xref: /freebsd/sys/dev/xen/xenstore/xenstore.c (revision 1a498d2e689f9e8220e2ad64b018eb1f0d11127e)
1 /******************************************************************************
2  * xenstore.c
3  *
4  * Low-level kernel interface to the XenStore.
5  *
6  * Copyright (C) 2005 Rusty Russell, IBM Corporation
7  * Copyright (C) 2009,2010 Spectra Logic Corporation
8  *
9  * This file may be distributed separately from the Linux kernel, or
10  * incorporated into other software packages, subject to the following license:
11  *
12  * Permission is hereby granted, free of charge, to any person obtaining a copy
13  * of this source file (the "Software"), to deal in the Software without
14  * restriction, including without limitation the rights to use, copy, modify,
15  * merge, publish, distribute, sublicense, and/or sell copies of the Software,
16  * and to permit persons to whom the Software is furnished to do so, subject to
17  * the following conditions:
18  *
19  * The above copyright notice and this permission notice shall be included in
20  * all copies or substantial portions of the Software.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
25  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
28  * IN THE SOFTWARE.
29  */
30 
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/bus.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/module.h>
40 #include <sys/mutex.h>
41 #include <sys/sx.h>
42 #include <sys/syslog.h>
43 #include <sys/malloc.h>
44 #include <sys/systm.h>
45 #include <sys/proc.h>
46 #include <sys/kthread.h>
47 #include <sys/sbuf.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 #include <sys/unistd.h>
51 #include <sys/queue.h>
52 #include <sys/taskqueue.h>
53 
54 #include <machine/stdarg.h>
55 
56 #include <xen/xen-os.h>
57 #include <xen/hypervisor.h>
58 #include <xen/xen_intr.h>
59 
60 #include <xen/interface/hvm/params.h>
61 #include <xen/hvm.h>
62 
63 #include <xen/xenstore/xenstorevar.h>
64 #include <xen/xenstore/xenstore_internal.h>
65 
66 #include <vm/vm.h>
67 #include <vm/pmap.h>
68 
69 /**
70  * \file xenstore.c
71  * \brief XenStore interface
72  *
73  * The XenStore interface is a simple storage system that is a means of
74  * communicating state and configuration data between the Xen Domain 0
75  * and the various guest domains.  All configuration data other than
76  * a small amount of essential information required during the early
77  * boot process of launching a Xen aware guest, is managed using the
78  * XenStore.
79  *
80  * The XenStore is ASCII string based, and has a structure and semantics
81  * similar to a filesystem.  There are files and directories, the directories
82  * able to contain files or other directories.  The depth of the hierarchy
83  * is only limited by the XenStore's maximum path length.
84  *
85  * The communication channel between the XenStore service and other
86  * domains is via two, guest specific, ring buffers in a shared memory
87  * area.  One ring buffer is used for communicating in each direction.
88  * The grant table references for this shared memory are given to the
89  * guest either via the xen_start_info structure for a fully para-
90  * virtualized guest, or via HVM hypercalls for a hardware virtualized
91  * guest.
92  *
93  * The XenStore communication relies on an event channel and thus
94  * interrupts.  For this reason, the attachment of the XenStore
95  * relies on an interrupt driven configuration hook to hold off
96  * boot processing until communication with the XenStore service
97  * can be established.
98  *
99  * Several Xen services depend on the XenStore, most notably the
100  * XenBus used to discover and manage Xen devices.  These services
101  * are implemented as NewBus child attachments to a bus exported
102  * by this XenStore driver.
103  */
104 
105 static struct xs_watch *find_watch(const char *token);
106 
107 MALLOC_DEFINE(M_XENSTORE, "xenstore", "XenStore data and results");
108 
109 /**
110  * Pointer to shared memory communication structures allowing us
111  * to communicate with the XenStore service.
112  *
113  * When operating in full PV mode, this pointer is set early in kernel
114  * startup from within xen_machdep.c.  In HVM mode, we use hypercalls
115  * to get the guest frame number for the shared page and then map it
116  * into kva.  See xs_init() for details.
117  */
118 static struct xenstore_domain_interface *xen_store;
119 
120 /*-------------------------- Private Data Structures ------------------------*/
121 
122 /**
123  * Structure capturing messages received from the XenStore service.
124  */
125 struct xs_stored_msg {
126 	TAILQ_ENTRY(xs_stored_msg) list;
127 
128 	struct xsd_sockmsg hdr;
129 
130 	union {
131 		/* Queued replies. */
132 		struct {
133 			char *body;
134 		} reply;
135 
136 		/* Queued watch events. */
137 		struct {
138 			struct xs_watch *handle;
139 			const char **vec;
140 			u_int vec_size;
141 		} watch;
142 	} u;
143 };
144 TAILQ_HEAD(xs_stored_msg_list, xs_stored_msg);
145 
146 /**
147  * Container for all XenStore related state.
148  */
149 struct xs_softc {
150 	/** Newbus device for the XenStore. */
151 	device_t xs_dev;
152 
153 	/**
154 	 * Lock serializing access to ring producer/consumer
155 	 * indexes.  Use of this lock guarantees that wakeups
156 	 * of blocking readers/writers are not missed due to
157 	 * races with the XenStore service.
158 	 */
159 	struct mtx ring_lock;
160 
161 	/*
162 	 * Mutex used to insure exclusive access to the outgoing
163 	 * communication ring.  We use a lock type that can be
164 	 * held while sleeping so that xs_write() can block waiting
165 	 * for space in the ring to free up, without allowing another
166 	 * writer to come in and corrupt a partial message write.
167 	 */
168 	struct sx request_mutex;
169 
170 	/**
171 	 * A list of replies to our requests.
172 	 *
173 	 * The reply list is filled by xs_rcv_thread().  It
174 	 * is consumed by the context that issued the request
175 	 * to which a reply is made.  The requester blocks in
176 	 * xs_read_reply().
177 	 *
178 	 * /note Only one requesting context can be active at a time.
179 	 *       This is guaranteed by the request_mutex and insures
180 	 *	 that the requester sees replies matching the order
181 	 *	 of its requests.
182 	 */
183 	struct xs_stored_msg_list reply_list;
184 
185 	/** Lock protecting the reply list. */
186 	struct mtx reply_lock;
187 
188 	/**
189 	 * List of registered watches.
190 	 */
191 	struct xs_watch_list  registered_watches;
192 
193 	/** Lock protecting the registered watches list. */
194 	struct mtx registered_watches_lock;
195 
196 	/**
197 	 * List of pending watch callback events.
198 	 */
199 	struct xs_stored_msg_list watch_events;
200 
201 	/** Lock protecting the watch calback list. */
202 	struct mtx watch_events_lock;
203 
204 	/**
205 	 * The processid of the xenwatch thread.
206 	 */
207 	pid_t xenwatch_pid;
208 
209 	/**
210 	 * Sleepable mutex used to gate the execution of XenStore
211 	 * watch event callbacks.
212 	 *
213 	 * xenwatch_thread holds an exclusive lock on this mutex
214 	 * while delivering event callbacks, and xenstore_unregister_watch()
215 	 * uses an exclusive lock of this mutex to guarantee that no
216 	 * callbacks of the just unregistered watch are pending
217 	 * before returning to its caller.
