buf->hdr_lba_end); 495 if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last) 496 goto fail; 497 498 /* Check the table location and size of the table. */ 499 hdr->hdr_entries = le32toh(buf->hdr_entries); 500 hdr->hdr_entsz = le32toh(buf->hdr_entsz); 501 if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 || 502 (hdr->hdr_entsz & 7) != 0) 503 goto fail; 504 hdr->hdr_lba_table = le64toh(buf->hdr_lba_table); 505 if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last) 506 goto fail; 507 if (hdr->hdr_lba_table >= hdr->hdr_lba_start && 508 hdr->hdr_lba_table <= hdr->hdr_lba_end) 509 goto fail; 510 lba = hdr->hdr_lba_table + 511 howmany(hdr->hdr_entries * hdr->hdr_entsz, pp->sectorsize) - 1; 512 if (lba >= last) 513 goto fail; 514 if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end) 515 goto fail; 516 517 table->state[elt] = GPT_STATE_OK; 518 le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid); 519 hdr->hdr_crc_table = le32toh(buf->hdr_crc_table); 520 521 /* save LBA for secondary header */ 522 if (elt == GPT_ELT_PRIHDR) 523 table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt; 524 525 g_free(buf); 526 return (hdr); 527 528 fail: 529 if (hdr != NULL) 530 g_free(hdr); 531 g_free(buf); 532 return (NULL); 533 } 534 535 static struct gpt_ent * 536 gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp, 537 enum gpt_elt elt, struct gpt_hdr *hdr) 538 { 539 struct g_provider *pp; 540 struct gpt_ent *ent, *tbl; 541 char *buf, *p; 542 unsigned int idx, sectors, tblsz, size; 543 int error; 544 545 if (hdr == NULL) 546 return (NULL); 547 548 pp = cp->provider; 549 table->lba[elt] = hdr->hdr_lba_table; 550 551 table->state[elt] = GPT_STATE_MISSING; 552 tblsz = hdr->hdr_entries * hdr->hdr_entsz; 553 sectors = howmany(tblsz, pp->sectorsize); 554 buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO); 555 for (idx = 0; idx < sectors; idx += maxphys / pp->sectorsize) { 556 size = (sectors - idx > maxphys / pp->sectorsize) ? maxphys: 557 (sectors - idx) * pp->sectorsize; 558 p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize, 559 size, &error); 560 if (p == NULL) { 561 g_free(buf); 562 return (NULL); 563 } 564 bcopy(p, buf + idx * pp->sectorsize, size); 565 g_free(p); 566 } 567 table->state[elt] = GPT_STATE_CORRUPT; 568 if (crc32(buf, tblsz) != hdr->hdr_crc_table) { 569 g_free(buf); 570 return (NULL); 571 } 572 573 table->state[elt] = GPT_STATE_OK; 574 tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent), 575 M_WAITOK | M_ZERO); 576 577 for (idx = 0, ent = tbl, p = buf; 578 idx < hdr->hdr_entries; 579 idx++, ent++, p += hdr->hdr_entsz) { 580 le_uuid_dec(p, &ent->ent_type); 581 le_uuid_dec(p + 16, &ent->ent_uuid); 582 ent->ent_lba_start = le64dec(p + 32); 583 ent->ent_lba_end = le64dec(p + 40); 584 ent->ent_attr = le64dec(p + 48); 585 /* Keep UTF-16 in little-endian. */ 586 bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name)); 587 } 588 589 g_free(buf); 590 return (tbl); 591 } 592 593 static int 594 gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec) 595 { 596 597 if (pri == NULL || sec == NULL) 598 return (0); 599 600 if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid)) 601 return (0); 602 return ((pri->hdr_revision == sec->hdr_revision && 603 pri->hdr_size == sec->hdr_size && 604 pri->hdr_lba_start == sec->hdr_lba_start && 605 pri->hdr_lba_end == sec->hdr_lba_end && 606 pri->hdr_entries == sec->hdr_entries && 607 pri->hdr_entsz == sec->hdr_entsz && 608 pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0); 609 } 610 611 static int 612 gpt_parse_type(const char *type, struct uuid *uuid) 613 { 614 struct uuid tmp; 615 const char *alias; 616 int error; 617 struct g_part_uuid_alias *uap; 618 619 if (type[0] == '!') { 620 error = parse_uuid(type + 1, &tmp); 621 if (error) 