1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1992, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * John Heidemann of the UCLA Ficus project. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95 35 * 36 * Ancestors: 37 * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92 38 * ...and... 39 * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project 40 * 41 * $FreeBSD$ 42 */ 43 44 /* 45 * Null Layer 46 * 47 * (See mount_nullfs(8) for more information.) 48 * 49 * The null layer duplicates a portion of the filesystem 50 * name space under a new name. In this respect, it is 51 * similar to the loopback filesystem. It differs from 52 * the loopback fs in two respects: it is implemented using 53 * a stackable layers techniques, and its "null-node"s stack above 54 * all lower-layer vnodes, not just over directory vnodes. 55 * 56 * The null layer has two purposes. First, it serves as a demonstration 57 * of layering by proving a layer which does nothing. (It actually 58 * does everything the loopback filesystem does, which is slightly 59 * more than nothing.) Second, the null layer can serve as a prototype 60 * layer. Since it provides all necessary layer framework, 61 * new filesystem layers can be created very easily be starting 62 * with a null layer. 63 * 64 * The remainder of this man page examines the null layer as a basis 65 * for constructing new layers. 66 * 67 * 68 * INSTANTIATING NEW NULL LAYERS 69 * 70 * New null layers are created with mount_nullfs(8). 71 * Mount_nullfs(8) takes two arguments, the pathname 72 * of the lower vfs (target-pn) and the pathname where the null 73 * layer will appear in the namespace (alias-pn). After 74 * the null layer is put into place, the contents 75 * of target-pn subtree will be aliased under alias-pn. 76 * 77 * 78 * OPERATION OF A NULL LAYER 79 * 80 * The null layer is the minimum filesystem layer, 81 * simply bypassing all possible operations to the lower layer 82 * for processing there. The majority of its activity centers 83 * on the bypass routine, through which nearly all vnode operations 84 * pass. 85 * 86 * The bypass routine accepts arbitrary vnode operations for 87 * handling by the lower layer. It begins by examing vnode 88 * operation arguments and replacing any null-nodes by their 89 * lower-layer equivlants. It then invokes the operation 90 * on the lower layer. Finally, it replaces the null-nodes 91 * in the arguments and, if a vnode is return by the operation, 92 * stacks a null-node on top of the returned vnode. 93 * 94 * Although bypass handles most operations, vop_getattr, vop_lock, 95 * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not 96 * bypassed. Vop_getattr must change the fsid being returned. 97 * Vop_lock and vop_unlock must handle any locking for the 98 * current vnode as well as pass the lock request down. 99 * Vop_inactive and vop_reclaim are not bypassed so that 100 * they can handle freeing null-layer specific data. Vop_print 101 * is not bypassed to avoid excessive debugging information. 102 * Also, certain vnode operations change the locking state within 103 * the operation (create, mknod, remove, link, rename, mkdir, rmdir, 104 * and symlink). Ideally these operations should not change the 105 * lock state, but should be changed to let the caller of the 106 * function unlock them. Otherwise all intermediate vnode layers 107 * (such as union, umapfs, etc) must catch these functions to do 108 * the necessary locking at their layer. 109 * 110 * 111 * INSTANTIATING VNODE STACKS 112 * 113 * Mounting associates the null layer with a lower layer, 114 * effect stacking two VFSes. Vnode stacks are instead 115 * created on demand as files are accessed. 116 * 117 * The initial mount creates a single vnode stack for the 118 * root of the new null layer. All other vnode stacks 119 * are created as a result of vnode operations on 120 * this or other null vnode stacks. 121 * 122 * New vnode stacks come into existence as a result of 123 * an operation which returns a vnode. 