218 	 */
219 	struct sx xenwatch_mutex;
220 
221 	/**
222 	 * The HVM guest pseudo-physical frame number.  This is Xen's mapping
223 	 * of the true machine frame number into our "physical address space".
224 	 */
225 	unsigned long gpfn;
226 
227 	/**
228 	 * The event channel for communicating with the
229 	 * XenStore service.
230 	 */
231 	int evtchn;
232 
233 	/** Handle for XenStore interrupts. */
234 	xen_intr_handle_t xen_intr_handle;
235 
236 	/**
237 	 * Interrupt driven config hook allowing us to defer
238 	 * attaching children until interrupts (and thus communication
239 	 * with the XenStore service) are available.
240 	 */
241 	struct intr_config_hook xs_attachcb;
242 
243 	/**
244 	 * Xenstore is a user-space process that usually runs in Dom0,
245 	 * so if this domain is booting as Dom0, xenstore wont we accessible,
246 	 * and we have to defer the initialization of xenstore related
247 	 * devices to later (when xenstore is started).
248 	 */
249 	bool initialized;
250 
251 	/**
252 	 * Task to run when xenstore is initialized (Dom0 only), will
253 	 * take care of attaching xenstore related devices.
254 	 */
255 	struct task xs_late_init;
256 };
257 
258 /*-------------------------------- Global Data ------------------------------*/
259 static struct xs_softc xs;
260 
261 /*------------------------- Private Utility Functions -----------------------*/
262 
263 /**
264  * Count and optionally record pointers to a number of NUL terminated
265  * strings in a buffer.
266  *
267  * \param strings  A pointer to a contiguous buffer of NUL terminated strings.
268  * \param dest	   An array to store pointers to each string found in strings.
269  * \param len	   The length of the buffer pointed to by strings.
270  *
271  * \return  A count of the number of strings found.
272  */
273 static u_int
274 extract_strings(const char *strings, const char **dest, u_int len)
275 {
276 	u_int num;
277 	const char *p;
278 
279 	for (p = strings, num = 0; p < strings + len; p += strlen(p) + 1) {
280 		if (dest != NULL)
281 			*dest++ = p;
282 		num++;
283 	}
284 
285 	return (num);
286 }
287 
288 /**
289  * Convert a contiguous buffer containing a series of NUL terminated
290  * strings into an array of pointers to strings.
291  *
292  * The returned pointer references the array of string pointers which
293  * is followed by the storage for the string data.  It is the client's
294  * responsibility to free this storage.
295  *
296  * The storage addressed by strings is free'd prior to split returning.
297  *
298  * \param strings  A pointer to a contiguous buffer of NUL terminated strings.
299  * \param len	   The length of the buffer pointed to by strings.
300  * \param num	   The number of strings found and returned in the strings
301  *                 array.
302  *
303  * \return  An array of pointers to the strings found in the input buffer.
304  */
305 static const char **
306 split(char *strings, u_int len, u_int *num)
307 {
308 	const char **ret;
309 
310 	/* Protect against unterminated buffers. */
311 	if (len > 0)
312 		strings[len - 1] = '\0';
313 
314 	/* Count the strings. */
315 	*num = extract_strings(strings, /*dest*/NULL, len);
316 
317 	/* Transfer to one big alloc for easy freeing by the caller. */
318 	ret = malloc(*num * sizeof(char *) + len, M_XENSTORE, M_WAITOK);
319 	memcpy(&ret[*num], strings, len);
320 	free(strings, M_XENSTORE);
321 
322 	/* Extract pointers to newly allocated array. */
323 	strings = (char *)&ret[*num];
324 	(void)extract_strings(strings, /*dest*/ret, len);
325 
326 	return (ret);
327 }
328 
329 /*------------------------- Public Utility Functions -------------------------*/
330 /*------- API comments for these methods can be found in xenstorevar.h -------*/
331 struct sbuf *
332 xs_join(const char *dir, const char *name)
333 {
334 	struct sbuf *sb;
335 
336 	sb = sbuf_new_auto();
337 	sbuf_cat(sb, dir);
338 	if (name[0] != '\0') {
339 		sbuf_putc(sb, '/');
340 		sbuf_cat(sb, name);
341 	}
342 	sbuf_finish(sb);
343 
344 	return (sb);
345 }
346 
347 /*-------------------- Low Level Communication Management --------------------*/
348 /**
349  * Interrupt handler for the XenStore event channel.
350  *
351  * XenStore reads and writes block on "xen_store" for buffer
352  * space.  Wakeup any blocking operations when the XenStore
353  * service has modified the queues.
354  */
355 static void
356 xs_intr(void * arg __unused /*__attribute__((unused))*/)
357 {
358 
359 	/* If xenstore has not been initialized, initialize it now */
360 	if (!xs.initialized) {
361 		xs.initialized = true;
362 		/*
363 		 * Since this task is probing and attaching devices we
364 		 * have to hold the Giant lock.
365 		 */
366 		taskqueue_enqueue(taskqueue_swi_giant, &xs.xs_late_init);
367 	}
368 
369 	/*
370 	 * Hold ring lock across wakeup so that clients
371 	 * cannot miss a wakeup.
372 	 */
373 	mtx_lock(&xs.ring_lock);
374 	wakeup(xen_store);
375 	mtx_unlock(&xs.ring_lock);
376 }
377 
378 /**
379  * Verify that the indexes for a ring are valid.
380  *
381  * The difference between the producer and consumer cannot
382  * exceed the size of the ring.
383  *
384  * \param cons  The consumer index for the ring to test.
385  * \param prod  The producer index for the ring to test.
386  *
387  * \retval 1  If indexes are in range.
388  * \retval 0  If the indexes are out of range.
389  */
390 static int
391 xs_check_indexes(XENSTORE_RING_IDX cons, XENSTORE_RING_IDX prod)
392 {
393 
394 	return ((prod - cons) <= XENSTORE_RING_SIZE);
395 }
396 
397 /**
398  * Return a pointer to, and the length of, the contiguous
399  * free region available for output in a ring buffer.
400  *
401  * \param cons  The consumer index for the ring.
402  * \param prod  The producer index for the ring.
403  * \param buf   The base address of the ring's storage.
404  * \param len   The amount of contiguous storage available.
405  *
406  * \return  A pointer to the start location of the free region.
407  */
408 static void *
409 xs_get_output_chunk(XENSTORE_RING_IDX cons, XENSTORE_RING_IDX prod,
410     char *buf, uint32_t *len)
411 {
412 
413 	*len = XENSTORE_RING_SIZE - MASK_XENSTORE_IDX(prod);
414 	if ((XENSTORE_RING_SIZE - (prod - cons)) < *len)
415 		*len = XENSTORE_RING_SIZE - (prod - cons);
416 	return (buf + MASK_XENSTORE_IDX(prod));
417 }
418 
419 /**
420  * Return a pointer to, and the length of, the contiguous
421  * data available to read from a ring buffer.
422  *
423  * \param cons  The consumer index for the ring.
424  * \param prod  The producer index for the ring.
425  * \param buf   The base address of the ring's storage.
426  * \param len   The amount of contiguous data available to read.
