1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2005-2011 Pawel Jakub Dawidek <pawel@dawidek.net> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/linker.h> 36 #include <sys/module.h> 37 #include <sys/lock.h> 38 #include <sys/mutex.h> 39 #include <sys/bio.h> 40 #include <sys/sysctl.h> 41 #include <sys/malloc.h> 42 #include <sys/kthread.h> 43 #include <sys/proc.h> 44 #include <sys/sched.h> 45 #include <sys/smp.h> 46 #include <sys/vnode.h> 47 48 #include <vm/uma.h> 49 50 #include <geom/geom.h> 51 #include <geom/geom_dbg.h> 52 #include <geom/eli/g_eli.h> 53 #include <geom/eli/pkcs5v2.h> 54 55 /* 56 * The data layout description when integrity verification is configured. 57 * 58 * One of the most important assumption here is that authenticated data and its 59 * HMAC has to be stored in the same place (namely in the same sector) to make 60 * it work reliable. 61 * The problem is that file systems work only with sectors that are multiple of 62 * 512 bytes and a power of two number. 63 * My idea to implement it is as follows. 64 * Let's store HMAC in sector. This is a must. This leaves us 480 bytes for 65 * data. We can't use that directly (ie. we can't create provider with 480 bytes 66 * sector size). We need another sector from where we take only 32 bytes of data 67 * and we store HMAC of this data as well. This takes two sectors from the 68 * original provider at the input and leaves us one sector of authenticated data 69 * at the output. Not very efficient, but you got the idea. 70 * Now, let's assume, we want to create provider with 4096 bytes sector. 71 * To output 4096 bytes of authenticated data we need 8x480 plus 1x256, so we 72 * need nine 512-bytes sectors at the input to get one 4096-bytes sector at the 73 * output. That's better. With 4096 bytes sector we can use 89% of size of the 74 * original provider. I find it as an acceptable cost. 75 * The reliability comes from the fact, that every HMAC stored inside the sector 76 * is calculated only for the data in the same sector, so its impossible to 77 * write new data and leave old HMAC or vice versa. 78 * 79 * And here is the picture: 80 * 81 * da0: +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+-----+ 82 * |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |256b | 83 * |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data | 84 * +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+-----+ 85 * |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |288 bytes | 86 * +---------+ +---------+ +---------+ +---------+ +---------+ +---------+ +---------+ +---------+ |224 unused| 87 * +----------+ 88 * da0.eli: +----+----+----+----+----+----+----+----+----+ 89 * |480b|480b|480b|480b|480b|480b|480b|480b|256b| 90 * +----+----+----+----+----+----+----+----+----+ 91 * | 4096 bytes | 92 * +--------------------------------------------+ 93 * 94 * PS. You can use any sector size with geli(8). My example is using 4kB, 95 * because it's most efficient. For 8kB sectors you need 2 extra sectors, 96 * so the cost is the same as for 4kB sectors. 97 */ 98 99 /* 100 * Code paths: 101 * BIO_READ: 102 * g_eli_start -> g_eli_auth_read -> g_io_request -> g_eli_read_done -> g_eli_auth_run -> g_eli_auth_read_done -> g_io_deliver 103 * BIO_WRITE: 104 * g_eli_start -> g_eli_auth_run -> g_eli_auth_write_done -> g_io_request -> g_eli_write_done -> g_io_deliver 105 */ 106 107 MALLOC_DECLARE(M_ELI); 108 109 /* 110 * Here we generate key for HMAC. Every sector has its own HMAC key, so it is 111 * not possible to copy sectors. 