1 /*- 2 * Copyright (c) 2004-2006 Kip Macy 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_inet.h" 31 #include "opt_inet6.h" 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/sockio.h> 36 #include <sys/mbuf.h> 37 #include <sys/malloc.h> 38 #include <sys/module.h> 39 #include <sys/kernel.h> 40 #include <sys/socket.h> 41 #include <sys/sysctl.h> 42 #include <sys/queue.h> 43 #include <sys/lock.h> 44 #include <sys/sx.h> 45 46 #include <net/if.h> 47 #include <net/if_var.h> 48 #include <net/if_arp.h> 49 #include <net/ethernet.h> 50 #include <net/if_dl.h> 51 #include <net/if_media.h> 52 53 #include <net/bpf.h> 54 55 #include <net/if_types.h> 56 57 #include <netinet/in_systm.h> 58 #include <netinet/in.h> 59 #include <netinet/ip.h> 60 #include <netinet/if_ether.h> 61 #if __FreeBSD_version >= 700000 62 #include <netinet/tcp.h> 63 #include <netinet/tcp_lro.h> 64 #endif 65 66 #include <vm/vm.h> 67 #include <vm/pmap.h> 68 69 #include <machine/clock.h> /* for DELAY */ 70 #include <machine/bus.h> 71 #include <machine/resource.h> 72 #include <machine/frame.h> 73 #include <machine/vmparam.h> 74 75 #include <sys/bus.h> 76 #include <sys/rman.h> 77 78 #include <machine/intr_machdep.h> 79 80 #include <xen/xen-os.h> 81 #include <xen/hypervisor.h> 82 #include <xen/xen_intr.h> 83 #include <xen/gnttab.h> 84 #include <xen/interface/memory.h> 85 #include <xen/interface/io/netif.h> 86 #include <xen/xenbus/xenbusvar.h> 87 88 #include <machine/xen/xenvar.h> 89 90 #include <dev/xen/netfront/mbufq.h> 91 92 #include "xenbus_if.h" 93 94 /* Features supported by all backends. TSO and LRO can be negotiated */ 95 #define XN_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 96 97 #define NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE) 98 #define NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE) 99 100 #if __FreeBSD_version >= 700000 101 /* 102 * Should the driver do LRO on the RX end 103 * this can be toggled on the fly, but the 104 * interface must be reset (down/up) for it 105 * to take effect. 106 */ 107 static int xn_enable_lro = 1; 108 TUNABLE_INT("hw.xn.enable_lro", &xn_enable_lro); 109 #else 110 111 #define IFCAP_TSO4 0 112 #define CSUM_TSO 0 113 114 #endif 115 116 #ifdef CONFIG_XEN 117 static int MODPARM_rx_copy = 0; 118 module_param_named(rx_copy, MODPARM_rx_copy, bool, 0); 119 MODULE_PARM_DESC(rx_copy, "Copy packets from network card (rather than flip)"); 120 static int MODPARM_rx_flip = 0; 121 module_param_named(rx_flip, MODPARM_rx_flip, bool, 0); 122 MODULE_PARM_DESC(rx_flip, "Flip packets from network card (rather than copy)"); 123 #else 124 static const int MODPARM_rx_copy = 1; 125 static const int MODPARM_rx_flip = 0; 126 #endif 127 128 /** 129 * \brief The maximum allowed data fragments in a single transmit 130 * request. 131 * 132 * This limit is imposed by the backend driver. We assume here that 133 * we are dealing with a Linux driver domain and have set our limit 134 * to mirror the Linux MAX_SKB_FRAGS constant. 135 */ 136 #define MAX_TX_REQ_FRAGS (65536 / PAGE_SIZE + 2) 137 138 #define RX_COPY_THRESHOLD 256 139 140 #define net_ratelimit() 0 141 142 struct netfront_info; 143 struct netfront_rx_info; 144 145 static void xn_txeof(struct netfront_info *); 146 static void xn_rxeof(struct netfront_info *); 147 static void network_alloc_rx_buffers(struct netfront_info *); 148 149 static void xn_tick_locked(struct netfront_info *); 150 static void xn_tick(void *); 151 152 static void xn_intr(void *); 153 static inline int xn_count_frags(struct mbuf *m); 154 static int xn_assemble_tx_request(struct netfront_info *sc, 155 struct mbuf *m_head); 156 static void xn_start_locked(struct ifnet *); 157 static void xn_start(struct ifnet *); 158 static int xn_ioctl(struct ifnet *, u_long, caddr_t); 159 static void xn_ifinit_locked(struct netfront_info *); 160 static void xn_ifinit(void *); 161 static void xn_stop(struct netfront_info *); 162 static void xn_query_features(struct netfront_info *np); 163 static int xn_configure_features(struct netfront_info *np); 164 #ifdef notyet 165 static void xn_watchdog(struct ifnet *); 166 #endif 167 168 #ifdef notyet 169 static void netfront_closing(device_t dev); 170 #endif 171 static void netif_free(struct netfront_info *info); 172 static int netfront_detach(device_t dev); 173 174 static int talk_to_backend(device_t dev, struct netfront_info *info); 175 static int create_netdev(device_t dev); 176 static void netif_disconnect_backend(struct netfront_info *info); 177 static int setup_device(device_t dev, struct netfront_info *info); 178 static void free_ring(int *ref, void *ring_ptr_ref); 179 180 static int xn_ifmedia_upd(struct ifnet *ifp); 181 static void xn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr); 182 183 /* Xenolinux helper functions */ 184 int network_connect(struct netfront_info *); 185 186 static void xn_free_rx_ring(struct netfront_info *); 187 188 static void xn_free_tx_ring(struct netfront_info *); 189 190 static int xennet_get_responses(struct netfront_info *np, 191 struct netfront_rx_info *rinfo, RING_IDX rp, RING_IDX *cons, 192 struct mbuf **list, int *pages_flipped_p); 193 194 #define virt_to_mfn(x) (vtomach(x) >> PAGE_SHIFT) 195 196 #define INVALID_P2M_ENTRY (~0UL) 197 198 /* 199 * Mbuf pointers. We need these to keep track of the virtual addresses 200 * of our mbuf chains since we can only convert from virtual to physical, 201 * not the other way around. The size must track the free index arrays. 202 */ 203 struct xn_chain_data { 204 struct mbuf *xn_tx_chain[NET_TX_RING_SIZE+1]; 205 int xn_tx_chain_cnt; 206 struct mbuf *xn_rx_chain[NET_RX_RING_SIZE+1]; 207 }; 208 209 struct net_device_stats 210 { 211 u_long rx_packets; /* total packets received */ 212 u_long tx_packets; /* total packets transmitted */ 213 u_long rx_bytes; /* total bytes received */ 214 u_long tx_bytes; /* total bytes transmitted */ 215 u_long rx_errors; /* bad packets received */ 216 u_long tx_errors; /* packet transmit problems */ 217 u_long rx_dropped; /* no space in linux buffers */ 218 u_long tx_dropped; /* no space available in linux */ 219 u_long multicast; /* multicast packets received */ 220 u_long collisions; 221 222 /* detailed rx_errors: */ 223 u_long rx_length_errors; 224 u_long rx_over_errors; /* receiver ring buff overflow */ 225 u_long rx_crc_errors; /* recved pkt with crc error */ 226 u_long rx_frame_errors; /* recv'd frame alignment error */ 227 u_long rx_fifo_errors; /* recv'r fifo overrun */ 228 u_long rx_missed_errors; /* receiver missed packet */ 229 230 /* detailed tx_errors */ 231 u_long tx_aborted_errors; 232 u_long tx_carrier_errors; 233 u_long tx_fifo_errors; 234 u_long tx_heartbeat_errors; 235 u_long tx_window_errors; 236 237 /* for cslip etc */ 238 u_long rx_compressed; 239 u_long tx_compressed; 240 }; 241 242 struct netfront_info { 243 struct ifnet *xn_ifp; 244 #if __FreeBSD_version >= 700000 245 struct lro_ctrl xn_lro; 246 #endif 247 248 struct net_device_stats stats; 249 u_int tx_full; 250 251 netif_tx_front_ring_t tx; 252 netif_rx_front_ring_t rx; 253 254 struct mtx tx_lock; 255 struct mtx rx_lock; 256 struct mtx sc_lock; 257 258 xen_intr_handle_t xen_intr_handle; 259 u_int copying_receiver; 260 u_int carrier; 261 u_int maxfrags; 262 263 /* Receive-ring batched refills. */ 264 #define RX_MIN_TARGET 32 265 #define RX_MAX_TARGET NET_RX_RING_SIZE 266 int rx_min_target; 267 int rx_max_target; 268 int rx_target; 269 270 grant_ref_t gref_tx_head; 271 grant_ref_t grant_tx_ref[NET_TX_RING_SIZE + 1]; 272 grant_ref_t