124 * The bypass routine stacks a null-node above the new 125 * vnode before returning it to the caller. 126 * 127 * For example, imagine mounting a null layer with 128 * "mount_nullfs /usr/include /dev/layer/null". 129 * Changing directory to /dev/layer/null will assign 130 * the root null-node (which was created when the null layer was mounted). 131 * Now consider opening "sys". A vop_lookup would be 132 * done on the root null-node. This operation would bypass through 133 * to the lower layer which would return a vnode representing 134 * the UFS "sys". Null_bypass then builds a null-node 135 * aliasing the UFS "sys" and returns this to the caller. 136 * Later operations on the null-node "sys" will repeat this 137 * process when constructing other vnode stacks. 138 * 139 * 140 * CREATING OTHER FILE SYSTEM LAYERS 141 * 142 * One of the easiest ways to construct new filesystem layers is to make 143 * a copy of the null layer, rename all files and variables, and 144 * then begin modifing the copy. Sed can be used to easily rename 145 * all variables. 146 * 147 * The umap layer is an example of a layer descended from the 148 * null layer. 149 * 150 * 151 * INVOKING OPERATIONS ON LOWER LAYERS 152 * 153 * There are two techniques to invoke operations on a lower layer 154 * when the operation cannot be completely bypassed. Each method 155 * is appropriate in different situations. In both cases, 156 * it is the responsibility of the aliasing layer to make 157 * the operation arguments "correct" for the lower layer 158 * by mapping a vnode arguments to the lower layer. 159 * 160 * The first approach is to call the aliasing layer's bypass routine. 161 * This method is most suitable when you wish to invoke the operation 162 * currently being handled on the lower layer. It has the advantage 163 * that the bypass routine already must do argument mapping. 164 * An example of this is null_getattrs in the null layer. 165 * 166 * A second approach is to directly invoke vnode operations on 167 * the lower layer with the VOP_OPERATIONNAME interface. 168 * The advantage of this method is that it is easy to invoke 169 * arbitrary operations on the lower layer. The disadvantage 170 * is that vnode arguments must be manualy mapped. 171 * 172 */ 173 174 #include <sys/param.h> 175 #include <sys/systm.h> 176 #include <sys/conf.h> 177 #include <sys/kernel.h> 178 #include <sys/lock.h> 179 #include <sys/malloc.h> 180 #include <sys/mount.h> 181 #include <sys/mutex.h> 182 #include <sys/namei.h> 183 #include <sys/sysctl.h> 184 #include <sys/vnode.h> 185 #include <sys/stat.h> 186 187 #include <fs/nullfs/null.h> 188 189 #include <vm/vm.h> 190 #include <vm/vm_extern.h> 191 #include <vm/vm_object.h> 192 #include <vm/vnode_pager.h> 193 194 static int null_bug_bypass = 0; /* for debugging: enables bypass printf'ing */ 195 SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW, 196 &null_bug_bypass, 0, ""); 197 198 /* 199 * This is the 10-Apr-92 bypass routine. 200 * This version has been optimized for speed, throwing away some 201 * safety checks. It should still always work, but it's not as 202 * robust to programmer errors. 203 * 204 * In general, we map all vnodes going down and unmap them on the way back. 205 * As an exception to this, vnodes can be marked "unmapped" by setting 206 * the Nth bit in operation's vdesc_flags. 207 * 208 * Also, some BSD vnode operations have the side effect of vrele'ing 209 * their arguments. With stacking, the reference counts are held 210 * by the upper node, not the lower one, so we must handle these 211 * side-effects here. This is not of concern in Sun-derived systems 212 * since there are no such side-effects. 213 * 214 * This makes the following assumptions: 215 * - only one returned vpp 216 * - no INOUT vpp's (Sun's vop_open has one of these) 217 * - the vnode operation vector of the first vnode should be used 218 * to determine what implementation of the op should be invoked 219 * - all mapped vnodes are of our vnode-type (NEEDSWORK: 220 * problems on rmdir'ing mount points and renaming?) 