427  *
428  * \return  A pointer to the start location of the available data.
429  */
430 static const void *
431 xs_get_input_chunk(XENSTORE_RING_IDX cons, XENSTORE_RING_IDX prod,
432     const char *buf, uint32_t *len)
433 {
434 
435 	*len = XENSTORE_RING_SIZE - MASK_XENSTORE_IDX(cons);
436 	if ((prod - cons) < *len)
437 		*len = prod - cons;
438 	return (buf + MASK_XENSTORE_IDX(cons));
439 }
440 
441 /**
442  * Transmit data to the XenStore service.
443  *
444  * \param tdata  A pointer to the contiguous data to send.
445  * \param len    The amount of data to send.
446  *
447  * \return  On success 0, otherwise an errno value indicating the
448  *          cause of failure.
449  *
450  * \invariant  Called from thread context.
451  * \invariant  The buffer pointed to by tdata is at least len bytes
452  *             in length.
453  * \invariant  xs.request_mutex exclusively locked.
454  */
455 static int
456 xs_write_store(const void *tdata, unsigned len)
457 {
458 	XENSTORE_RING_IDX cons, prod;
459 	const char *data = (const char *)tdata;
460 	int error;
461 
462 	sx_assert(&xs.request_mutex, SX_XLOCKED);
463 	while (len != 0) {
464 		void *dst;
465 		u_int avail;
466 
467 		/* Hold lock so we can't miss wakeups should we block. */
468 		mtx_lock(&xs.ring_lock);
469 		cons = xen_store->req_cons;
470 		prod = xen_store->req_prod;
471 		if ((prod - cons) == XENSTORE_RING_SIZE) {
472 			/*
473 			 * Output ring is full. Wait for a ring event.
474 			 *
475 			 * Note that the events from both queues
476 			 * are combined, so being woken does not
477 			 * guarantee that data exist in the read
478 			 * ring.
479 			 *
480 			 * To simplify error recovery and the retry,
481 			 * we specify PDROP so our lock is *not* held
482 			 * when msleep returns.
483 			 */
484 			error = msleep(xen_store, &xs.ring_lock, PCATCH|PDROP,
485 			     "xbwrite", /*timeout*/0);
486 			if (error && error != EWOULDBLOCK)
487 				return (error);
488 
489 			/* Try again. */
490 			continue;
491 		}
492 		mtx_unlock(&xs.ring_lock);
493 
494 		/* Verify queue sanity. */
495 		if (!xs_check_indexes(cons, prod)) {
496 			xen_store->req_cons = xen_store->req_prod = 0;
497 			return (EIO);
498 		}
499 
500 		dst = xs_get_output_chunk(cons, prod, xen_store->req, &avail);
501 		if (avail > len)
502 			avail = len;
503 
504 		memcpy(dst, data, avail);
505 		data += avail;
506 		len -= avail;
507 
508 		/*
509 		 * The store to the producer index, which indicates
510 		 * to the other side that new data has arrived, must
511 		 * be visible only after our copy of the data into the
512 		 * ring has completed.
513 		 */
514 		wmb();
515 		xen_store->req_prod += avail;
516 
517 		/*
518 		 * xen_intr_signal() implies mb(). The other side will see
519 		 * the change to req_prod at the time of the interrupt.
520 		 */
521 		xen_intr_signal(xs.xen_intr_handle);
522 	}
523 
524 	return (0);
525 }
526 
527 /**
528  * Receive data from the XenStore service.
529  *
530  * \param tdata  A pointer to the contiguous buffer to receive the data.
531  * \param len    The amount of data to receive.
532  *
533  * \return  On success 0, otherwise an errno value indicating the
534  *          cause of failure.
535  *
536  * \invariant  Called from thread context.
537  * \invariant  The buffer pointed to by tdata is at least len bytes
538  *             in length.
539  *
540  * \note xs_read does not perform any internal locking to guarantee
541  *       serial access to the incoming ring buffer.  However, there
542  *	 is only one context processing reads: xs_rcv_thread().
543  */
544 static int
545 xs_read_store(void *tdata, unsigned len)
546 {
547 	XENSTORE_RING_IDX cons, prod;
548 	char *data = (char *)tdata;
549 	int error;
550 
551 	while (len != 0) {
552 		u_int avail;
553 		const char *src;
554 
555 		/* Hold lock so we can't miss wakeups should we block. */
556 		mtx_lock(&xs.ring_lock);
557 		cons = xen_store->rsp_cons;
558 		prod = xen_store->rsp_prod;
559 		if (cons == prod) {
560 			/*
561 			 * Nothing to read. Wait for a ring event.
562 			 *
563 			 * Note that the events from both queues
564 			 * are combined, so being woken does not
565 			 * guarantee that data exist in the read
566 			 * ring.
567 			 *
568 			 * To simplify error recovery and the retry,
569 			 * we specify PDROP so our lock is *not* held
570 			 * when msleep returns.
571 			 */
572 			error = msleep(xen_store, &xs.ring_lock, PCATCH|PDROP,
573 			    "xbread", /*timeout*/0);
574 			if (error && error != EWOULDBLOCK)
575 				return (error);
576 			continue;
577 		}
578 		mtx_unlock(&xs.ring_lock);
579 
580 		/* Verify queue sanity. */
581 		if (!xs_check_indexes(cons, prod)) {
582 			xen_store->rsp_cons = xen_store->rsp_prod = 0;
583 			return (EIO);
584 		}
585 
586 		src = xs_get_input_chunk(cons, prod, xen_store->rsp, &avail);
587 		if (avail > len)
588 			avail = len;
589 
590 		/*
591 		 * Insure the data we read is related to the indexes
592 		 * we read above.
593 		 */
594 		rmb();
595 
596 		memcpy(data, src, avail);
597 		data += avail;
598 		len -= avail;
599 
600 		/*
601 		 * Insure that the producer of this ring does not see
602 		 * the ring space as free until after we have copied it
603 		 * out.
604 		 */
605 		mb();
606 		xen_store->rsp_cons += avail;
607 
608 		/*
609 		 * xen_intr_signal() implies mb(). The producer will see
610 		 * the updated consumer index when the event is delivered.
611 		 */
612 		xen_intr_signal(xs.xen_intr_handle);
613 	}
614 
615 	return (0);
616 }
617 
618 /*----------------------- Received Message Processing ------------------------*/
619 /**
620  * Block reading the next message from the XenStore service and
621  * process the result.
622  *
623  * \param type  The returned type of the XenStore message received.
624  *
625  * \return  0 on success.  Otherwise an errno value indicating the
626  *          type of failure encountered.