622 return (error); 623 if (EQUUID(&tmp, &gpt_uuid_unused)) 624 return (EINVAL); 625 *uuid = tmp; 626 return (0); 627 } 628 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { 629 alias = g_part_alias_name(uap->alias); 630 if (!strcasecmp(type, alias)) { 631 *uuid = *uap->uuid; 632 return (0); 633 } 634 } 635 return (EINVAL); 636 } 637 638 static int 639 g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry, 640 struct g_part_parms *gpp) 641 { 642 struct g_part_gpt_entry *entry; 643 int error; 644 645 entry = (struct g_part_gpt_entry *)baseentry; 646 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 647 if (error) 648 return (error); 649 kern_uuidgen(&entry->ent.ent_uuid, 1); 650 entry->ent.ent_lba_start = baseentry->gpe_start; 651 entry->ent.ent_lba_end = baseentry->gpe_end; 652 if (baseentry->gpe_deleted) { 653 entry->ent.ent_attr = 0; 654 bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name)); 655 } 656 if (gpp->gpp_parms & G_PART_PARM_LABEL) 657 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 658 sizeof(entry->ent.ent_name) / 659 sizeof(entry->ent.ent_name[0])); 660 return (0); 661 } 662 663 static int 664 g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp) 665 { 666 struct g_part_gpt_table *table; 667 size_t codesz; 668 669 codesz = DOSPARTOFF; 670 table = (struct g_part_gpt_table *)basetable; 671 bzero(table->mbr, codesz); 672 codesz = MIN(codesz, gpp->gpp_codesize); 673 if (codesz > 0) 674 bcopy(gpp->gpp_codeptr, table->mbr, codesz); 675 return (0); 676 } 677 678 static int 679 g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp) 680 { 681 struct g_provider *pp; 682 struct g_part_gpt_table *table; 683 size_t tblsz; 684 685 /* Our depth should be 0 unless nesting was explicitly enabled. */ 686 if (!allow_nesting && basetable->gpt_depth != 0) 687 return (ENXIO); 688 689 table = (struct g_part_gpt_table *)basetable; 690 pp = gpp->gpp_provider; 691 tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent), 692 pp->sectorsize); 693 if (pp->sectorsize < MBRSIZE || 694 pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) * 695 pp->sectorsize) 696 return (ENOSPC); 697 698 gpt_create_pmbr(table, pp); 699 700 /* Allocate space for the header */ 701 table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO); 702 703 bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 704 table->hdr->hdr_revision = GPT_HDR_REVISION; 705 table->hdr->hdr_size = offsetof(struct gpt_hdr, padding); 706 kern_uuidgen(&table->hdr->hdr_uuid, 1); 707 table->hdr->hdr_entries = basetable->gpt_entries; 708 table->hdr->hdr_entsz = sizeof(struct gpt_ent); 709 710 g_gpt_set_defaults(basetable, pp); 711 return (0); 712 } 713 714 static int 715 g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp) 716 { 717 struct g_part_gpt_table *table; 718 struct g_provider *pp; 719 720 table = (struct g_part_gpt_table *)basetable; 721 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 722 g_free(table->hdr); 723 table->hdr = NULL; 724 725 /* 726 * Wipe the first 2 sectors and last one to clear the partitioning. 727 * Wipe sectors only if they have valid metadata. 728 */ 729 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) 730 basetable->gpt_smhead |= 3; 731 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 732 table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1) 733 basetable->gpt_smtail |= 1; 734 return (0); 735 } 736 737 static void 738 g_part_gpt_efimedia(struct g_part_gpt_entry *entry, struct sbuf *sb) 739 { 740 sbuf_printf(sb, "HD(%d,GPT,", entry->base.gpe_index); 741 sbuf_printf_uuid(sb, &entry->ent.ent_uuid); 742 sbuf_printf(sb, ",%#jx,%#jx)", (intmax_t)entry->base.gpe_start, 743 (intmax_t)(entry->base.gpe_end - entry->base.gpe_start + 1)); 744 } 745 746 static void 747 