1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Rick Macklem at The University of Guelph. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 */ 35 36 #include <sys/cdefs.h> 37 __FBSDID("$FreeBSD$"); 38 39 #include "opt_inet.h" 40 #include "opt_inet6.h" 41 42 #include <sys/capsicum.h> 43 44 /* 45 * generally, I don't like #includes inside .h files, but it seems to 46 * be the easiest way to handle the port. 47 */ 48 #include <sys/fail.h> 49 #include <sys/hash.h> 50 #include <sys/sysctl.h> 51 #include <fs/nfs/nfsport.h> 52 #include <netinet/in_fib.h> 53 #include <netinet/if_ether.h> 54 #include <netinet6/ip6_var.h> 55 #include <net/if_types.h> 56 57 #include <fs/nfsclient/nfs_kdtrace.h> 58 59 #ifdef KDTRACE_HOOKS 60 dtrace_nfsclient_attrcache_flush_probe_func_t 61 dtrace_nfscl_attrcache_flush_done_probe; 62 uint32_t nfscl_attrcache_flush_done_id; 63 64 dtrace_nfsclient_attrcache_get_hit_probe_func_t 65 dtrace_nfscl_attrcache_get_hit_probe; 66 uint32_t nfscl_attrcache_get_hit_id; 67 68 dtrace_nfsclient_attrcache_get_miss_probe_func_t 69 dtrace_nfscl_attrcache_get_miss_probe; 70 uint32_t nfscl_attrcache_get_miss_id; 71 72 dtrace_nfsclient_attrcache_load_probe_func_t 73 dtrace_nfscl_attrcache_load_done_probe; 74 uint32_t nfscl_attrcache_load_done_id; 75 #endif /* !KDTRACE_HOOKS */ 76 77 extern u_int32_t newnfs_true, newnfs_false, newnfs_xdrneg1; 78 extern struct vop_vector newnfs_vnodeops; 79 extern struct vop_vector newnfs_fifoops; 80 extern uma_zone_t newnfsnode_zone; 81 extern struct buf_ops buf_ops_newnfs; 82 extern uma_zone_t ncl_pbuf_zone; 83 extern short nfsv4_cbport; 84 extern int nfscl_enablecallb; 85 extern int nfs_numnfscbd; 86 extern int nfscl_inited; 87 struct mtx ncl_iod_mutex; 88 NFSDLOCKMUTEX; 89 extern struct mtx nfsrv_dslock_mtx; 90 91 extern void (*ncl_call_invalcaches)(struct vnode *); 92 93 SYSCTL_DECL(_vfs_nfs); 94 static int ncl_fileid_maxwarnings = 10; 95 SYSCTL_INT(_vfs_nfs, OID_AUTO, fileid_maxwarnings, CTLFLAG_RWTUN, 96 &ncl_fileid_maxwarnings, 0, 97 "Limit fileid corruption warnings; 0 is off; -1 is unlimited"); 98 static volatile int ncl_fileid_nwarnings; 99 100 static void nfscl_warn_fileid(struct nfsmount *, struct nfsvattr *, 101 struct nfsvattr *); 102 103 /* 104 * Comparison function for vfs_hash functions. 105 */ 106 int 107 newnfs_vncmpf(struct vnode *vp, void *arg) 108 { 109 struct nfsfh *nfhp = (struct nfsfh *)arg; 110 struct nfsnode *np = VTONFS(vp); 111 112 if (np->n_fhp->nfh_len != nfhp->nfh_len || 113 NFSBCMP(np->n_fhp->nfh_fh, nfhp->nfh_fh, nfhp->nfh_len)) 114 return (1); 115 return (0); 116 } 117 118 /* 119 * Look up a vnode/nfsnode by file handle. 120 * Callers must check for mount points!! 121 * In all cases, a pointer to a 122 * nfsnode structure is returned. 123 * This variant takes a "struct nfsfh *" as second argument and uses 124 * that structure up, either by hanging off the nfsnode or FREEing it. 125 */ 126 int 127 nfscl_nget(struct mount *mntp, struct vnode *dvp, struct nfsfh *nfhp, 128 struct componentname *cnp, struct thread *td, struct nfsnode **npp, 129 void *stuff, int lkflags) 130 { 131 struct nfsnode *np, *dnp; 132 struct vnode *vp, *nvp; 133 struct nfsv4node *newd, *oldd; 134 int error; 135 u_int hash; 136 struct nfsmount *nmp; 137 138 nmp = VFSTONFS(mntp); 139 dnp = VTONFS(dvp); 140 *npp = NULL; 141 142 hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len, FNV1_32_INIT); 143 144 error = vfs_hash_get(mntp, hash, lkflags, 145 td, &nvp, newnfs_vncmpf, nfhp); 146 if (error == 0 && nvp != NULL) { 147 /* 148 * I believe there is a slight chance that vgonel() could 149 * get called on this vnode between when NFSVOPLOCK() drops 150 * the VI_LOCK() and vget() acquires it again, so that it 151 * hasn't yet had v_usecount incremented. If this were to 152 * happen, the VIRF_DOOMED flag would be set, so check for 153 * that here. Since we now have the v_usecount incremented, 154 * we should be ok until we vrele() it, if the VIRF_DOOMED 155 * flag isn't set now. 156 */ 157 VI_LOCK(nvp); 158 if (VN_IS_DOOMED(nvp)) { 159 VI_UNLOCK(nvp); 160 vrele(nvp); 161 error = ENOENT; 162 } else { 163 VI_UNLOCK(nvp); 164 } 165 } 166 if (error) { 167 free(nfhp, M_NFSFH); 168 return (error); 169 } 170 if (nvp != NULL) { 171 np = VTONFS(nvp); 172 /* 173 * For NFSv4, check to see if it is the same name and 174 * replace the name, if it is different. 