112 * We cannot depend on fact, that every sector has its own IV, because different 113 * IV doesn't change HMAC, when we use encrypt-then-authenticate method. 114 */ 115 static void 116 g_eli_auth_keygen(struct g_eli_softc *sc, off_t offset, u_char *key) 117 { 118 SHA256_CTX ctx; 119 120 /* Copy precalculated SHA256 context. */ 121 bcopy(&sc->sc_akeyctx, &ctx, sizeof(ctx)); 122 SHA256_Update(&ctx, (uint8_t *)&offset, sizeof(offset)); 123 SHA256_Final(key, &ctx); 124 } 125 126 /* 127 * The function is called after we read and decrypt data. 128 * 129 * g_eli_start -> g_eli_auth_read -> g_io_request -> g_eli_read_done -> g_eli_auth_run -> G_ELI_AUTH_READ_DONE -> g_io_deliver 130 */ 131 static int 132 g_eli_auth_read_done(struct cryptop *crp) 133 { 134 struct g_eli_softc *sc; 135 struct bio *bp; 136 137 if (crp->crp_etype == EAGAIN) { 138 if (g_eli_crypto_rerun(crp) == 0) 139 return (0); 140 } 141 bp = (struct bio *)crp->crp_opaque; 142 bp->bio_inbed++; 143 if (crp->crp_etype == 0) { 144 bp->bio_completed += crp->crp_olen; 145 G_ELI_DEBUG(3, "Crypto READ request done (%d/%d) (add=%jd completed=%jd).", 146 bp->bio_inbed, bp->bio_children, (intmax_t)crp->crp_olen, (intmax_t)bp->bio_completed); 147 } else { 148 G_ELI_DEBUG(1, "Crypto READ request failed (%d/%d) error=%d.", 149 bp->bio_inbed, bp->bio_children, crp->crp_etype); 150 if (bp->bio_error == 0) 151 bp->bio_error = crp->crp_etype; 152 } 153 sc = bp->bio_to->geom->softc; 154 g_eli_key_drop(sc, crp->crp_desc->crd_next->crd_key); 155 /* 156 * Do we have all sectors already? 157 */ 158 if (bp->bio_inbed < bp->bio_children) 159 return (0); 160 if (bp->bio_error == 0) { 161 u_int i, lsec, nsec, data_secsize, decr_secsize, encr_secsize; 162 u_char *srcdata, *dstdata, *auth; 163 off_t coroff, corsize; 164 165 /* 166 * Verify data integrity based on calculated and read HMACs. 167 */ 168 /* Sectorsize of decrypted provider eg. 4096. */ 169 decr_secsize = bp->bio_to->sectorsize; 170 /* The real sectorsize of encrypted provider, eg. 512. */ 171 encr_secsize = LIST_FIRST(&sc->sc_geom->consumer)->provider->sectorsize; 172 /* Number of data bytes in one encrypted sector, eg. 480. */ 173 data_secsize = sc->sc_data_per_sector; 174 /* Number of sectors from decrypted provider, eg. 2. */ 175 nsec = bp->bio_length / decr_secsize; 176 /* Number of sectors from encrypted provider, eg. 18. */ 177 nsec = (nsec * sc->sc_bytes_per_sector) / encr_secsize; 178 /* Last sector number in every big sector, eg. 9. */ 179 lsec = sc->sc_bytes_per_sector / encr_secsize; 180 181 srcdata = bp->bio_driver2; 182 dstdata = bp->bio_data; 183 auth = srcdata + encr_secsize * nsec; 184 coroff = -1; 185 corsize = 0; 186 187 for (i = 1; i <= nsec; i++) { 188 data_secsize = sc->sc_data_per_sector; 189 if ((i % lsec) == 0) 190 data_secsize = decr_secsize % data_secsize; 191 if (bcmp(srcdata, auth, sc->sc_alen) != 0) { 192 /* 193 * Curruption detected, remember the offset if 194 * this is the first corrupted sector and 195 * increase size. 196 */ 197 if (bp->bio_error == 0) 198 bp->bio_error = -1; 199 if (coroff == -1) { 200 coroff = bp->bio_offset + 201 (dstdata - (u_char *)bp->bio_data); 202 } 203 corsize += data_secsize; 204 } else { 205 /* 206 * No curruption, good. 207 * Report previous corruption if there was one. 208 */ 209 if (coroff != -1) { 210 G_ELI_DEBUG(0, "%s: Failed to authenticate %jd " 211 "bytes of data at offset %jd.", 212 sc->sc_name, (intmax_t)corsize, 