221 */ 222 int 223 null_bypass(struct vop_generic_args *ap) 224 { 225 struct vnode **this_vp_p; 226 struct vnode *old_vps[VDESC_MAX_VPS]; 227 struct vnode **vps_p[VDESC_MAX_VPS]; 228 struct vnode ***vppp; 229 struct vnode *lvp; 230 struct vnodeop_desc *descp = ap->a_desc; 231 int error, i, reles; 232 233 if (null_bug_bypass) 234 printf ("null_bypass: %s\n", descp->vdesc_name); 235 236 #ifdef DIAGNOSTIC 237 /* 238 * We require at least one vp. 239 */ 240 if (descp->vdesc_vp_offsets == NULL || 241 descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET) 242 panic ("null_bypass: no vp's in map"); 243 #endif 244 245 /* 246 * Map the vnodes going in. 247 * Later, we'll invoke the operation based on 248 * the first mapped vnode's operation vector. 249 */ 250 reles = descp->vdesc_flags; 251 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) { 252 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET) 253 break; /* bail out at end of list */ 254 vps_p[i] = this_vp_p = VOPARG_OFFSETTO(struct vnode **, 255 descp->vdesc_vp_offsets[i], ap); 256 257 /* 258 * We're not guaranteed that any but the first vnode 259 * are of our type. Check for and don't map any 260 * that aren't. (We must always map first vp or vclean fails.) 261 */ 262 if (i != 0 && (*this_vp_p == NULLVP || 263 (*this_vp_p)->v_op != &null_vnodeops)) { 264 old_vps[i] = NULLVP; 265 } else { 266 old_vps[i] = *this_vp_p; 267 *(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p); 268 269 /* 270 * The upper vnode reference to the lower 271 * vnode is the only reference that keeps our 272 * pointer to the lower vnode alive. If lower 273 * vnode is relocked during the VOP call, 274 * upper vnode might become unlocked and 275 * reclaimed, which invalidates our reference. 276 * Add a transient hold around VOP call. 277 */ 278 vhold(*this_vp_p); 279 280 /* 281 * XXX - Several operations have the side effect 282 * of vrele'ing their vp's. We must account for 283 * that. (This should go away in the future.) 284 */ 285 if (reles & VDESC_VP0_WILLRELE) 286 vref(*this_vp_p); 287 } 288 } 289 290 /* 291 * Call the operation on the lower layer 292 * with the modified argument structure. 293 */ 294 if (vps_p[0] != NULL && *vps_p[0] != NULL) { 295 error = VCALL(ap); 296 } else { 297 printf("null_bypass: no map for %s\n", descp->vdesc_name); 298 error = EINVAL; 299 } 300 301 /* 302 * Maintain the illusion of call-by-value 303 * by restoring vnodes in the argument structure 304 * to their original value. 305 */ 306 reles = descp->vdesc_flags; 307 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) { 308 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET) 309 break; /* bail out at end of list */ 310 if (old_vps[i] != NULL) { 311 lvp = *(vps_p[i]); 312 313 /* 314 * Get rid of the transient hold on lvp. 315 * If lowervp was unlocked during VOP 316 * operation, nullfs upper vnode could have 317 * been reclaimed, which changes its v_vnlock 318 * back to private v_lock. In this case we 319 * must move lock ownership from lower to 320 * upper (reclaimed) vnode. 321 */ 322 if (lvp != NULLVP) { 323 if (VOP_ISLOCKED(lvp) == LK_EXCLUSIVE && 324 old_vps[i]->v_vnlock != lvp->v_vnlock) { 325 VOP_UNLOCK(lvp); 326 VOP_LOCK(old_vps[i], LK_EXCLUSIVE | 327 LK_RETRY); 328 } 329 vdrop(lvp); 330 } 331 332 *(vps_p[i]) = old_vps[i]; 333 #if 0 334 if (reles & VDESC_VP0_WILLUNLOCK) 335 VOP_UNLOCK(*(vps_p[i]), 0); 336 #endif 337 if (reles & VDESC_VP0_WILLRELE) 338 vrele(*(vps_p[i])); 339 } 340 } 341 342 /* 343 * Map the possible out-going vpp 344 * (Assumes that the lower layer always returns 345 * a VREF'ed vpp unless it gets an error.) 346 */ 347 if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && error == 0) { 348 /* 349 * XXX - even though some ops have vpp returned vp's, 350 * several ops actually vrele this before returning. 351 * We must avoid these ops. 352 * (This should go away when these ops are regularized.) 