gref_rx_head; 273 grant_ref_t grant_rx_ref[NET_TX_RING_SIZE + 1]; 274 275 device_t xbdev; 276 int tx_ring_ref; 277 int rx_ring_ref; 278 uint8_t mac[ETHER_ADDR_LEN]; 279 struct xn_chain_data xn_cdata; /* mbufs */ 280 struct mbuf_head xn_rx_batch; /* head of the batch queue */ 281 282 int xn_if_flags; 283 struct callout xn_stat_ch; 284 285 u_long rx_pfn_array[NET_RX_RING_SIZE]; 286 multicall_entry_t rx_mcl[NET_RX_RING_SIZE+1]; 287 mmu_update_t rx_mmu[NET_RX_RING_SIZE]; 288 struct ifmedia sc_media; 289 }; 290 291 #define rx_mbufs xn_cdata.xn_rx_chain 292 #define tx_mbufs xn_cdata.xn_tx_chain 293 294 #define XN_LOCK_INIT(_sc, _name) \ 295 mtx_init(&(_sc)->tx_lock, #_name"_tx", "network transmit lock", MTX_DEF); \ 296 mtx_init(&(_sc)->rx_lock, #_name"_rx", "network receive lock", MTX_DEF); \ 297 mtx_init(&(_sc)->sc_lock, #_name"_sc", "netfront softc lock", MTX_DEF) 298 299 #define XN_RX_LOCK(_sc) mtx_lock(&(_sc)->rx_lock) 300 #define XN_RX_UNLOCK(_sc) mtx_unlock(&(_sc)->rx_lock) 301 302 #define XN_TX_LOCK(_sc) mtx_lock(&(_sc)->tx_lock) 303 #define XN_TX_UNLOCK(_sc) mtx_unlock(&(_sc)->tx_lock) 304 305 #define XN_LOCK(_sc) mtx_lock(&(_sc)->sc_lock); 306 #define XN_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_lock); 307 308 #define XN_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->sc_lock, MA_OWNED); 309 #define XN_RX_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->rx_lock, MA_OWNED); 310 #define XN_TX_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->tx_lock, MA_OWNED); 311 #define XN_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->rx_lock); \ 312 mtx_destroy(&(_sc)->tx_lock); \ 313 mtx_destroy(&(_sc)->sc_lock); 314 315 struct netfront_rx_info { 316 struct netif_rx_response rx; 317 struct netif_extra_info extras[XEN_NETIF_EXTRA_TYPE_MAX - 1]; 318 }; 319 320 #define netfront_carrier_on(netif) ((netif)->carrier = 1) 321 #define netfront_carrier_off(netif) ((netif)->carrier = 0) 322 #define netfront_carrier_ok(netif) ((netif)->carrier) 323 324 /* Access macros for acquiring freeing slots in xn_free_{tx,rx}_idxs[]. */ 325 326 static inline void 327 add_id_to_freelist(struct mbuf **list, uintptr_t id) 328 { 329 KASSERT(id != 0, 330 ("%s: the head item (0) must always be free.", __func__)); 331 list[id] = list[0]; 332 list[0] = (struct mbuf *)id; 333 } 334 335 static inline unsigned short 336 get_id_from_freelist(struct mbuf **list) 337 { 338 uintptr_t id; 339 340 id = (uintptr_t)list[0]; 341 KASSERT(id != 0, 342 ("%s: the head item (0) must always remain free.", __func__)); 343 list[0] = list[id]; 344 return (id); 345 } 346 347 static inline int 348 xennet_rxidx(RING_IDX idx) 349 { 350 return idx & (NET_RX_RING_SIZE - 1); 351 } 352 353 static inline struct mbuf * 354 xennet_get_rx_mbuf(struct netfront_info *np, RING_IDX ri) 355 { 356 int i = xennet_rxidx(ri); 357 struct mbuf *m; 358 359 m = np->rx_mbufs[i]; 360 np->rx_mbufs[i] = NULL; 361 return (m); 362 } 363 364 static inline grant_ref_t 365 xennet_get_rx_ref(struct netfront_info *np, RING_IDX ri) 366 { 367 int i = xennet_rxidx(ri); 368 grant_ref_t ref = np->grant_rx_ref[i]; 369 KASSERT(ref != GRANT_REF_INVALID, ("Invalid grant reference!\n")); 370 np->grant_rx_ref[i] = GRANT_REF_INVALID; 371 return ref; 372 } 373 374 #define IPRINTK(fmt, args...) \ 375 printf("[XEN] " fmt, ##args) 376 #ifdef INVARIANTS 377 #define WPRINTK(fmt, args...) \ 378 printf("[XEN] " fmt, ##args) 379 #else 380 #define WPRINTK(fmt, args...) 381 #endif 382 #ifdef DEBUG 383 #define DPRINTK(fmt, args...) \ 384 printf("[XEN] %s: " fmt, __func__, ##args) 385 #else 386 #define DPRINTK(fmt, args...) 387 #endif 388 389 /** 390 * Read the 'mac' node at the given device's node in the store, and parse that 391 * as colon-separated octets, placing result the given mac array. mac must be 392 * a preallocated array of length ETH_ALEN (as declared in linux/if_ether.h). 393 * Return 0 on success, or errno on error. 394 */ 395 static int 396 xen_net_read_mac(device_t dev, uint8_t mac[]) 397 { 398 int error, i; 399 char *s, *e, *macstr; 400 const char *path; 401 402 path = xenbus_get_node(dev); 403 error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr); 404 if (error == ENOENT) { 405 /* 406 * Deal with missing mac XenStore nodes on devices with 407 * HVM emulation (the 'ioemu' configuration attribute) 408 * enabled. 409 * 410 * The HVM emulator may execute in a stub device model 411 * domain which lacks the permission, only given to Dom0, 412 * to update the guest's XenStore tree. For this reason, 413 * the HVM emulator doesn't even attempt to write the 414 * front-side mac node, even when operating in Dom0. 415 * However, there should always be a mac listed in the 416 * backend tree. Fallback to this version if our query 417 * of the front side XenStore location doesn't find 418 * anything. 419 */ 420 path = xenbus_get_otherend_path(dev); 421 error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr); 422 } 423 if (error != 0) { 424 xenbus_dev_fatal(dev, error, "parsing %s/mac", path); 425 return (error); 426 } 427 428 s = macstr; 429 for (i = 0; i < ETHER_ADDR_LEN; i++) { 430 mac[i] = strtoul(s, &e, 16); 431 if (s == e || (e[0] != ':' && e[0] != 0)) { 432 free(macstr, M_XENBUS); 433 return (ENOENT); 434 } 435 s = &e[1]; 436 } 437 free(macstr, M_XENBUS); 438 return (0); 439 } 440 441 /** 442 * Entry point to this code when a new device is created. Allocate the basic 443 * structures and the ring buffers for communication with the backend, and 444 * inform the backend of the appropriate details for those. Switch to 445 * Connected state. 446 */ 447 static int 448 netfront_probe(device_t dev) 449 { 450 451 if (!strcmp(xenbus_get_type(dev), "vif")) { 452 device_set_desc(dev, "Virtual Network Interface"); 453 return (0); 454 } 455 456 return (ENXIO); 457 } 458 459 static int 460 netfront_attach(device_t dev) 461 { 462 int err; 463 464 err = create_netdev(dev); 465 if (err) { 466 xenbus_dev_fatal(dev, err, "creating netdev"); 467 return (err); 468 } 469 470 #if __FreeBSD_version >= 700000 471 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 472 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 473 OID_AUTO, "enable_lro", CTLFLAG_RW, 474 &xn_enable_lro, 0, "Large Receive Offload"); 475 #endif 476 477 return (0); 478 } 479 480 static int 481 netfront_suspend(device_t dev) 482 { 483 struct netfront_info *info = device_get_softc(dev); 484 485 XN_RX_LOCK(info); 486 XN_TX_LOCK(info); 487 netfront_carrier_off(info); 488 XN_TX_UNLOCK(info); 489 XN_RX_UNLOCK(info); 490 return (0); 491 } 492 493 /** 494 * We are reconnecting to the backend, due to a suspend/resume, or a backend 495 * driver restart. We tear down our netif structure and recreate it, but 496 * leave the device-layer structures intact so that this is transparent to the 497 * rest of the kernel. 