g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry, 748 struct sbuf *sb, const char *indent) 749 { 750 struct g_part_gpt_entry *entry; 751 752 entry = (struct g_part_gpt_entry *)baseentry; 753 if (indent == NULL) { 754 /* conftxt: libdisk compatibility */ 755 sbuf_cat(sb, " xs GPT xt "); 756 sbuf_printf_uuid(sb, &entry->ent.ent_type); 757 } else if (entry != NULL) { 758 /* confxml: partition entry information */ 759 sbuf_printf(sb, "%s<label>", indent); 760 g_gpt_printf_utf16(sb, entry->ent.ent_name, 761 sizeof(entry->ent.ent_name) >> 1); 762 sbuf_cat(sb, "</label>\n"); 763 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME) 764 sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent); 765 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) { 766 sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n", 767 indent); 768 } 769 if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) { 770 sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n", 771 indent); 772 } 773 sbuf_printf(sb, "%s<rawtype>", indent); 774 sbuf_printf_uuid(sb, &entry->ent.ent_type); 775 sbuf_cat(sb, "</rawtype>\n"); 776 sbuf_printf(sb, "%s<rawuuid>", indent); 777 sbuf_printf_uuid(sb, &entry->ent.ent_uuid); 778 sbuf_cat(sb, "</rawuuid>\n"); 779 sbuf_printf(sb, "%s<efimedia>", indent); 780 g_part_gpt_efimedia(entry, sb); 781 sbuf_cat(sb, "</efimedia>\n"); 782 } else { 783 /* confxml: scheme information */ 784 } 785 } 786 787 static int 788 g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry) 789 { 790 struct g_part_gpt_entry *entry; 791 792 entry = (struct g_part_gpt_entry *)baseentry; 793 return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) || 794 EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap) || 795 EQUUID(&entry->ent.ent_type, &gpt_uuid_dfbsd_swap)) ? 1 : 0); 796 } 797 798 static int 799 g_part_gpt_modify(struct g_part_table *basetable, 800 struct g_part_entry *baseentry, struct g_part_parms *gpp) 801 { 802 struct g_part_gpt_entry *entry; 803 int error; 804 805 entry = (struct g_part_gpt_entry *)baseentry; 806 if (gpp->gpp_parms & G_PART_PARM_TYPE) { 807 error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); 808 if (error) 809 return (error); 810 } 811 if (gpp->gpp_parms & G_PART_PARM_LABEL) 812 g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, 813 sizeof(entry->ent.ent_name) / 814 sizeof(entry->ent.ent_name[0])); 815 return (0); 816 } 817 818 static int 819 g_part_gpt_resize(struct g_part_table *basetable, 820 struct g_part_entry *baseentry, struct g_part_parms *gpp) 821 { 822 struct g_part_gpt_entry *entry; 823 824 if (baseentry == NULL) 825 return (g_part_gpt_recover(basetable)); 826 827 entry = (struct g_part_gpt_entry *)baseentry; 828 baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1; 829 entry->ent.ent_lba_end = baseentry->gpe_end; 830 831 return (0); 832 } 833 834 static const char * 835 g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry, 836 char *buf, size_t bufsz) 837 { 838 struct g_part_gpt_entry *entry; 839 char c; 840 841 entry = (struct g_part_gpt_entry *)baseentry; 842 c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p'; 843 snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index); 844 return (buf); 845 } 846 847 static int 848 g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp) 849 { 850 struct g_provider *pp; 851 u_char *buf; 852 int error, index, pri, res; 853 854 /* Our depth should be 0 unless nesting was explicitly enabled. */ 855 if (!allow_nesting && table->gpt_depth != 0) 856 return (ENXIO); 857 858 pp = cp->provider; 859 860 /* 861 * Sanity-check the provider. Since the first sector on the provider 862 * must be a PMBR and a PMBR is 512 bytes large, the sector size 863 * must be at least 512 bytes. Also, since the theoretical minimum 864 * number of sectors needed by GPT