1 /*- 2 * modified for Lites 1.1 3 * 4 * Aug 1995, Godmar Back (gback@cs.utah.edu) 5 * University of Utah, Department of Computer Science 6 */ 7 /*- 8 * SPDX-License-Identifier: BSD-3-Clause 9 * 10 * Copyright (c) 1982, 1986, 1989, 1993 11 * The Regents of the University of California. All rights reserved. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)ffs_alloc.c 8.8 (Berkeley) 2/21/94 38 * $FreeBSD$ 39 */ 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/conf.h> 44 #include <sys/vnode.h> 45 #include <sys/stat.h> 46 #include <sys/mount.h> 47 #include <sys/sysctl.h> 48 #include <sys/syslog.h> 49 #include <sys/buf.h> 50 #include <sys/endian.h> 51 52 #include <fs/ext2fs/fs.h> 53 #include <fs/ext2fs/inode.h> 54 #include <fs/ext2fs/ext2_mount.h> 55 #include <fs/ext2fs/ext2fs.h> 56 #include <fs/ext2fs/ext2_extern.h> 57 58 static daddr_t ext2_alloccg(struct inode *, int, daddr_t, int); 59 static daddr_t ext2_clusteralloc(struct inode *, int, daddr_t, int); 60 static u_long ext2_dirpref(struct inode *); 61 static e4fs_daddr_t ext2_hashalloc(struct inode *, int, long, int, 62 daddr_t (*)(struct inode *, int, daddr_t, 63 int)); 64 static daddr_t ext2_nodealloccg(struct inode *, int, daddr_t, int); 65 static daddr_t ext2_mapsearch(struct m_ext2fs *, char *, daddr_t); 66 67 /* 68 * Allocate a block in the filesystem. 69 * 70 * A preference may be optionally specified. If a preference is given 71 * the following hierarchy is used to allocate a block: 72 * 1) allocate the requested block. 73 * 2) allocate a rotationally optimal block in the same cylinder. 74 * 3) allocate a block in the same cylinder group. 75 * 4) quadradically rehash into other cylinder groups, until an 76 * available block is located. 77 * If no block preference is given the following hierarchy is used 78 * to allocate a block: 79 * 1) allocate a block in the cylinder group that contains the 80 * inode for the file. 81 * 2) quadradically rehash into other cylinder groups, until an 82 * available block is located. 83 */ 84 int 85 ext2_alloc(struct inode *ip, daddr_t lbn, e4fs_daddr_t bpref, int size, 86 struct ucred *cred, e4fs_daddr_t *bnp) 87 { 88 struct m_ext2fs *fs; 89 struct ext2mount *ump; 90 e4fs_daddr_t bno; 91 int cg; 92 93 *bnp = 0; 94 fs = ip->i_e2fs; 95 ump = ip->i_ump; 96 mtx_assert(EXT2_MTX(ump), MA_OWNED); 97 #ifdef INVARIANTS 98 if ((u_int)size > fs->e2fs_bsize || blkoff(fs, size) != 0) { 99 vn_printf(ip->i_devvp, "bsize = %lu, size = %d, fs = %s\n", 100 (long unsigned int)fs->e2fs_bsize, size, fs->e2fs_fsmnt); 101 panic("ext2_alloc: bad size"); 102 } 103 if (cred == NOCRED) 104 panic("ext2_alloc: missing credential"); 105 #endif /* INVARIANTS */ 106 if (size == fs->e2fs_bsize && fs->e2fs_fbcount == 0) 107 goto nospace; 108 if (cred->cr_uid != 0 && 109 fs->e2fs_fbcount < fs->e2fs_rbcount) 110 goto nospace; 111 if (bpref >= fs->e2fs_bcount) 112 bpref = 0; 113 if (bpref == 0) 114 cg = ino_to_cg(fs, ip->i_number); 115 else 116 cg = dtog(fs, bpref); 117 bno = (daddr_t)ext2_hashalloc(ip, cg, bpref, fs->e2fs_bsize, 118 ext2_alloccg); 119 if (bno > 0) { 120 /* set next_alloc fields as done in block_getblk */ 121 ip->i_next_alloc_block = lbn; 122 ip->i_next_alloc_goal = bno; 123 124 ip->i_blocks += btodb(fs->e2fs_bsize); 125 ip->i_flag |= IN_CHANGE | IN_UPDATE; 126 *bnp = bno; 127 return (0); 128 } 129 nospace: 130 EXT2_UNLOCK(ump); 131 ext2_fserr(fs, cred->cr_uid, "filesystem full"); 132 uprintf("\n%s: write failed, filesystem is full\n", fs->e2fs_fsmnt); 133 return (ENOSPC); 134 } 135 136 /* 137 * Allocate EA's block for inode. 138 */ 139 e4fs_daddr_t 140 ext2_alloc_meta(struct inode *ip) 141 { 142 struct m_ext2fs *fs; 143 daddr_t blk; 144 145 fs = ip->i_e2fs; 146 147 EXT2_LOCK(ip->i_ump); 148 blk = ext2_hashalloc(ip, ino_to_cg(fs, ip->i_number), 0, fs->e2fs_bsize, 149 ext2_alloccg); 150 if (0 == blk) 151 EXT2_UNLOCK(ip->i_ump); 152 153 return (blk); 154 } 155 156 /* 157 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 158 * 159 * The vnode and an array of buffer pointers for a range of sequential 160 * logical blocks to be made contiguous is given. The allocator attempts 161 * to find a range of sequential blocks starting as close as possible to 162 * an fs_rotdelay offset from the end of the allocation for the logical 163 * block immediately preceding the current range. If successful, the 164 * physical block numbers in the buffer pointers and in the inode are 165 * changed to reflect the new allocation. If unsuccessful, the allocation 166 * is left unchanged. The success in doing the reallocation is returned. 167 * Note that the error return is not reflected back to the user. Rather 168 * the previous block allocation will be used. 169 */ 170 171 static SYSCTL_NODE(_vfs, OID_AUTO, ext2fs, CTLFLAG_RW, 0, "EXT2FS filesystem"); 172 173 static int doasyncfree = 1; 174 175 SYSCTL_INT(_vfs_ext2fs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, 176 "Use asychronous writes to update block pointers when freeing blocks"); 177 178 static int doreallocblks = 0; 179 180 SYSCTL_INT(_vfs_ext2fs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, ""); 181 182 int 183 ext2_reallocblks(struct vop_reallocblks_args *ap) 184 { 185 struct m_ext2fs *fs; 186 struct inode *ip; 187 struct vnode *vp; 188 struct buf *sbp, *ebp; 189 uint32_t *bap, *sbap, *ebap; 190 struct ext2mount *ump; 191 struct cluster_save *buflist; 192 struct indir start_ap[EXT2_NIADDR + 1], end_ap[EXT2_NIADDR + 1], *idp; 193 e2fs_lbn_t