627  */
628 static int
629 xs_process_msg(enum xsd_sockmsg_type *type)
630 {
631 	struct xs_stored_msg *msg;
632 	char *body;
633 	int error;
634 
635 	msg = malloc(sizeof(*msg), M_XENSTORE, M_WAITOK);
636 	error = xs_read_store(&msg->hdr, sizeof(msg->hdr));
637 	if (error) {
638 		free(msg, M_XENSTORE);
639 		return (error);
640 	}
641 
642 	body = malloc(msg->hdr.len + 1, M_XENSTORE, M_WAITOK);
643 	error = xs_read_store(body, msg->hdr.len);
644 	if (error) {
645 		free(body, M_XENSTORE);
646 		free(msg, M_XENSTORE);
647 		return (error);
648 	}
649 	body[msg->hdr.len] = '\0';
650 
651 	*type = msg->hdr.type;
652 	if (msg->hdr.type == XS_WATCH_EVENT) {
653 		msg->u.watch.vec = split(body, msg->hdr.len,
654 		    &msg->u.watch.vec_size);
655 
656 		mtx_lock(&xs.registered_watches_lock);
657 		msg->u.watch.handle = find_watch(
658 		    msg->u.watch.vec[XS_WATCH_TOKEN]);
659 		if (msg->u.watch.handle != NULL) {
660 			mtx_lock(&xs.watch_events_lock);
661 			TAILQ_INSERT_TAIL(&xs.watch_events, msg, list);
662 			wakeup(&xs.watch_events);
663 			mtx_unlock(&xs.watch_events_lock);
664 		} else {
665 			free(msg->u.watch.vec, M_XENSTORE);
666 			free(msg, M_XENSTORE);
667 		}
668 		mtx_unlock(&xs.registered_watches_lock);
669 	} else {
670 		msg->u.reply.body = body;
671 		mtx_lock(&xs.reply_lock);
672 		TAILQ_INSERT_TAIL(&xs.reply_list, msg, list);
673 		wakeup(&xs.reply_list);
674 		mtx_unlock(&xs.reply_lock);
675 	}
676 
677 	return (0);
678 }
679 
680 /**
681  * Thread body of the XenStore receive thread.
682  *
683  * This thread blocks waiting for data from the XenStore service
684  * and processes and received messages.
685  */
686 static void
687 xs_rcv_thread(void *arg __unused)
688 {
689 	int error;
690 	enum xsd_sockmsg_type type;
691 
692 	for (;;) {
693 		error = xs_process_msg(&type);
694 		if (error)
695 			printf("XENSTORE error %d while reading message\n",
696 			    error);
697 	}
698 }
699 
700 /*---------------- XenStore Message Request/Reply Processing -----------------*/
701 #define xsd_error_count	(sizeof(xsd_errors) / sizeof(xsd_errors[0]))
702 
703 /**
704  * Convert a XenStore error string into an errno number.
705  *
706  * \param errorstring  The error string to convert.
707  *
708  * \return  The errno best matching the input string.
709  *
710  * \note Unknown error strings are converted to EINVAL.
711  */
712 static int
713 xs_get_error(const char *errorstring)
714 {
715 	u_int i;
716 
717 	for (i = 0; i < xsd_error_count; i++) {
718 		if (!strcmp(errorstring, xsd_errors[i].errstring))
719 			return (xsd_errors[i].errnum);
720 	}
721 	log(LOG_WARNING, "XENSTORE xen store gave: unknown error %s",
722 	    errorstring);
723 	return (EINVAL);
724 }
725 
726 /**
727  * Block waiting for a reply to a message request.
728  *
729  * \param type	  The returned type of the reply.
730  * \param len	  The returned body length of the reply.
731  * \param result  The returned body of the reply.
732  *
733  * \return  0 on success.  Otherwise an errno indicating the
734  *          cause of failure.
735  */
736 static int
737 xs_read_reply(enum xsd_sockmsg_type *type, u_int *len, void **result)
738 {
739 	struct xs_stored_msg *msg;
740 	char *body;
741 	int error;
742 
743 	mtx_lock(&xs.reply_lock);
744 	while (TAILQ_EMPTY(&xs.reply_list)) {
745 		error = mtx_sleep(&xs.reply_list, &xs.reply_lock, 0, "xswait",
746 		    hz/10);
747 		if (error && error != EWOULDBLOCK) {
748 			mtx_unlock(&xs.reply_lock);
749 			return (error);
750 		}
751 	}
752 	msg = TAILQ_FIRST(&xs.reply_list);
753 	TAILQ_REMOVE(&xs.reply_list, msg, list);
754 	mtx_unlock(&xs.reply_lock);
755 
756 	*type = msg->hdr.type;
757 	if (len)
758 		*len = msg->hdr.len;
759 	body = msg->u.reply.body;
760 
761 	free(msg, M_XENSTORE);
762 	*result = body;
763 	return (0);
764 }
765 
766 /**
767  * Pass-thru interface for XenStore access by userland processes
768  * via the XenStore device.
769  *
770  * Reply type and length data are returned by overwriting these
771  * fields in the passed in request message.
772  *
773  * \param msg	  A properly formatted message to transmit to
774  *		  the XenStore service.
775  * \param result  The returned body of the reply.
776  *
777  * \return  0 on success.  Otherwise an errno indicating the cause
778  *          of failure.
779  *
780  * \note The returned result is provided in malloced storage and thus
781  *       must be free'd by the caller with 'free(result, M_XENSTORE);
782  */
783 int
784 xs_dev_request_and_reply(struct xsd_sockmsg *msg, void **result)
785 {
786 	uint32_t request_type;
787 	int error;
788 
789 	request_type = msg->type;
790 
791 	sx_xlock(&xs.request_mutex);
792 	if ((error = xs_write_store(msg, sizeof(*msg) + msg->len)) == 0)
793 		error = xs_read_reply(&msg->type, &msg->len, result);
794 	sx_xunlock(&xs.request_mutex);
795 
796 	return (error);
797 }
798 
799 /**
800  * Send a message with an optionally muti-part body to the XenStore service.
801  *
802  * \param t              The transaction to use for this request.
803  * \param request_type   The type of message to send.
804  * \param iovec          Pointers to the body sections of the request.
805  * \param num_vecs       The number of body sections in the request.
806  * \param len            The returned length of the reply.
807  * \param result         The returned body of the reply.
808  *
809  * \return  0 on success.  Otherwise an errno indicating
810  *          the cause of failure.
811  *
812  * \note The returned result is provided in malloced storage and thus
813  *       must be free'd by the caller with 'free(*result, M_XENSTORE);
814  */
815 static int
816 xs_talkv(struct xs_transaction t, enum xsd_sockmsg_type request_type,
817     const struct iovec *iovec, u_int num_vecs, u_int *len, void **result)
818 {
819 	struct xsd_sockmsg msg;
820 	void *ret = NULL;
821 	u_int i;
822 	int error;
823 
824 	msg.tx_id = t.id;
825 	msg.req_id = 0;
826 	msg.type = request_type;
827 	msg.len = 0;
828 	for (i = 0; i < num_vecs; i++)
829 		msg.len += iovec[i].iov_len;
830 
831 	sx_xlock(&xs.request_mutex);
832 	error = xs_write_store(&msg, sizeof(msg));
833 	if (error) {
834 		printf("xs_talkv failed %d\n", error);
835 		goto error_lock_held;
836 	}
837 
838 	for (i = 0; i < num_vecs; i++) {
839 		error = xs_write_store(iovec[i].iov_base, iovec[i].iov_len);
840 		if (error) {
841 			printf("xs_talkv failed %d\n", error);
842 			goto error_lock_held;
843 		}
844 	}
845 
846 	error = xs_read_reply(&msg.type, len, &ret);
847 
848 error_lock_held:
849 	sx_xunlock(&xs.request_mutex);
850 	if (error)
851 		return (error);
852 
853 	if (msg.type == XS_ERROR) {
854 		error = xs_get_error(ret);
855 		free(ret, M_XENSTORE);
856 		return (error);
857 	}
858 
859 	/* Reply is either error or an echo of our request message type. */
860 	KASSERT(msg.type == request_type, ("bad xenstore message type"));
861 
862 	if (result)
863 		*result = ret;
864 	else
865 		free(ret, M_XENSTORE);
866 
867 	return (0);
868 }
869 
870 /**
871  * Wrapper for xs_talkv allowing easy transmission of a message with
872  * a single, contiguous, message body.