353 */ 354 vppp = VOPARG_OFFSETTO(struct vnode ***, 355 descp->vdesc_vpp_offset, ap); 356 if (*vppp != NULL) 357 error = null_nodeget(old_vps[0]->v_mount, **vppp, 358 *vppp); 359 } 360 361 return (error); 362 } 363 364 static int 365 null_add_writecount(struct vop_add_writecount_args *ap) 366 { 367 struct vnode *lvp, *vp; 368 int error; 369 370 vp = ap->a_vp; 371 lvp = NULLVPTOLOWERVP(vp); 372 VI_LOCK(vp); 373 /* text refs are bypassed to lowervp */ 374 VNASSERT(vp->v_writecount >= 0, vp, ("wrong null writecount")); 375 VNASSERT(vp->v_writecount + ap->a_inc >= 0, vp, 376 ("wrong writecount inc %d", ap->a_inc)); 377 error = VOP_ADD_WRITECOUNT(lvp, ap->a_inc); 378 if (error == 0) 379 vp->v_writecount += ap->a_inc; 380 VI_UNLOCK(vp); 381 return (error); 382 } 383 384 /* 385 * We have to carry on the locking protocol on the null layer vnodes 386 * as we progress through the tree. We also have to enforce read-only 387 * if this layer is mounted read-only. 388 */ 389 static int 390 null_lookup(struct vop_lookup_args *ap) 391 { 392 struct componentname *cnp = ap->a_cnp; 393 struct vnode *dvp = ap->a_dvp; 394 int flags = cnp->cn_flags; 395 struct vnode *vp, *ldvp, *lvp; 396 struct mount *mp; 397 int error; 398 399 mp = dvp->v_mount; 400 if ((flags & ISLASTCN) != 0 && (mp->mnt_flag & MNT_RDONLY) != 0 && 401 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) 402 return (EROFS); 403 /* 404 * Although it is possible to call null_bypass(), we'll do 405 * a direct call to reduce overhead 406 */ 407 ldvp = NULLVPTOLOWERVP(dvp); 408 vp = lvp = NULL; 409 410 /* 411 * Renames in the lower mounts might create an inconsistent 412 * configuration where lower vnode is moved out of the 413 * directory tree remounted by our null mount. Do not try to 414 * handle it fancy, just avoid VOP_LOOKUP() with DOTDOT name 415 * which cannot be handled by VOP, at least passing over lower 416 * root. 417 */ 418 if ((ldvp->v_vflag & VV_ROOT) != 0 && (flags & ISDOTDOT) != 0) { 419 KASSERT((dvp->v_vflag & VV_ROOT) == 0, 420 ("ldvp %p fl %#x dvp %p fl %#x flags %#x", 421 ldvp, ldvp->v_vflag, dvp, dvp->v_vflag, flags)); 422 return (ENOENT); 423 } 424 425 /* 426 * Hold ldvp. The reference on it, owned by dvp, is lost in 427 * case of dvp reclamation, and we need ldvp to move our lock 428 * from ldvp to dvp. 429 */ 430 vhold(ldvp); 431 432 error = VOP_LOOKUP(ldvp, &lvp, cnp); 433 434 /* 435 * VOP_LOOKUP() on lower vnode may unlock ldvp, which allows 436 * dvp to be reclaimed due to shared v_vnlock. Check for the 437 * doomed state and return error. 438 */ 439 if (VN_IS_DOOMED(dvp)) { 440 if (error == 0 || error == EJUSTRETURN) { 441 if (lvp != NULL) 442 vput(lvp); 443 error = ENOENT; 444 } 445 446 /* 447 * If vgone() did reclaimed dvp before curthread 448 * relocked ldvp, the locks of dvp and ldpv are no 449 * longer shared. In this case, relock of ldvp in 450 * lower fs VOP_LOOKUP() does not restore the locking 451 * state of dvp. Compensate for this by unlocking 452 * ldvp and locking dvp, which is also correct if the 453 * locks are still shared. 454 */ 455 VOP_UNLOCK(ldvp); 456 vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY); 457 } 458 vdrop(ldvp); 459 460 if (error == EJUSTRETURN && (flags & ISLASTCN) != 0 && 461 (mp->mnt_flag & MNT_RDONLY) != 0 && 462 (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME)) 463 error = EROFS; 464 465 if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) { 466 if (ldvp == lvp) { 467 *ap->a_vpp = dvp; 468 VREF(dvp); 469 vrele(lvp); 470 } else { 471 error = null_nodeget(mp, lvp, &vp); 472 if (error == 0) 473 *ap->a_vpp = vp; 474 } 475 } 476 return (error); 477 } 478 479 static int 480 null_open(struct vop_open_args *ap) 481 { 482 int retval; 483 struct vnode *vp, *ldvp; 484 485 vp = ap->a_vp; 486 ldvp = NULLVPTOLOWERVP(vp); 487 retval = null_bypass(&ap->a_gen); 488 if (retval == 0) { 489 vp->v_object = ldvp->v_object; 490 if ((vn_irflag_read(ldvp) & VIRF_PGREAD) != 0) { 491 MPASS(vp->v_object != NULL); 492 if ((vn_irflag_read(vp) & VIRF_PGREAD) == 0) { 493 vn_irflag_set_cond(vp, VIRF_PGREAD); 494 } 495 } 496 } 497 return (retval); 498 } 499 500 /* 501 * Setattr