start_lbn, end_lbn; 194 int soff; 195 e2fs_daddr_t newblk, blkno; 196 int i, len, start_lvl, end_lvl, pref, ssize; 197 198 if (doreallocblks == 0) 199 return (ENOSPC); 200 201 vp = ap->a_vp; 202 ip = VTOI(vp); 203 fs = ip->i_e2fs; 204 ump = ip->i_ump; 205 206 if (fs->e2fs_contigsumsize <= 0 || ip->i_flag & IN_E4EXTENTS) 207 return (ENOSPC); 208 209 buflist = ap->a_buflist; 210 len = buflist->bs_nchildren; 211 start_lbn = buflist->bs_children[0]->b_lblkno; 212 end_lbn = start_lbn + len - 1; 213 #ifdef INVARIANTS 214 for (i = 1; i < len; i++) 215 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 216 panic("ext2_reallocblks: non-cluster"); 217 #endif 218 /* 219 * If the cluster crosses the boundary for the first indirect 220 * block, leave space for the indirect block. Indirect blocks 221 * are initially laid out in a position after the last direct 222 * block. Block reallocation would usually destroy locality by 223 * moving the indirect block out of the way to make room for 224 * data blocks if we didn't compensate here. We should also do 225 * this for other indirect block boundaries, but it is only 226 * important for the first one. 227 */ 228 if (start_lbn < EXT2_NDADDR && end_lbn >= EXT2_NDADDR) 229 return (ENOSPC); 230 /* 231 * If the latest allocation is in a new cylinder group, assume that 232 * the filesystem has decided to move and do not force it back to 233 * the previous cylinder group. 234 */ 235 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 236 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 237 return (ENOSPC); 238 if (ext2_getlbns(vp, start_lbn, start_ap, &start_lvl) || 239 ext2_getlbns(vp, end_lbn, end_ap, &end_lvl)) 240 return (ENOSPC); 241 /* 242 * Get the starting offset and block map for the first block. 243 */ 244 if (start_lvl == 0) { 245 sbap = &ip->i_db[0]; 246 soff = start_lbn; 247 } else { 248 idp = &start_ap[start_lvl - 1]; 249 if (bread(vp, idp->in_lbn, (int)fs->e2fs_bsize, NOCRED, &sbp)) { 250 brelse(sbp); 251 return (ENOSPC); 252 } 253 sbap = (u_int *)sbp->b_data; 254 soff = idp->in_off; 255 } 256 /* 257 * If the block range spans two block maps, get the second map. 258 */ 259 ebap = NULL; 260 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 261 ssize = len; 262 } else { 263 #ifdef INVARIANTS 264 if (start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 265 panic("ext2_reallocblks: start == end"); 266 #endif 267 ssize = len - (idp->in_off + 1); 268 if (bread(vp, idp->in_lbn, (int)fs->e2fs_bsize, NOCRED, &ebp)) 269 goto fail; 270 ebap = (u_int *)ebp->b_data; 271 } 272 /* 273 * Find the preferred location for the cluster. 274 */ 275 EXT2_LOCK(ump); 276 pref = ext2_blkpref(ip, start_lbn, soff, sbap, 0); 277 /* 278 * Search the block map looking for an allocation of the desired size. 279 */ 280 if ((newblk = (e2fs_daddr_t)ext2_hashalloc(ip, dtog(fs, pref), pref, 281 len, ext2_clusteralloc)) == 0) { 282 EXT2_UNLOCK(ump); 283 goto fail; 284 } 285 /* 286 * We have found a new contiguous block. 287 * 288 * First we have to replace the old block pointers with the new 289 * block pointers in the inode and indirect blocks associated 290 * with the file. 291 */ 292 #ifdef DEBUG 293 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", 294 (uintmax_t)ip->i_number, (intmax_t)start_lbn, (intmax_t)end_lbn); 295 #endif /* DEBUG */ 296 blkno = newblk; 297 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->e2fs_fpb) { 298 if (i == ssize) { 299 bap = ebap; 300 soff = -i; 301 } 302 #ifdef INVARIANTS 303 if (buflist->bs_children[i]->b_blkno != fsbtodb(fs, *bap)) 304 panic("ext2_reallocblks: alloc mismatch"); 305 #endif 306 #ifdef DEBUG 307 printf(" %d,", *bap); 308 #endif /* DEBUG */ 309 *bap++ = blkno; 310 } 311 /* 312 * Next we must write out the modified inode and indirect blocks. 313 * For strict correctness, the writes should be synchronous since 314 * the old block values may have been written to disk. In practise 315 * they are almost never written, but if we are concerned about 316 * strict correctness, the `doasyncfree' flag should be set to zero. 317 * 318 * The test on `doasyncfree' should be changed to test a flag 319 * that shows whether the associated buffers and inodes have 320 * been written. The flag should be set when the cluster is 321 * started and cleared whenever the buffer or inode is flushed. 322 * We can then check below to see if it is set, and do the 323 * synchronous write only when it has been cleared. 324 */ 325 if (sbap != &ip->i_db[0]) { 326 if (doasyncfree) 327 bdwrite(sbp); 328 else 329 bwrite(sbp); 330 } else { 331 ip->i_flag |= IN_CHANGE | IN_UPDATE; 332 if (!doasyncfree) 333 ext2_update(vp, 1); 334 } 335 if (ssize < len) { 336 if (doasyncfree) 337 bdwrite(ebp); 338 else 339 bwrite(ebp); 340 } 341 /* 342 * Last, free the old blocks and assign the new blocks to the buffers. 343 */ 344 #ifdef DEBUG 345 printf("\n\tnew:"); 346 #endif /* DEBUG */ 347 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->e2fs_fpb) { 348 ext2_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno), 349 fs->e2fs_bsize); 350 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 351 #ifdef DEBUG 352 printf(" %d,", blkno); 353 #endif /* DEBUG */ 354 } 355 #ifdef DEBUG 356 printf("\n"); 357 #endif /* DEBUG */ 358 return (0); 359 360 fail: 361 if (ssize < len) 362 brelse(ebp); 363 if (sbap != &ip->i_db[0]) 364 brelse(sbp); 365 return (ENOSPC); 366 } 367 368 /* 369 * Allocate an inode in the filesystem. 