873  *
874  * \param t              The transaction to use for this request.
875  * \param request_type   The type of message to send.
876  * \param body           The body of the request.
877  * \param len            The returned length of the reply.
878  * \param result         The returned body of the reply.
879  *
880  * \return  0 on success.  Otherwise an errno indicating
881  *          the cause of failure.
882  *
883  * \note The returned result is provided in malloced storage and thus
884  *       must be free'd by the caller with 'free(*result, M_XENSTORE);
885  */
886 static int
887 xs_single(struct xs_transaction t, enum xsd_sockmsg_type request_type,
888     const char *body, u_int *len, void **result)
889 {
890 	struct iovec iovec;
891 
892 	iovec.iov_base = (void *)(uintptr_t)body;
893 	iovec.iov_len = strlen(body) + 1;
894 
895 	return (xs_talkv(t, request_type, &iovec, 1, len, result));
896 }
897 
898 /*------------------------- XenStore Watch Support ---------------------------*/
899 /**
900  * Transmit a watch request to the XenStore service.
901  *
902  * \param path    The path in the XenStore to watch.
903  * \param tocken  A unique identifier for this watch.
904  *
905  * \return  0 on success.  Otherwise an errno indicating the
906  *          cause of failure.
907  */
908 static int
909 xs_watch(const char *path, const char *token)
910 {
911 	struct iovec iov[2];
912 
913 	iov[0].iov_base = (void *)(uintptr_t) path;
914 	iov[0].iov_len = strlen(path) + 1;
915 	iov[1].iov_base = (void *)(uintptr_t) token;
916 	iov[1].iov_len = strlen(token) + 1;
917 
918 	return (xs_talkv(XST_NIL, XS_WATCH, iov, 2, NULL, NULL));
919 }
920 
921 /**
922  * Transmit an uwatch request to the XenStore service.
923  *
924  * \param path    The path in the XenStore to watch.
925  * \param tocken  A unique identifier for this watch.
926  *
927  * \return  0 on success.  Otherwise an errno indicating the
928  *          cause of failure.
929  */
930 static int
931 xs_unwatch(const char *path, const char *token)
932 {
933 	struct iovec iov[2];
934 
935 	iov[0].iov_base = (void *)(uintptr_t) path;
936 	iov[0].iov_len = strlen(path) + 1;
937 	iov[1].iov_base = (void *)(uintptr_t) token;
938 	iov[1].iov_len = strlen(token) + 1;
939 
940 	return (xs_talkv(XST_NIL, XS_UNWATCH, iov, 2, NULL, NULL));
941 }
942 
943 /**
944  * Convert from watch token (unique identifier) to the associated
945  * internal tracking structure for this watch.
946  *
947  * \param tocken  The unique identifier for the watch to find.
948  *
949  * \return  A pointer to the found watch structure or NULL.
950  */
951 static struct xs_watch *
952 find_watch(const char *token)
953 {
954 	struct xs_watch *i, *cmp;
955 
956 	cmp = (void *)strtoul(token, NULL, 16);
957 
958 	LIST_FOREACH(i, &xs.registered_watches, list)
959 		if (i == cmp)
960 			return (i);
961 
962 	return (NULL);
963 }
964 
965 /**
966  * Thread body of the XenStore watch event dispatch thread.
967  */
968 static void
969 xenwatch_thread(void *unused)
970 {
971 	struct xs_stored_msg *msg;
972 
973 	for (;;) {
974 
975 		mtx_lock(&xs.watch_events_lock);
976 		while (TAILQ_EMPTY(&xs.watch_events))
977 			mtx_sleep(&xs.watch_events,
978 			    &xs.watch_events_lock,
979 			    PWAIT | PCATCH, "waitev", hz/10);
980 
981 		mtx_unlock(&xs.watch_events_lock);
982 		sx_xlock(&xs.xenwatch_mutex);
983 
984 		mtx_lock(&xs.watch_events_lock);
985 		msg = TAILQ_FIRST(&xs.watch_events);
986 		if (msg)
987 			TAILQ_REMOVE(&xs.watch_events, msg, list);
988 		mtx_unlock(&xs.watch_events_lock);
989 
990 		if (msg != NULL) {
991 			/*
992 			 * XXX There are messages coming in with a NULL
993 			 * XXX callback.  This deserves further investigation;
994 			 * XXX the workaround here simply prevents the kernel
995 			 * XXX from panic'ing on startup.
996 			 */
997 			if (msg->u.watch.handle->callback != NULL)
998 				msg->u.watch.handle->callback(
999 					msg->u.watch.handle,
1000 					(const char **)msg->u.watch.vec,
1001 					msg->u.watch.vec_size);
1002 			free(msg->u.watch.vec, M_XENSTORE);
1003 			free(msg, M_XENSTORE);
1004 		}
1005 
1006 		sx_xunlock(&xs.xenwatch_mutex);
1007 	}
1008 }
1009 
1010 /*----------- XenStore Configuration, Initialization, and Control ------------*/
1011 /**
1012  * Setup communication channels with the XenStore service.
1013  *
1014  * \return  On success, 0. Otherwise an errno value indicating the
1015  *          type of failure.
1016  */
1017 static int
1018 xs_init_comms(void)
1019 {
1020 	int error;
1021 
1022 	if (xen_store->rsp_prod != xen_store->rsp_cons) {
1023 		log(LOG_WARNING, "XENSTORE response ring is not quiescent "
1024 		    "(%08x:%08x): fixing up\n",
1025 		    xen_store->rsp_cons, xen_store->rsp_prod);
1026 		xen_store->rsp_cons = xen_store->rsp_prod;
1027 	}
1028 
1029 	xen_intr_unbind(&xs.xen_intr_handle);
1030 
1031 	error = xen_intr_bind_local_port(xs.xs_dev, xs.evtchn,
1032 	    /*filter*/NULL, xs_intr, /*arg*/NULL, INTR_TYPE_NET|INTR_MPSAFE,
1033 	    &xs.xen_intr_handle);
1034 	if (error) {
1035 		log(LOG_WARNING, "XENSTORE request irq failed %i\n", error);
1036 		return (error);
1037 	}
1038 
1039 	return (0);
1040 }
1041 
1042 /*------------------ Private Device Attachment Functions  --------------------*/
1043 static void
1044 xs_identify(driver_t *driver, device_t parent)
1045 {
1046 
1047 	BUS_ADD_CHILD(parent, 0, "xenstore", 0);
1048 }
1049 
1050 /**
1051  * Probe for the existence of the XenStore.