call. Disallow write attempts if the layer is mounted read-only. 502 */ 503 static int 504 null_setattr(struct vop_setattr_args *ap) 505 { 506 struct vnode *vp = ap->a_vp; 507 struct vattr *vap = ap->a_vap; 508 509 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL || 510 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL || 511 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) && 512 (vp->v_mount->mnt_flag & MNT_RDONLY)) 513 return (EROFS); 514 if (vap->va_size != VNOVAL) { 515 switch (vp->v_type) { 516 case VDIR: 517 return (EISDIR); 518 case VCHR: 519 case VBLK: 520 case VSOCK: 521 case VFIFO: 522 if (vap->va_flags != VNOVAL) 523 return (EOPNOTSUPP); 524 return (0); 525 case VREG: 526 case VLNK: 527 default: 528 /* 529 * Disallow write attempts if the filesystem is 530 * mounted read-only. 531 */ 532 if (vp->v_mount->mnt_flag & MNT_RDONLY) 533 return (EROFS); 534 } 535 } 536 537 return (null_bypass((struct vop_generic_args *)ap)); 538 } 539 540 /* 541 * We handle stat and getattr only to change the fsid. 542 */ 543 static int 544 null_stat(struct vop_stat_args *ap) 545 { 546 int error; 547 548 if ((error = null_bypass((struct vop_generic_args *)ap)) != 0) 549 return (error); 550 551 ap->a_sb->st_dev = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0]; 552 return (0); 553 } 554 555 static int 556 null_getattr(struct vop_getattr_args *ap) 557 { 558 int error; 559 560 if ((error = null_bypass((struct vop_generic_args *)ap)) != 0) 561 return (error); 562 563 ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0]; 564 return (0); 565 } 566 567 /* 568 * Handle to disallow write access if mounted read-only. 569 */ 570 static int 571 null_access(struct vop_access_args *ap) 572 { 573 struct vnode *vp = ap->a_vp; 574 accmode_t accmode = ap->a_accmode; 575 576 /* 577 * Disallow write attempts on read-only layers; 578 * unless the file is a socket, fifo, or a block or 579 * character device resident on the filesystem. 580 */ 581 if (accmode & VWRITE) { 582 switch (vp->v_type) { 583 case VDIR: 584 case VLNK: 585 case VREG: 586 if (vp->v_mount->mnt_flag & MNT_RDONLY) 587 return (EROFS); 588 break; 589 default: 590 break; 591 } 592 } 593 return (null_bypass((struct vop_generic_args *)ap)); 594 } 595 596 static int 597 null_accessx(struct vop_accessx_args *ap) 598 { 599 struct vnode *vp = ap->a_vp; 600 accmode_t accmode = ap->a_accmode; 601 602 /* 603 * Disallow write attempts on read-only layers; 604 * unless the file is a socket, fifo, or a block or 605 * character device resident on the filesystem. 606 */ 607 if (accmode & VWRITE) { 608 switch (vp->v_type) { 609 case VDIR: 610 case VLNK: 611 case VREG: 612 if (vp->v_mount->mnt_flag & MNT_RDONLY) 613 return (EROFS); 614 break; 615 default: 616 break; 617 } 618 } 619 return (null_bypass((struct vop_generic_args *)ap)); 620 } 621 622 /* 623 * Increasing refcount of lower vnode is needed at least for the case 624 * when lower FS is NFS to do sillyrename if the file is in use. 625 * Unfortunately v_usecount is incremented in many places in 626 * the kernel and, as such, there may be races that result in 627 * the NFS client doing an extraneous silly rename, but that seems 628 * preferable to not doing a silly rename when it is needed. 629 */ 630 static int 631 null_remove(struct vop_remove_args *ap) 632 { 633 int retval, vreleit; 634 struct vnode *lvp, *vp; 635 636 vp = ap->a_vp; 637 if (vrefcnt(vp) > 1) { 638 lvp = NULLVPTOLOWERVP(vp); 639 VREF(lvp); 640 vreleit = 1; 641 } else 642 vreleit = 0; 643 VTONULL(vp)->null_flags |= NULLV_DROP; 644 retval = null_bypass(&ap->a_gen); 645 if (vreleit != 0) 646 vrele(lvp); 647 return (retval); 648 } 649 650 /* 651 * We handle this to eliminate null FS to lower FS 652 * file moving. Don't know why we don't allow this, 653 * possibly we should. 