498 */ 499 static int 500 netfront_resume(device_t dev) 501 { 502 struct netfront_info *info = device_get_softc(dev); 503 504 netif_disconnect_backend(info); 505 return (0); 506 } 507 508 /* Common code used when first setting up, and when resuming. */ 509 static int 510 talk_to_backend(device_t dev, struct netfront_info *info) 511 { 512 const char *message; 513 struct xs_transaction xst; 514 const char *node = xenbus_get_node(dev); 515 int err; 516 517 err = xen_net_read_mac(dev, info->mac); 518 if (err) { 519 xenbus_dev_fatal(dev, err, "parsing %s/mac", node); 520 goto out; 521 } 522 523 /* Create shared ring, alloc event channel. */ 524 err = setup_device(dev, info); 525 if (err) 526 goto out; 527 528 again: 529 err = xs_transaction_start(&xst); 530 if (err) { 531 xenbus_dev_fatal(dev, err, "starting transaction"); 532 goto destroy_ring; 533 } 534 err = xs_printf(xst, node, "tx-ring-ref","%u", 535 info->tx_ring_ref); 536 if (err) { 537 message = "writing tx ring-ref"; 538 goto abort_transaction; 539 } 540 err = xs_printf(xst, node, "rx-ring-ref","%u", 541 info->rx_ring_ref); 542 if (err) { 543 message = "writing rx ring-ref"; 544 goto abort_transaction; 545 } 546 err = xs_printf(xst, node, 547 "event-channel", "%u", 548 xen_intr_port(info->xen_intr_handle)); 549 if (err) { 550 message = "writing event-channel"; 551 goto abort_transaction; 552 } 553 err = xs_printf(xst, node, "request-rx-copy", "%u", 554 info->copying_receiver); 555 if (err) { 556 message = "writing request-rx-copy"; 557 goto abort_transaction; 558 } 559 err = xs_printf(xst, node, "feature-rx-notify", "%d", 1); 560 if (err) { 561 message = "writing feature-rx-notify"; 562 goto abort_transaction; 563 } 564 err = xs_printf(xst, node, "feature-sg", "%d", 1); 565 if (err) { 566 message = "writing feature-sg"; 567 goto abort_transaction; 568 } 569 #if __FreeBSD_version >= 700000 570 err = xs_printf(xst, node, "feature-gso-tcpv4", "%d", 1); 571 if (err) { 572 message = "writing feature-gso-tcpv4"; 573 goto abort_transaction; 574 } 575 #endif 576 577 err = xs_transaction_end(xst, 0); 578 if (err) { 579 if (err == EAGAIN) 580 goto again; 581 xenbus_dev_fatal(dev, err, "completing transaction"); 582 goto destroy_ring; 583 } 584 585 return 0; 586 587 abort_transaction: 588 xs_transaction_end(xst, 1); 589 xenbus_dev_fatal(dev, err, "%s", message); 590 destroy_ring: 591 netif_free(info); 592 out: 593 return err; 594 } 595 596 static int 597 setup_device(device_t dev, struct netfront_info *info) 598 { 599 netif_tx_sring_t *txs; 600 netif_rx_sring_t *rxs; 601 int error; 602 struct ifnet *ifp; 603 604 ifp = info->xn_ifp; 605 606 info->tx_ring_ref = GRANT_REF_INVALID; 607 info->rx_ring_ref = GRANT_REF_INVALID; 608 info->rx.sring = NULL; 609 info->tx.sring = NULL; 610 611 txs = (netif_tx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT|M_ZERO); 612 if (!txs) { 613 error = ENOMEM; 614 xenbus_dev_fatal(dev, error, "allocating tx ring page"); 615 goto fail; 616 } 617 SHARED_RING_INIT(txs); 618 FRONT_RING_INIT(&info->tx, txs, PAGE_SIZE); 619 error = xenbus_grant_ring(dev, virt_to_mfn(txs), &info->tx_ring_ref); 620 if (error) 621 goto fail; 622 623 rxs = (netif_rx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT|M_ZERO); 624 if (!rxs) { 625 error = ENOMEM; 626 xenbus_dev_fatal(dev, error, "allocating rx ring page"); 627 goto fail; 628 } 629 SHARED_RING_INIT(rxs); 630 FRONT_RING_INIT(&info->rx, rxs, PAGE_SIZE); 631 632 error = xenbus_grant_ring(dev, virt_to_mfn(rxs), &info->rx_ring_ref); 633 if (error) 634 goto fail; 635 636 error = xen_intr_alloc_and_bind_local_port(dev, 637 xenbus_get_otherend_id(dev), /*filter*/NULL, xn_intr, info, 638 INTR_TYPE_NET | INTR_MPSAFE | INTR_ENTROPY, &info->xen_intr_handle); 639 640 if (error) { 641 xenbus_dev_fatal(dev, error, 642 "xen_intr_alloc_and_bind_local_port failed"); 643 goto fail; 644 } 645 646 return (0); 647 648 fail: 649 netif_free(info); 650 return (error); 651 } 652 653 #ifdef INET 654 /** 655 * If this interface has an ipv4 address, send an arp for it. This 656 * helps to get the network going again after migrating hosts. 657 */ 658 static void 659 netfront_send_fake_arp(device_t dev, struct netfront_info *info) 660 { 661 struct ifnet *ifp; 662 struct ifaddr *ifa; 663 664 ifp = info->xn_ifp; 665 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 666 if (ifa->ifa_addr->sa_family == AF_INET) { 667 arp_ifinit(ifp, ifa); 668 } 669 } 670 } 671 #endif 672 673 /** 674 * Callback received when the backend's state changes. 675 */ 676 static void 677 netfront_backend_changed(device_t dev, XenbusState newstate) 678 { 679 struct netfront_info *sc = device_get_softc(dev); 680 681 DPRINTK("newstate=%d\n", newstate); 682 683 switch (newstate) { 684 case XenbusStateInitialising: 685 case XenbusStateInitialised: 686 case XenbusStateConnected: 687 case XenbusStateUnknown: 688 case XenbusStateClosed: 689 case XenbusStateReconfigured: 690 case XenbusStateReconfiguring: 691 break; 692 case XenbusStateInitWait: 693 if (xenbus_get_state(dev) != XenbusStateInitialising) 694 break; 695 if (network_connect(sc) != 0) 696 break; 697 xenbus_set_state(dev, XenbusStateConnected); 698 #ifdef INET 699 netfront_send_fake_arp(dev, sc); 700 #endif 701 break; 702 case XenbusStateClosing: 703 xenbus_set_state(dev, XenbusStateClosed); 704 break; 705 } 706 } 707 708 static void 709 xn_free_rx_ring(struct netfront_info *sc) 710 { 711 #if 0 712 int i; 713 714 for (i = 0; i < NET_RX_RING_SIZE; i++) { 715 if (sc->xn_cdata.rx_mbufs[i] != NULL) { 716 m_freem(sc->rx_mbufs[i]); 717 sc->rx_mbufs[i] = NULL; 718 } 719 } 720 721 sc->rx.rsp_cons = 0; 722 sc->xn_rx_if->req_prod = 0; 723 sc->xn_rx_if->event = sc->rx.rsp_cons ; 724 #endif 725 } 726 727 static void 728 xn_free_tx_ring(struct netfront_info *sc) 729 { 730 #if 0 731 int i; 732 733 for (i = 0; i < NET_TX_RING_SIZE; i++) { 734 if (sc->tx_mbufs[i] != NULL) { 735 m_freem(sc->tx_mbufs[i]); 736 sc->xn_cdata.xn_tx_chain[i] = NULL; 737 } 738 } 739 740 return; 741 #endif 742 } 743 744 /** 745 * \brief Verify that there is sufficient space in the Tx ring 746 * buffer for a maximally sized request to be enqueued. 747 * 748 * A transmit request requires a transmit descriptor for each packet 749 * fragment, plus up to 2 entries for "options" (e.g. TSO). 750 */ 751 static inline int 752 xn_tx_slot_available(struct netfront_info *np) 753 { 754 return (RING_FREE_REQUESTS(&np->tx) > (MAX_TX_REQ_FRAGS + 2)); 755 } 756 757 static void 758 netif_release_tx_bufs(struct netfront_info *np) 759 { 760 int i; 761 762 for (i = 1; i <= NET_TX_RING_SIZE; i++) { 763 struct mbuf *m; 764 765 m = np->tx_mbufs[i]; 766 767 /* 768 * We assume that no kernel addresses are 769 * less than NET_TX_RING_SIZE. Any entry 770 * in the table that is below this number 771 * must be an index from free-list tracking. 772 */ 773 if (((uintptr_t)m) <= NET_TX_RING_SIZE) 774 continue; 775 gnttab_end_foreign_access_ref(np->grant_tx_ref[i]); 776 gnttab_release_grant_reference(&np->gref_tx_head, 777 np->grant_tx_ref[i]); 778 np->grant_tx_ref[i] = GRANT_REF_INVALID; 779 add_id_to_freelist(np->tx_mbufs, i); 780 np->xn_cdata.xn_tx_chain_cnt--; 781 if (np->xn_cdata.xn_tx_chain_cnt < 0) { 782 panic("%s: tx_chain_cnt must be >= 0", __func__); 783 } 784 m_free(m); 785 } 786 } 787 788 static void 789 network_alloc_rx_buffers(struct netfront_info *sc) 790 { 791 int otherend_id = xenbus_get_otherend_id(sc->xbdev); 792 unsigned short id; 793 struct mbuf *m_new; 794 int i, batch_target, notify; 795 RING_IDX req_prod; 796 struct xen_memory_reservation reservation; 797 grant_ref_t ref; 798 int nr_flips; 799 netif_rx_request_t *req; 800 vm_offset_t vaddr; 801 u_long pfn; 802 803 req_prod = sc->rx.req_prod_pvt; 804 805 if (__predict_false(sc->carrier == 0)) 806 return; 807 808 /* 809 * Allocate mbufs greedily, even though we batch updates to the 810 * receive ring. This creates a less bursty demand on the memory 811 * allocator, and so should reduce the chance of failed allocation 812 * requests both for ourself and for other kernel subsystems. 