370 * 371 */ 372 int 373 ext2_valloc(struct vnode *pvp, int mode, struct ucred *cred, struct vnode **vpp) 374 { 375 struct timespec ts; 376 struct m_ext2fs *fs; 377 struct ext2mount *ump; 378 struct inode *pip; 379 struct inode *ip; 380 struct vnode *vp; 381 struct thread *td; 382 ino_t ino, ipref; 383 int error, cg; 384 385 *vpp = NULL; 386 pip = VTOI(pvp); 387 fs = pip->i_e2fs; 388 ump = pip->i_ump; 389 390 EXT2_LOCK(ump); 391 if (fs->e2fs->e2fs_ficount == 0) 392 goto noinodes; 393 /* 394 * If it is a directory then obtain a cylinder group based on 395 * ext2_dirpref else obtain it using ino_to_cg. The preferred inode is 396 * always the next inode. 397 */ 398 if ((mode & IFMT) == IFDIR) { 399 cg = ext2_dirpref(pip); 400 if (fs->e2fs_contigdirs[cg] < 255) 401 fs->e2fs_contigdirs[cg]++; 402 } else { 403 cg = ino_to_cg(fs, pip->i_number); 404 if (fs->e2fs_contigdirs[cg] > 0) 405 fs->e2fs_contigdirs[cg]--; 406 } 407 ipref = cg * fs->e2fs->e2fs_ipg + 1; 408 ino = (ino_t)ext2_hashalloc(pip, cg, (long)ipref, mode, ext2_nodealloccg); 409 if (ino == 0) 410 goto noinodes; 411 412 td = curthread; 413 error = vfs_hash_get(ump->um_mountp, ino, LK_EXCLUSIVE, td, vpp, NULL, NULL); 414 if (error || *vpp != NULL) { 415 return (error); 416 } 417 418 ip = malloc(sizeof(struct inode), M_EXT2NODE, M_WAITOK | M_ZERO); 419 if (ip == NULL) { 420 return (ENOMEM); 421 } 422 423 /* Allocate a new vnode/inode. */ 424 if ((error = getnewvnode("ext2fs", ump->um_mountp, &ext2_vnodeops, &vp)) != 0) { 425 free(ip, M_EXT2NODE); 426 return (error); 427 } 428 429 lockmgr(vp->v_vnlock, LK_EXCLUSIVE, NULL); 430 vp->v_data = ip; 431 ip->i_vnode = vp; 432 ip->i_e2fs = fs = ump->um_e2fs; 433 ip->i_ump = ump; 434 ip->i_number = ino; 435 ip->i_block_group = ino_to_cg(fs, ino); 436 ip->i_next_alloc_block = 0; 437 ip->i_next_alloc_goal = 0; 438 439 error = insmntque(vp, ump->um_mountp); 440 if (error) { 441 free(ip, M_EXT2NODE); 442 return (error); 443 } 444 445 error = vfs_hash_insert(vp, ino, LK_EXCLUSIVE, td, vpp, NULL, NULL); 446 if (error || *vpp != NULL) { 447 *vpp = NULL; 448 free(ip, M_EXT2NODE); 449 return (error); 450 } 451 452 if ((error = ext2_vinit(ump->um_mountp, &ext2_fifoops, &vp)) != 0) { 453 vput(vp); 454 *vpp = NULL; 455 free(ip, M_EXT2NODE); 456 return (error); 457 } 458 459 if (EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_EXTENTS) 460 && (S_ISREG(mode) || S_ISDIR(mode))) 461 ext4_ext_tree_init(ip); 462 else 463 memset(ip->i_data, 0, sizeof(ip->i_data)); 464 465 466 /* 467 * Set up a new generation number for this inode. 468 * Avoid zero values. 469 */ 470 do { 471 ip->i_gen = arc4random(); 472 } while (ip->i_gen == 0); 473 474 vfs_timestamp(&ts); 475 ip->i_birthtime = ts.tv_sec; 476 ip->i_birthnsec = ts.tv_nsec; 477 478 *vpp = vp; 479 480 return (0); 481 482 noinodes: 483 EXT2_UNLOCK(ump); 484 ext2_fserr(fs, cred->cr_uid, "out of inodes"); 485 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->e2fs_fsmnt); 486 return (ENOSPC); 487 } 488 489 /* 490 * 64-bit compatible getters and setters for struct ext2_gd from ext2fs.h 491 */ 492 uint64_t 493 e2fs_gd_get_b_bitmap(struct ext2_gd *gd) 494 { 495 496 return (((uint64_t)(gd->ext4bgd_b_bitmap_hi) << 32) | 497 gd->ext2bgd_b_bitmap); 498 } 499 500 uint64_t 501 e2fs_gd_get_i_bitmap(struct ext2_gd *gd) 502 { 503 504 return (((uint64_t)(gd->ext4bgd_i_bitmap_hi) << 32) | 505 gd->ext2bgd_i_bitmap); 506 } 507 508 uint64_t 509 e2fs_gd_get_i_tables(struct ext2_gd *gd) 510 { 511 512 return (((uint64_t)(gd->ext4bgd_i_tables_hi) << 32) | 513 gd->ext2bgd_i_tables); 514 } 515 516 static uint32_t 517 e2fs_gd_get_nbfree(struct ext2_gd *gd) 518 { 519 520 return (((uint32_t)(gd->ext4bgd_nbfree_hi) << 16) | 521 gd->ext2bgd_nbfree); 522 } 523 524 static void 525 e2fs_gd_set_nbfree(struct ext2_gd *gd, uint32_t val) 526 { 527 528 gd->ext2bgd_nbfree = val & 0xffff; 529 gd->ext4bgd_nbfree_hi = val >> 16; 530 } 531 532 static uint32_t 533 e2fs_gd_get_nifree(struct ext2_gd *gd) 534 { 535 536 return (((uint32_t)(gd->ext4bgd_nifree_hi) << 16) | 537 gd->ext2bgd_nifree); 538 } 539 540 static void 541 e2fs_gd_set_nifree(struct ext2_gd *gd, uint32_t val) 542 { 543 544 gd->ext2bgd_nifree = val & 0xffff; 545 gd->ext4bgd_nifree_hi = val >> 16; 546 } 547 548 uint32_t 549 e2fs_gd_get_ndirs(struct ext2_gd *gd) 550 { 551 552 return (((uint32_t)(gd->ext4bgd_ndirs_hi) << 16) | 553 gd->ext2bgd_ndirs); 554 } 555 556 static void 557 e2fs_gd_set_ndirs(struct ext2_gd *gd, uint32_t val) 558 { 559 560 gd->ext2bgd_ndirs = val & 0xffff; 561 gd->ext4bgd_ndirs_hi = val >> 16; 562 } 563 564 static uint32_t 565 e2fs_gd_get_i_unused(struct ext2_gd *gd) 566 { 567 return (((uint32_t)(gd->ext4bgd_i_unused_hi) << 16) | 568 gd->ext4bgd_i_unused); 569 } 570 571 static void 572 e2fs_gd_set_i_unused(struct ext2_gd *gd, uint32_t val) 573 { 574 575 gd->ext4bgd_i_unused = val & 0xffff; 576 gd->ext4bgd_i_unused_hi = val >> 16; 577 } 578 579 /* 580 * Find a cylinder to place a directory. 581 * 582 * The policy implemented by this algorithm is to allocate a 583 * directory inode in the same cylinder group as its parent 584 * directory, but also to reserve space for its files inodes 585 * and data. Restrict the number of directories which may be 586 * allocated one after another in the same cylinder group 587 * without intervening allocation of files. 588 * 589 * If we allocate a first level directory then force allocation 590 * in another cylinder group. 