1052  *
1053  * \param dev
1054  */
1055 static int
1056 xs_probe(device_t dev)
1057 {
1058 	/*
1059 	 * We are either operating within a PV kernel or being probed
1060 	 * as the child of the successfully attached xenpci device.
1061 	 * Thus we are in a Xen environment and there will be a XenStore.
1062 	 * Unconditionally return success.
1063 	 */
1064 	device_set_desc(dev, "XenStore");
1065 	return (BUS_PROBE_NOWILDCARD);
1066 }
1067 
1068 static void
1069 xs_attach_deferred(void *arg)
1070 {
1071 
1072 	bus_generic_probe(xs.xs_dev);
1073 	bus_generic_attach(xs.xs_dev);
1074 
1075 	config_intrhook_disestablish(&xs.xs_attachcb);
1076 }
1077 
1078 static void
1079 xs_attach_late(void *arg, int pending)
1080 {
1081 
1082 	KASSERT((pending == 1), ("xs late attach queued several times"));
1083 	bus_generic_probe(xs.xs_dev);
1084 	bus_generic_attach(xs.xs_dev);
1085 }
1086 
1087 /**
1088  * Attach to the XenStore.
1089  *
1090  * This routine also prepares for the probe/attach of drivers that rely
1091  * on the XenStore.
1092  */
1093 static int
1094 xs_attach(device_t dev)
1095 {
1096 	int error;
1097 
1098 	/* Allow us to get device_t from softc and vice-versa. */
1099 	xs.xs_dev = dev;
1100 	device_set_softc(dev, &xs);
1101 
1102 	/* Initialize the interface to xenstore. */
1103 	struct proc *p;
1104 
1105 	xs.initialized = false;
1106 	xs.evtchn = xen_get_xenstore_evtchn();
1107 	if (xs.evtchn == 0) {
1108 		struct evtchn_alloc_unbound alloc_unbound;
1109 
1110 		/* Allocate a local event channel for xenstore */
1111 		alloc_unbound.dom = DOMID_SELF;
1112 		alloc_unbound.remote_dom = DOMID_SELF;
1113 		error = HYPERVISOR_event_channel_op(
1114 		    EVTCHNOP_alloc_unbound, &alloc_unbound);
1115 		if (error != 0)
1116 			panic(
1117 			   "unable to alloc event channel for Dom0: %d",
1118 			    error);
1119 
1120 		xs.evtchn = alloc_unbound.port;
1121 
1122 		/* Allocate memory for the xs shared ring */
1123 		xen_store = malloc(PAGE_SIZE, M_XENSTORE, M_WAITOK | M_ZERO);
1124 		xs.gpfn = atop(pmap_kextract((vm_offset_t)xen_store));
1125 	} else {
1126 		xs.gpfn = xen_get_xenstore_mfn();
1127 		xen_store = pmap_mapdev_attr(ptoa(xs.gpfn), PAGE_SIZE,
1128 		    PAT_WRITE_BACK);
1129 		xs.initialized = true;
1130 	}
1131 
1132 	TAILQ_INIT(&xs.reply_list);
1133 	TAILQ_INIT(&xs.watch_events);
1134 
1135 	mtx_init(&xs.ring_lock, "ring lock", NULL, MTX_DEF);
1136 	mtx_init(&xs.reply_lock, "reply lock", NULL, MTX_DEF);
1137 	sx_init(&xs.xenwatch_mutex, "xenwatch");
1138 	sx_init(&xs.request_mutex, "xenstore request");
1139 	mtx_init(&xs.registered_watches_lock, "watches", NULL, MTX_DEF);
1140 	mtx_init(&xs.watch_events_lock, "watch events", NULL, MTX_DEF);
1141 
1142 	/* Initialize the shared memory rings to talk to xenstored */
1143 	error = xs_init_comms();
1144 	if (error)
1145 		return (error);
1146 
1147 	error = kproc_create(xenwatch_thread, NULL, &p, RFHIGHPID,
1148 	    0, "xenwatch");
1149 	if (error)
1150 		return (error);
1151 	xs.xenwatch_pid = p->p_pid;
1152 
1153 	error = kproc_create(xs_rcv_thread, NULL, NULL,
1154 	    RFHIGHPID, 0, "xenstore_rcv");
1155 
1156 	xs.xs_attachcb.ich_func = xs_attach_deferred;
1157 	xs.xs_attachcb.ich_arg = NULL;
1158 	if (xs.initialized) {
1159 		config_intrhook_establish(&xs.xs_attachcb);
1160 	} else {
1161 		TASK_INIT(&xs.xs_late_init, 0, xs_attach_late, NULL);
1162 	}
1163 
1164 	return (error);
1165 }
1166 
1167 /**
1168  * Prepare for suspension of this VM by halting XenStore access after
1169  * all transactions and individual requests have completed.
1170  */
1171 static int
1172 xs_suspend(device_t dev)
1173 {
1174 	int error;
1175 
1176 	/* Suspend child Xen devices. */
1177 	error = bus_generic_suspend(dev);
1178 	if (error != 0)
1179 		return (error);
1180 
1181 	sx_xlock(&xs.request_mutex);
1182 
1183 	return (0);
1184 }
1185 
1186 /**
1187  * Resume XenStore operations after this VM is resumed.
1188  */
1189 static int
1190 xs_resume(device_t dev __unused)
1191 {
1192 	struct xs_watch *watch;
1193 	char token[sizeof(watch) * 2 + 1];
1194 
1195 	xs_init_comms();
1196 
1197 	sx_xunlock(&xs.request_mutex);
1198 
1199 	/*
1200 	 * NB: since xenstore childs have not been resumed yet, there's
1201 	 * no need to hold any watch mutex. Having clients try to add or
1202 	 * remove watches at this point (before xenstore is resumed) is
1203 	 * clearly a violantion of the resume order.