813 * 814 * Here we attempt to maintain rx_target buffers in flight, counting 815 * buffers that we have yet to process in the receive ring. 816 */ 817 batch_target = sc->rx_target - (req_prod - sc->rx.rsp_cons); 818 for (i = mbufq_len(&sc->xn_rx_batch); i < batch_target; i++) { 819 MGETHDR(m_new, M_NOWAIT, MT_DATA); 820 if (m_new == NULL) { 821 printf("%s: MGETHDR failed\n", __func__); 822 goto no_mbuf; 823 } 824 825 m_cljget(m_new, M_NOWAIT, MJUMPAGESIZE); 826 if ((m_new->m_flags & M_EXT) == 0) { 827 printf("%s: m_cljget failed\n", __func__); 828 m_freem(m_new); 829 830 no_mbuf: 831 if (i != 0) 832 goto refill; 833 /* 834 * XXX set timer 835 */ 836 break; 837 } 838 m_new->m_len = m_new->m_pkthdr.len = MJUMPAGESIZE; 839 840 /* queue the mbufs allocated */ 841 mbufq_tail(&sc->xn_rx_batch, m_new); 842 } 843 844 /* 845 * If we've allocated at least half of our target number of entries, 846 * submit them to the backend - we have enough to make the overhead 847 * of submission worthwhile. Otherwise wait for more mbufs and 848 * request entries to become available. 849 */ 850 if (i < (sc->rx_target/2)) { 851 if (req_prod >sc->rx.sring->req_prod) 852 goto push; 853 return; 854 } 855 856 /* 857 * Double floating fill target if we risked having the backend 858 * run out of empty buffers for receive traffic. We define "running 859 * low" as having less than a fourth of our target buffers free 860 * at the time we refilled the queue. 861 */ 862 if ((req_prod - sc->rx.sring->rsp_prod) < (sc->rx_target / 4)) { 863 sc->rx_target *= 2; 864 if (sc->rx_target > sc->rx_max_target) 865 sc->rx_target = sc->rx_max_target; 866 } 867 868 refill: 869 for (nr_flips = i = 0; ; i++) { 870 if ((m_new = mbufq_dequeue(&sc->xn_rx_batch)) == NULL) 871 break; 872 873 m_new->m_ext.ext_arg1 = (vm_paddr_t *)(uintptr_t)( 874 vtophys(m_new->m_ext.ext_buf) >> PAGE_SHIFT); 875 876 id = xennet_rxidx(req_prod + i); 877 878 KASSERT(sc->rx_mbufs[id] == NULL, ("non-NULL xm_rx_chain")); 879 sc->rx_mbufs[id] = m_new; 880 881 ref = gnttab_claim_grant_reference(&sc->gref_rx_head); 882 KASSERT(ref != GNTTAB_LIST_END, 883 ("reserved grant references exhuasted")); 884 sc->grant_rx_ref[id] = ref; 885 886 vaddr = mtod(m_new, vm_offset_t); 887 pfn = vtophys(vaddr) >> PAGE_SHIFT; 888 req = RING_GET_REQUEST(&sc->rx, req_prod + i); 889 890 if (sc->copying_receiver == 0) { 891 gnttab_grant_foreign_transfer_ref(ref, 892 otherend_id, pfn); 893 sc->rx_pfn_array[nr_flips] = PFNTOMFN(pfn); 894 if (!xen_feature(XENFEAT_auto_translated_physmap)) { 895 /* Remove this page before passing 896 * back to Xen. 897 */ 898 set_phys_to_machine(pfn, INVALID_P2M_ENTRY); 899 MULTI_update_va_mapping(&sc->rx_mcl[i], 900 vaddr, 0, 0); 901 } 902 nr_flips++; 903 } else { 904 gnttab_grant_foreign_access_ref(ref, 905 otherend_id, 906 PFNTOMFN(pfn), 0); 907 } 908 req->id = id; 909 req->gref = ref; 910 911 sc->rx_pfn_array[i] = 912 vtomach(mtod(m_new,vm_offset_t)) >> PAGE_SHIFT; 913 } 914 915 KASSERT(i, ("no mbufs processed")); /* should have returned earlier */ 916 KASSERT(mbufq_len(&sc->xn_rx_batch) == 0, ("not all mbufs processed")); 917 /* 918 * We may have allocated buffers which have entries outstanding 919 * in the page * update queue -- make sure we flush those first! 920 */ 921 PT_UPDATES_FLUSH(); 922 if (nr_flips != 0) { 923 #ifdef notyet 924 /* Tell the ballon driver what is going on. */ 925 balloon_update_driver_allowance(i); 926 #endif 927 set_xen_guest_handle(reservation.extent_start, sc->rx_pfn_array); 928 reservation.nr_extents = i; 929 reservation.extent_order = 0; 930 reservation.address_bits = 0; 931 reservation.domid = DOMID_SELF; 932 933 if (!xen_feature(XENFEAT_auto_translated_physmap)) { 934 /* After all PTEs have been zapped, flush the TLB. */ 935 sc->rx_mcl[i-1].args[MULTI_UVMFLAGS_INDEX] = 936 UVMF_TLB_FLUSH|UVMF_ALL; 937 938 /* Give away a batch of pages. */ 939 sc->rx_mcl[i].op = __HYPERVISOR_memory_op; 940 sc->rx_mcl[i].args[0] = XENMEM_decrease_reservation; 941 sc->rx_mcl[i].args[1] = (u_long)&reservation; 942 /* Zap PTEs and give away pages in one big multicall. */ 943 (void)HYPERVISOR_multicall(sc->rx_mcl, i+1); 944 945 if (__predict_false(sc->rx_mcl[i].result != i || 946 HYPERVISOR_memory_op(XENMEM_decrease_reservation, 947 &reservation) != i)) 948 panic("%s: unable to reduce memory " 949 "reservation\n", __func__); 950 } 951 } else { 952 wmb(); 953 } 954 955 /* Above is a suitable barrier to ensure backend will see requests. */ 956 sc->rx.req_prod_pvt = req_prod + i; 957 push: 958 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&sc->rx, notify); 959 if (notify) 960 xen_intr_signal(sc->xen_intr_handle); 961 } 962 963 static void 964 xn_rxeof(struct netfront_info *np) 965 { 966 struct ifnet *ifp; 967 #if __FreeBSD_version >= 700000 && (defined(INET) || defined(INET6)) 968 struct lro_ctrl *lro = &np->xn_lro; 969 struct lro_entry *queued; 970 #endif 971 struct netfront_rx_info rinfo; 972 struct netif_rx_response *rx = &rinfo.rx; 973 struct netif_extra_info *extras = rinfo.extras; 974 RING_IDX i, rp; 975 multicall_entry_t *mcl; 976 struct mbuf *m; 977 struct mbuf_head rxq, errq; 978 int err, pages_flipped = 0, work_to_do; 979 980 do { 981 XN_RX_LOCK_ASSERT(np); 982 if (!netfront_carrier_ok(np)) 983 return; 984 985 mbufq_init(&errq); 986 mbufq_init(&rxq); 987 988 ifp = np->xn_ifp; 989 990 rp = np->rx.sring->rsp_prod; 991 rmb(); /* Ensure we see queued responses up to 'rp'. */ 992 993 i = np->rx.rsp_cons; 994 while ((i != rp)) { 995 memcpy(rx, RING_GET_RESPONSE(&np->rx, i), sizeof(*rx)); 996 memset(extras, 0, sizeof(rinfo.extras)); 997 998 m = NULL; 999 err = xennet_get_responses(np, &rinfo, rp, &i, &m, 1000 &pages_flipped); 1001 1002 if (__predict_false(err)) { 1003 if (m) 1004 mbufq_tail(&errq, m); 1005 np->stats.rx_errors++; 1006 continue; 1007 } 1008 1009 m->m_pkthdr.rcvif = ifp; 1010 if ( rx->flags & NETRXF_data_validated ) { 1011 /* Tell the stack the checksums are okay */ 1012 /* 1013 * XXX this isn't necessarily the case - need to add 1014 * check 1015 */ 1016 1017 m->m_pkthdr.csum_flags |= 1018 (CSUM_IP_CHECKED | CSUM_IP_VALID | CSUM_DATA_VALID 1019 | CSUM_PSEUDO_HDR); 1020 m->m_pkthdr.csum_data = 0xffff; 1021 } 1022 1023 np->stats.rx_packets++; 1024 np->stats.rx_bytes += m->m_pkthdr.len; 1025 1026 mbufq_tail(&rxq, m); 1027 np->rx.rsp_cons = i; 1028 } 1029 1030 if (pages_flipped) { 1031 /* Some pages are no longer absent... */ 1032 #ifdef notyet 1033 balloon_update_driver_allowance(-pages_flipped); 1034 #endif 1035 /* Do all the remapping work, and M->P updates, in one big 1036 * hypercall. 1037 */ 1038 if (!!xen_feature(XENFEAT_auto_translated_physmap)) { 1039 mcl = np->rx_mcl + pages_flipped; 1040 mcl->op = __HYPERVISOR_mmu_update; 1041 mcl->args[0] = (u_long)np->rx_mmu; 1042 mcl->args[1] = pages_flipped; 1043 mcl->args[2] = 0; 1044 mcl->args[3] = DOMID_SELF; 1045 (void)HYPERVISOR_multicall(np->rx_mcl, 1046 pages_flipped + 1); 1047 } 1048 } 1049 1050 while ((m = mbufq_dequeue(&errq))) 1051 m_freem(m); 1052 1053 /* 1054 * Process all the mbufs after the remapping is complete. 1055 * Break the mbuf chain first though. 1056 */ 1057 while ((m = mbufq_dequeue(&rxq)) != NULL) { 1058 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 1059 1060 /* 1061 * Do we really need to drop the rx lock? 1062 */ 1063 XN_RX_UNLOCK(np); 1064 #if __FreeBSD_version >= 700000 && (defined(INET) || defined(INET6)) 1065 /* Use LRO if possible */ 1066 if ((ifp->if_capenable & IFCAP_LRO) == 0 || 1067 lro->lro_cnt == 0 || tcp_lro_rx(lro, m, 0)) { 1068 /* 1069 * If LRO fails, pass up to the stack 1070 * directly. 