213 (intmax_t)coroff); 214 coroff = -1; 215 corsize = 0; 216 } 217 bcopy(srcdata + sc->sc_alen, dstdata, 218 data_secsize); 219 } 220 srcdata += encr_secsize; 221 dstdata += data_secsize; 222 auth += sc->sc_alen; 223 } 224 /* Report previous corruption if there was one. */ 225 if (coroff != -1) { 226 G_ELI_DEBUG(0, "%s: Failed to authenticate %jd " 227 "bytes of data at offset %jd.", 228 sc->sc_name, (intmax_t)corsize, (intmax_t)coroff); 229 } 230 } 231 free(bp->bio_driver2, M_ELI); 232 bp->bio_driver2 = NULL; 233 if (bp->bio_error != 0) { 234 if (bp->bio_error == -1) 235 bp->bio_error = EINVAL; 236 else { 237 G_ELI_LOGREQ(0, bp, 238 "Crypto READ request failed (error=%d).", 239 bp->bio_error); 240 } 241 bp->bio_completed = 0; 242 } 243 /* 244 * Read is finished, send it up. 245 */ 246 g_io_deliver(bp, bp->bio_error); 247 atomic_subtract_int(&sc->sc_inflight, 1); 248 return (0); 249 } 250 251 /* 252 * The function is called after data encryption. 253 * 254 * g_eli_start -> g_eli_auth_run -> G_ELI_AUTH_WRITE_DONE -> g_io_request -> g_eli_write_done -> g_io_deliver 255 */ 256 static int 257 g_eli_auth_write_done(struct cryptop *crp) 258 { 259 struct g_eli_softc *sc; 260 struct g_consumer *cp; 261 struct bio *bp, *cbp, *cbp2; 262 u_int nsec; 263 264 if (crp->crp_etype == EAGAIN) { 265 if (g_eli_crypto_rerun(crp) == 0) 266 return (0); 267 } 268 bp = (struct bio *)crp->crp_opaque; 269 bp->bio_inbed++; 270 if (crp->crp_etype == 0) { 271 G_ELI_DEBUG(3, "Crypto WRITE request done (%d/%d).", 272 bp->bio_inbed, bp->bio_children); 273 } else { 274 G_ELI_DEBUG(1, "Crypto WRITE request failed (%d/%d) error=%d.", 275 bp->bio_inbed, bp->bio_children, crp->crp_etype); 276 if (bp->bio_error == 0) 277 bp->bio_error = crp->crp_etype; 278 } 279 sc = bp->bio_to->geom->softc; 280 g_eli_key_drop(sc, crp->crp_desc->crd_key); 281 /* 282 * All sectors are already encrypted? 283 */ 284 if (bp->bio_inbed < bp->bio_children) 285 return (0); 286 if (bp->bio_error != 0) { 287 G_ELI_LOGREQ(0, bp, "Crypto WRITE request failed (error=%d).", 288 bp->bio_error); 289 free(bp->bio_driver2, M_ELI); 290 bp->bio_driver2 = NULL; 291 cbp = bp->bio_driver1; 292 bp->bio_driver1 = NULL; 293 g_destroy_bio(cbp); 294 g_io_deliver(bp, bp->bio_error); 295 atomic_subtract_int(&sc->sc_inflight, 1); 296 return (0); 297 } 298 cp = LIST_FIRST(&sc->sc_geom->consumer); 299 cbp = bp->bio_driver1; 300 bp->bio_driver1 = NULL; 301 cbp->bio_to = cp->provider; 302 cbp->bio_done = g_eli_write_done; 303 304 /* Number of sectors from decrypted provider, eg. 1. */ 305 nsec = bp->bio_length / bp->bio_to->sectorsize; 306 /* Number of sectors from encrypted provider, eg. 9. */ 307 nsec = (nsec * sc->sc_bytes_per_sector) / cp->provider->sectorsize; 308 309 cbp->bio_length = cp->provider->sectorsize * nsec; 310 cbp->bio_offset = (bp->bio_offset / bp->bio_to->sectorsize) * sc->sc_bytes_per_sector; 311 cbp->bio_data = bp->bio_driver2; 312 313 /* 314 * We write more than what is requested, so we have to be ready to write 315 * more than MAXPHYS. 316 */ 317 cbp2 = NULL; 318 if (cbp->bio_length > MAXPHYS) { 319 cbp2 = g_duplicate_bio(bp); 320 cbp2->bio_length = cbp->bio_length - MAXPHYS; 321 cbp2->bio_data = cbp->bio_data + MAXPHYS; 322 cbp2->bio_offset = cbp->bio_offset + MAXPHYS; 323 cbp2->bio_to = cp->provider; 324 cbp2->bio_done = g_eli_write_done; 325 cbp->bio_length = MAXPHYS; 326 } 327 /* 328 * Send encrypted data to the provider. 329 */ 330 G_ELI_LOGREQ(2, cbp, "Sending request."); 331 bp->bio_inbed = 0; 332 bp->bio_children = (cbp2 != NULL ? 