591 * 592 */ 593 static u_long 594 ext2_dirpref(struct inode *pip) 595 { 596 struct m_ext2fs *fs; 597 int cg, prefcg, cgsize; 598 uint64_t avgbfree, minbfree; 599 u_int avgifree, avgndir, curdirsize; 600 u_int minifree, maxndir; 601 u_int mincg, minndir; 602 u_int dirsize, maxcontigdirs; 603 604 mtx_assert(EXT2_MTX(pip->i_ump), MA_OWNED); 605 fs = pip->i_e2fs; 606 607 avgifree = fs->e2fs->e2fs_ficount / fs->e2fs_gcount; 608 avgbfree = fs->e2fs_fbcount / fs->e2fs_gcount; 609 avgndir = fs->e2fs_total_dir / fs->e2fs_gcount; 610 611 /* 612 * Force allocation in another cg if creating a first level dir. 613 */ 614 ASSERT_VOP_LOCKED(ITOV(pip), "ext2fs_dirpref"); 615 if (ITOV(pip)->v_vflag & VV_ROOT) { 616 prefcg = arc4random() % fs->e2fs_gcount; 617 mincg = prefcg; 618 minndir = fs->e2fs_ipg; 619 for (cg = prefcg; cg < fs->e2fs_gcount; cg++) 620 if (e2fs_gd_get_ndirs(&fs->e2fs_gd[cg]) < minndir && 621 e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) >= avgifree && 622 e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) >= avgbfree) { 623 mincg = cg; 624 minndir = e2fs_gd_get_ndirs(&fs->e2fs_gd[cg]); 625 } 626 for (cg = 0; cg < prefcg; cg++) 627 if (e2fs_gd_get_ndirs(&fs->e2fs_gd[cg]) < minndir && 628 e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) >= avgifree && 629 e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) >= avgbfree) { 630 mincg = cg; 631 minndir = e2fs_gd_get_ndirs(&fs->e2fs_gd[cg]); 632 } 633 return (mincg); 634 } 635 /* 636 * Count various limits which used for 637 * optimal allocation of a directory inode. 638 */ 639 maxndir = min(avgndir + fs->e2fs_ipg / 16, fs->e2fs_ipg); 640 minifree = avgifree - avgifree / 4; 641 if (minifree < 1) 642 minifree = 1; 643 minbfree = avgbfree - avgbfree / 4; 644 if (minbfree < 1) 645 minbfree = 1; 646 cgsize = fs->e2fs_fsize * fs->e2fs_fpg; 647 dirsize = AVGDIRSIZE; 648 curdirsize = avgndir ? (cgsize - avgbfree * fs->e2fs_bsize) / avgndir : 0; 649 if (dirsize < curdirsize) 650 dirsize = curdirsize; 651 maxcontigdirs = min((avgbfree * fs->e2fs_bsize) / dirsize, 255); 652 maxcontigdirs = min(maxcontigdirs, fs->e2fs_ipg / AFPDIR); 653 if (maxcontigdirs == 0) 654 maxcontigdirs = 1; 655 656 /* 657 * Limit number of dirs in one cg and reserve space for 658 * regular files, but only if we have no deficit in 659 * inodes or space. 660 */ 661 prefcg = ino_to_cg(fs, pip->i_number); 662 for (cg = prefcg; cg < fs->e2fs_gcount; cg++) 663 if (e2fs_gd_get_ndirs(&fs->e2fs_gd[cg]) < maxndir && 664 e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) >= minifree && 665 e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) >= minbfree) { 666 if (fs->e2fs_contigdirs[cg] < maxcontigdirs) 667 return (cg); 668 } 669 for (cg = 0; cg < prefcg; cg++) 670 if (e2fs_gd_get_ndirs(&fs->e2fs_gd[cg]) < maxndir && 671 e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) >= minifree && 672 e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) >= minbfree) { 673 if (fs->e2fs_contigdirs[cg] < maxcontigdirs) 674 return (cg); 675 } 676 /* 677 * This is a backstop when we have deficit in space. 678 */ 679 for (cg = prefcg; cg < fs->e2fs_gcount; cg++) 680 if (e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) >= avgifree) 681 return (cg); 682 for (cg = 0; cg < prefcg; cg++) 683 if (e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) >= avgifree) 684 break; 685 return (cg); 686 } 687 688 /* 689 * Select the desired position for the next block in a file. 690 * 691 * we try to mimic what Remy does in inode_getblk/block_getblk 692 * 693 * we note: blocknr == 0 means that we're about to allocate either 694 * a direct block or a pointer block at the first level of indirection 695 * (In other words, stuff that will go in i_db[] or i_ib[]) 696 * 697 * blocknr != 0 means that we're allocating a block that is none 698 * of the above. Then, blocknr tells us the number of the block 699 * that will hold the pointer 700 */ 701 e4fs_daddr_t 702 ext2_blkpref(struct inode *ip, e2fs_lbn_t lbn, int indx, e2fs_daddr_t *bap, 703 e2fs_daddr_t blocknr) 704 { 705 struct m_ext2fs *fs; 706 int tmp; 707 708 fs = ip->i_e2fs; 709 710 mtx_assert(EXT2_MTX(ip->i_ump), MA_OWNED); 711 712 /* 713 * If the next block is actually what we thought it is, then set the 714 * goal to what we thought it should be. 715 */ 716 if (ip->i_next_alloc_block == lbn && ip->i_next_alloc_goal != 0) 717 return ip->i_next_alloc_goal; 718 719 /* 720 * Now check whether we were provided with an array that basically 721 * tells us previous blocks to which we want to stay close. 722 */ 723 if (bap) 724 for (tmp = indx - 1; tmp >= 0; tmp--) 725 if (bap[tmp]) 726 return bap[tmp]; 727 728 /* 729 * Else lets fall back to the blocknr or, if there is none, follow 730 * the rule that a block should be allocated near its inode. 731 */ 732 return (blocknr ? blocknr : 733 (e2fs_daddr_t)(ip->i_block_group * 734 EXT2_BLOCKS_PER_GROUP(fs)) + fs->e2fs->e2fs_first_dblock); 735 } 736 737 /* 738 * Implement the cylinder overflow algorithm. 739 * 740 * The policy implemented by this algorithm is: 741 * 1) allocate the block in its requested cylinder group. 742 * 2) quadradically rehash on the cylinder group number. 743 * 3) brute force search for a free block. 