1071 */ 1072 (*ifp->if_input)(ifp, m); 1073 } 1074 #else 1075 (*ifp->if_input)(ifp, m); 1076 #endif 1077 XN_RX_LOCK(np); 1078 } 1079 1080 np->rx.rsp_cons = i; 1081 1082 #if __FreeBSD_version >= 700000 && (defined(INET) || defined(INET6)) 1083 /* 1084 * Flush any outstanding LRO work 1085 */ 1086 while (!SLIST_EMPTY(&lro->lro_active)) { 1087 queued = SLIST_FIRST(&lro->lro_active); 1088 SLIST_REMOVE_HEAD(&lro->lro_active, next); 1089 tcp_lro_flush(lro, queued); 1090 } 1091 #endif 1092 1093 #if 0 1094 /* If we get a callback with very few responses, reduce fill target. */ 1095 /* NB. Note exponential increase, linear decrease. */ 1096 if (((np->rx.req_prod_pvt - np->rx.sring->rsp_prod) > 1097 ((3*np->rx_target) / 4)) && (--np->rx_target < np->rx_min_target)) 1098 np->rx_target = np->rx_min_target; 1099 #endif 1100 1101 network_alloc_rx_buffers(np); 1102 1103 RING_FINAL_CHECK_FOR_RESPONSES(&np->rx, work_to_do); 1104 } while (work_to_do); 1105 } 1106 1107 static void 1108 xn_txeof(struct netfront_info *np) 1109 { 1110 RING_IDX i, prod; 1111 unsigned short id; 1112 struct ifnet *ifp; 1113 netif_tx_response_t *txr; 1114 struct mbuf *m; 1115 1116 XN_TX_LOCK_ASSERT(np); 1117 1118 if (!netfront_carrier_ok(np)) 1119 return; 1120 1121 ifp = np->xn_ifp; 1122 1123 do { 1124 prod = np->tx.sring->rsp_prod; 1125 rmb(); /* Ensure we see responses up to 'rp'. */ 1126 1127 for (i = np->tx.rsp_cons; i != prod; i++) { 1128 txr = RING_GET_RESPONSE(&np->tx, i); 1129 if (txr->status == NETIF_RSP_NULL) 1130 continue; 1131 1132 if (txr->status != NETIF_RSP_OKAY) { 1133 printf("%s: WARNING: response is %d!\n", 1134 __func__, txr->status); 1135 } 1136 id = txr->id; 1137 m = np->tx_mbufs[id]; 1138 KASSERT(m != NULL, ("mbuf not found in xn_tx_chain")); 1139 KASSERT((uintptr_t)m > NET_TX_RING_SIZE, 1140 ("mbuf already on the free list, but we're " 1141 "trying to free it again!")); 1142 M_ASSERTVALID(m); 1143 1144 /* 1145 * Increment packet count if this is the last 1146 * mbuf of the chain. 1147 */ 1148 if (!m->m_next) 1149 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 1150 if (__predict_false(gnttab_query_foreign_access( 1151 np->grant_tx_ref[id]) != 0)) { 1152 panic("%s: grant id %u still in use by the " 1153 "backend", __func__, id); 1154 } 1155 gnttab_end_foreign_access_ref( 1156 np->grant_tx_ref[id]); 1157 gnttab_release_grant_reference( 1158 &np->gref_tx_head, np->grant_tx_ref[id]); 1159 np->grant_tx_ref[id] = GRANT_REF_INVALID; 1160 1161 np->tx_mbufs[id] = NULL; 1162 add_id_to_freelist(np->tx_mbufs, id); 1163 np->xn_cdata.xn_tx_chain_cnt--; 1164 m_free(m); 1165 /* Only mark the queue active if we've freed up at least one slot to try */ 1166 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1167 } 1168 np->tx.rsp_cons = prod; 1169 1170 /* 1171 * Set a new event, then check for race with update of 1172 * tx_cons. Note that it is essential to schedule a 1173 * callback, no matter how few buffers are pending. Even if 1174 * there is space in the transmit ring, higher layers may 1175 * be blocked because too much data is outstanding: in such 1176 * cases notification from Xen is likely to be the only kick 1177 * that we'll get. 1178 */ 1179 np->tx.sring->rsp_event = 1180 prod + ((np->tx.sring->req_prod - prod) >> 1) + 1; 1181 1182 mb(); 1183 } while (prod != np->tx.sring->rsp_prod); 1184 1185 if (np->tx_full && 1186 ((np->tx.sring->req_prod - prod) < NET_TX_RING_SIZE)) { 1187 np->tx_full = 0; 1188 #if 0 1189 if (np->user_state == UST_OPEN) 1190 netif_wake_queue(dev); 1191 #endif 1192 } 1193 } 1194 1195 static void 1196 xn_intr(void *xsc) 1197 { 1198 struct netfront_info *np = xsc; 1199 struct ifnet *ifp = np->xn_ifp; 1200 1201 #if 0 1202 if (!(np->rx.rsp_cons != np->rx.sring->rsp_prod && 1203 likely(netfront_carrier_ok(np)) && 1204 ifp->if_drv_flags & IFF_DRV_RUNNING)) 1205 return; 1206 #endif 1207 if (RING_HAS_UNCONSUMED_RESPONSES(&np->tx)) { 1208 XN_TX_LOCK(np); 1209 xn_txeof(np); 1210 XN_TX_UNLOCK(np); 1211 } 1212 1213 XN_RX_LOCK(np); 1214 xn_rxeof(np); 1215 XN_RX_UNLOCK(np); 1216 1217 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 1218 !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1219 xn_start(ifp); 1220 } 1221 1222 static void 1223 xennet_move_rx_slot(struct netfront_info *np, struct mbuf *m, 1224 grant_ref_t ref) 1225 { 1226 int new = xennet_rxidx(np->rx.req_prod_pvt); 1227 1228 KASSERT(np->rx_mbufs[new] == NULL, ("rx_mbufs != NULL")); 1229 np->rx_mbufs[new] = m; 1230 np->grant_rx_ref[new] = ref; 1231 RING_GET_REQUEST(&np->rx, np->rx.req_prod_pvt)->id = new; 1232 RING_GET_REQUEST(&np->rx, np->rx.req_prod_pvt)->gref = ref; 1233 np->rx.req_prod_pvt++; 1234 } 1235 1236 static int 1237 xennet_get_extras(struct netfront_info *np, 1238 struct netif_extra_info *extras, RING_IDX rp, RING_IDX *cons) 1239 { 1240 struct netif_extra_info *extra; 1241 1242 int err = 0; 1243 1244 do { 1245 struct mbuf *m; 1246 grant_ref_t ref; 1247 1248 if (__predict_false(*cons + 1 == rp)) { 1249 #if 0 1250 if (net_ratelimit()) 1251 WPRINTK("Missing extra info\n"); 1252 #endif 1253 err = EINVAL; 1254 break; 1255 } 1256 1257 extra = (struct netif_extra_info *) 1258 RING_GET_RESPONSE(&np->rx, ++(*cons)); 1259 1260 if (__predict_false(!extra->type || 1261 extra->type >= XEN_NETIF_EXTRA_TYPE_MAX)) { 1262 #if 0 1263 if (net_ratelimit()) 1264 WPRINTK("Invalid extra type: %d\n", 1265 extra->type); 1266 #endif 1267 err = EINVAL; 1268 } else { 1269 memcpy(&extras[extra->type - 1], extra, sizeof(*extra)); 1270 } 1271 1272 m = xennet_get_rx_mbuf(np, *cons); 1273 ref = xennet_get_rx_ref(np, *cons); 1274 xennet_move_rx_slot(np, m, ref); 1275 } while (extra->flags & XEN_NETIF_EXTRA_FLAG_MORE); 1276 1277 return err; 1278 } 1279 1280 static int 1281 xennet_get_responses(struct netfront_info *np, 1282 struct netfront_rx_info *rinfo, RING_IDX rp, RING_IDX *cons, 1283 struct mbuf **list, 1284 int *pages_flipped_p) 1285 { 1286 int pages_flipped = *pages_flipped_p; 1287 struct mmu_update *mmu; 1288 struct multicall_entry *mcl; 1289 struct netif_rx_response *rx = &rinfo->rx; 1290 struct netif_extra_info *extras = rinfo->extras; 1291 struct mbuf *m, *m0, *m_prev; 1292 grant_ref_t ref = xennet_get_rx_ref(np, *cons); 1293 RING_IDX ref_cons = *cons; 1294 int frags = 1; 1295 int err = 0; 1296 u_long ret; 1297 1298 m0 = m = m_prev = xennet_get_rx_mbuf(np, *cons); 1299 1300 if (rx->flags & NETRXF_extra_info) { 1301 err = xennet_get_extras(np, extras, rp, cons); 1302 } 1303 1304 if (m0 != NULL) { 1305 m0->m_pkthdr.len = 0; 1306 m0->m_next = NULL; 1307 } 1308 1309 for (;;) { 1310 u_long mfn; 1311 1312 #if 0 1313 DPRINTK("rx->status=%hd rx->offset=%hu frags=%u\n", 1314 rx->status, rx->offset, frags); 1315 #endif 1316 if (__predict_false(rx->status < 0 || 1317 rx->offset + rx->status > PAGE_SIZE)) { 1318 1319 #if 0 1320 if (net_ratelimit()) 1321 WPRINTK("rx->offset: %x, size: %u\n", 1322 rx->offset, rx->status); 1323 #endif 1324 xennet_move_rx_slot(np, m, ref); 1325 if (m0 == m) 1326 m0 = NULL; 1327 m = NULL; 1328 err = EINVAL; 1329 goto next_skip_queue; 1330 } 1331 1332 /* 1333 * This definitely indicates a bug, either in this driver or in 1334 * the backend driver. In future this should flag the bad 1335 * situation to the system controller to reboot the backed. 1336 */ 1337 if (ref == GRANT_REF_INVALID) { 1338 1339 #if 0 1340 if (net_ratelimit()) 1341 WPRINTK("Bad rx response id %d.\n", rx->id); 1342 #endif 1343 printf("%s: Bad rx response id %d.\n", __func__,rx->id); 1344 err = EINVAL; 1345 goto next; 1346 } 1347 1348 if (!np->copying_receiver) { 1349 /* Memory pressure, insufficient buffer 1350 * headroom, ... 