175 */ 176 oldd = newd = NULL; 177 if ((nmp->nm_flag & NFSMNT_NFSV4) && np->n_v4 != NULL && 178 nvp->v_type == VREG && 179 (np->n_v4->n4_namelen != cnp->cn_namelen || 180 NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 181 cnp->cn_namelen) || 182 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen || 183 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 184 dnp->n_fhp->nfh_len))) { 185 newd = malloc( 186 sizeof (struct nfsv4node) + dnp->n_fhp->nfh_len + 187 + cnp->cn_namelen - 1, M_NFSV4NODE, M_WAITOK); 188 NFSLOCKNODE(np); 189 if (newd != NULL && np->n_v4 != NULL && nvp->v_type == VREG 190 && (np->n_v4->n4_namelen != cnp->cn_namelen || 191 NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 192 cnp->cn_namelen) || 193 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen || 194 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 195 dnp->n_fhp->nfh_len))) { 196 oldd = np->n_v4; 197 np->n_v4 = newd; 198 newd = NULL; 199 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len; 200 np->n_v4->n4_namelen = cnp->cn_namelen; 201 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 202 dnp->n_fhp->nfh_len); 203 NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 204 cnp->cn_namelen); 205 } 206 NFSUNLOCKNODE(np); 207 } 208 if (newd != NULL) 209 free(newd, M_NFSV4NODE); 210 if (oldd != NULL) 211 free(oldd, M_NFSV4NODE); 212 *npp = np; 213 free(nfhp, M_NFSFH); 214 return (0); 215 } 216 np = uma_zalloc(newnfsnode_zone, M_WAITOK | M_ZERO); 217 218 error = getnewvnode(nfs_vnode_tag, mntp, &newnfs_vnodeops, &nvp); 219 if (error) { 220 uma_zfree(newnfsnode_zone, np); 221 free(nfhp, M_NFSFH); 222 return (error); 223 } 224 vp = nvp; 225 KASSERT(vp->v_bufobj.bo_bsize != 0, ("nfscl_nget: bo_bsize == 0")); 226 vp->v_bufobj.bo_ops = &buf_ops_newnfs; 227 vp->v_data = np; 228 np->n_vnode = vp; 229 /* 230 * Initialize the mutex even if the vnode is going to be a loser. 231 * This simplifies the logic in reclaim, which can then unconditionally 232 * destroy the mutex (in the case of the loser, or if hash_insert 233 * happened to return an error no special casing is needed). 234 */ 235 mtx_init(&np->n_mtx, "NEWNFSnode lock", NULL, MTX_DEF | MTX_DUPOK); 236 lockinit(&np->n_excl, PVFS, "nfsupg", VLKTIMEOUT, LK_NOSHARE | 237 LK_CANRECURSE); 238 239 /* 240 * Are we getting the root? If so, make sure the vnode flags 241 * are correct 242 */ 243 if ((nfhp->nfh_len == nmp->nm_fhsize) && 244 !bcmp(nfhp->nfh_fh, nmp->nm_fh, nfhp->nfh_len)) { 245 if (vp->v_type == VNON) 246 vp->v_type = VDIR; 247 vp->v_vflag |= VV_ROOT; 248 } 249 250 vp->v_vflag |= VV_VMSIZEVNLOCK; 251 252 np->n_fhp = nfhp; 253 /* 254 * For NFSv4, we have to attach the directory file handle and 255 * file name, so that Open Ops can be done later. 256 */ 257 if (nmp->nm_flag & NFSMNT_NFSV4) { 258 np->n_v4 = malloc(sizeof (struct nfsv4node) 259 + dnp->n_fhp->nfh_len + cnp->cn_namelen - 1, M_NFSV4NODE, 260 M_WAITOK); 261 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len; 262 np->n_v4->n4_namelen = cnp->cn_namelen; 263 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 264 dnp->n_fhp->nfh_len); 265 NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4), 266 cnp->cn_namelen); 267 } else { 268 np->n_v4 = NULL; 269 } 270 271 /* 272 * NFS supports recursive and shared locking. 273 */ 274 lockmgr(vp->v_vnlock, LK_EXCLUSIVE | LK_NOWITNESS, NULL); 275 VN_LOCK_AREC(vp); 276 VN_LOCK_ASHARE(vp); 277 error = insmntque(vp, mntp); 278 if (error != 0) { 279 *npp = NULL; 280 mtx_destroy(&np->n_mtx); 281 lockdestroy(&np->n_excl); 282 free(nfhp, M_NFSFH); 283 if (np->n_v4 != NULL) 284 free(np->n_v4, M_NFSV4NODE); 285 uma_zfree(newnfsnode_zone, np); 286 return (error); 287 } 288 error = vfs_hash_insert(vp, hash, lkflags, 289 td, &nvp, newnfs_vncmpf, nfhp); 290 if (error) 291 return (error); 292 if (nvp != NULL) { 293 *npp = VTONFS(nvp); 294 /* vfs_hash_insert() vput()'s the losing vnode */ 295 return (0); 296 } 297 *npp = np; 298 299 return (0); 300 } 301 302 /* 303 * Another variant of nfs_nget(). This one is only used by reopen. It 304 * takes almost the same args as nfs_nget(), but only succeeds if an entry 305 * exists in the cache. (Since files should already be "open" with a 306 * vnode ref cnt on the node when reopen calls this, it should always 307 * succeed.) 308 * Also, don't get a vnode lock, since it may already be locked by some 309 * other process that is handling it. This is ok, since all other threads 310 * on the client are blocked by the nfsc_lock being exclusively held by the 311 * caller of this function. 312 */ 313 int 314 nfscl_ngetreopen(struct mount *mntp, u_int8_t *fhp, int fhsize, 315 struct thread *td, struct nfsnode **npp) 316 { 317 struct vnode *nvp; 318 u_int hash; 319 struct nfsfh *nfhp; 320 int error; 321 322 *npp = NULL; 323 /* For forced dismounts, just return error. */ 324 if (NFSCL_FORCEDISM(mntp)) 325 return (EINTR); 326 nfhp = malloc(sizeof (struct nfsfh) + fhsize, 327 M_NFSFH, M_WAITOK); 328 bcopy(fhp, &nfhp->nfh_fh[0], fhsize); 329 nfhp->nfh_len = fhsize; 330 331 hash = fnv_32_buf(fhp, fhsize, FNV1_32_INIT); 332 333 /* 334 * First, try to get the vnode locked, but don't block for the lock. 335 */ 336 error = vfs_hash_get(mntp, hash, (LK_EXCLUSIVE | LK_NOWAIT), td, &nvp, 337 newnfs_vncmpf, nfhp); 338 if (error == 0 && nvp != NULL) { 339 NFSVOPUNLOCK(nvp); 340 } else if (error == EBUSY) { 341 /* 342 * It is safe so long as a vflush() with 343 * FORCECLOSE has not been done. Since the Renew thread is 344 * stopped and the MNTK_UNMOUNTF flag is set before doing 345 * a vflush() with FORCECLOSE, we should be ok here. 346 */ 347 if (NFSCL_FORCEDISM(mntp)) 348 error = EINTR; 349 else { 350 vfs_hash_ref(mntp, hash, td, &nvp, newnfs_vncmpf, nfhp); 351 if (nvp == NULL) { 352 error = ENOENT; 353 } else if (VN_IS_DOOMED(nvp)) { 354 error = ENOENT; 355 