is 6, any medium that has less 865 * than 6 sectors is never going to be able to hold a GPT. The 866 * number 6 comes from: 867 * 1 sector for the PMBR 868 * 2 sectors for the GPT headers (each 1 sector) 869 * 2 sectors for the GPT tables (each 1 sector) 870 * 1 sector for an actual partition 871 * It's better to catch this pathological case early than behaving 872 * pathologically later on... 873 */ 874 if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize) 875 return (ENOSPC); 876 877 /* 878 * Check that there's a MBR or a PMBR. If it's a PMBR, we return 879 * as the highest priority on a match, otherwise we assume some 880 * GPT-unaware tool has destroyed the GPT by recreating a MBR and 881 * we really want the MBR scheme to take precedence. 882 */ 883 buf = g_read_data(cp, 0L, pp->sectorsize, &error); 884 if (buf == NULL) 885 return (error); 886 res = le16dec(buf + DOSMAGICOFFSET); 887 pri = G_PART_PROBE_PRI_LOW; 888 if (res == DOSMAGIC) { 889 for (index = 0; index < NDOSPART; index++) { 890 if (buf[DOSPARTOFF + DOSPARTSIZE * index + 4] == 0xee) 891 pri = G_PART_PROBE_PRI_HIGH; 892 } 893 g_free(buf); 894 895 /* Check that there's a primary header. */ 896 buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error); 897 if (buf == NULL) 898 return (error); 899 res = memcmp(buf, GPT_HDR_SIG, 8); 900 g_free(buf); 901 if (res == 0) 902 return (pri); 903 } else 904 g_free(buf); 905 906 /* No primary? Check that there's a secondary. */ 907 buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, 908 &error); 909 if (buf == NULL) 910 return (error); 911 res = memcmp(buf, GPT_HDR_SIG, 8); 912 g_free(buf); 913 return ((res == 0) ? pri : ENXIO); 914 } 915 916 static int 917 g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp) 918 { 919 struct gpt_hdr *prihdr, *sechdr; 920 struct gpt_ent *tbl, *pritbl, *sectbl; 921 struct g_provider *pp; 922 struct g_part_gpt_table *table; 923 struct g_part_gpt_entry *entry; 924 u_char *buf; 925 uint64_t last; 926 int error, index; 927 928 table = (struct g_part_gpt_table *)basetable; 929 pp = cp->provider; 930 last = (pp->mediasize / pp->sectorsize) - 1; 931 932 /* Read the PMBR */ 933 buf = g_read_data(cp, 0, pp->sectorsize, &error); 934 if (buf == NULL) 935 return (error); 936 bcopy(buf, table->mbr, MBRSIZE); 937 g_free(buf); 938 939 /* Read the primary header and table. */ 940 prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR); 941 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) { 942 pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr); 943 } else { 944 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 945 pritbl = NULL; 946 } 947 948 /* Read the secondary header and table. */ 949 sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR); 950 if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) { 951 sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr); 952 } else { 953 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 954 sectbl = NULL; 955 } 956 957 /* Fail if we haven't got any good tables at all. */ 958 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK && 959 table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 960 printf("GEOM: %s: corrupt or invalid GPT detected.\n", 961 pp->name); 962 printf("GEOM: %s: GPT rejected -- may not be recoverable.\n", 963 pp->name); 964 if (prihdr != NULL) 965 g_free(prihdr); 966 if (pritbl != NULL) 967 g_free(pritbl); 968 if (sechdr != NULL) 969 g_free(sechdr); 970 if (sectbl != NULL) 971 g_free(sectbl); 972 return (EINVAL); 973 } 974 975 /* 976 * If both headers are good but they disagree with each other, 977 * then invalidate one. We prefer to keep the primary header, 978 * unless the primary table is corrupt. 