1351 */ 1352 if (!(mfn = gnttab_end_foreign_transfer_ref(ref))) { 1353 WPRINTK("Unfulfilled rx req (id=%d, st=%d).\n", 1354 rx->id, rx->status); 1355 xennet_move_rx_slot(np, m, ref); 1356 err = ENOMEM; 1357 goto next; 1358 } 1359 1360 if (!xen_feature( XENFEAT_auto_translated_physmap)) { 1361 /* Remap the page. */ 1362 void *vaddr = mtod(m, void *); 1363 uint32_t pfn; 1364 1365 mcl = np->rx_mcl + pages_flipped; 1366 mmu = np->rx_mmu + pages_flipped; 1367 1368 MULTI_update_va_mapping(mcl, (u_long)vaddr, 1369 (((vm_paddr_t)mfn) << PAGE_SHIFT) | PG_RW | 1370 PG_V | PG_M | PG_A, 0); 1371 pfn = (uintptr_t)m->m_ext.ext_arg1; 1372 mmu->ptr = ((vm_paddr_t)mfn << PAGE_SHIFT) | 1373 MMU_MACHPHYS_UPDATE; 1374 mmu->val = pfn; 1375 1376 set_phys_to_machine(pfn, mfn); 1377 } 1378 pages_flipped++; 1379 } else { 1380 ret = gnttab_end_foreign_access_ref(ref); 1381 KASSERT(ret, ("ret != 0")); 1382 } 1383 1384 gnttab_release_grant_reference(&np->gref_rx_head, ref); 1385 1386 next: 1387 if (m == NULL) 1388 break; 1389 1390 m->m_len = rx->status; 1391 m->m_data += rx->offset; 1392 m0->m_pkthdr.len += rx->status; 1393 1394 next_skip_queue: 1395 if (!(rx->flags & NETRXF_more_data)) 1396 break; 1397 1398 if (*cons + frags == rp) { 1399 if (net_ratelimit()) 1400 WPRINTK("Need more frags\n"); 1401 err = ENOENT; 1402 printf("%s: cons %u frags %u rp %u, not enough frags\n", 1403 __func__, *cons, frags, rp); 1404 break; 1405 } 1406 /* 1407 * Note that m can be NULL, if rx->status < 0 or if 1408 * rx->offset + rx->status > PAGE_SIZE above. 1409 */ 1410 m_prev = m; 1411 1412 rx = RING_GET_RESPONSE(&np->rx, *cons + frags); 1413 m = xennet_get_rx_mbuf(np, *cons + frags); 1414 1415 /* 1416 * m_prev == NULL can happen if rx->status < 0 or if 1417 * rx->offset + * rx->status > PAGE_SIZE above. 1418 */ 1419 if (m_prev != NULL) 1420 m_prev->m_next = m; 1421 1422 /* 1423 * m0 can be NULL if rx->status < 0 or if * rx->offset + 1424 * rx->status > PAGE_SIZE above. 1425 */ 1426 if (m0 == NULL) 1427 m0 = m; 1428 m->m_next = NULL; 1429 ref = xennet_get_rx_ref(np, *cons + frags); 1430 ref_cons = *cons + frags; 1431 frags++; 1432 } 1433 *list = m0; 1434 *cons += frags; 1435 *pages_flipped_p = pages_flipped; 1436 1437 return (err); 1438 } 1439 1440 static void 1441 xn_tick_locked(struct netfront_info *sc) 1442 { 1443 XN_RX_LOCK_ASSERT(sc); 1444 callout_reset(&sc->xn_stat_ch, hz, xn_tick, sc); 1445 1446 /* XXX placeholder for printing debug information */ 1447 } 1448 1449 static void 1450 xn_tick(void *xsc) 1451 { 1452 struct netfront_info *sc; 1453 1454 sc = xsc; 1455 XN_RX_LOCK(sc); 1456 xn_tick_locked(sc); 1457 XN_RX_UNLOCK(sc); 1458 } 1459 1460 /** 1461 * \brief Count the number of fragments in an mbuf chain. 1462 * 1463 * Surprisingly, there isn't an M* macro for this. 1464 */ 1465 static inline int 1466 xn_count_frags(struct mbuf *m) 1467 { 1468 int nfrags; 1469 1470 for (nfrags = 0; m != NULL; m = m->m_next) 1471 nfrags++; 1472 1473 return (nfrags); 1474 } 1475 1476 /** 1477 * Given an mbuf chain, make sure we have enough room and then push 1478 * it onto the transmit ring. 1479 */ 1480 static int 1481 xn_assemble_tx_request(struct netfront_info *sc, struct mbuf *m_head) 1482 { 1483 struct ifnet *ifp; 1484 struct mbuf *m; 1485 u_int nfrags; 1486 netif_extra_info_t *extra; 1487 int otherend_id; 1488 1489 ifp = sc->xn_ifp; 1490 1491 /** 1492 * Defragment the mbuf if necessary. 1493 */ 1494 nfrags = xn_count_frags(m_head); 1495 1496 /* 1497 * Check to see whether this request is longer than netback 1498 * can handle, and try to defrag it. 1499 */ 1500 /** 1501 * It is a bit lame, but the netback driver in Linux can't 1502 * deal with nfrags > MAX_TX_REQ_FRAGS, which is a quirk of 1503 * the Linux network stack. 1504 */ 1505 if (nfrags > sc->maxfrags) { 1506 m = m_defrag(m_head, M_NOWAIT); 1507 if (!m) { 1508 /* 1509 * Defrag failed, so free the mbuf and 1510 * therefore drop the packet. 1511 */ 1512 m_freem(m_head); 1513 return (EMSGSIZE); 1514 } 1515 m_head = m; 1516 } 1517 1518 /* Determine how many fragments now exist */ 1519 nfrags = xn_count_frags(m_head); 1520 1521 /* 1522 * Check to see whether the defragmented packet has too many 1523 * segments for the Linux netback driver. 1524 */ 1525 /** 1526 * The FreeBSD TCP stack, with TSO enabled, can produce a chain 1527 * of mbufs longer than Linux can handle. Make sure we don't 1528 * pass a too-long chain over to the other side by dropping the 1529 * packet. It doesn't look like there is currently a way to 1530 * tell the TCP stack to generate a shorter chain of packets. 1531 */ 1532 if (nfrags > MAX_TX_REQ_FRAGS) { 1533 #ifdef DEBUG 1534 printf("%s: nfrags %d > MAX_TX_REQ_FRAGS %d, netback " 1535 "won't be able to handle it, dropping\n", 1536 __func__, nfrags, MAX_TX_REQ_FRAGS); 1537 #endif 1538 m_freem(m_head); 1539 return (EMSGSIZE); 1540 } 1541 1542 /* 1543 * This check should be redundant. We've already verified that we 1544 * have enough slots in the ring to handle a packet of maximum 1545 * size, and that our packet is less than the maximum size. Keep 1546 * it in here as an assert for now just to make certain that 1547 * xn_tx_chain_cnt is accurate. 1548 */ 1549 KASSERT((sc->xn_cdata.xn_tx_chain_cnt + nfrags) <= NET_TX_RING_SIZE, 1550 ("%s: xn_tx_chain_cnt (%d) + nfrags (%d) > NET_TX_RING_SIZE " 1551 "(%d)!", __func__, (int) sc->xn_cdata.xn_tx_chain_cnt, 1552 (int) nfrags, (int) NET_TX_RING_SIZE)); 1553 1554 /* 1555 * Start packing the mbufs in this chain into 1556 * the fragment pointers. Stop when we run out 1557 * of fragments or hit the end of the mbuf chain. 1558 */ 1559 m = m_head; 1560 extra = NULL; 1561 otherend_id = xenbus_get_otherend_id(sc->xbdev); 1562 for (m = m_head; m; m = m->m_next) { 1563 netif_tx_request_t *tx; 1564 uintptr_t id; 1565 grant_ref_t ref; 1566 u_long mfn; /* XXX Wrong type? */ 1567 1568 tx = RING_GET_REQUEST(&sc->tx, sc->tx.req_prod_pvt); 1569 id = get_id_from_freelist(sc->tx_mbufs); 1570 if (id == 0) 1571 panic("%s: was allocated the freelist head!\n", 1572 __func__); 1573 sc->xn_cdata.xn_tx_chain_cnt++; 1574 if (sc->xn_cdata.xn_tx_chain_cnt > NET_TX_RING_SIZE) 1575 panic("%s: tx_chain_cnt must be <= NET_TX_RING_SIZE\n", 1576 __func__); 1577 sc->tx_mbufs[id] = m; 1578 tx->id = id; 1579 ref = gnttab_claim_grant_reference(&sc->gref_tx_head); 1580 KASSERT((short)ref >= 0, ("Negative ref")); 1581 mfn = virt_to_mfn(mtod(m, vm_offset_t)); 1582 gnttab_grant_foreign_access_ref(ref, otherend_id, 1583 mfn, GNTMAP_readonly); 1584 tx->gref = sc->grant_tx_ref[id] = ref; 1585 tx->offset = mtod(m, vm_offset_t) & (PAGE_SIZE - 1); 1586 tx->flags = 0; 1587 if (m == m_head) { 1588 /* 1589 * The first fragment has the entire packet 1590 * size, subsequent fragments have just the 1591 * fragment size. The backend works out the 1592 * true size of the first fragment by 1593 * subtracting the sizes of the other 1594 * fragments. 1595 */ 1596 tx->size = m->m_pkthdr.len; 1597 1598 /* 1599 * The first fragment contains the checksum flags 1600 * and is optionally followed by extra data for 1601 * TSO etc. 1602 */ 1603 /** 1604 * CSUM_TSO requires checksum offloading. 1605 * Some versions of FreeBSD fail to 1606 * set CSUM_TCP in the CSUM_TSO case, 1607 * so we have to test for CSUM_TSO 1608 * explicitly. 