vrele(nvp); 356 } else { 357 error = 0; 358 } 359 } 360 } 361 free(nfhp, M_NFSFH); 362 if (error) 363 return (error); 364 if (nvp != NULL) { 365 *npp = VTONFS(nvp); 366 return (0); 367 } 368 return (EINVAL); 369 } 370 371 static void 372 nfscl_warn_fileid(struct nfsmount *nmp, struct nfsvattr *oldnap, 373 struct nfsvattr *newnap) 374 { 375 int off; 376 377 if (ncl_fileid_maxwarnings >= 0 && 378 ncl_fileid_nwarnings >= ncl_fileid_maxwarnings) 379 return; 380 off = 0; 381 if (ncl_fileid_maxwarnings >= 0) { 382 if (++ncl_fileid_nwarnings >= ncl_fileid_maxwarnings) 383 off = 1; 384 } 385 386 printf("newnfs: server '%s' error: fileid changed. " 387 "fsid %jx:%jx: expected fileid %#jx, got %#jx. " 388 "(BROKEN NFS SERVER OR MIDDLEWARE)\n", 389 nmp->nm_com.nmcom_hostname, 390 (uintmax_t)nmp->nm_fsid[0], 391 (uintmax_t)nmp->nm_fsid[1], 392 (uintmax_t)oldnap->na_fileid, 393 (uintmax_t)newnap->na_fileid); 394 395 if (off) 396 printf("newnfs: Logged %d times about fileid corruption; " 397 "going quiet to avoid spamming logs excessively. (Limit " 398 "is: %d).\n", ncl_fileid_nwarnings, 399 ncl_fileid_maxwarnings); 400 } 401 402 /* 403 * Load the attribute cache (that lives in the nfsnode entry) with 404 * the attributes of the second argument and 405 * Iff vaper not NULL 406 * copy the attributes to *vaper 407 * Similar to nfs_loadattrcache(), except the attributes are passed in 408 * instead of being parsed out of the mbuf list. 409 */ 410 int 411 nfscl_loadattrcache(struct vnode **vpp, struct nfsvattr *nap, void *nvaper, 412 void *stuff, int writeattr, int dontshrink) 413 { 414 struct vnode *vp = *vpp; 415 struct vattr *vap, *nvap = &nap->na_vattr, *vaper = nvaper; 416 struct nfsnode *np; 417 struct nfsmount *nmp; 418 struct timespec mtime_save; 419 int error, force_fid_err; 420 421 error = 0; 422 423 /* 424 * If v_type == VNON it is a new node, so fill in the v_type, 425 * n_mtime fields. Check to see if it represents a special 426 * device, and if so, check for a possible alias. Once the 427 * correct vnode has been obtained, fill in the rest of the 428 * information. 429 */ 430 np = VTONFS(vp); 431 NFSLOCKNODE(np); 432 if (vp->v_type != nvap->va_type) { 433 vp->v_type = nvap->va_type; 434 if (vp->v_type == VFIFO) 435 vp->v_op = &newnfs_fifoops; 436 np->n_mtime = nvap->va_mtime; 437 } 438 nmp = VFSTONFS(vp->v_mount); 439 vap = &np->n_vattr.na_vattr; 440 mtime_save = vap->va_mtime; 441 if (writeattr) { 442 np->n_vattr.na_filerev = nap->na_filerev; 443 np->n_vattr.na_size = nap->na_size; 444 np->n_vattr.na_mtime = nap->na_mtime; 445 np->n_vattr.na_ctime = nap->na_ctime; 446 np->n_vattr.na_fsid = nap->na_fsid; 447 np->n_vattr.na_mode = nap->na_mode; 448 } else { 449 force_fid_err = 0; 450 KFAIL_POINT_ERROR(DEBUG_FP, nfscl_force_fileid_warning, 451 force_fid_err); 452 /* 453 * BROKEN NFS SERVER OR MIDDLEWARE 454 * 455 * Certain NFS servers (certain old proprietary filers ca. 456 * 2006) or broken middleboxes (e.g. WAN accelerator products) 457 * will respond to GETATTR requests with results for a 458 * different fileid. 459 * 460 * The WAN accelerator we've observed not only serves stale 461 * cache results for a given file, it also occasionally serves 462 * results for wholly different files. This causes surprising 463 * problems; for example the cached size attribute of a file 464 * may truncate down and then back up, resulting in zero 465 * regions in file contents read by applications. We observed 466 * this reliably with Clang and .c files during parallel build. 467 * A pcap revealed packet fragmentation and GETATTR RPC 468 * responses with wholly wrong fileids. 469 */ 470 if ((np->n_vattr.na_fileid != 0 && 471 np->n_vattr.na_fileid != nap->na_fileid) || 472 force_fid_err) { 473 nfscl_warn_fileid(nmp, &np->n_vattr, nap); 474 error = EIDRM; 475 goto out; 476 } 477 NFSBCOPY((caddr_t)nap, (caddr_t)&np->n_vattr, 478 sizeof (struct nfsvattr)); 479 } 480 481 /* 482 * For NFSv4, if the node's fsid is not equal to the mount point's 483 * fsid, return the low order 32bits of the node's fsid. This 484 * allows getcwd(3) to work. There is a chance that the fsid might 485 * be the same as a local fs, but since this is in an NFS mount 486 * point, I don't think that will cause any problems? 487 */ 488 if (NFSHASNFSV4(nmp) && NFSHASHASSETFSID(nmp) && 489 (nmp->nm_fsid[0] != np->n_vattr.na_filesid[0] || 490 nmp->nm_fsid[1] != np->n_vattr.na_filesid[1])) { 491 /* 492 * va_fsid needs to be set to some value derived from 493 * np->n_vattr.na_filesid that is not equal 494 * vp->v_mount->mnt_stat.f_fsid[0], so that it changes 495 * from the value used for the top level server volume 496 * in the mounted subtree. 497 */ 498 vn_fsid(vp, vap); 499 if ((uint32_t)vap->va_fsid == np->n_vattr.na_filesid[0]) 500 vap->va_fsid = hash32_buf( 501 np->n_vattr.na_filesid, 2 * sizeof(uint64_t), 0); 502 } else 503 vn_fsid(vp, vap); 504 np->n_attrstamp = time_second; 505 if (vap->va_size != np->n_size) { 506 if (vap->va_type == VREG) { 507 if (dontshrink && vap->va_size < np->n_size) { 508 /* 509 * We've been told not to shrink the file; 510 * zero np->n_attrstamp to indicate that 511 * the attributes are stale. 