2 : 1); 333 g_io_request(cbp, cp); 334 if (cbp2 != NULL) { 335 G_ELI_LOGREQ(2, cbp2, "Sending request."); 336 g_io_request(cbp2, cp); 337 } 338 return (0); 339 } 340 341 void 342 g_eli_auth_read(struct g_eli_softc *sc, struct bio *bp) 343 { 344 struct g_consumer *cp; 345 struct bio *cbp, *cbp2; 346 size_t size; 347 off_t nsec; 348 349 bp->bio_pflags = 0; 350 351 cp = LIST_FIRST(&sc->sc_geom->consumer); 352 cbp = bp->bio_driver1; 353 bp->bio_driver1 = NULL; 354 cbp->bio_to = cp->provider; 355 cbp->bio_done = g_eli_read_done; 356 357 /* Number of sectors from decrypted provider, eg. 1. */ 358 nsec = bp->bio_length / bp->bio_to->sectorsize; 359 /* Number of sectors from encrypted provider, eg. 9. */ 360 nsec = (nsec * sc->sc_bytes_per_sector) / cp->provider->sectorsize; 361 362 cbp->bio_length = cp->provider->sectorsize * nsec; 363 size = cbp->bio_length; 364 size += sc->sc_alen * nsec; 365 size += sizeof(struct cryptop) * nsec; 366 size += sizeof(struct cryptodesc) * nsec * 2; 367 size += G_ELI_AUTH_SECKEYLEN * nsec; 368 cbp->bio_offset = (bp->bio_offset / bp->bio_to->sectorsize) * sc->sc_bytes_per_sector; 369 bp->bio_driver2 = malloc(size, M_ELI, M_WAITOK); 370 cbp->bio_data = bp->bio_driver2; 371 372 /* 373 * We read more than what is requested, so we have to be ready to read 374 * more than MAXPHYS. 375 */ 376 cbp2 = NULL; 377 if (cbp->bio_length > MAXPHYS) { 378 cbp2 = g_duplicate_bio(bp); 379 cbp2->bio_length = cbp->bio_length - MAXPHYS; 380 cbp2->bio_data = cbp->bio_data + MAXPHYS; 381 cbp2->bio_offset = cbp->bio_offset + MAXPHYS; 382 cbp2->bio_to = cp->provider; 383 cbp2->bio_done = g_eli_read_done; 384 cbp->bio_length = MAXPHYS; 385 } 386 /* 387 * Read encrypted data from provider. 388 */ 389 G_ELI_LOGREQ(2, cbp, "Sending request."); 390 g_io_request(cbp, cp); 391 if (cbp2 != NULL) { 392 G_ELI_LOGREQ(2, cbp2, "Sending request."); 393 g_io_request(cbp2, cp); 394 } 395 } 396 397 /* 398 * This is the main function responsible for cryptography (ie. communication 399 * with crypto(9) subsystem). 400 * 401 * BIO_READ: 402 * g_eli_start -> g_eli_auth_read -> g_io_request -> g_eli_read_done -> G_ELI_AUTH_RUN -> g_eli_auth_read_done -> g_io_deliver 403 * BIO_WRITE: 404 * g_eli_start -> G_ELI_AUTH_RUN -> g_eli_auth_write_done -> g_io_request -> g_eli_write_done -> g_io_deliver 405 */ 406 void 407 g_eli_auth_run(struct g_eli_worker *wr, struct bio *bp) 408 { 409 struct g_eli_softc *sc; 410 struct cryptop *crp; 411 struct cryptodesc *crde, *crda; 412 u_int i, lsec, nsec, data_secsize, decr_secsize, encr_secsize; 413 off_t dstoff; 414 u_char *p, *data, *auth, *authkey, *plaindata; 415 int error; 416 417 G_ELI_LOGREQ(3, bp, "%s", __func__); 418 419 bp->bio_pflags = wr->w_number; 420 sc = wr->w_softc; 421 /* Sectorsize of decrypted provider eg. 4096. */ 422 decr_secsize = bp->bio_to->sectorsize; 423 /* The real sectorsize of encrypted provider, eg. 512. */ 424 encr_secsize = LIST_FIRST(&sc->sc_geom->consumer)->provider->sectorsize; 425 /* Number of data bytes in one encrypted sector, eg. 480. */ 426 data_secsize = sc->sc_data_per_sector; 427 /* Number of sectors from decrypted provider, eg. 2. */ 428 nsec = bp->bio_length / decr_secsize; 429 /* Number of sectors from encrypted provider, eg. 18. */ 430 nsec = (nsec * sc->sc_bytes_per_sector) / encr_secsize; 431 /* Last sector number in every big sector, eg. 9. */ 432 lsec = sc->sc_bytes_per_sector / encr_secsize; 433 /* Destination