654 */ 655 static int 656 null_rename(struct vop_rename_args *ap) 657 { 658 struct vnode *fdvp, *fvp, *tdvp, *tvp; 659 struct vnode *lfdvp, *lfvp, *ltdvp, *ltvp; 660 struct null_node *fdnn, *fnn, *tdnn, *tnn; 661 int error; 662 663 tdvp = ap->a_tdvp; 664 fvp = ap->a_fvp; 665 fdvp = ap->a_fdvp; 666 tvp = ap->a_tvp; 667 lfdvp = NULL; 668 669 /* Check for cross-device rename. */ 670 if ((fvp->v_mount != tdvp->v_mount) || 671 (tvp != NULL && fvp->v_mount != tvp->v_mount)) { 672 error = EXDEV; 673 goto upper_err; 674 } 675 676 VI_LOCK(fdvp); 677 fdnn = VTONULL(fdvp); 678 if (fdnn == NULL) { /* fdvp is not locked, can be doomed */ 679 VI_UNLOCK(fdvp); 680 error = ENOENT; 681 goto upper_err; 682 } 683 lfdvp = fdnn->null_lowervp; 684 vref(lfdvp); 685 VI_UNLOCK(fdvp); 686 687 VI_LOCK(fvp); 688 fnn = VTONULL(fvp); 689 if (fnn == NULL) { 690 VI_UNLOCK(fvp); 691 error = ENOENT; 692 goto upper_err; 693 } 694 lfvp = fnn->null_lowervp; 695 vref(lfvp); 696 VI_UNLOCK(fvp); 697 698 tdnn = VTONULL(tdvp); 699 ltdvp = tdnn->null_lowervp; 700 vref(ltdvp); 701 702 if (tvp != NULL) { 703 tnn = VTONULL(tvp); 704 ltvp = tnn->null_lowervp; 705 vref(ltvp); 706 tnn->null_flags |= NULLV_DROP; 707 } else { 708 ltvp = NULL; 709 } 710 711 error = VOP_RENAME(lfdvp, lfvp, ap->a_fcnp, ltdvp, ltvp, ap->a_tcnp); 712 vrele(fdvp); 713 vrele(fvp); 714 vrele(tdvp); 715 if (tvp != NULL) 716 vrele(tvp); 717 return (error); 718 719 upper_err: 720 if (tdvp == tvp) 721 vrele(tdvp); 722 else 723 vput(tdvp); 724 if (tvp) 725 vput(tvp); 726 if (lfdvp != NULL) 727 vrele(lfdvp); 728 vrele(fdvp); 729 vrele(fvp); 730 return (error); 731 } 732 733 static int 734 null_rmdir(struct vop_rmdir_args *ap) 735 { 736 737 VTONULL(ap->a_vp)->null_flags |= NULLV_DROP; 738 return (null_bypass(&ap->a_gen)); 739 } 740 741 /* 742 * We need to process our own vnode lock and then clear the 743 * interlock flag as it applies only to our vnode, not the 744 * vnodes below us on the stack. 745 */ 746 static int 747 null_lock(struct vop_lock1_args *ap) 748 { 749 struct vnode *vp = ap->a_vp; 750 int flags; 751 struct null_node *nn; 752 struct vnode *lvp; 753 int error; 754 755 if ((ap->a_flags & LK_INTERLOCK) == 0) 756 VI_LOCK(vp); 757 else 758 ap->a_flags &= ~LK_INTERLOCK; 759 flags = ap->a_flags; 760 nn = VTONULL(vp); 761 /* 762 * If we're still active we must ask the lower layer to 763 * lock as ffs has special lock considerations in its 764 * vop lock. 765 */ 766 if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) { 767 /* 768 * We have to hold the vnode here to solve a potential 769 * reclaim race. If we're forcibly vgone'd while we 770 * still have refs, a thread could be sleeping inside 771 * the lowervp's vop_lock routine. When we vgone we will 772 * drop our last ref to the lowervp, which would allow it 773 * to be reclaimed. The lowervp could then be recycled, 774 * in which case it is not legal to be sleeping in its VOP. 775 * We prevent it from being recycled by holding the vnode 776 * here. 777 */ 778 vholdnz(lvp); 779 VI_UNLOCK(vp); 780 error = VOP_LOCK(lvp, flags); 781 782 /* 783 * We might have slept to get the lock and someone might have 784 * clean our vnode already, switching vnode lock from one in 785 * lowervp to v_lock in our own vnode structure. Handle this 786 * case by reacquiring correct lock in requested mode. 787 */ 788 if (VTONULL(vp) == NULL && error == 0) { 789 ap->a_flags &= ~LK_TYPE_MASK; 790 switch (flags & LK_TYPE_MASK) { 791 case LK_SHARED: 792 ap->a_flags |= LK_SHARED; 793 break; 794 case LK_UPGRADE: 795 case LK_EXCLUSIVE: 796 ap->a_flags |= LK_EXCLUSIVE; 797 break; 798 default: 799 panic("Unsupported lock request %d\n", 800 ap->a_flags); 801 } 802 VOP_UNLOCK(lvp); 803 error = vop_stdlock(ap); 804 } 805 vdrop(lvp); 806 } else { 807 VI_UNLOCK(vp); 808 error = vop_stdlock(ap); 809 } 810 811 return (error); 812 } 813 814 /* 815 * We need to process our own vnode unlock and then clear the 816 * interlock flag as it applies only to our vnode, not the 817 * vnodes below us on the stack. 