744 */ 745 static e4fs_daddr_t 746 ext2_hashalloc(struct inode *ip, int cg, long pref, int size, 747 daddr_t (*allocator) (struct inode *, int, daddr_t, int)) 748 { 749 struct m_ext2fs *fs; 750 e4fs_daddr_t result; 751 int i, icg = cg; 752 753 mtx_assert(EXT2_MTX(ip->i_ump), MA_OWNED); 754 fs = ip->i_e2fs; 755 /* 756 * 1: preferred cylinder group 757 */ 758 result = (*allocator)(ip, cg, pref, size); 759 if (result) 760 return (result); 761 /* 762 * 2: quadratic rehash 763 */ 764 for (i = 1; i < fs->e2fs_gcount; i *= 2) { 765 cg += i; 766 if (cg >= fs->e2fs_gcount) 767 cg -= fs->e2fs_gcount; 768 result = (*allocator)(ip, cg, 0, size); 769 if (result) 770 return (result); 771 } 772 /* 773 * 3: brute force search 774 * Note that we start at i == 2, since 0 was checked initially, 775 * and 1 is always checked in the quadratic rehash. 776 */ 777 cg = (icg + 2) % fs->e2fs_gcount; 778 for (i = 2; i < fs->e2fs_gcount; i++) { 779 result = (*allocator)(ip, cg, 0, size); 780 if (result) 781 return (result); 782 cg++; 783 if (cg == fs->e2fs_gcount) 784 cg = 0; 785 } 786 return (0); 787 } 788 789 static uint64_t 790 ext2_cg_number_gdb_nometa(struct m_ext2fs *fs, int cg) 791 { 792 793 if (!ext2_cg_has_sb(fs, cg)) 794 return (0); 795 796 if (EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_META_BG)) 797 return (fs->e2fs->e3fs_first_meta_bg); 798 799 return ((fs->e2fs_gcount + EXT2_DESCS_PER_BLOCK(fs) - 1) / 800 EXT2_DESCS_PER_BLOCK(fs)); 801 } 802 803 static uint64_t 804 ext2_cg_number_gdb_meta(struct m_ext2fs *fs, int cg) 805 { 806 unsigned long metagroup; 807 int first, last; 808 809 metagroup = cg / EXT2_DESCS_PER_BLOCK(fs); 810 first = metagroup * EXT2_DESCS_PER_BLOCK(fs); 811 last = first + EXT2_DESCS_PER_BLOCK(fs) - 1; 812 813 if (cg == first || cg == first + 1 || cg == last) 814 return (1); 815 816 return (0); 817 } 818 819 uint64_t 820 ext2_cg_number_gdb(struct m_ext2fs *fs, int cg) 821 { 822 unsigned long first_meta_bg, metagroup; 823 824 first_meta_bg = fs->e2fs->e3fs_first_meta_bg; 825 metagroup = cg / EXT2_DESCS_PER_BLOCK(fs); 826 827 if (!EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_META_BG) || 828 metagroup < first_meta_bg) 829 return (ext2_cg_number_gdb_nometa(fs, cg)); 830 831 return ext2_cg_number_gdb_meta(fs, cg); 832 } 833 834 static int 835 ext2_number_base_meta_blocks(struct m_ext2fs *fs, int cg) 836 { 837 int number; 838 839 number = ext2_cg_has_sb(fs, cg); 840 841 if (!EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_META_BG) || 842 cg < fs->e2fs->e3fs_first_meta_bg * EXT2_DESCS_PER_BLOCK(fs)) { 843 if (number) { 844 number += ext2_cg_number_gdb(fs, cg); 845 number += fs->e2fs->e2fs_reserved_ngdb; 846 } 847 } else { 848 number += ext2_cg_number_gdb(fs, cg); 849 } 850 851 return (number); 852 } 853 854 static void 855 ext2_mark_bitmap_end(int start_bit, int end_bit, char *bitmap) 856 { 857 int i; 858 859 if (start_bit >= end_bit) 860 return; 861 862 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++) 863 setbit(bitmap, i); 864 if (i < end_bit) 865 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3); 866 } 867 868 static int 869 ext2_get_group_number(struct m_ext2fs *fs, e4fs_daddr_t block) 870 { 871 872 return ((block - fs->e2fs->e2fs_first_dblock) / fs->e2fs_bsize); 873 } 874 875 static int 876 ext2_block_in_group(struct m_ext2fs *fs, e4fs_daddr_t block, int cg) 877 { 878 879 return ((ext2_get_group_number(fs, block) == cg) ? 1 : 0); 880 } 881 882 static int 883 ext2_cg_block_bitmap_init(struct m_ext2fs *fs, int cg, struct buf *bp) 884 { 885 int bit, bit_max, inodes_per_block; 886 uint64_t start, tmp; 887 888 if (!(fs->e2fs_gd[cg].ext4bgd_flags & EXT2_BG_BLOCK_UNINIT)) 889 return (0); 890 891 memset(bp->b_data, 0, fs->e2fs_bsize); 892 893 bit_max = ext2_number_base_meta_blocks(fs, cg); 894 if ((bit_max >> 3) >= fs->e2fs_bsize) 895 return (EINVAL); 896 897 for (bit = 0; bit < bit_max; bit++) 898 setbit(bp->b_data, bit); 899 900 start = (uint64_t)cg * fs->e2fs->e2fs_bpg + fs->e2fs->e2fs_first_dblock; 901 902 /* Set bits for block and inode bitmaps, and inode table. */ 903 tmp = e2fs_gd_get_b_bitmap(&fs->e2fs_gd[cg]); 904 if (!EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_FLEX_BG) || 905 ext2_block_in_group(fs, tmp, cg)) 906 setbit(bp->b_data, tmp - start); 907 908 tmp = e2fs_gd_get_i_bitmap(&fs->e2fs_gd[cg]); 909 if (!EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_FLEX_BG) || 910 ext2_block_in_group(fs, tmp, cg)) 911 setbit(bp->b_data, tmp - start); 912 913 tmp = e2fs_gd_get_i_tables(&fs->e2fs_gd[cg]); 914 inodes_per_block = fs->e2fs_bsize/EXT2_INODE_SIZE(fs); 915 while( tmp < e2fs_gd_get_i_tables(&fs->e2fs_gd[cg]) + 916 fs->e2fs->e2fs_ipg / inodes_per_block ) { 917 if (!EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_FLEX_BG) || 918 ext2_block_in_group(fs, tmp, cg)) 919 setbit(bp->b_data, tmp - start); 920 tmp++; 921 } 922 923 /* 924 * Also if the number of blocks within the group is less than 925 * the blocksize * 8 ( which is the size of bitmap ), set rest 926 * of the block bitmap to 1 927 */ 928 ext2_mark_bitmap_end(fs->e2fs->e2fs_bpg, fs->e2fs_bsize * 8, 929 bp->b_data); 930 931 /* Clean the flag */ 932 fs->e2fs_gd[cg].ext4bgd_flags &= ~EXT2_BG_BLOCK_UNINIT; 933 934 return (0); 935 } 936 937 static int 938 ext2_b_bitmap_validate(struct m_ext2fs *fs, struct buf *bp, int cg) 939 { 940 struct ext2_gd *gd; 941 uint64_t group_first_block; 942 unsigned int offset, max_bit; 943 944 if (EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_FLEX_BG)) { 945 /* 946 * It is not possible to check block bitmap in case of this feature, 947 * because the inode and block bitmaps and inode table 948 * blocks may not be in the group at all. 949 * So, skip check in this case. 950 */ 951 return (0); 952 } 953 954 gd = &fs->e2fs_gd[cg]; 955 max_bit = fs->e2fs_fpg; 956 group_first_block = ((uint64_t)cg) * fs->e2fs->e2fs_fpg + 957 fs->e2fs->e2fs_first_dblock; 958 959 /* Check block bitmap block number */ 960 offset = e2fs_gd_get_b_bitmap(gd) - group_first_block; 961 if (offset >= max_bit || !isset(bp->b_data, offset)) { 962 printf("ext2fs: bad block bitmap, group %d\n", cg); 963 return (EINVAL); 964 } 965 966 /* Check inode bitmap block number */ 967 offset = e2fs_gd_get_i_bitmap(gd) - group_first_block; 968 if (offset >= max_bit || !isset(bp->b_data, offset)) { 969 printf("ext2fs: bad inode bitmap, group %d\n", cg); 970 return (EINVAL); 971 } 972 973 /* Check inode table */ 974 offset = e2fs_gd_get_i_tables(gd) - group_first_block; 975 if (offset >= max_bit || offset + fs->e2fs_itpg >= max_bit) { 976 printf("ext2fs: bad inode table, group %d\n", cg); 977 return (EINVAL); 978 } 979 980 return (0); 981 } 982 983 /* 984 * Determine whether a block can be allocated. 985 * 986 * Check to see if a block of the appropriate size is available, 987 * and if it is, allocate it. 988 */ 989 static daddr_t 990 ext2_alloccg(struct inode *ip, int cg, daddr_t bpref, int size) 991 { 992 struct m_ext2fs *fs; 993 struct buf *bp; 994 struct ext2mount *ump; 995 daddr_t bno, runstart, runlen; 996 int bit, loc, end, error, start; 997 char *bbp; 998 /* XXX ondisk32 */ 999 fs = ip->i_e2fs; 1000 ump = ip->i_ump; 1001 if (e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) == 0) 1002 return (0); 1003 1004 EXT2_UNLOCK(ump); 1005 error = bread(ip->i_devvp, fsbtodb(fs, 1006 e2fs_gd_get_b_bitmap(&fs->e2fs_gd[cg])), 1007 (int)fs->e2fs_bsize, NOCRED, &bp); 1008 if (error) 1009 goto fail; 1010 1011 if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_GDT_CSUM) || 1012 EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM)) { 1013 error = ext2_cg_block_bitmap_init(fs, cg, bp); 1014 if (error) 1015 goto fail; 1016 1017 ext2_gd_b_bitmap_csum_set(fs, cg, bp); 1018 } 1019 error = ext2_gd_b_bitmap_csum_verify(fs, cg, bp); 1020 if (error) 1021 goto fail; 1022 1023 error = ext2_b_bitmap_validate(fs,bp, cg); 1024 if (error) 1025 goto fail; 1026 1027 /* 1028 * Check, that another thread did not not allocate the last block in this 1029 * group while we were waiting for the buffer. 1030 */ 1031 if (e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) == 0) 1032 goto fail; 1033 1034 bbp = (char *)bp->b_data; 1035 1036 if (dtog(fs, bpref) != cg) 1037 bpref = 0; 1038 if (bpref != 0) { 1039 bpref = dtogd(fs, bpref); 1040 /* 1041 * if the requested block is available, use it 1042 */ 1043 if (isclr(bbp, bpref)) { 1044 bno = bpref; 1045 goto gotit; 1046 } 1047 } 1048 /* 1049 * no blocks in the requested cylinder, so take next 1050 * available one in this cylinder group. 1051 * first try to get 8 contigous blocks, then fall back to a single 1052 * block. 1053 */ 1054 if (bpref) 1055 start = dtogd(fs, bpref) / NBBY; 1056 else 1057 start = 0; 1058 end = howmany(fs->e2fs->e2fs_fpg, NBBY) - start; 1059 retry: 1060 runlen = 0; 1061 runstart = 0; 1062 for (loc = start; loc < end; loc++) { 1063 if (bbp[loc] == (char)0xff) { 1064 runlen = 0; 1065 continue; 1066 } 1067 1068 /* Start of a run, find the number of high clear bits. */ 1069 if (runlen == 0) { 1070 bit = fls(bbp[loc]); 1071 runlen = NBBY - bit; 1072 runstart = loc * NBBY + bit; 1073 } else if (bbp[loc] == 0) { 1074 /* Continue a run. */ 1075 runlen += NBBY; 1076 } else { 1077 /* 1078 * Finish the current run. If it isn't long 1079 * enough, start a new one. 1080 */ 1081 bit = ffs(bbp[loc]) - 1; 1082 runlen += bit; 1083 if (runlen >= 8) { 1084 bno = runstart; 1085 goto gotit; 1086 } 1087 1088 /* Run was too short, start a new one. */ 1089 bit = fls(bbp[loc]); 1090 runlen = NBBY - bit; 1091 runstart = loc * NBBY + bit; 1092 } 1093 1094 /* If the current run is long enough, use it. */ 1095 if (runlen >= 8) { 1096 bno = runstart; 1097 goto gotit; 1098 } 1099 } 1100 if (start != 0) { 1101 end = start; 1102 start = 0; 1103 goto retry; 1104 } 1105 bno = ext2_mapsearch(fs, bbp, bpref); 1106 if (bno < 0) 1107 goto fail; 1108 1109 gotit: 1110 #ifdef INVARIANTS 1111 if (isset(bbp, bno)) { 1112 printf("ext2fs_alloccgblk: cg=%d bno=%jd fs=%s\n", 1113 cg, (intmax_t)bno, fs->e2fs_fsmnt); 1114 panic("ext2fs_alloccg: dup alloc"); 1115 } 1116 #endif 1117 setbit(bbp, bno); 1118 EXT2_LOCK(ump); 1119 ext2_clusteracct(fs, bbp, cg, bno, -1); 1120 fs->e2fs_fbcount--; 1121 e2fs_gd_set_nbfree(&fs->e2fs_gd[cg], 1122 e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) - 1); 1123 fs->e2fs_fmod = 1; 1124 EXT2_UNLOCK(ump); 1125 ext2_gd_b_bitmap_csum_set(fs, cg, bp); 1126 bdwrite(bp); 1127 return (((uint64_t)cg) * fs->e2fs->e2fs_fpg + fs->e2fs->e2fs_first_dblock + bno); 1128 1129 fail: 1130 brelse(bp); 1131 EXT2_LOCK(ump); 1132 return (0); 1133 } 1134 1135 /* 1136 * Determine whether a cluster can be allocated. 1137 */ 1138 static daddr_t 1139 ext2_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len) 1140 { 1141 struct m_ext2fs *fs; 1142 struct ext2mount *ump; 1143 struct buf *bp; 1144 char *bbp; 1145 int bit, error, got, i, loc, run; 1146 int32_t *lp; 1147 daddr_t bno; 1148 1149 fs = ip->i_e2fs; 1150 ump = ip->i_ump; 1151 1152 if (fs->e2fs_maxcluster[cg] < len) 1153 return (0); 1154 1155 EXT2_UNLOCK(ump); 1156 error = bread(ip->i_devvp, 1157 fsbtodb(fs, e2fs_gd_get_b_bitmap(&fs->e2fs_gd[cg])), 1158 (int)fs->e2fs_bsize, NOCRED, &bp); 1159 if (error) 1160 goto fail_lock; 1161 1162 bbp = (char *)bp->b_data; 1163 EXT2_LOCK(ump); 1164 /* 1165 * Check to see if a cluster of the needed size (or bigger) is 1166 * available in this cylinder group. 