512 */ 513 vap->va_size = np->n_size; 514 np->n_attrstamp = 0; 515 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 516 } else if (np->n_flag & NMODIFIED) { 517 /* 518 * We've modified the file: Use the larger 519 * of our size, and the server's size. 520 */ 521 if (vap->va_size < np->n_size) { 522 vap->va_size = np->n_size; 523 } else { 524 np->n_size = vap->va_size; 525 np->n_flag |= NSIZECHANGED; 526 } 527 } else { 528 np->n_size = vap->va_size; 529 np->n_flag |= NSIZECHANGED; 530 } 531 } else { 532 np->n_size = vap->va_size; 533 } 534 } 535 /* 536 * The following checks are added to prevent a race between (say) 537 * a READDIR+ and a WRITE. 538 * READDIR+, WRITE requests sent out. 539 * READDIR+ resp, WRITE resp received on client. 540 * However, the WRITE resp was handled before the READDIR+ resp 541 * causing the post op attrs from the write to be loaded first 542 * and the attrs from the READDIR+ to be loaded later. If this 543 * happens, we have stale attrs loaded into the attrcache. 544 * We detect this by for the mtime moving back. We invalidate the 545 * attrcache when this happens. 546 */ 547 if (timespeccmp(&mtime_save, &vap->va_mtime, >)) { 548 /* Size changed or mtime went backwards */ 549 np->n_attrstamp = 0; 550 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 551 } 552 if (vaper != NULL) { 553 NFSBCOPY((caddr_t)vap, (caddr_t)vaper, sizeof(*vap)); 554 if (np->n_flag & NCHG) { 555 if (np->n_flag & NACC) 556 vaper->va_atime = np->n_atim; 557 if (np->n_flag & NUPD) 558 vaper->va_mtime = np->n_mtim; 559 } 560 } 561 562 out: 563 #ifdef KDTRACE_HOOKS 564 if (np->n_attrstamp != 0) 565 KDTRACE_NFS_ATTRCACHE_LOAD_DONE(vp, vap, error); 566 #endif 567 (void)ncl_pager_setsize(vp, NULL); 568 return (error); 569 } 570 571 /* 572 * Call vnode_pager_setsize() if the size of the node changed, as 573 * recorded in nfsnode vs. v_object, or delay the call if notifying 574 * the pager is not possible at the moment. 575 * 576 * If nsizep is non-NULL, the call is delayed and the new node size is 577 * provided. Caller should itself call vnode_pager_setsize() if 578 * function returned true. If nsizep is NULL, function tries to call 579 * vnode_pager_setsize() itself if needed and possible, and the nfs 580 * node is unlocked unconditionally, the return value is not useful. 581 */ 582 bool 583 ncl_pager_setsize(struct vnode *vp, u_quad_t *nsizep) 584 { 585 struct nfsnode *np; 586 vm_object_t object; 587 struct vattr *vap; 588 u_quad_t nsize; 589 bool setnsize; 590 591 np = VTONFS(vp); 592 NFSASSERTNODE(np); 593 594 vap = &np->n_vattr.na_vattr; 595 nsize = vap->va_size; 596 object = vp->v_object; 597 setnsize = false; 598 599 if (object != NULL && nsize != object->un_pager.vnp.vnp_size) { 600 if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE && 601 (curthread->td_pflags2 & TDP2_SBPAGES) == 0) 602 setnsize = true; 603 else 604 np->n_flag |= NVNSETSZSKIP; 605 } 606 if (nsizep == NULL) { 607 NFSUNLOCKNODE(np); 608 if (setnsize) 609 vnode_pager_setsize(vp, nsize); 610 setnsize = false; 611 } else { 612 *nsizep = nsize; 613 } 614 return (setnsize); 615 } 616 617 /* 618 * Fill in the client id name. For these bytes: 619 * 1 - they must be unique 620 * 2 - they should be persistent across client reboots 621 * 1 is more critical than 2 622 * Use the mount point's unique id plus either the uuid or, if that 623 * isn't set, random junk. 624 */ 625 void 626 nfscl_fillclid(u_int64_t clval, char *uuid, u_int8_t *cp, u_int16_t idlen) 627 { 628 int uuidlen; 629 630 /* 631 * First, put in the 64bit mount point identifier. 632 */ 633 if (idlen >= sizeof (u_int64_t)) { 634 NFSBCOPY((caddr_t)&clval, cp, sizeof (u_int64_t)); 635 cp += sizeof (u_int64_t); 636 idlen -= sizeof (u_int64_t); 637 } 638 639 /* 640 * If uuid is non-zero length, use it. 641 */ 642 uuidlen = strlen(uuid); 643 if (uuidlen > 0 && idlen >= uuidlen) { 644 NFSBCOPY(uuid, cp, uuidlen); 645 cp += uuidlen; 646 idlen -= uuidlen; 647 } 648 649 /* 650 * This only normally happens if the uuid isn't set. 651 */ 652 while (idlen > 0) { 653 *cp++ = (u_int8_t)(arc4random() % 256); 654 idlen--; 655 } 656 } 657 658 /* 659 * Fill in a lock owner name. For now, pid + the process's creation time. 660 */ 661 void 662 nfscl_filllockowner(void *id, u_int8_t *cp, int flags) 663 { 664 union { 665 u_int32_t lval; 666 u_int8_t cval[4]; 667 } tl; 668 struct proc *p; 669 670 if (id == NULL) { 671 /* Return the single open_owner of all 0 bytes. */ 672 bzero(cp, NFSV4CL_LOCKNAMELEN); 673 return; 674 } 675 if ((flags & F_POSIX) != 0) { 676 p = (struct proc *)id; 677 tl.lval = p->p_pid; 678 *cp++ = tl.cval[0]; 679 *cp++ = tl.cval[1]; 680 *cp++ = tl.cval[2]; 681 *cp++ = tl.cval[3]; 682 tl.lval = p->p_stats->p_start.tv_sec; 683 *cp++ = tl.cval[0]; 684 *cp++ = tl.cval[1]; 685 *cp++ = tl.cval[2]; 686 *cp++ = tl.cval[3]; 687 tl.lval = p->p_stats->p_start.tv_usec; 688 *cp++ = tl.cval[0]; 689 *cp++ = tl.cval[1]; 690 *cp++ = tl.cval[2]; 691 *cp = tl.cval[3]; 692 } else if ((flags & F_FLOCK) != 0) { 693 bcopy(&id, cp, sizeof(id)); 694 bzero(&cp[sizeof(id)], NFSV4CL_LOCKNAMELEN - sizeof(id)); 695 } else { 696 printf("nfscl_filllockowner: not F_POSIX or F_FLOCK\n"); 697 bzero(cp, NFSV4CL_LOCKNAMELEN); 698 } 699 } 700 701 /* 702 * Find the parent process for the thread passed in as an argument. 