1609 */ 1610 if (m->m_pkthdr.csum_flags 1611 & (CSUM_DELAY_DATA | CSUM_TSO)) { 1612 tx->flags |= (NETTXF_csum_blank 1613 | NETTXF_data_validated); 1614 } 1615 #if __FreeBSD_version >= 700000 1616 if (m->m_pkthdr.csum_flags & CSUM_TSO) { 1617 struct netif_extra_info *gso = 1618 (struct netif_extra_info *) 1619 RING_GET_REQUEST(&sc->tx, 1620 ++sc->tx.req_prod_pvt); 1621 1622 tx->flags |= NETTXF_extra_info; 1623 1624 gso->u.gso.size = m->m_pkthdr.tso_segsz; 1625 gso->u.gso.type = 1626 XEN_NETIF_GSO_TYPE_TCPV4; 1627 gso->u.gso.pad = 0; 1628 gso->u.gso.features = 0; 1629 1630 gso->type = XEN_NETIF_EXTRA_TYPE_GSO; 1631 gso->flags = 0; 1632 } 1633 #endif 1634 } else { 1635 tx->size = m->m_len; 1636 } 1637 if (m->m_next) 1638 tx->flags |= NETTXF_more_data; 1639 1640 sc->tx.req_prod_pvt++; 1641 } 1642 BPF_MTAP(ifp, m_head); 1643 1644 sc->stats.tx_bytes += m_head->m_pkthdr.len; 1645 sc->stats.tx_packets++; 1646 1647 return (0); 1648 } 1649 1650 static void 1651 xn_start_locked(struct ifnet *ifp) 1652 { 1653 struct netfront_info *sc; 1654 struct mbuf *m_head; 1655 int notify; 1656 1657 sc = ifp->if_softc; 1658 1659 if (!netfront_carrier_ok(sc)) 1660 return; 1661 1662 /* 1663 * While we have enough transmit slots available for at least one 1664 * maximum-sized packet, pull mbufs off the queue and put them on 1665 * the transmit ring. 1666 */ 1667 while (xn_tx_slot_available(sc)) { 1668 IF_DEQUEUE(&ifp->if_snd, m_head); 1669 if (m_head == NULL) 1670 break; 1671 1672 if (xn_assemble_tx_request(sc, m_head) != 0) 1673 break; 1674 } 1675 1676 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&sc->tx, notify); 1677 if (notify) 1678 xen_intr_signal(sc->xen_intr_handle); 1679 1680 if (RING_FULL(&sc->tx)) { 1681 sc->tx_full = 1; 1682 #if 0 1683 netif_stop_queue(dev); 1684 #endif 1685 } 1686 } 1687 1688 static void 1689 xn_start(struct ifnet *ifp) 1690 { 1691 struct netfront_info *sc; 1692 sc = ifp->if_softc; 1693 XN_TX_LOCK(sc); 1694 xn_start_locked(ifp); 1695 XN_TX_UNLOCK(sc); 1696 } 1697 1698 /* equivalent of network_open() in Linux */ 1699 static void 1700 xn_ifinit_locked(struct netfront_info *sc) 1701 { 1702 struct ifnet *ifp; 1703 1704 XN_LOCK_ASSERT(sc); 1705 1706 ifp = sc->xn_ifp; 1707 1708 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1709 return; 1710 1711 xn_stop(sc); 1712 1713 network_alloc_rx_buffers(sc); 1714 sc->rx.sring->rsp_event = sc->rx.rsp_cons + 1; 1715 1716 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1717 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1718 if_link_state_change(ifp, LINK_STATE_UP); 1719 1720 callout_reset(&sc->xn_stat_ch, hz, xn_tick, sc); 1721 } 1722 1723 static void 1724 xn_ifinit(void *xsc) 1725 { 1726 struct netfront_info *sc = xsc; 1727 1728 XN_LOCK(sc); 1729 xn_ifinit_locked(sc); 1730 XN_UNLOCK(sc); 1731 } 1732 1733 static int 1734 xn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1735 { 1736 struct netfront_info *sc = ifp->if_softc; 1737 struct ifreq *ifr = (struct ifreq *) data; 1738 #ifdef INET 1739 struct ifaddr *ifa = (struct ifaddr *)data; 1740 #endif 1741 1742 int mask, error = 0; 1743 switch(cmd) { 1744 case SIOCSIFADDR: 1745 case SIOCGIFADDR: 1746 #ifdef INET 1747 XN_LOCK(sc); 1748 if (ifa->ifa_addr->sa_family == AF_INET) { 1749 ifp->if_flags |= IFF_UP; 1750 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 1751 xn_ifinit_locked(sc); 1752 arp_ifinit(ifp, ifa); 1753 XN_UNLOCK(sc); 1754 } else { 1755 XN_UNLOCK(sc); 1756 #endif 1757 error = ether_ioctl(ifp, cmd, data); 1758 #ifdef INET 1759 } 1760 #endif 1761 break; 1762 case SIOCSIFMTU: 1763 /* XXX can we alter the MTU on a VN ?*/ 1764 #ifdef notyet 1765 if (ifr->ifr_mtu > XN_JUMBO_MTU) 1766 error = EINVAL; 1767 else 1768 #endif 1769 { 1770 ifp->if_mtu = ifr->ifr_mtu; 1771 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1772 xn_ifinit(sc); 1773 } 1774 break; 1775 case SIOCSIFFLAGS: 1776 XN_LOCK(sc); 1777 if (ifp->if_flags & IFF_UP) { 1778 /* 1779 * If only the state of the PROMISC flag changed, 1780 * then just use the 'set promisc mode' command 1781 * instead of reinitializing the entire NIC. Doing 1782 * a full re-init means reloading the firmware and 1783 * waiting for it to start up, which may take a 1784 * second or two. 1785 */ 1786 #ifdef notyet 1787 /* No promiscuous mode with Xen */ 1788 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 1789 ifp->if_flags & IFF_PROMISC && 1790 !(sc->xn_if_flags & IFF_PROMISC)) { 1791 XN_SETBIT(sc, XN_RX_MODE, 1792 XN_RXMODE_RX_PROMISC); 1793 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING && 1794 !(ifp->if_flags & IFF_PROMISC) && 1795 sc->xn_if_flags & IFF_PROMISC) { 1796 XN_CLRBIT(sc, XN_RX_MODE, 1797 XN_RXMODE_RX_PROMISC); 1798 } else 1799 #endif 1800 xn_ifinit_locked(sc); 1801 } else { 1802 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1803 xn_stop(sc); 1804 } 1805 } 1806 sc->xn_if_flags = ifp->if_flags; 1807 XN_UNLOCK(sc); 1808 error = 0; 1809 break; 1810 case SIOCSIFCAP: 1811 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 1812 if (mask & IFCAP_TXCSUM) { 1813 if (IFCAP_TXCSUM & ifp->if_capenable) { 1814 ifp->if_capenable &= ~(IFCAP_TXCSUM|IFCAP_TSO4); 1815 ifp->if_hwassist &= ~(CSUM_TCP | CSUM_UDP 1816 | CSUM_IP | CSUM_TSO); 1817 } else { 1818 ifp->if_capenable |= IFCAP_TXCSUM; 1819 ifp->if_hwassist |= (CSUM_TCP | CSUM_UDP 1820 | CSUM_IP); 1821 } 1822 } 1823 if (mask & IFCAP_RXCSUM) { 1824 ifp->if_capenable ^= IFCAP_RXCSUM; 1825 } 1826 #if __FreeBSD_version >= 700000 1827 if (mask & IFCAP_TSO4) { 1828 if (IFCAP_TSO4 & ifp->if_capenable) { 1829 ifp->if_capenable &= ~IFCAP_TSO4; 1830 ifp->if_hwassist &= ~CSUM_TSO; 1831 } else if (IFCAP_TXCSUM & ifp->if_capenable) { 1832 ifp->if_capenable |= IFCAP_TSO4; 1833 ifp->if_hwassist |= CSUM_TSO; 1834 } else { 1835 IPRINTK("Xen requires tx checksum offload" 1836 " be enabled to use TSO\n"); 1837 error = EINVAL; 1838 } 1839 } 1840 if (mask & IFCAP_LRO) { 1841 ifp->if_capenable ^= IFCAP_LRO; 1842 1843 } 1844 #endif 1845 error = 0; 1846 break; 1847 case SIOCADDMULTI: 1848 case SIOCDELMULTI: 1849 #ifdef notyet 1850 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1851 XN_LOCK(sc); 1852 xn_setmulti(sc); 1853 XN_UNLOCK(sc); 1854 error = 0; 1855 } 1856 #endif 1857 /* FALLTHROUGH */ 1858 case SIOCSIFMEDIA: 1859 case SIOCGIFMEDIA: 1860 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd); 1861 break; 1862 default: 1863 error = ether_ioctl(ifp, cmd, data); 1864 } 1865 1866 return (error); 1867 } 1868 1869 static void 1870 xn_stop(struct netfront_info *sc) 1871 { 1872 struct ifnet *ifp; 1873 1874 XN_LOCK_ASSERT(sc); 1875 1876 ifp = sc->xn_ifp; 1877 1878 callout_stop(&sc->xn_stat_ch); 1879 1880 xn_free_rx_ring(sc); 1881 xn_free_tx_ring(sc); 1882 1883 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 1884 if_link_state_change(ifp, LINK_STATE_DOWN); 1885 } 1886 1887 /* START of Xenolinux helper functions adapted to FreeBSD */ 1888 int 1889 network_connect(struct netfront_info *np) 1890 { 1891 int i, requeue_idx, error; 1892 grant_ref_t ref; 1893 netif_rx_request_t *req; 1894 u_int feature_rx_copy, feature_rx_flip; 1895 1896 error = xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev), 1897 "feature-rx-copy", NULL, "%u", &feature_rx_copy); 1898 if (error) 1899 feature_rx_copy = 0; 1900 error = xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev), 1901 "feature-rx-flip", NULL, "%u", &feature_rx_flip); 1902 if (error) 1903 feature_rx_flip = 1; 1904 1905 /* 1906 * Copy packets on receive path if: 1907 * (a) This was requested by user, and the backend supports it; or 1908 * (b) Flipping was requested, but this is unsupported by the backend. 