1204 	 */
1205 	LIST_FOREACH(watch, &xs.registered_watches, list) {
1206 		sprintf(token, "%lX", (long)watch);
1207 		xs_watch(watch->node, token);
1208 	}
1209 
1210 	/* Resume child Xen devices. */
1211 	bus_generic_resume(dev);
1212 
1213 	return (0);
1214 }
1215 
1216 /*-------------------- Private Device Attachment Data  -----------------------*/
1217 static device_method_t xenstore_methods[] = {
1218 	/* Device interface */
1219 	DEVMETHOD(device_identify,	xs_identify),
1220 	DEVMETHOD(device_probe,         xs_probe),
1221 	DEVMETHOD(device_attach,        xs_attach),
1222 	DEVMETHOD(device_detach,        bus_generic_detach),
1223 	DEVMETHOD(device_shutdown,      bus_generic_shutdown),
1224 	DEVMETHOD(device_suspend,       xs_suspend),
1225 	DEVMETHOD(device_resume,        xs_resume),
1226 
1227 	/* Bus interface */
1228 	DEVMETHOD(bus_add_child,        bus_generic_add_child),
1229 	DEVMETHOD(bus_alloc_resource,   bus_generic_alloc_resource),
1230 	DEVMETHOD(bus_release_resource, bus_generic_release_resource),
1231 	DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
1232 	DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
1233 
1234 	DEVMETHOD_END
1235 };
1236 
1237 DEFINE_CLASS_0(xenstore, xenstore_driver, xenstore_methods, 0);
1238 static devclass_t xenstore_devclass;
1239 
1240 DRIVER_MODULE(xenstore, xenpv, xenstore_driver, xenstore_devclass, 0, 0);
1241 
1242 /*------------------------------- Sysctl Data --------------------------------*/
1243 /* XXX Shouldn't the node be somewhere else? */
1244 SYSCTL_NODE(_dev, OID_AUTO, xen, CTLFLAG_RD, NULL, "Xen");
1245 SYSCTL_INT(_dev_xen, OID_AUTO, xsd_port, CTLFLAG_RD, &xs.evtchn, 0, "");
1246 SYSCTL_ULONG(_dev_xen, OID_AUTO, xsd_kva, CTLFLAG_RD, (u_long *) &xen_store, 0, "");
1247 
1248 /*-------------------------------- Public API --------------------------------*/
1249 /*------- API comments for these methods can be found in xenstorevar.h -------*/
1250 bool
1251 xs_initialized(void)
1252 {
1253 
1254 	return (xs.initialized);
1255 }
1256 
1257 evtchn_port_t
1258 xs_evtchn(void)
1259 {
1260 
1261     return (xs.evtchn);
1262 }
1263 
1264 vm_paddr_t
1265 xs_address(void)
1266 {
1267 
1268     return (ptoa(xs.gpfn));
1269 }
1270 
1271 int
1272 xs_directory(struct xs_transaction t, const char *dir, const char *node,
1273     u_int *num, const char ***result)
1274 {
1275 	struct sbuf *path;
1276 	char *strings;
1277 	u_int len = 0;
1278 	int error;
1279 
1280 	path = xs_join(dir, node);
1281 	error = xs_single(t, XS_DIRECTORY, sbuf_data(path), &len,
1282 	    (void **)&strings);
1283 	sbuf_delete(path);
1284 	if (error)
1285 		return (error);
1286 
1287 	*result = split(strings, len, num);
1288 
1289 	return (0);
1290 }
1291 
1292 int
1293 xs_exists(struct xs_transaction t, const char *dir, const char *node)
1294 {
1295 	const char **d;
1296 	int error, dir_n;
1297 
1298 	error = xs_directory(t, dir, node, &dir_n, &d);
1299 	if (error)
1300 		return (0);
1301 	free(d, M_XENSTORE);
1302 	return (1);
1303 }
1304 
1305 int
1306 xs_read(struct xs_transaction t, const char *dir, const char *node,
1307     u_int *len, void **result)
1308 {
1309 	struct sbuf *path;
1310 	void *ret;
1311 	int error;
1312 
1313 	path = xs_join(dir, node);
1314 	error = xs_single(t, XS_READ, sbuf_data(path), len, &ret);
1315 	sbuf_delete(path);
1316 	if (error)
1317 		return (error);
1318 	*result = ret;
1319 	return (0);
1320 }
1321 
1322 int
1323 xs_write(struct xs_transaction t, const char *dir, const char *node,
1324     const char *string)
1325 {
1326 	struct sbuf *path;
1327 	struct iovec iovec[2];
1328 	int error;
1329 
1330 	path = xs_join(dir, node);
1331 
1332 	iovec[0].iov_base = (void *)(uintptr_t) sbuf_data(path);
1333 	iovec[0].iov_len = sbuf_len(path) + 1;
1334 	iovec[1].iov_base = (void *)(uintptr_t) string;
1335 	iovec[1].iov_len = strlen(string);
1336 
1337 	error = xs_talkv(t, XS_WRITE, iovec, 2, NULL, NULL);
1338 	sbuf_delete(path);
1339 
1340 	return (error);
1341 }
1342 
1343 int
1344 xs_mkdir(struct xs_transaction t, const char *dir, const char *node)
1345 {
1346 	struct sbuf *path;
1347 	int ret;
1348 
1349 	path = xs_join(dir, node);
1350 	ret = xs_single(t, XS_MKDIR, sbuf_data(path), NULL, NULL);
1351 	sbuf_delete(path);
1352 
1353 	return (ret);
1354 }
1355 
1356 int
1357 xs_rm(struct xs_transaction t, const char *dir, const char *node)
1358 {
1359 	struct sbuf *path;
1360 	int ret;
1361 
1362 	path = xs_join(dir, node);
1363 	ret = xs_single(t, XS_RM, sbuf_data(path), NULL, NULL);
1364 	sbuf_delete(path);
1365 
1366 	return (ret);
1367 }
1368 
1369 int
1370 xs_rm_tree(struct xs_transaction xbt, const char *base, const char *node)
1371 {
1372 	struct xs_transaction local_xbt;
1373 	struct sbuf *root_path_sbuf;
1374 	struct sbuf *cur_path_sbuf;
1375 	char *root_path;
1376 	char *cur_path;
1377 	const char **dir;
1378 	int error;
1379 
1380 retry:
1381 	root_path_sbuf = xs_join(base, node);
1382 	cur_path_sbuf  = xs_join(base, node);
1383 	root_path      = sbuf_data(root_path_sbuf);
1384 	cur_path       = sbuf_data(cur_path_sbuf);
1385 	dir            = NULL;
1386 	local_xbt.id   = 0;
1387 
1388 	if (xbt.id == 0) {
1389 		error = xs_transaction_start(&local_xbt);
1390 		if (error != 0)
1391 			goto out;
1392 		xbt = local_xbt;
1393 	}
1394 
1395 	while (1) {
1396 		u_int count;
1397 		u_int i;
1398 
1399 		error = xs_directory(xbt, cur_path, "", &count, &dir);
1400 		if (error)
1401 			goto out;
1402 
1403 		for (i = 0; i < count; i++) {
1404 			error = xs_rm(xbt, cur_path, dir[i]);
1405 			if (error == ENOTEMPTY) {
1406 				struct sbuf *push_dir;
1407 
1408 				/*
1409 				 * Descend to clear out this sub directory.
1410 				 * We'll return to cur_dir once push_dir
1411 				 * is empty.