1167 */ 1168 lp = &fs->e2fs_clustersum[cg].cs_sum[len]; 1169 for (i = len; i <= fs->e2fs_contigsumsize; i++) 1170 if (*lp++ > 0) 1171 break; 1172 if (i > fs->e2fs_contigsumsize) { 1173 /* 1174 * Update the cluster summary information to reflect 1175 * the true maximum-sized cluster so that future cluster 1176 * allocation requests can avoid reading the bitmap only 1177 * to find no cluster. 1178 */ 1179 lp = &fs->e2fs_clustersum[cg].cs_sum[len - 1]; 1180 for (i = len - 1; i > 0; i--) 1181 if (*lp-- > 0) 1182 break; 1183 fs->e2fs_maxcluster[cg] = i; 1184 goto fail; 1185 } 1186 EXT2_UNLOCK(ump); 1187 1188 /* Search the bitmap to find a big enough cluster like in FFS. */ 1189 if (dtog(fs, bpref) != cg) 1190 bpref = 0; 1191 if (bpref != 0) 1192 bpref = dtogd(fs, bpref); 1193 loc = bpref / NBBY; 1194 bit = 1 << (bpref % NBBY); 1195 for (run = 0, got = bpref; got < fs->e2fs->e2fs_fpg; got++) { 1196 if ((bbp[loc] & bit) != 0) 1197 run = 0; 1198 else { 1199 run++; 1200 if (run == len) 1201 break; 1202 } 1203 if ((got & (NBBY - 1)) != (NBBY - 1)) 1204 bit <<= 1; 1205 else { 1206 loc++; 1207 bit = 1; 1208 } 1209 } 1210 1211 if (got >= fs->e2fs->e2fs_fpg) 1212 goto fail_lock; 1213 1214 /* Allocate the cluster that we found. */ 1215 for (i = 1; i < len; i++) 1216 if (!isclr(bbp, got - run + i)) 1217 panic("ext2_clusteralloc: map mismatch"); 1218 1219 bno = got - run + 1; 1220 if (bno >= fs->e2fs->e2fs_fpg) 1221 panic("ext2_clusteralloc: allocated out of group"); 1222 1223 EXT2_LOCK(ump); 1224 for (i = 0; i < len; i += fs->e2fs_fpb) { 1225 setbit(bbp, bno + i); 1226 ext2_clusteracct(fs, bbp, cg, bno + i, -1); 1227 fs->e2fs_fbcount--; 1228 e2fs_gd_set_nbfree(&fs->e2fs_gd[cg], 1229 e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) - 1); 1230 } 1231 fs->e2fs_fmod = 1; 1232 EXT2_UNLOCK(ump); 1233 1234 bdwrite(bp); 1235 return (cg * fs->e2fs->e2fs_fpg + fs->e2fs->e2fs_first_dblock + bno); 1236 1237 fail_lock: 1238 EXT2_LOCK(ump); 1239 fail: 1240 brelse(bp); 1241 return (0); 1242 } 1243 1244 static int 1245 ext2_zero_inode_table(struct inode *ip, int cg) 1246 { 1247 struct m_ext2fs *fs; 1248 struct buf *bp; 1249 int i, all_blks, used_blks; 1250 1251 fs = ip->i_e2fs; 1252 1253 if (fs->e2fs_gd[cg].ext4bgd_flags & EXT2_BG_INODE_ZEROED) 1254 return (0); 1255 1256 all_blks = fs->e2fs->e2fs_inode_size * fs->e2fs->e2fs_ipg / 1257 fs->e2fs_bsize; 1258 1259 used_blks = howmany(fs->e2fs->e2fs_ipg - 1260 e2fs_gd_get_i_unused(&fs->e2fs_gd[cg]), 1261 fs->e2fs_bsize / EXT2_INODE_SIZE(fs)); 1262 1263 for (i = 0; i < all_blks - used_blks; i++) { 1264 bp = getblk(ip->i_devvp, fsbtodb(fs, 1265 e2fs_gd_get_i_tables(&fs->e2fs_gd[cg]) + used_blks + i), 1266 fs->e2fs_bsize, 0, 0, 0); 1267 if (!bp) 1268 return (EIO); 1269 1270 vfs_bio_bzero_buf(bp, 0, fs->e2fs_bsize); 1271 bawrite(bp); 1272 } 1273 1274 fs->e2fs_gd[cg].ext4bgd_flags |= EXT2_BG_INODE_ZEROED; 1275 1276 return (0); 1277 } 1278 1279 /* 1280 * Determine whether an inode can be allocated. 1281 * 1282 * Check to see if an inode is available, and if it is, 1283 * allocate it using tode in the specified cylinder group. 1284 */ 1285 static daddr_t 1286 ext2_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode) 1287 { 1288 struct m_ext2fs *fs; 1289 struct buf *bp; 1290 struct ext2mount *ump; 1291 int error, start, len, ifree; 1292 char *ibp, *loc; 1293 1294 ipref--; /* to avoid a lot of (ipref -1) */ 1295 if (ipref == -1) 1296 ipref = 0; 1297 fs = ip->i_e2fs; 1298 ump = ip->i_ump; 1299 if (e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) == 0) 1300 return (0); 1301 EXT2_UNLOCK(ump); 1302 error = bread(ip->i_devvp, fsbtodb(fs, 1303 e2fs_gd_get_i_bitmap(&fs->e2fs_gd[cg])), 1304 (int)fs->e2fs_bsize, NOCRED, &bp); 1305 if (error) { 1306 brelse(bp); 1307 EXT2_LOCK(ump); 1308 return (0); 1309 } 1310 if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_GDT_CSUM) || 1311 EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM)) { 1312 if (fs->e2fs_gd[cg].ext4bgd_flags & EXT2_BG_INODE_UNINIT) { 1313 memset(bp->b_data, 0, fs->e2fs_bsize); 1314 fs->e2fs_gd[cg].ext4bgd_flags &= ~EXT2_BG_INODE_UNINIT; 1315 } 1316 ext2_gd_i_bitmap_csum_set(fs, cg, bp); 1317 error = ext2_zero_inode_table(ip, cg); 1318 if (error) { 1319 brelse(bp); 1320 EXT2_LOCK(ump); 1321 return (0); 1322 } 1323 } 1324 error = ext2_gd_i_bitmap_csum_verify(fs, cg, bp); 1325 if (error) { 1326 brelse(bp); 1327 EXT2_LOCK(ump); 1328 return (0); 1329 } 1330 if (e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) == 0) { 1331 /* 1332 * Another thread allocated the last i-node in this 1333 * group while we were waiting for the buffer. 