703 * If none exists, return NULL, otherwise return a thread for the parent. 704 * (Can be any of the threads, since it is only used for td->td_proc.) 705 */ 706 NFSPROC_T * 707 nfscl_getparent(struct thread *td) 708 { 709 struct proc *p; 710 struct thread *ptd; 711 712 if (td == NULL) 713 return (NULL); 714 p = td->td_proc; 715 if (p->p_pid == 0) 716 return (NULL); 717 p = p->p_pptr; 718 if (p == NULL) 719 return (NULL); 720 ptd = TAILQ_FIRST(&p->p_threads); 721 return (ptd); 722 } 723 724 /* 725 * Start up the renew kernel thread. 726 */ 727 static void 728 start_nfscl(void *arg) 729 { 730 struct nfsclclient *clp; 731 struct thread *td; 732 733 clp = (struct nfsclclient *)arg; 734 td = TAILQ_FIRST(&clp->nfsc_renewthread->p_threads); 735 nfscl_renewthread(clp, td); 736 kproc_exit(0); 737 } 738 739 void 740 nfscl_start_renewthread(struct nfsclclient *clp) 741 { 742 743 kproc_create(start_nfscl, (void *)clp, &clp->nfsc_renewthread, 0, 0, 744 "nfscl"); 745 } 746 747 /* 748 * Handle wcc_data. 749 * For NFSv4, it assumes that nfsv4_wccattr() was used to set up the getattr 750 * as the first Op after PutFH. 751 * (For NFSv4, the postop attributes are after the Op, so they can't be 752 * parsed here. A separate call to nfscl_postop_attr() is required.) 753 */ 754 int 755 nfscl_wcc_data(struct nfsrv_descript *nd, struct vnode *vp, 756 struct nfsvattr *nap, int *flagp, int *wccflagp, void *stuff) 757 { 758 u_int32_t *tl; 759 struct nfsnode *np = VTONFS(vp); 760 struct nfsvattr nfsva; 761 int error = 0; 762 763 if (wccflagp != NULL) 764 *wccflagp = 0; 765 if (nd->nd_flag & ND_NFSV3) { 766 *flagp = 0; 767 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED); 768 if (*tl == newnfs_true) { 769 NFSM_DISSECT(tl, u_int32_t *, 6 * NFSX_UNSIGNED); 770 if (wccflagp != NULL) { 771 NFSLOCKNODE(np); 772 *wccflagp = (np->n_mtime.tv_sec == 773 fxdr_unsigned(u_int32_t, *(tl + 2)) && 774 np->n_mtime.tv_nsec == 775 fxdr_unsigned(u_int32_t, *(tl + 3))); 776 NFSUNLOCKNODE(np); 777 } 778 } 779 error = nfscl_postop_attr(nd, nap, flagp, stuff); 780 if (wccflagp != NULL && *flagp == 0) 781 *wccflagp = 0; 782 } else if ((nd->nd_flag & (ND_NOMOREDATA | ND_NFSV4 | ND_V4WCCATTR)) 783 == (ND_NFSV4 | ND_V4WCCATTR)) { 784 error = nfsv4_loadattr(nd, NULL, &nfsva, NULL, 785 NULL, 0, NULL, NULL, NULL, NULL, NULL, 0, 786 NULL, NULL, NULL, NULL, NULL); 787 if (error) 788 return (error); 789 /* 790 * Get rid of Op# and status for next op. 791 */ 792 NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 793 if (*++tl) 794 nd->nd_flag |= ND_NOMOREDATA; 795 if (wccflagp != NULL && 796 nfsva.na_vattr.va_mtime.tv_sec != 0) { 797 NFSLOCKNODE(np); 798 *wccflagp = (np->n_mtime.tv_sec == 799 nfsva.na_vattr.va_mtime.tv_sec && 800 np->n_mtime.tv_nsec == 801 nfsva.na_vattr.va_mtime.tv_sec); 802 NFSUNLOCKNODE(np); 803 } 804 } 805 nfsmout: 806 return (error); 807 } 808 809 /* 810 * Get postop attributes. 811 */ 812 int 813 nfscl_postop_attr(struct nfsrv_descript *nd, struct nfsvattr *nap, int *retp, 814 void *stuff) 815 { 816 u_int32_t *tl; 817 int error = 0; 818 819 *retp = 0; 820 if (nd->nd_flag & ND_NOMOREDATA) 821 return (error); 822 if (nd->nd_flag & ND_NFSV3) { 823 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED); 824 *retp = fxdr_unsigned(int, *tl); 825 } else if (nd->nd_flag & ND_NFSV4) { 826 /* 827 * For NFSv4, the postop attr are at the end, so no point 828 * in looking if nd_repstat != 0. 829 */ 830 if (!nd->nd_repstat) { 831 NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 832 if (*(tl + 1)) 833 /* should never happen since nd_repstat != 0 */ 834 nd->nd_flag |= ND_NOMOREDATA; 835 else 836 *retp = 1; 837 } 838 } else if (!nd->nd_repstat) { 839 /* For NFSv2, the attributes are here iff nd_repstat == 0 */ 840 *retp = 1; 841 } 842 if (*retp) { 843 error = nfsm_loadattr(nd, nap); 844 if (error) 845 *retp = 0; 846 } 847 nfsmout: 848 return (error); 849 } 850 851 /* 852 * nfscl_request() - mostly a wrapper for newnfs_request(). 853 */ 854 int 855 nfscl_request(struct nfsrv_descript *nd, struct vnode *vp, NFSPROC_T *p, 856 struct ucred *cred, void *stuff) 857 { 858 int ret, vers; 859 struct nfsmount *nmp; 860 861 nmp = VFSTONFS(vp->v_mount); 862 if (nd->nd_flag & ND_NFSV4) 863 vers = NFS_VER4; 864 else if (nd->nd_flag & ND_NFSV3) 865 vers = NFS_VER3; 866 else 867 vers = NFS_VER2; 868 ret = newnfs_request(nd, nmp, NULL, &nmp->nm_sockreq, vp, p, cred, 869 NFS_PROG, vers, NULL, 1, NULL, NULL); 870 return (ret); 871 } 872 873 /* 874 * fill in this bsden's variant of statfs using nfsstatfs. 875 */ 876 void 877 nfscl_loadsbinfo(struct nfsmount *nmp, struct nfsstatfs *sfp, void *statfs) 878 { 879 struct statfs *sbp = (struct statfs *)statfs; 880 881 if (nmp->nm_flag & (NFSMNT_NFSV3 | NFSMNT_NFSV4)) { 882 sbp->f_bsize = NFS_FABLKSIZE; 883 sbp->f_blocks = sfp->sf_tbytes / NFS_FABLKSIZE; 884 sbp->f_bfree = sfp->sf_fbytes / NFS_FABLKSIZE; 885 /* 886 * Although sf_abytes is uint64_t and f_bavail is int64_t, 887 * the value after dividing by NFS_FABLKSIZE is small 888 * enough that it will fit in 63bits, so it is ok to 889 * assign it to f_bavail without fear that it will become 890 * negative. 