979 */ 980 if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK && 981 table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && 982 !gpt_matched_hdrs(prihdr, sechdr)) { 983 if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) { 984 table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID; 985 table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; 986 g_free(sechdr); 987 sechdr = NULL; 988 } else { 989 table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID; 990 table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; 991 g_free(prihdr); 992 prihdr = NULL; 993 } 994 } 995 996 if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) { 997 printf("GEOM: %s: the primary GPT table is corrupt or " 998 "invalid.\n", pp->name); 999 printf("GEOM: %s: using the secondary instead -- recovery " 1000 "strongly advised.\n", pp->name); 1001 table->hdr = sechdr; 1002 basetable->gpt_corrupt = 1; 1003 if (prihdr != NULL) 1004 g_free(prihdr); 1005 tbl = sectbl; 1006 if (pritbl != NULL) 1007 g_free(pritbl); 1008 } else { 1009 if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { 1010 printf("GEOM: %s: the secondary GPT table is corrupt " 1011 "or invalid.\n", pp->name); 1012 printf("GEOM: %s: using the primary only -- recovery " 1013 "suggested.\n", pp->name); 1014 basetable->gpt_corrupt = 1; 1015 } else if (table->lba[GPT_ELT_SECHDR] != last) { 1016 printf( "GEOM: %s: the secondary GPT header is not in " 1017 "the last LBA.\n", pp->name); 1018 basetable->gpt_corrupt = 1; 1019 } 1020 table->hdr = prihdr; 1021 if (sechdr != NULL) 1022 g_free(sechdr); 1023 tbl = pritbl; 1024 if (sectbl != NULL) 1025 g_free(sectbl); 1026 } 1027 1028 basetable->gpt_first = table->hdr->hdr_lba_start; 1029 basetable->gpt_last = table->hdr->hdr_lba_end; 1030 basetable->gpt_entries = table->hdr->hdr_entries; 1031 1032 for (index = basetable->gpt_entries - 1; index >= 0; index--) { 1033 if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused)) 1034 continue; 1035 entry = (struct g_part_gpt_entry *)g_part_new_entry( 1036 basetable, index + 1, tbl[index].ent_lba_start, 1037 tbl[index].ent_lba_end); 1038 entry->ent = tbl[index]; 1039 } 1040 1041 g_free(tbl); 1042 1043 /* 1044 * Under Mac OS X, the MBR mirrors the first 4 GPT partitions 1045 * if (and only if) any FAT32 or FAT16 partitions have been 1046 * created. This happens irrespective of whether Boot Camp is 1047 * used/enabled, though it's generally understood to be done 1048 * to support legacy Windows under Boot Camp. We refer to this 1049 * mirroring simply as Boot Camp. We try to detect Boot Camp 1050 * so that we can update the MBR if and when GPT changes have 1051 * been made. Note that we do not enable Boot Camp if not 1052 * previously enabled because we can't assume that we're on a 1053 * Mac alongside Mac OS X. 1054 */ 1055 table->bootcamp = gpt_is_bootcamp(table, pp->name); 1056 1057 return (0); 1058 } 1059 1060 static int 1061 g_part_gpt_recover(struct g_part_table *basetable) 1062 { 1063 struct g_part_gpt_table *table; 1064 struct g_provider *pp; 1065 1066 table = (struct g_part_gpt_table *)basetable; 1067 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 1068 gpt_create_pmbr(table, pp); 1069 g_gpt_set_defaults(basetable, pp); 1070 basetable->gpt_corrupt = 0; 1071 return (0); 1072 } 1073 1074 static int 1075 g_part_gpt_setunset(struct g_part_table *basetable, 1076 struct g_part_entry *baseentry, const char *attrib, unsigned int set) 1077 { 1078 struct g_part_gpt_entry *entry; 1079 struct g_part_gpt_table *table; 1080 struct g_provider *pp; 1081 uint8_t *p; 1082 uint64_t attr; 1083 int i; 1084 1085 table = (struct g_part_gpt_table *)basetable; 1086 entry = (struct g_part_gpt_entry *)baseentry; 1087 1088 if (strcasecmp(attrib, "active") == 0) { 1089 if (table->bootcamp) { 1090 /* The active flag must be set on a valid entry. */ 1091 if (entry == NULL) 1092 return (ENXIO); 1093 if (baseentry->gpe_index > NDOSPART) 1094 return (EINVAL); 1095 for (i = 0; i < NDOSPART; i++) { 1096 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 1097 p[0] = (i == baseentry->gpe_index - 1) 1098 ? ((set) ? 