818 */ 819 static int 820 null_unlock(struct vop_unlock_args *ap) 821 { 822 struct vnode *vp = ap->a_vp; 823 struct null_node *nn; 824 struct vnode *lvp; 825 int error; 826 827 nn = VTONULL(vp); 828 if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) { 829 vholdnz(lvp); 830 error = VOP_UNLOCK(lvp); 831 vdrop(lvp); 832 } else { 833 error = vop_stdunlock(ap); 834 } 835 836 return (error); 837 } 838 839 /* 840 * Do not allow the VOP_INACTIVE to be passed to the lower layer, 841 * since the reference count on the lower vnode is not related to 842 * ours. 843 */ 844 static int 845 null_want_recycle(struct vnode *vp) 846 { 847 struct vnode *lvp; 848 struct null_node *xp; 849 struct mount *mp; 850 struct null_mount *xmp; 851 852 xp = VTONULL(vp); 853 lvp = NULLVPTOLOWERVP(vp); 854 mp = vp->v_mount; 855 xmp = MOUNTTONULLMOUNT(mp); 856 if ((xmp->nullm_flags & NULLM_CACHE) == 0 || 857 (xp->null_flags & NULLV_DROP) != 0 || 858 (lvp->v_vflag & VV_NOSYNC) != 0) { 859 /* 860 * If this is the last reference and caching of the 861 * nullfs vnodes is not enabled, or the lower vnode is 862 * deleted, then free up the vnode so as not to tie up 863 * the lower vnodes. 864 */ 865 return (1); 866 } 867 return (0); 868 } 869 870 static int 871 null_inactive(struct vop_inactive_args *ap) 872 { 873 struct vnode *vp; 874 875 vp = ap->a_vp; 876 if (null_want_recycle(vp)) { 877 vp->v_object = NULL; 878 vrecycle(vp); 879 } 880 return (0); 881 } 882 883 static int 884 null_need_inactive(struct vop_need_inactive_args *ap) 885 { 886 887 return (null_want_recycle(ap->a_vp) || vn_need_pageq_flush(ap->a_vp)); 888 } 889 890 /* 891 * Now, the nullfs vnode and, due to the sharing lock, the lower 892 * vnode, are exclusively locked, and we shall destroy the null vnode. 893 */ 894 static int 895 null_reclaim(struct vop_reclaim_args *ap) 896 { 897 struct vnode *vp; 898 struct null_node *xp; 899 struct vnode *lowervp; 900 901 vp = ap->a_vp; 902 xp = VTONULL(vp); 903 lowervp = xp->null_lowervp; 904 905 KASSERT(lowervp != NULL && vp->v_vnlock != &vp->v_lock, 906 ("Reclaiming incomplete null vnode %p", vp)); 907 908 null_hashrem(xp); 909 /* 910 * Use the interlock to protect the clearing of v_data to 911 * prevent faults in null_lock(). 912 */ 913 lockmgr(&vp->v_lock, LK_EXCLUSIVE, NULL); 914 VI_LOCK(vp); 915 vp->v_data = NULL; 916 vp->v_object = NULL; 917 vp->v_vnlock = &vp->v_lock; 918 919 /* 920 * If we were opened for write, we leased the write reference 921 * to the lower vnode. If this is a reclamation due to the 922 * forced unmount, undo the reference now. 923 */ 924 if (vp->v_writecount > 0) 925 VOP_ADD_WRITECOUNT(lowervp, -vp->v_writecount); 926 else if (vp->v_writecount < 0) 927 vp->v_writecount = 0; 928 929 VI_UNLOCK(vp); 930 931 if ((xp->null_flags & NULLV_NOUNLOCK) != 0) 932 vunref(lowervp); 933 else 934 vput(lowervp); 935 free(xp, M_NULLFSNODE); 936 937 return (0); 938 } 939 940 static int 941 null_print(struct vop_print_args *ap) 942 { 943 struct vnode *vp = ap->a_vp; 944 945 printf("\tvp=%p, lowervp=%p\n", vp, VTONULL(vp)->null_lowervp); 946 return (0); 947 } 948 949 /* ARGSUSED */ 950 static int 951 null_getwritemount(struct vop_getwritemount_args *ap) 952 { 953 struct null_node *xp; 954 struct vnode *lowervp; 955 struct vnode *vp; 956 957 vp = ap->a_vp; 958 VI_LOCK(vp); 959 xp = VTONULL(vp); 960 if (xp && (lowervp = xp->null_lowervp)) { 961 vholdnz(lowervp); 962 VI_UNLOCK(vp); 963 VOP_GETWRITEMOUNT(lowervp, ap->a_mpp); 964 vdrop(lowervp); 965 } else { 966 VI_UNLOCK(vp); 967 *(ap->a_mpp) = NULL; 968 } 969 return (0); 970 } 971 972 static int 973 null_vptofh(struct vop_vptofh_args *ap) 974 { 975 struct vnode *lvp; 976 977 lvp = NULLVPTOLOWERVP(ap->a_vp); 978 return VOP_VPTOFH(lvp, ap->a_fhp); 979 } 980 981 static int 982 null_vptocnp(struct vop_vptocnp_args *ap) 983 { 984 struct vnode *vp = ap->a_vp; 985 struct vnode **dvp = ap->a_vpp; 986 struct vnode *lvp, *ldvp; 987 struct mount *mp; 988 int error, locked; 989 990 locked = VOP_ISLOCKED(vp); 991 lvp = NULLVPTOLOWERVP(vp); 992 vhold(lvp); 993 mp = vp->v_mount; 994 vfs_ref(mp); 995 VOP_UNLOCK(vp); /* vp is held by vn_vptocnp_locked that called us */ 996 ldvp = lvp; 997 vref(lvp); 998 error = vn_vptocnp(&ldvp, ap->a_buf, ap->a_buflen); 999 vdrop(lvp); 1000 if (error != 0) { 1001 vn_lock(vp, locked | LK_RETRY); 