891 */ 892 sbp->f_bavail = sfp->sf_abytes / NFS_FABLKSIZE; 893 sbp->f_files = sfp->sf_tfiles; 894 /* Since f_ffree is int64_t, clip it to 63bits. */ 895 if (sfp->sf_ffiles > INT64_MAX) 896 sbp->f_ffree = INT64_MAX; 897 else 898 sbp->f_ffree = sfp->sf_ffiles; 899 } else if ((nmp->nm_flag & NFSMNT_NFSV4) == 0) { 900 /* 901 * The type casts to (int32_t) ensure that this code is 902 * compatible with the old NFS client, in that it will 903 * propagate bit31 to the high order bits. This may or may 904 * not be correct for NFSv2, but since it is a legacy 905 * environment, I'd rather retain backwards compatibility. 906 */ 907 sbp->f_bsize = (int32_t)sfp->sf_bsize; 908 sbp->f_blocks = (int32_t)sfp->sf_blocks; 909 sbp->f_bfree = (int32_t)sfp->sf_bfree; 910 sbp->f_bavail = (int32_t)sfp->sf_bavail; 911 sbp->f_files = 0; 912 sbp->f_ffree = 0; 913 } 914 } 915 916 /* 917 * Use the fsinfo stuff to update the mount point. 918 */ 919 void 920 nfscl_loadfsinfo(struct nfsmount *nmp, struct nfsfsinfo *fsp) 921 { 922 923 if ((nmp->nm_wsize == 0 || fsp->fs_wtpref < nmp->nm_wsize) && 924 fsp->fs_wtpref >= NFS_FABLKSIZE) 925 nmp->nm_wsize = (fsp->fs_wtpref + NFS_FABLKSIZE - 1) & 926 ~(NFS_FABLKSIZE - 1); 927 if (fsp->fs_wtmax < nmp->nm_wsize && fsp->fs_wtmax > 0) { 928 nmp->nm_wsize = fsp->fs_wtmax & ~(NFS_FABLKSIZE - 1); 929 if (nmp->nm_wsize == 0) 930 nmp->nm_wsize = fsp->fs_wtmax; 931 } 932 if (nmp->nm_wsize < NFS_FABLKSIZE) 933 nmp->nm_wsize = NFS_FABLKSIZE; 934 if ((nmp->nm_rsize == 0 || fsp->fs_rtpref < nmp->nm_rsize) && 935 fsp->fs_rtpref >= NFS_FABLKSIZE) 936 nmp->nm_rsize = (fsp->fs_rtpref + NFS_FABLKSIZE - 1) & 937 ~(NFS_FABLKSIZE - 1); 938 if (fsp->fs_rtmax < nmp->nm_rsize && fsp->fs_rtmax > 0) { 939 nmp->nm_rsize = fsp->fs_rtmax & ~(NFS_FABLKSIZE - 1); 940 if (nmp->nm_rsize == 0) 941 nmp->nm_rsize = fsp->fs_rtmax; 942 } 943 if (nmp->nm_rsize < NFS_FABLKSIZE) 944 nmp->nm_rsize = NFS_FABLKSIZE; 945 if ((nmp->nm_readdirsize == 0 || fsp->fs_dtpref < nmp->nm_readdirsize) 946 && fsp->fs_dtpref >= NFS_DIRBLKSIZ) 947 nmp->nm_readdirsize = (fsp->fs_dtpref + NFS_DIRBLKSIZ - 1) & 948 ~(NFS_DIRBLKSIZ - 1); 949 if (fsp->fs_rtmax < nmp->nm_readdirsize && fsp->fs_rtmax > 0) { 950 nmp->nm_readdirsize = fsp->fs_rtmax & ~(NFS_DIRBLKSIZ - 1); 951 if (nmp->nm_readdirsize == 0) 952 nmp->nm_readdirsize = fsp->fs_rtmax; 953 } 954 if (nmp->nm_readdirsize < NFS_DIRBLKSIZ) 955 nmp->nm_readdirsize = NFS_DIRBLKSIZ; 956 if (fsp->fs_maxfilesize > 0 && 957 fsp->fs_maxfilesize < nmp->nm_maxfilesize) 958 nmp->nm_maxfilesize = fsp->fs_maxfilesize; 959 nmp->nm_mountp->mnt_stat.f_iosize = newnfs_iosize(nmp); 960 nmp->nm_state |= NFSSTA_GOTFSINFO; 961 } 962 963 /* 964 * Lookups source address which should be used to communicate with 965 * @nmp and stores it inside @pdst. 966 * 967 * Returns 0 on success. 968 */ 969 u_int8_t * 970 nfscl_getmyip(struct nfsmount *nmp, struct in6_addr *paddr, int *isinet6p) 971 { 972 #if defined(INET6) || defined(INET) 973 int error, fibnum; 974 975 fibnum = curthread->td_proc->p_fibnum; 976 #endif 977 #ifdef INET 978 if (nmp->nm_nam->sa_family == AF_INET) { 979 struct sockaddr_in *sin; 980 struct nhop4_extended nh_ext; 981 982 sin = (struct sockaddr_in *)nmp->nm_nam; 983 CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred)); 984 error = fib4_lookup_nh_ext(fibnum, sin->sin_addr, 0, 0, 985 &nh_ext); 986 CURVNET_RESTORE(); 987 if (error != 0) 988 return (NULL); 989 990 if (IN_LOOPBACK(ntohl(nh_ext.nh_src.s_addr))) { 991 /* Ignore loopback addresses */ 992 return (NULL); 993 } 994 995 *isinet6p = 0; 996 *((struct in_addr *)paddr) = nh_ext.nh_src; 997 998 return (u_int8_t *)paddr; 999 } 1000 #endif 1001 #ifdef INET6 1002 if (nmp->nm_nam->sa_family == AF_INET6) { 1003 struct sockaddr_in6 *sin6; 1004 1005 sin6 = (struct sockaddr_in6 *)nmp->nm_nam; 1006 1007 CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred)); 1008 error = in6_selectsrc_addr(fibnum, &sin6->sin6_addr, 1009 sin6->sin6_scope_id, NULL, paddr, NULL); 1010 CURVNET_RESTORE(); 1011 if (error != 0) 1012 return (NULL); 1013 1014 if (IN6_IS_ADDR_LOOPBACK(paddr)) 1015 return (NULL); 1016 1017 /* Scope is embedded in */ 1018 *isinet6p = 1; 1019 1020 return (u_int8_t *)paddr; 1021 } 1022 #endif 1023 return (NULL); 1024 } 1025 1026 /* 1027 * Copy NFS uid, gids from the cred structure. 1028 */ 1029 void 1030 newnfs_copyincred(struct ucred *cr, struct nfscred *nfscr) 1031 { 1032 int i; 1033 1034 KASSERT(cr->cr_ngroups >= 0, 1035 ("newnfs_copyincred: negative cr_ngroups")); 1036 nfscr->nfsc_uid = cr->cr_uid; 1037 nfscr->nfsc_ngroups = MIN(cr->cr_ngroups, NFS_MAXGRPS + 1); 1038 for (i = 0; i < nfscr->nfsc_ngroups; i++) 1039 nfscr->nfsc_groups[i] = cr->cr_groups[i]; 1040 } 1041 1042 1043 /* 1044 * Do any client specific initialization. 