1412 				 */
1413 				push_dir = xs_join(cur_path, dir[i]);
1414 				sbuf_delete(cur_path_sbuf);
1415 				cur_path_sbuf = push_dir;
1416 				cur_path = sbuf_data(cur_path_sbuf);
1417 				break;
1418 			} else if (error != 0) {
1419 				goto out;
1420 			}
1421 		}
1422 
1423 		free(dir, M_XENSTORE);
1424 		dir = NULL;
1425 
1426 		if (i == count) {
1427 			char *last_slash;
1428 
1429 			/* Directory is empty.  It is now safe to remove. */
1430 			error = xs_rm(xbt, cur_path, "");
1431 			if (error != 0)
1432 				goto out;
1433 
1434 			if (!strcmp(cur_path, root_path))
1435 				break;
1436 
1437 			/* Return to processing the parent directory. */
1438 			last_slash = strrchr(cur_path, '/');
1439 			KASSERT(last_slash != NULL,
1440 				("xs_rm_tree: mangled path %s", cur_path));
1441 			*last_slash = '\0';
1442 		}
1443 	}
1444 
1445 out:
1446 	sbuf_delete(cur_path_sbuf);
1447 	sbuf_delete(root_path_sbuf);
1448 	if (dir != NULL)
1449 		free(dir, M_XENSTORE);
1450 
1451 	if (local_xbt.id != 0) {
1452 		int terror;
1453 
1454 		terror = xs_transaction_end(local_xbt, /*abort*/error != 0);
1455 		xbt.id = 0;
1456 		if (terror == EAGAIN && error == 0)
1457 			goto retry;
1458 	}
1459 	return (error);
1460 }
1461 
1462 int
1463 xs_transaction_start(struct xs_transaction *t)
1464 {
1465 	char *id_str;
1466 	int error;
1467 
1468 	error = xs_single(XST_NIL, XS_TRANSACTION_START, "", NULL,
1469 	    (void **)&id_str);
1470 	if (error == 0) {
1471 		t->id = strtoul(id_str, NULL, 0);
1472 		free(id_str, M_XENSTORE);
1473 	}
1474 	return (error);
1475 }
1476 
1477 int
1478 xs_transaction_end(struct xs_transaction t, int abort)
1479 {
1480 	char abortstr[2];
1481 
1482 	if (abort)
1483 		strcpy(abortstr, "F");
1484 	else
1485 		strcpy(abortstr, "T");
1486 
1487 	return (xs_single(t, XS_TRANSACTION_END, abortstr, NULL, NULL));
1488 }
1489 
1490 int
1491 xs_scanf(struct xs_transaction t, const char *dir, const char *node,
1492      int *scancountp, const char *fmt, ...)
1493 {
1494 	va_list ap;
1495 	int error, ns;
1496 	char *val;
1497 
1498 	error = xs_read(t, dir, node, NULL, (void **) &val);
1499 	if (error)
1500 		return (error);
1501 
1502 	va_start(ap, fmt);
1503 	ns = vsscanf(val, fmt, ap);
1504 	va_end(ap);
1505 	free(val, M_XENSTORE);
1506 	/* Distinctive errno. */
1507 	if (ns == 0)
1508 		return (ERANGE);
1509 	if (scancountp)
1510 		*scancountp = ns;
1511 	return (0);
1512 }
1513 
1514 int
1515 xs_vprintf(struct xs_transaction t,
1516     const char *dir, const char *node, const char *fmt, va_list ap)
1517 {
1518 	struct sbuf *sb;
1519 	int error;
1520 
1521 	sb = sbuf_new_auto();
1522 	sbuf_vprintf(sb, fmt, ap);
1523 	sbuf_finish(sb);
1524 	error = xs_write(t, dir, node, sbuf_data(sb));
1525 	sbuf_delete(sb);
1526 
1527 	return (error);
1528 }
1529 
1530 int
1531 xs_printf(struct xs_transaction t, const char *dir, const char *node,
1532      const char *fmt, ...)
1533 {
1534 	va_list ap;
1535 	int error;
1536 
1537 	va_start(ap, fmt);
1538 	error = xs_vprintf(t, dir, node, fmt, ap);
1539 	va_end(ap);
1540 
1541 	return (error);
1542 }
1543 
1544 int
1545 xs_gather(struct xs_transaction t, const char *dir, ...)
1546 {
1547 	va_list ap;
1548 	const char *name;
1549 	int error;
1550 
1551 	va_start(ap, dir);
1552 	error = 0;
1553 	while (error == 0 && (name = va_arg(ap, char *)) != NULL) {
1554 		const char *fmt = va_arg(ap, char *);
1555 		void *result = va_arg(ap, void *);
1556 		char *p;
1557 
1558 		error = xs_read(t, dir, name, NULL, (void **) &p);
1559 		if (error)
1560 			break;
1561 
1562 		if (fmt) {
1563 			if (sscanf(p, fmt, result) == 0)
1564 				error = EINVAL;
1565 			free(p, M_XENSTORE);
1566 		} else
1567 			*(char **)result = p;
1568 	}
1569 	va_end(ap);
1570 
1571 	return (error);
1572 }
1573 
1574 int
1575 xs_register_watch(struct xs_watch *watch)
1576 {
1577 	/* Pointer in ascii is the token. */
1578 	char token[sizeof(watch) * 2 + 1];
1579 	int error;
1580 
1581 	sprintf(token, "%lX", (long)watch);
1582 
1583 	mtx_lock(&xs.registered_watches_lock);
1584 	KASSERT(find_watch(token) == NULL, ("watch already registered"));
1585 	LIST_INSERT_HEAD(&xs.registered_watches, watch, list);
1586 	mtx_unlock(&xs.registered_watches_lock);
1587 
1588 	error = xs_watch(watch->node, token);
1589 
1590 	/* Ignore errors due to multiple registration. */
1591 	if (error == EEXIST)
1592 		error = 0;
1593 
1594 	if (error != 0) {
1595 		mtx_lock(&xs.registered_watches_lock);
1596 		LIST_REMOVE(watch, list);
1597 		mtx_unlock(&xs.registered_watches_lock);
1598 	}
1599 
1600 	return (error);
1601 }
1602 
1603 void
1604 xs_unregister_watch(struct xs_watch *watch)
1605 {
1606 	struct xs_stored_msg *msg, *tmp;
1607 	char token[sizeof(watch) * 2 + 1];
1608 	int error;
1609 
1610 	sprintf(token, "%lX", (long)watch);
1611 
1612 	mtx_lock(&xs.registered_watches_lock);
1613 	if (find_watch(token) == NULL) {
1614 		mtx_unlock(&xs.registered_watches_lock);
1615 		return;
1616 	}
1617 	LIST_REMOVE(watch, list);
1618 	mtx_unlock(&xs.registered_watches_lock);
1619 
1620 	error = xs_unwatch(watch->node, token);
1621 	if (error)
1622 		log(LOG_WARNING, "XENSTORE Failed to release watch %s: %i\n",
1623 		    watch->node, error);
1624 
1625 	/* Cancel pending watch events. */
1626 	mtx_lock(&xs.watch_events_lock);
1627 	TAILQ_FOREACH_SAFE(msg, &xs.watch_events, list, tmp) {
1628 		if (msg->u.watch.handle != watch)
1629 			continue;
1630 		TAILQ_REMOVE(&xs.watch_events, msg, list);
1631 		free(msg->u.watch.vec, M_XENSTORE);
1632 		free(msg, M_XENSTORE);
1633 	}
1634 	mtx_unlock(&xs.watch_events_lock);
1635 
1636 	/* Flush any currently-executing callback, unless we are it. :-) */
1637 	if (curproc->p_pid != xs.xenwatch_pid) {
1638 		sx_xlock(&xs.xenwatch_mutex);
1639 		sx_xunlock(&xs.xenwatch_mutex);
1640 	}
1641 }
1642 
1643 void
1644 xs_lock(void)
1645 {
1646 
1647 	sx_xlock(&xs.request_mutex);
1648 	return;
1649 }
1650 
1651 void
1652 xs_unlock(void)
1653 {
1654 
1655 	sx_xunlock(&xs.request_mutex);
1656 	return;
1657 }
1658 
1659