1334 */ 1335 brelse(bp); 1336 EXT2_LOCK(ump); 1337 return (0); 1338 } 1339 ibp = (char *)bp->b_data; 1340 if (ipref) { 1341 ipref %= fs->e2fs->e2fs_ipg; 1342 if (isclr(ibp, ipref)) 1343 goto gotit; 1344 } 1345 start = ipref / NBBY; 1346 len = howmany(fs->e2fs->e2fs_ipg - ipref, NBBY); 1347 loc = memcchr(&ibp[start], 0xff, len); 1348 if (loc == NULL) { 1349 len = start + 1; 1350 start = 0; 1351 loc = memcchr(&ibp[start], 0xff, len); 1352 if (loc == NULL) { 1353 printf("ext2fs: inode bitmap corrupted: " 1354 "cg = %d, ipref = %lld, fs = %s - run fsck\n", 1355 cg, (long long)ipref, fs->e2fs_fsmnt); 1356 brelse(bp); 1357 EXT2_LOCK(ump); 1358 return (0); 1359 } 1360 } 1361 ipref = (loc - ibp) * NBBY + ffs(~*loc) - 1; 1362 gotit: 1363 setbit(ibp, ipref); 1364 EXT2_LOCK(ump); 1365 e2fs_gd_set_nifree(&fs->e2fs_gd[cg], 1366 e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) - 1); 1367 if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_GDT_CSUM) || 1368 EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM)) { 1369 ifree = fs->e2fs->e2fs_ipg - e2fs_gd_get_i_unused(&fs->e2fs_gd[cg]); 1370 if (ipref + 1 > ifree) 1371 e2fs_gd_set_i_unused(&fs->e2fs_gd[cg], 1372 fs->e2fs->e2fs_ipg - (ipref + 1)); 1373 } 1374 fs->e2fs->e2fs_ficount--; 1375 fs->e2fs_fmod = 1; 1376 if ((mode & IFMT) == IFDIR) { 1377 e2fs_gd_set_ndirs(&fs->e2fs_gd[cg], 1378 e2fs_gd_get_ndirs(&fs->e2fs_gd[cg]) + 1); 1379 fs->e2fs_total_dir++; 1380 } 1381 EXT2_UNLOCK(ump); 1382 ext2_gd_i_bitmap_csum_set(fs, cg, bp); 1383 bdwrite(bp); 1384 return ((uint64_t)cg * fs->e2fs_ipg + ipref + 1); 1385 } 1386 1387 /* 1388 * Free a block or fragment. 1389 * 1390 */ 1391 void 1392 ext2_blkfree(struct inode *ip, e4fs_daddr_t bno, long size) 1393 { 1394 struct m_ext2fs *fs; 1395 struct buf *bp; 1396 struct ext2mount *ump; 1397 int cg, error; 1398 char *bbp; 1399 1400 fs = ip->i_e2fs; 1401 ump = ip->i_ump; 1402 cg = dtog(fs, bno); 1403 if (bno >= fs->e2fs_bcount) { 1404 printf("bad block %lld, ino %ju\n", (long long)bno, 1405 (uintmax_t)ip->i_number); 1406 ext2_fserr(fs, ip->i_uid, "bad block"); 1407 return; 1408 } 1409 error = bread(ip->i_devvp, 1410 fsbtodb(fs, e2fs_gd_get_b_bitmap(&fs->e2fs_gd[cg])), 1411 (int)fs->e2fs_bsize, NOCRED, &bp); 1412 if (error) { 1413 brelse(bp); 1414 return; 1415 } 1416 bbp = (char *)bp->b_data; 1417 bno = dtogd(fs, bno); 1418 if (isclr(bbp, bno)) { 1419 printf("block = %lld, fs = %s\n", 1420 (long long)bno, fs->e2fs_fsmnt); 1421 panic("ext2_blkfree: freeing free block"); 1422 } 1423 clrbit(bbp, bno); 1424 EXT2_LOCK(ump); 1425 ext2_clusteracct(fs, bbp, cg, bno, 1); 1426 fs->e2fs_fbcount++; 1427 e2fs_gd_set_nbfree(&fs->e2fs_gd[cg], 1428 e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) + 1); 1429 fs->e2fs_fmod = 1; 1430 EXT2_UNLOCK(ump); 1431 ext2_gd_b_bitmap_csum_set(fs, cg, bp); 1432 bdwrite(bp); 1433 } 1434 1435 /* 1436 * Free an inode. 1437 * 1438 */ 1439 int 1440 ext2_vfree(struct vnode *pvp, ino_t ino, int mode) 1441 { 1442 struct m_ext2fs *fs; 1443 struct inode *pip; 1444 struct buf *bp; 1445 struct ext2mount *ump; 1446 int error, cg; 1447 char *ibp; 1448 1449 pip = VTOI(pvp); 1450 fs = pip->i_e2fs; 1451 ump = pip->i_ump; 1452 if ((u_int)ino > fs->e2fs_ipg * fs->e2fs_gcount) 1453 panic("ext2_vfree: range: devvp = %p, ino = %ju, fs = %s", 1454 pip->i_devvp, (uintmax_t)ino, fs->e2fs_fsmnt); 1455 1456 cg = ino_to_cg(fs, ino); 1457 error = bread(pip->i_devvp, 1458 fsbtodb(fs, e2fs_gd_get_i_bitmap(&fs->e2fs_gd[cg])), 1459 (int)fs->e2fs_bsize, NOCRED, &bp); 1460 if (error) { 1461 brelse(bp); 1462 return (0); 1463 } 1464 ibp = (char *)bp->b_data; 1465 ino = (ino - 1) % fs->e2fs->e2fs_ipg; 1466 if (isclr(ibp, ino)) { 1467 printf("ino = %ju, fs = %s\n", 1468 ino, fs->e2fs_fsmnt); 1469 if (fs->e2fs_ronly == 0) 1470 panic("ext2_vfree: freeing free inode"); 1471 } 1472 clrbit(ibp, ino); 1473 EXT2_LOCK(ump); 1474 fs->e2fs->e2fs_ficount++; 1475 e2fs_gd_set_nifree(&fs->e2fs_gd[cg], 1476 e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) + 1); 1477 if ((mode & IFMT) == IFDIR) { 1478 e2fs_gd_set_ndirs(&fs->e2fs_gd[cg], 1479 e2fs_gd_get_ndirs(&fs->e2fs_gd[cg]) - 1); 1480 fs->e2fs_total_dir--; 1481 } 1482 fs->e2fs_fmod = 1; 1483 EXT2_UNLOCK(ump); 1484 ext2_gd_i_bitmap_csum_set(fs, cg, bp); 1485 bdwrite(bp); 1486 return (0); 1487 } 1488 1489 /* 1490 * Find a block in the specified cylinder group. 1491 * 1492 * It is a panic if a request is made to find a block if none are 1493 * available. 1494 */ 1495 static daddr_t 1496 ext2_mapsearch(struct m_ext2fs *fs, char *bbp, daddr_t bpref) 1497 { 1498 char *loc; 1499 int start, len; 1500 1501 /* 1502 * find the fragment by searching through the free block 1503 * map for an appropriate bit pattern 1504 */ 1505 if (bpref) 1506 start = dtogd(fs, bpref) / NBBY; 1507 else 1508 start = 0; 1509 len = howmany(fs->e2fs->e2fs_fpg, NBBY) - start; 1510 loc = memcchr(&bbp[start], 0xff, len); 1511 if (loc == NULL) { 1512 len = start + 1; 1513 start = 0; 1514 loc = memcchr(&bbp[start], 0xff, len); 1515 if (loc == NULL) { 1516 printf("start = %d, len = %d, fs = %s\n", 1517 start, len, fs->e2fs_fsmnt); 1518 panic("ext2_mapsearch: map corrupted"); 1519 /* NOTREACHED */ 1520 } 1521 } 1522 return ((loc - bbp) * NBBY + ffs(~*loc) - 1); 1523 } 1524 1525 /* 1526 * Fserr prints the name of a filesystem with an error diagnostic. 1527 * 1528 * The form of the error message is: 1529 * fs: error message 1530 */ 1531 void 1532 ext2_fserr(struct m_ext2fs *fs, uid_t uid, char *cp) 1533 { 1534 1535 log(LOG_ERR, "uid %u on %s: %s\n", uid, fs->e2fs_fsmnt, cp); 1536 } 1537 1538 int 1539 ext2_cg_has_sb(struct m_ext2fs *fs, int cg) 1540 { 1541 int a3, a5, a7; 1542 1543 if (cg == 0) 1544 return (1); 1545 1546 if (EXT2_HAS_COMPAT_FEATURE(fs, EXT2F_COMPAT_SPARSESUPER2)) { 1547 if (cg == fs->e2fs->e4fs_backup_bgs[0] || 1548 cg == fs->e2fs->e4fs_backup_bgs[1]) 1549 return (1); 1550 return (0); 1551 } 1552 1553 if ((cg <= 1) || 1554 !EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_SPARSESUPER)) 1555 return (1); 1556 1557 if (!(cg & 1)) 1558 return (0); 1559 1560 for (a3 = 3, a5 = 5, a7 = 7; 1561 a3 <= cg || a5 <= cg || a7 <= cg; 1562 a3 *= 3, a5 *= 5, a7 *= 7) 1563 if (cg == a3 || cg == a5 || cg == a7) 1564 return (1); 1565 return (0); 1566 } 1567