0x80 : 0) : 0; 1099 } 1100 } else { 1101 /* The PMBR is marked as active without an entry. */ 1102 if (entry != NULL) 1103 return (ENXIO); 1104 for (i = 0; i < NDOSPART; i++) { 1105 p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; 1106 p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0; 1107 } 1108 } 1109 return (0); 1110 } else if (strcasecmp(attrib, "lenovofix") == 0) { 1111 /* 1112 * Write the 0xee GPT entry to slot #1 (2nd slot) in the pMBR. 1113 * This workaround allows Lenovo X220, T420, T520, etc to boot 1114 * from GPT Partitions in BIOS mode. 1115 */ 1116 1117 if (entry != NULL) 1118 return (ENXIO); 1119 1120 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; 1121 bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); 1122 gpt_write_mbr_entry(table->mbr, ((set) ? 1 : 0), 0xee, 1, 1123 MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX)); 1124 return (0); 1125 } 1126 1127 if (entry == NULL) 1128 return (ENODEV); 1129 1130 attr = 0; 1131 if (strcasecmp(attrib, "bootme") == 0) { 1132 attr |= GPT_ENT_ATTR_BOOTME; 1133 } else if (strcasecmp(attrib, "bootonce") == 0) { 1134 attr |= GPT_ENT_ATTR_BOOTONCE; 1135 if (set) 1136 attr |= GPT_ENT_ATTR_BOOTME; 1137 } else if (strcasecmp(attrib, "bootfailed") == 0) { 1138 /* 1139 * It should only be possible to unset BOOTFAILED, but it might 1140 * be useful for test purposes to also be able to set it. 1141 */ 1142 attr |= GPT_ENT_ATTR_BOOTFAILED; 1143 } 1144 if (attr == 0) 1145 return (EINVAL); 1146 1147 if (set) 1148 attr = entry->ent.ent_attr | attr; 1149 else 1150 attr = entry->ent.ent_attr & ~attr; 1151 if (attr != entry->ent.ent_attr) { 1152 entry->ent.ent_attr = attr; 1153 if (!baseentry->gpe_created) 1154 baseentry->gpe_modified = 1; 1155 } 1156 return (0); 1157 } 1158 1159 static const char * 1160 g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry, 1161 char *buf, size_t bufsz) 1162 { 1163 struct g_part_gpt_entry *entry; 1164 struct uuid *type; 1165 struct g_part_uuid_alias *uap; 1166 1167 entry = (struct g_part_gpt_entry *)baseentry; 1168 type = &entry->ent.ent_type; 1169 for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) 1170 if (EQUUID(type, uap->uuid)) 1171 return (g_part_alias_name(uap->alias)); 1172 buf[0] = '!'; 1173 snprintf_uuid(buf + 1, bufsz - 1, type); 1174 1175 return (buf); 1176 } 1177 1178 static int 1179 g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp) 1180 { 1181 unsigned char *buf, *bp; 1182 struct g_provider *pp; 1183 struct g_part_entry *baseentry; 1184 struct g_part_gpt_entry *entry; 1185 struct g_part_gpt_table *table; 1186 size_t tblsz; 1187 uint32_t crc; 1188 int error, index; 1189 1190 pp = cp->provider; 1191 table = (struct g_part_gpt_table *)basetable; 1192 tblsz = howmany(table->hdr->hdr_entries * table->hdr->hdr_entsz, 1193 pp->sectorsize); 1194 1195 /* Reconstruct the MBR from the GPT if under Boot Camp. */ 1196 if (table->bootcamp) 1197 gpt_update_bootcamp(basetable, pp); 1198 1199 /* Write the PMBR */ 1200 buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO); 1201 bcopy(table->mbr, buf, MBRSIZE); 1202 error = g_write_data(cp, 0, buf, pp->sectorsize); 1203 g_free(buf); 1204 if (error) 1205 return (error); 1206 1207 /* Allocate space for the header and entries. */ 1208 buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO); 1209 1210 memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); 1211 le32enc(buf + 8, table->hdr->hdr_revision); 1212 le32enc(buf + 12, table->hdr->hdr_size); 1213 le64enc(buf + 40, table->hdr->hdr_lba_start); 1214 