1002 vfs_rel(mp); 1003 return (ENOENT); 1004 } 1005 1006 error = vn_lock(ldvp, LK_SHARED); 1007 if (error != 0) { 1008 vrele(ldvp); 1009 vn_lock(vp, locked | LK_RETRY); 1010 vfs_rel(mp); 1011 return (ENOENT); 1012 } 1013 error = null_nodeget(mp, ldvp, dvp); 1014 if (error == 0) { 1015 #ifdef DIAGNOSTIC 1016 NULLVPTOLOWERVP(*dvp); 1017 #endif 1018 VOP_UNLOCK(*dvp); /* keep reference on *dvp */ 1019 } 1020 vn_lock(vp, locked | LK_RETRY); 1021 vfs_rel(mp); 1022 return (error); 1023 } 1024 1025 static int 1026 null_read_pgcache(struct vop_read_pgcache_args *ap) 1027 { 1028 struct vnode *lvp, *vp; 1029 struct null_node *xp; 1030 int error; 1031 1032 vp = ap->a_vp; 1033 VI_LOCK(vp); 1034 xp = VTONULL(vp); 1035 if (xp == NULL) { 1036 VI_UNLOCK(vp); 1037 return (EJUSTRETURN); 1038 } 1039 lvp = xp->null_lowervp; 1040 vref(lvp); 1041 VI_UNLOCK(vp); 1042 error = VOP_READ_PGCACHE(lvp, ap->a_uio, ap->a_ioflag, ap->a_cred); 1043 vrele(lvp); 1044 return (error); 1045 } 1046 1047 static int 1048 null_advlock(struct vop_advlock_args *ap) 1049 { 1050 struct vnode *lvp, *vp; 1051 struct null_node *xp; 1052 int error; 1053 1054 vp = ap->a_vp; 1055 VI_LOCK(vp); 1056 xp = VTONULL(vp); 1057 if (xp == NULL) { 1058 VI_UNLOCK(vp); 1059 return (EBADF); 1060 } 1061 lvp = xp->null_lowervp; 1062 vref(lvp); 1063 VI_UNLOCK(vp); 1064 error = VOP_ADVLOCK(lvp, ap->a_id, ap->a_op, ap->a_fl, ap->a_flags); 1065 vrele(lvp); 1066 return (error); 1067 } 1068 1069 /* 1070 * Avoid standard bypass, since lower dvp and vp could be no longer 1071 * valid after vput(). 1072 */ 1073 static int 1074 null_vput_pair(struct vop_vput_pair_args *ap) 1075 { 1076 struct mount *mp; 1077 struct vnode *dvp, *ldvp, *lvp, *vp, *vp1, **vpp; 1078 int error, res; 1079 1080 dvp = ap->a_dvp; 1081 ldvp = NULLVPTOLOWERVP(dvp); 1082 vref(ldvp); 1083 1084 vpp = ap->a_vpp; 1085 vp = NULL; 1086 lvp = NULL; 1087 mp = NULL; 1088 if (vpp != NULL) 1089 vp = *vpp; 1090 if (vp != NULL) { 1091 lvp = NULLVPTOLOWERVP(vp); 1092 vref(lvp); 1093 if (!ap->a_unlock_vp) { 1094 vhold(vp); 1095 vhold(lvp); 1096 mp = vp->v_mount; 1097 vfs_ref(mp); 1098 } 1099 } 1100 1101 res = VOP_VPUT_PAIR(ldvp, lvp != NULL ? &lvp : NULL, true); 1102 if (vp != NULL && ap->a_unlock_vp) 1103 vrele(vp); 1104 vrele(dvp); 1105 1106 if (vp == NULL || ap->a_unlock_vp) 1107 return (res); 1108 1109 /* lvp has been unlocked and vp might be reclaimed */ 1110 VOP_LOCK(vp, LK_EXCLUSIVE | LK_RETRY); 1111 if (vp->v_data == NULL && vfs_busy(mp, MBF_NOWAIT) == 0) { 1112 vput(vp); 1113 vget(lvp, LK_EXCLUSIVE | LK_RETRY); 1114 if (VN_IS_DOOMED(lvp)) { 1115 vput(lvp); 1116 vget(vp, LK_EXCLUSIVE | LK_RETRY); 1117 } else { 1118 error = null_nodeget(mp, lvp, &vp1); 1119 if (error == 0) { 1120 *vpp = vp1; 1121 } else { 1122 vget(vp, LK_EXCLUSIVE | LK_RETRY); 1123 } 1124 } 1125 vfs_unbusy(mp); 1126 } 1127 vdrop(lvp); 1128 vdrop(vp); 1129 vfs_rel(mp); 1130 1131 return (res); 1132 } 1133 1134 /* 1135 * Global vfs data structures 1136 */ 1137 struct vop_vector null_vnodeops = { 1138 .vop_bypass = null_bypass, 1139 .vop_access = null_access, 1140 .vop_accessx = null_accessx, 1141 .vop_advlock = null_advlock, 1142 .vop_advlockpurge = vop_stdadvlockpurge, 1143 .vop_bmap = VOP_EOPNOTSUPP, 1144 .vop_stat = null_stat, 1145 .vop_getattr = null_getattr, 1146 .vop_getwritemount = null_getwritemount, 1147 .vop_inactive = null_inactive, 1148 .vop_need_inactive = null_need_inactive, 1149 .vop_islocked = vop_stdislocked, 1150 .vop_lock1 = null_lock, 1151 .vop_lookup = null_lookup, 1152 .vop_open = null_open, 1153 .vop_print = null_print, 1154 .vop_read_pgcache = null_read_pgcache, 1155 .vop_reclaim = null_reclaim, 1156 .vop_remove = null_remove, 1157 .vop_rename = null_rename, 1158 .vop_rmdir = null_rmdir, 1159 .vop_setattr = null_setattr, 1160 .vop_strategy = VOP_EOPNOTSUPP, 1161 .vop_unlock = null_unlock, 1162 .vop_vptocnp = null_vptocnp, 1163 .vop_vptofh = null_vptofh, 1164 .vop_add_writecount = null_add_writecount, 1165 .vop_vput_pair = null_vput_pair, 1166 }; 1167 VFS_VOP_VECTOR_REGISTER(null_vnodeops); 1168