1045 */ 1046 void 1047 nfscl_init(void) 1048 { 1049 static int inited = 0; 1050 1051 if (inited) 1052 return; 1053 inited = 1; 1054 nfscl_inited = 1; 1055 ncl_pbuf_zone = pbuf_zsecond_create("nfspbuf", nswbuf / 2); 1056 } 1057 1058 /* 1059 * Check each of the attributes to be set, to ensure they aren't already 1060 * the correct value. Disable setting ones already correct. 1061 */ 1062 int 1063 nfscl_checksattr(struct vattr *vap, struct nfsvattr *nvap) 1064 { 1065 1066 if (vap->va_mode != (mode_t)VNOVAL) { 1067 if (vap->va_mode == nvap->na_mode) 1068 vap->va_mode = (mode_t)VNOVAL; 1069 } 1070 if (vap->va_uid != (uid_t)VNOVAL) { 1071 if (vap->va_uid == nvap->na_uid) 1072 vap->va_uid = (uid_t)VNOVAL; 1073 } 1074 if (vap->va_gid != (gid_t)VNOVAL) { 1075 if (vap->va_gid == nvap->na_gid) 1076 vap->va_gid = (gid_t)VNOVAL; 1077 } 1078 if (vap->va_size != VNOVAL) { 1079 if (vap->va_size == nvap->na_size) 1080 vap->va_size = VNOVAL; 1081 } 1082 1083 /* 1084 * We are normally called with only a partially initialized 1085 * VAP. Since the NFSv3 spec says that server may use the 1086 * file attributes to store the verifier, the spec requires 1087 * us to do a SETATTR RPC. FreeBSD servers store the verifier 1088 * in atime, but we can't really assume that all servers will 1089 * so we ensure that our SETATTR sets both atime and mtime. 1090 * Set the VA_UTIMES_NULL flag for this case, so that 1091 * the server's time will be used. This is needed to 1092 * work around a bug in some Solaris servers, where 1093 * setting the time TOCLIENT causes the Setattr RPC 1094 * to return NFS_OK, but not set va_mode. 1095 */ 1096 if (vap->va_mtime.tv_sec == VNOVAL) { 1097 vfs_timestamp(&vap->va_mtime); 1098 vap->va_vaflags |= VA_UTIMES_NULL; 1099 } 1100 if (vap->va_atime.tv_sec == VNOVAL) 1101 vap->va_atime = vap->va_mtime; 1102 return (1); 1103 } 1104 1105 /* 1106 * Map nfsv4 errors to errno.h errors. 1107 * The uid and gid arguments are only used for NFSERR_BADOWNER and that 1108 * error should only be returned for the Open, Create and Setattr Ops. 1109 * As such, most calls can just pass in 0 for those arguments. 1110 */ 1111 APPLESTATIC int 1112 nfscl_maperr(struct thread *td, int error, uid_t uid, gid_t gid) 1113 { 1114 struct proc *p; 1115 1116 if (error < 10000 || error >= NFSERR_STALEWRITEVERF) 1117 return (error); 1118 if (td != NULL) 1119 p = td->td_proc; 1120 else 1121 p = NULL; 1122 switch (error) { 1123 case NFSERR_BADOWNER: 1124 tprintf(p, LOG_INFO, 1125 "No name and/or group mapping for uid,gid:(%d,%d)\n", 1126 uid, gid); 1127 return (EPERM); 1128 case NFSERR_BADNAME: 1129 case NFSERR_BADCHAR: 1130 printf("nfsv4 char/name not handled by server\n"); 1131 return (ENOENT); 1132 case NFSERR_STALECLIENTID: 1133 case NFSERR_STALESTATEID: 1134 case NFSERR_EXPIRED: 1135 case NFSERR_BADSTATEID: 1136 case NFSERR_BADSESSION: 1137 printf("nfsv4 recover err returned %d\n", error); 1138 return (EIO); 1139 case NFSERR_BADHANDLE: 1140 case NFSERR_SERVERFAULT: 1141 case NFSERR_BADTYPE: 1142 case NFSERR_FHEXPIRED: 1143 case NFSERR_RESOURCE: 1144 case NFSERR_MOVED: 1145 case NFSERR_NOFILEHANDLE: 1146 case NFSERR_MINORVERMISMATCH: 1147 case NFSERR_OLDSTATEID: 1148 case NFSERR_BADSEQID: 1149 case NFSERR_LEASEMOVED: 1150 case NFSERR_RECLAIMBAD: 1151 case NFSERR_BADXDR: 1152 case NFSERR_OPILLEGAL: 1153 printf("nfsv4 client/server protocol prob err=%d\n", 1154 error); 1155 return (EIO); 1156 default: 1157 tprintf(p, LOG_INFO, "nfsv4 err=%d\n", error); 1158 return (EIO); 1159 }; 1160 } 1161 1162 /* 1163 * Check to see if the process for this owner exists. Return 1 if it doesn't 1164 * and 0 otherwise. 1165 */ 1166 int 1167 nfscl_procdoesntexist(u_int8_t *own) 1168 { 1169 union { 1170 u_int32_t lval; 1171 u_int8_t cval[4]; 1172 } tl; 1173 struct proc *p; 1174 pid_t pid; 1175 int i, ret = 0; 1176 1177 /* For the single open_owner of all 0 bytes, just return 0. */ 1178 for (i = 0; i < NFSV4CL_LOCKNAMELEN; i++) 1179 if (own[i] != 0) 1180 break; 1181 if (i == NFSV4CL_LOCKNAMELEN) 1182 return (0); 1183 1184 tl.cval[0] = *own++; 1185 tl.cval[1] = *own++; 1186 tl.cval[2] = *own++; 1187 tl.cval[3] = *own++; 1188 pid = tl.lval; 1189 p = pfind_any_locked(pid); 1190 if (p == NULL) 1191 return (1); 1192 if (p->p_stats == NULL) { 1193 PROC_UNLOCK(p); 1194 return (0); 1195 } 1196 tl.cval[0] = *own++; 1197 tl.cval[1] = *own++; 1198 tl.cval[2] = *own++; 1199 tl.cval[3] = *own++; 1200 if (tl.lval != p->p_stats->p_start.tv_sec) { 1201 ret = 1; 1202 } else { 1203 tl.cval[0] = *own++; 1204 tl.cval[1] = *own++; 1205 tl.cval[2] = *own++; 1206 tl.cval[3] = *own; 1207 if (tl.lval != p->p_stats->p_start.tv_usec) 1208 ret = 1; 1209 } 1210 PROC_UNLOCK(p); 1211 return (ret); 1212 } 1213 1214 /* 1215 * - nfs pseudo system call for the client 1216 */ 1217 /* 1218 * MPSAFE 1219 */ 1220 static int 1221 nfssvc_nfscl(struct thread *td, struct nfssvc_args *uap) 1222 { 1223 struct file *fp; 1224 struct nfscbd_args nfscbdarg; 1225 struct nfsd_nfscbd_args nfscbdarg2; 1226 struct nameidata nd; 1227 struct nfscl_dumpmntopts dumpmntopts; 1228 cap_rights_t rights; 1229 char *buf; 1230 int error; 1231 struct mount *mp; 1232 struct nfsmount *nmp; 1233 1234 if (uap->flag & NFSSVC_CBADDSOCK) { 1235 error = copyin(uap->argp, (caddr_t)&nfscbdarg, sizeof(nfscbdarg)); 1236 if (error) 1237 return (error); 1238 /* 1239 * Since we don't know what rights might be required, 1240 * pretend that we need them all. It is better to be too 1241 * careful than too reckless. 