le64enc(buf + 48, table->hdr->hdr_lba_end); 1215 le_uuid_enc(buf + 56, &table->hdr->hdr_uuid); 1216 le32enc(buf + 80, table->hdr->hdr_entries); 1217 le32enc(buf + 84, table->hdr->hdr_entsz); 1218 1219 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1220 if (baseentry->gpe_deleted) 1221 continue; 1222 entry = (struct g_part_gpt_entry *)baseentry; 1223 index = baseentry->gpe_index - 1; 1224 bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index; 1225 le_uuid_enc(bp, &entry->ent.ent_type); 1226 le_uuid_enc(bp + 16, &entry->ent.ent_uuid); 1227 le64enc(bp + 32, entry->ent.ent_lba_start); 1228 le64enc(bp + 40, entry->ent.ent_lba_end); 1229 le64enc(bp + 48, entry->ent.ent_attr); 1230 memcpy(bp + 56, entry->ent.ent_name, 1231 sizeof(entry->ent.ent_name)); 1232 } 1233 1234 crc = crc32(buf + pp->sectorsize, 1235 table->hdr->hdr_entries * table->hdr->hdr_entsz); 1236 le32enc(buf + 88, crc); 1237 1238 /* Write primary meta-data. */ 1239 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1240 le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_self. */ 1241 le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_alt. */ 1242 le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]); /* hdr_lba_table. */ 1243 crc = crc32(buf, table->hdr->hdr_size); 1244 le32enc(buf + 16, crc); 1245 1246 for (index = 0; index < tblsz; index += maxphys / pp->sectorsize) { 1247 error = g_write_data(cp, 1248 (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize, 1249 buf + (index + 1) * pp->sectorsize, 1250 (tblsz - index > maxphys / pp->sectorsize) ? maxphys : 1251 (tblsz - index) * pp->sectorsize); 1252 if (error) 1253 goto out; 1254 } 1255 error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize, 1256 buf, pp->sectorsize); 1257 if (error) 1258 goto out; 1259 1260 /* Write secondary meta-data. */ 1261 le32enc(buf + 16, 0); /* hdr_crc_self. */ 1262 le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_self. */ 1263 le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_alt. */ 1264 le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]); /* hdr_lba_table. */ 1265 crc = crc32(buf, table->hdr->hdr_size); 1266 le32enc(buf + 16, crc); 1267 1268 for (index = 0; index < tblsz; index += maxphys / pp->sectorsize) { 1269 error = g_write_data(cp, 1270 (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize, 1271 buf + (index + 1) * pp->sectorsize, 1272 (tblsz - index > maxphys / pp->sectorsize) ? maxphys : 1273 (tblsz - index) * pp->sectorsize); 1274 if (error) 1275 goto out; 1276 } 1277 error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize, 1278 buf, pp->sectorsize); 1279 1280 out: 1281 g_free(buf); 1282 return (error); 1283 } 1284 1285 static void 1286 g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp) 1287 { 1288 struct g_part_entry *baseentry; 1289 struct g_part_gpt_entry *entry; 1290 struct g_part_gpt_table *table; 1291 quad_t start, end, min, max; 1292 quad_t lba, last; 1293 size_t spb, tblsz; 1294 1295 table = (struct g_part_gpt_table *)basetable; 1296 last = pp->mediasize / pp->sectorsize - 1; 1297 tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent), 1298 pp->sectorsize); 1299 1300 table->lba[GPT_ELT_PRIHDR] = 1; 1301 table->lba[GPT_ELT_PRITBL] = 2; 1302 table->lba[GPT_ELT_SECHDR] = last; 1303 table->lba[GPT_ELT_SECTBL] = last - tblsz; 1304 table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK; 1305 table->state[GPT_ELT_PRITBL] = GPT_STATE_OK; 1306 table->state[GPT_ELT_SECHDR] = GPT_STATE_OK; 1307 table->state[GPT_ELT_SECTBL] = GPT_STATE_OK; 1308 1309 max = start = 2 + tblsz; 1310 min = end = last - tblsz - 1; 1311 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { 1312 if (baseentry->gpe_deleted) 1313 continue; 1314 entry = (struct g_part_gpt_entry *)baseentry; 1315 if (entry->ent.ent_lba_start < min) 1316 min = entry->ent.ent_lba_start; 1317 if (entry->ent.ent_lba_end > max) 1318 max = entry->ent.ent_lba_end; 1319 } 1320 spb = 4096 / pp->sectorsize; 1321 if (spb > 1) { 1322 lba = start + ((start % spb) ? spb - start % spb : 0); 1323 if (lba <= min) 1324 start = lba; 1325 lba = end - (end + 1) % spb; 1326 if (max <= lba) 1327 end = lba; 1328 } 1329 table->hdr->hdr_lba_start = start; 1330 table->hdr->hdr_lba_end = end; 1331 1332 basetable->gpt_first = start; 1333 basetable->gpt_last = end; 1334 } 1335 1336 static void 1337 g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len) 1338 { 1339 u_int bo; 1340 uint32_t ch; 1341 uint16_t c; 1342 1343 bo = LITTLE_ENDIAN; /* GPT is little-endian */ 1344 while (len > 0 && *str != 0) { 1345 ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str); 1346 str++, len--; 1347 if ((ch & 0xf800) == 0xd800) { 1348 if (len > 0) { 1349 c = (bo == BIG_ENDIAN) ? be16toh(*str) 1350 : le16toh(*str); 1351 str++, len--; 1352 } else 1353 c = 0xfffd; 1354 if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) { 1355 ch = ((ch & 0x3ff) << 10) + (c & 0x3ff); 1356 ch += 0x10000; 1357 } else 1358 ch = 0xfffd; 1359 } else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */ 1360 bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN; 1361 continue; 1362 } else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */ 1363 continue; 1364 1365 /* Write the Unicode character in UTF-8 */ 1366 if (ch < 0x80) 1367 g_conf_printf_escaped(sb, "%c", ch); 1368 else if (ch < 0x800) 1369 g_conf_printf_escaped(sb, "%c%c", 0xc0 | (ch >> 6), 1370 0x80 | (ch & 0x3f)); 1371 else if (ch < 0x10000) 1372 g_conf_printf_escaped(sb, "%c%c%c", 0xe0 | (ch >> 12), 1373 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1374 else if (ch < 0x200000) 1375 g_conf_printf_escaped(sb, "%c%c%c%c", 0xf0 | 1376 (ch >> 18), 0x80 | ((ch >> 12) & 0x3f), 1377 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); 1378 } 1379 } 1380 1381 static void 1382 g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len) 1383 { 1384 size_t s16idx, s8idx; 1385 uint32_t utfchar; 1386 unsigned int c, utfbytes; 1387 1388 s8idx = s16idx = 0; 1389 utfchar = 0; 1390 utfbytes = 0; 1391 bzero(s16, s16len << 1); 1392 while (s8[s8idx] != 0 && s16idx < s16len) { 1393 c = s8[s8idx++]; 1394 if ((c & 0xc0) != 0x80) { 1395 /* Initial characters. */ 1396 if (utfbytes != 0) { 1397 /* Incomplete encoding of previous char. */ 1398 s16[s16idx++] = htole16(0xfffd); 1399 } 1400 if ((c & 0xf8) == 0xf0) { 1401 utfchar = c & 0x07; 1402 utfbytes = 3; 1403 } else if ((c & 0xf0) == 0xe0) { 1404 utfchar = c & 0x0f; 1405 utfbytes = 2; 1406 } else if ((c & 0xe0) == 0xc0) { 1407 utfchar = c & 0x1f; 1408 utfbytes = 1; 1409 } else { 1410 utfchar = c & 0x7f; 1411 utfbytes = 0; 1412 } 1413 } else { 1414 /* Followup characters. */ 1415 if (utfbytes > 0) { 1416 utfchar = (utfchar << 6) + (c & 0x3f); 1417 utfbytes--; 1418 } else if (utfbytes == 0) 1419 utfbytes = ~0; 1420 } 1421 /* 1422 * Write the complete Unicode character as UTF-16 when we 1423 * have all the UTF-8 charactars collected. 1424 */ 1425 if (utfbytes == 0) { 1426 /* 1427 * If we need to write 2 UTF-16 characters, but 1428 * we only have room for 1, then we truncate the 1429 * string by writing a 0 instead. 1430 */ 1431 if (utfchar >= 0x10000 && s16idx < s16len - 1) { 1432 s16[s16idx++] = 1433 htole16(0xd800 | ((utfchar >> 10) - 0x40)); 1434 s16[s16idx++] = 1435 htole16(0xdc00 | (utfchar & 0x3ff)); 1436 } else 1437 s16[s16idx++] = (utfchar >= 0x10000) ? 0 : 1438 htole16(utfchar); 1439 } 1440 } 1441 /* 1442 * If our input string was truncated, append an invalid encoding 1443 * character to the output string. 1444 */ 1445 if (utfbytes != 0 && s16idx < s16len) 1446 s16[s16idx++] = htole16(0xfffd); 1447 } 1448