offset, used for IV generation. */ 434 dstoff = (bp->bio_offset / bp->bio_to->sectorsize) * sc->sc_bytes_per_sector; 435 436 auth = NULL; /* Silence compiler warning. */ 437 plaindata = bp->bio_data; 438 if (bp->bio_cmd == BIO_READ) { 439 data = bp->bio_driver2; 440 auth = data + encr_secsize * nsec; 441 p = auth + sc->sc_alen * nsec; 442 } else { 443 size_t size; 444 445 size = encr_secsize * nsec; 446 size += sizeof(*crp) * nsec; 447 size += sizeof(*crde) * nsec; 448 size += sizeof(*crda) * nsec; 449 size += G_ELI_AUTH_SECKEYLEN * nsec; 450 size += sizeof(uintptr_t); /* Space for alignment. */ 451 data = malloc(size, M_ELI, M_WAITOK); 452 bp->bio_driver2 = data; 453 p = data + encr_secsize * nsec; 454 } 455 bp->bio_inbed = 0; 456 bp->bio_children = nsec; 457 458 #if defined(__mips_n64) || defined(__mips_o64) 459 p = (char *)roundup((uintptr_t)p, sizeof(uintptr_t)); 460 #endif 461 462 for (i = 1; i <= nsec; i++, dstoff += encr_secsize) { 463 crp = (struct cryptop *)p; p += sizeof(*crp); 464 crde = (struct cryptodesc *)p; p += sizeof(*crde); 465 crda = (struct cryptodesc *)p; p += sizeof(*crda); 466 authkey = (u_char *)p; p += G_ELI_AUTH_SECKEYLEN; 467 468 data_secsize = sc->sc_data_per_sector; 469 if ((i % lsec) == 0) { 470 data_secsize = decr_secsize % data_secsize; 471 /* 472 * Last encrypted sector of each decrypted sector is 473 * only partially filled. 474 */ 475 if (bp->bio_cmd == BIO_WRITE) 476 memset(data + sc->sc_alen + data_secsize, 0, 477 encr_secsize - sc->sc_alen - data_secsize); 478 } 479 480 if (bp->bio_cmd == BIO_READ) { 481 /* Remember read HMAC. */ 482 bcopy(data, auth, sc->sc_alen); 483 auth += sc->sc_alen; 484 /* TODO: bzero(9) can be commented out later. */ 485 bzero(data, sc->sc_alen); 486 } else { 487 bcopy(plaindata, data + sc->sc_alen, data_secsize); 488 plaindata += data_secsize; 489 } 490 491 crp->crp_session = wr->w_sid; 492 crp->crp_ilen = sc->sc_alen + data_secsize; 493 crp->crp_olen = data_secsize; 494 crp->crp_opaque = (void *)bp; 495 crp->crp_buf = (void *)data; 496 data += encr_secsize; 497 crp->crp_flags = CRYPTO_F_CBIFSYNC; 498 if (g_eli_batch) 499 crp->crp_flags |= CRYPTO_F_BATCH; 500 if (bp->bio_cmd == BIO_WRITE) { 501 crp->crp_callback = g_eli_auth_write_done; 502 crp->crp_desc = crde; 503 crde->crd_next = crda; 504 crda->crd_next = NULL; 505 } else { 506 crp->crp_callback = g_eli_auth_read_done; 507 crp->crp_desc = crda; 508 crda->crd_next = crde; 509 crde->crd_next = NULL; 510 } 511 512 crde->crd_skip = sc->sc_alen; 513 crde->crd_len = data_secsize; 514 crde->crd_flags = CRD_F_IV_EXPLICIT | CRD_F_IV_PRESENT; 515 if ((sc->sc_flags & G_ELI_FLAG_FIRST_KEY) == 0) 516 crde->crd_flags |= CRD_F_KEY_EXPLICIT; 517 if (bp->bio_cmd == BIO_WRITE) 518 crde->crd_flags |= CRD_F_ENCRYPT; 519 crde->crd_alg = sc->sc_ealgo; 520 crde->crd_key = g_eli_key_hold(sc, dstoff, encr_secsize); 521 crde->crd_klen = sc->sc_ekeylen; 522 if (sc->sc_ealgo == CRYPTO_AES_XTS) 523 crde->crd_klen <<= 1; 524 g_eli_crypto_ivgen(sc, dstoff, crde->crd_iv, 525 sizeof(crde->crd_iv)); 526 527 crda->crd_skip = sc->sc_alen; 528 crda->crd_len = data_secsize; 529 crda->crd_inject = 0; 530 crda->crd_flags = CRD_F_KEY_EXPLICIT; 531 crda->crd_alg = sc->sc_aalgo; 532 g_eli_auth_keygen(sc, dstoff, authkey); 533 crda->crd_key = authkey; 534 crda->crd_klen = G_ELI_AUTH_SECKEYLEN * 8; 535 536 crp->crp_etype = 0; 537 error = crypto_dispatch(crp); 538 KASSERT(error == 0, ("crypto_dispatch() failed (error=%d)", 539 error)); 540 } 541 } 542