1242 */ 1243 error = fget(td, nfscbdarg.sock, 1244 cap_rights_init(&rights, CAP_SOCK_CLIENT), &fp); 1245 if (error) 1246 return (error); 1247 if (fp->f_type != DTYPE_SOCKET) { 1248 fdrop(fp, td); 1249 return (EPERM); 1250 } 1251 error = nfscbd_addsock(fp); 1252 fdrop(fp, td); 1253 if (!error && nfscl_enablecallb == 0) { 1254 nfsv4_cbport = nfscbdarg.port; 1255 nfscl_enablecallb = 1; 1256 } 1257 } else if (uap->flag & NFSSVC_NFSCBD) { 1258 if (uap->argp == NULL) 1259 return (EINVAL); 1260 error = copyin(uap->argp, (caddr_t)&nfscbdarg2, 1261 sizeof(nfscbdarg2)); 1262 if (error) 1263 return (error); 1264 error = nfscbd_nfsd(td, &nfscbdarg2); 1265 } else if (uap->flag & NFSSVC_DUMPMNTOPTS) { 1266 error = copyin(uap->argp, &dumpmntopts, sizeof(dumpmntopts)); 1267 if (error == 0 && (dumpmntopts.ndmnt_blen < 256 || 1268 dumpmntopts.ndmnt_blen > 1024)) 1269 error = EINVAL; 1270 if (error == 0) 1271 error = nfsrv_lookupfilename(&nd, 1272 dumpmntopts.ndmnt_fname, td); 1273 if (error == 0 && strcmp(nd.ni_vp->v_mount->mnt_vfc->vfc_name, 1274 "nfs") != 0) { 1275 vput(nd.ni_vp); 1276 error = EINVAL; 1277 } 1278 if (error == 0) { 1279 buf = malloc(dumpmntopts.ndmnt_blen, M_TEMP, M_WAITOK); 1280 nfscl_retopts(VFSTONFS(nd.ni_vp->v_mount), buf, 1281 dumpmntopts.ndmnt_blen); 1282 vput(nd.ni_vp); 1283 error = copyout(buf, dumpmntopts.ndmnt_buf, 1284 dumpmntopts.ndmnt_blen); 1285 free(buf, M_TEMP); 1286 } 1287 } else if (uap->flag & NFSSVC_FORCEDISM) { 1288 buf = malloc(MNAMELEN + 1, M_TEMP, M_WAITOK); 1289 error = copyinstr(uap->argp, buf, MNAMELEN + 1, NULL); 1290 if (error == 0) { 1291 nmp = NULL; 1292 mtx_lock(&mountlist_mtx); 1293 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 1294 if (strcmp(mp->mnt_stat.f_mntonname, buf) == 1295 0 && strcmp(mp->mnt_stat.f_fstypename, 1296 "nfs") == 0 && mp->mnt_data != NULL) { 1297 nmp = VFSTONFS(mp); 1298 NFSDDSLOCK(); 1299 if (nfsv4_findmirror(nmp) != NULL) { 1300 NFSDDSUNLOCK(); 1301 error = ENXIO; 1302 nmp = NULL; 1303 break; 1304 } 1305 mtx_lock(&nmp->nm_mtx); 1306 if ((nmp->nm_privflag & 1307 NFSMNTP_FORCEDISM) == 0) { 1308 nmp->nm_privflag |= 1309 (NFSMNTP_FORCEDISM | 1310 NFSMNTP_CANCELRPCS); 1311 mtx_unlock(&nmp->nm_mtx); 1312 } else { 1313 mtx_unlock(&nmp->nm_mtx); 1314 nmp = NULL; 1315 } 1316 NFSDDSUNLOCK(); 1317 break; 1318 } 1319 } 1320 mtx_unlock(&mountlist_mtx); 1321 1322 if (nmp != NULL) { 1323 /* 1324 * Call newnfs_nmcancelreqs() to cause 1325 * any RPCs in progress on the mount point to 1326 * fail. 1327 * This will cause any process waiting for an 1328 * RPC to complete while holding a vnode lock 1329 * on the mounted-on vnode (such as "df" or 1330 * a non-forced "umount") to fail. 1331 * This will unlock the mounted-on vnode so 1332 * a forced dismount can succeed. 1333 * Then clear NFSMNTP_CANCELRPCS and wakeup(), 1334 * so that nfs_unmount() can complete. 1335 */ 1336 newnfs_nmcancelreqs(nmp); 1337 mtx_lock(&nmp->nm_mtx); 1338 nmp->nm_privflag &= ~NFSMNTP_CANCELRPCS; 1339 wakeup(nmp); 1340 mtx_unlock(&nmp->nm_mtx); 1341 } else if (error == 0) 1342 error = EINVAL; 1343 } 1344 free(buf, M_TEMP); 1345 } else { 1346 error = EINVAL; 1347 } 1348 return (error); 1349 } 1350 1351 extern int (*nfsd_call_nfscl)(struct thread *, struct nfssvc_args *); 1352 1353 /* 1354 * Called once to initialize data structures... 1355 */ 1356 static int 1357 nfscl_modevent(module_t mod, int type, void *data) 1358 { 1359 int error = 0; 1360 static int loaded = 0; 1361 1362 switch (type) { 1363 case MOD_LOAD: 1364 if (loaded) 1365 return (0); 1366 newnfs_portinit(); 1367 mtx_init(&ncl_iod_mutex, "ncl_iod_mutex", NULL, MTX_DEF); 1368 nfscl_init(); 1369 NFSD_LOCK(); 1370 nfsrvd_cbinit(0); 1371 NFSD_UNLOCK(); 1372 ncl_call_invalcaches = ncl_invalcaches; 1373 nfsd_call_nfscl = nfssvc_nfscl; 1374 loaded = 1; 1375 break; 1376 1377 case MOD_UNLOAD: 1378 if (nfs_numnfscbd != 0) { 1379 error = EBUSY; 1380 break; 1381 } 1382 1383 /* 1384 * XXX: Unloading of nfscl module is unsupported. 1385 */ 1386 #if 0 1387 ncl_call_invalcaches = NULL; 1388 nfsd_call_nfscl = NULL; 1389 uma_zdestroy(ncl_pbuf_zone); 1390 /* and get rid of the mutexes */ 1391 mtx_destroy(&ncl_iod_mutex); 1392 loaded = 0; 1393 break; 1394 #else 1395 /* FALLTHROUGH */ 1396 #endif 1397 default: 1398 error = EOPNOTSUPP; 1399 break; 1400 } 1401 return error; 1402 } 1403 static moduledata_t nfscl_mod = { 1404 "nfscl", 1405 nfscl_modevent, 1406 NULL, 1407 }; 1408 DECLARE_MODULE(nfscl, nfscl_mod, SI_SUB_VFS, SI_ORDER_FIRST); 1409 1410 /* So that loader and kldload(2) can find us, wherever we are.. */ 1411 MODULE_VERSION(nfscl, 1); 1412 MODULE_DEPEND(nfscl, nfscommon, 1, 1, 1); 1413 MODULE_DEPEND(nfscl, krpc, 1, 1, 1); 1414 MODULE_DEPEND(nfscl, nfssvc, 1, 1, 1); 1415 MODULE_DEPEND(nfscl, nfslock, 1, 1, 1); 1416 1417