1909 */ 1910 np->copying_receiver = ((MODPARM_rx_copy && feature_rx_copy) || 1911 (MODPARM_rx_flip && !feature_rx_flip)); 1912 1913 /* Recovery procedure: */ 1914 error = talk_to_backend(np->xbdev, np); 1915 if (error) 1916 return (error); 1917 1918 /* Step 1: Reinitialise variables. */ 1919 xn_query_features(np); 1920 xn_configure_features(np); 1921 netif_release_tx_bufs(np); 1922 1923 /* Step 2: Rebuild the RX buffer freelist and the RX ring itself. */ 1924 for (requeue_idx = 0, i = 0; i < NET_RX_RING_SIZE; i++) { 1925 struct mbuf *m; 1926 u_long pfn; 1927 1928 if (np->rx_mbufs[i] == NULL) 1929 continue; 1930 1931 m = np->rx_mbufs[requeue_idx] = xennet_get_rx_mbuf(np, i); 1932 ref = np->grant_rx_ref[requeue_idx] = xennet_get_rx_ref(np, i); 1933 1934 req = RING_GET_REQUEST(&np->rx, requeue_idx); 1935 pfn = vtophys(mtod(m, vm_offset_t)) >> PAGE_SHIFT; 1936 1937 if (!np->copying_receiver) { 1938 gnttab_grant_foreign_transfer_ref(ref, 1939 xenbus_get_otherend_id(np->xbdev), 1940 pfn); 1941 } else { 1942 gnttab_grant_foreign_access_ref(ref, 1943 xenbus_get_otherend_id(np->xbdev), 1944 PFNTOMFN(pfn), 0); 1945 } 1946 req->gref = ref; 1947 req->id = requeue_idx; 1948 1949 requeue_idx++; 1950 } 1951 1952 np->rx.req_prod_pvt = requeue_idx; 1953 1954 /* Step 3: All public and private state should now be sane. Get 1955 * ready to start sending and receiving packets and give the driver 1956 * domain a kick because we've probably just requeued some 1957 * packets. 1958 */ 1959 netfront_carrier_on(np); 1960 xen_intr_signal(np->xen_intr_handle); 1961 XN_TX_LOCK(np); 1962 xn_txeof(np); 1963 XN_TX_UNLOCK(np); 1964 network_alloc_rx_buffers(np); 1965 1966 return (0); 1967 } 1968 1969 static void 1970 xn_query_features(struct netfront_info *np) 1971 { 1972 int val; 1973 1974 device_printf(np->xbdev, "backend features:"); 1975 1976 if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev), 1977 "feature-sg", NULL, "%d", &val) < 0) 1978 val = 0; 1979 1980 np->maxfrags = 1; 1981 if (val) { 1982 np->maxfrags = MAX_TX_REQ_FRAGS; 1983 printf(" feature-sg"); 1984 } 1985 1986 if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev), 1987 "feature-gso-tcpv4", NULL, "%d", &val) < 0) 1988 val = 0; 1989 1990 np->xn_ifp->if_capabilities &= ~(IFCAP_TSO4|IFCAP_LRO); 1991 if (val) { 1992 np->xn_ifp->if_capabilities |= IFCAP_TSO4|IFCAP_LRO; 1993 printf(" feature-gso-tcp4"); 1994 } 1995 1996 printf("\n"); 1997 } 1998 1999 static int 2000 xn_configure_features(struct netfront_info *np) 2001 { 2002 int err; 2003 2004 err = 0; 2005 #if __FreeBSD_version >= 700000 && (defined(INET) || defined(INET6)) 2006 if ((np->xn_ifp->if_capenable & IFCAP_LRO) != 0) 2007 tcp_lro_free(&np->xn_lro); 2008 #endif 2009 np->xn_ifp->if_capenable = 2010 np->xn_ifp->if_capabilities & ~(IFCAP_LRO|IFCAP_TSO4); 2011 np->xn_ifp->if_hwassist &= ~CSUM_TSO; 2012 #if __FreeBSD_version >= 700000 && (defined(INET) || defined(INET6)) 2013 if (xn_enable_lro && (np->xn_ifp->if_capabilities & IFCAP_LRO) != 0) { 2014 err = tcp_lro_init(&np->xn_lro); 2015 if (err) { 2016 device_printf(np->xbdev, "LRO initialization failed\n"); 2017 } else { 2018 np->xn_lro.ifp = np->xn_ifp; 2019 np->xn_ifp->if_capenable |= IFCAP_LRO; 2020 } 2021 } 2022 if ((np->xn_ifp->if_capabilities & IFCAP_TSO4) != 0) { 2023 np->xn_ifp->if_capenable |= IFCAP_TSO4; 2024 np->xn_ifp->if_hwassist |= CSUM_TSO; 2025 } 2026 #endif 2027 return (err); 2028 } 2029 2030 /** 2031 * Create a network device. 2032 * @param dev Newbus device representing this virtual NIC. 2033 */ 2034 int 2035 create_netdev(device_t dev) 2036 { 2037 int i; 2038 struct netfront_info *np; 2039 int err; 2040 struct ifnet *ifp; 2041 2042 np = device_get_softc(dev); 2043 2044 np->xbdev = dev; 2045 2046 XN_LOCK_INIT(np, xennetif); 2047 2048 ifmedia_init(&np->sc_media, 0, xn_ifmedia_upd, xn_ifmedia_sts); 2049 ifmedia_add(&np->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); 2050 ifmedia_set(&np->sc_media, IFM_ETHER|IFM_MANUAL); 2051 2052 np->rx_target = RX_MIN_TARGET; 2053 np->rx_min_target = RX_MIN_TARGET; 2054 np->rx_max_target = RX_MAX_TARGET; 2055 2056 /* Initialise {tx,rx}_skbs to be a free chain containing every entry. */ 2057 for (i = 0; i <= NET_TX_RING_SIZE; i++) { 2058 np->tx_mbufs[i] = (void *) ((u_long) i+1); 2059 np->grant_tx_ref[i] = GRANT_REF_INVALID; 2060 } 2061 np->tx_mbufs[NET_TX_RING_SIZE] = (void *)0; 2062 2063 for (i = 0; i <= NET_RX_RING_SIZE; i++) { 2064 2065 np->rx_mbufs[i] = NULL; 2066 np->grant_rx_ref[i] = GRANT_REF_INVALID; 2067 } 2068 /* A grant for every tx ring slot */ 2069 if (gnttab_alloc_grant_references(NET_TX_RING_SIZE, 2070 &np->gref_tx_head) != 0) { 2071 IPRINTK("#### netfront can't alloc tx grant refs\n"); 2072 err = ENOMEM; 2073 goto exit; 2074 } 2075 /* A grant for every rx ring slot */ 2076 if (gnttab_alloc_grant_references(RX_MAX_TARGET, 2077 &np->gref_rx_head) != 0) { 2078 WPRINTK("#### netfront can't alloc rx grant refs\n"); 2079 gnttab_free_grant_references(np->gref_tx_head); 2080 err = ENOMEM; 2081 goto exit; 2082 } 2083 2084 err = xen_net_read_mac(dev, np->mac); 2085 if (err) 2086 goto out; 2087 2088 /* Set up ifnet structure */ 2089 ifp = np->xn_ifp = if_alloc(IFT_ETHER); 2090 ifp->if_softc = np; 2091 if_initname(ifp, "xn", device_get_unit(dev)); 2092 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 2093 ifp->if_ioctl = xn_ioctl; 2094 ifp->if_output = ether_output; 2095 ifp->if_start = xn_start; 2096 #ifdef notyet 2097 ifp->if_watchdog = xn_watchdog; 2098 #endif 2099 ifp->if_init = xn_ifinit; 2100 ifp->if_snd.ifq_maxlen = NET_TX_RING_SIZE - 1; 2101 2102 ifp->if_hwassist = XN_CSUM_FEATURES; 2103 ifp->if_capabilities = IFCAP_HWCSUM; 2104 ifp->if_hw_tsomax = 65536 - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 2105 ifp->if_hw_tsomaxsegcount = MAX_TX_REQ_FRAGS; 2106 ifp->if_hw_tsomaxsegsize = PAGE_SIZE; 2107 2108 ether_ifattach(ifp, np->mac); 2109 callout_init(&np->xn_stat_ch, CALLOUT_MPSAFE); 2110 netfront_carrier_off(np); 2111 2112 return (0); 2113 2114 exit: 2115 gnttab_free_grant_references(np->gref_tx_head); 2116 out: 2117 return (err); 2118 } 2119 2120 /** 2121 * Handle the change of state of the backend to Closing. We must delete our 2122 * device-layer structures now, to ensure that writes are flushed through to 2123 * the backend. Once is this done, we can switch to Closed in 2124 * acknowledgement. 2125 */ 2126 #if 0 2127 static void 2128 netfront_closing(device_t dev) 2129 { 2130 #if 0 2131 struct netfront_info *info = dev->dev_driver_data; 2132 2133 DPRINTK("netfront_closing: %s removed\n", dev->nodename); 2134 2135 close_netdev(info); 2136 #endif 2137 xenbus_switch_state(dev, XenbusStateClosed); 2138 } 2139 #endif 2140 2141 static int 2142 netfront_detach(device_t dev) 2143 { 2144 struct netfront_info *info = device_get_softc(dev); 2145 2146 DPRINTK("%s\n", xenbus_get_node(dev)); 2147 2148 netif_free(info); 2149 2150 return 0; 2151 } 2152 2153 static void 2154 netif_free(struct netfront_info *info) 2155 { 2156 XN_LOCK(info); 2157 xn_stop(info); 2158 XN_UNLOCK(info); 2159 callout_drain(&info->xn_stat_ch); 2160 netif_disconnect_backend(info); 2161 if (info->xn_ifp != NULL) { 2162 ether_ifdetach(info->xn_ifp); 2163 if_free(info->xn_ifp); 2164 info->xn_ifp = NULL; 2165 } 2166 ifmedia_removeall(&info->sc_media); 2167 } 2168 2169 static void 2170 netif_disconnect_backend(struct netfront_info *info) 2171 { 2172 XN_RX_LOCK(info); 2173 XN_TX_LOCK(info); 2174 netfront_carrier_off(info); 2175 XN_TX_UNLOCK(info); 2176 XN_RX_UNLOCK(info); 2177 2178 free_ring(&info->tx_ring_ref, &info->tx.sring); 2179 free_ring(&info->rx_ring_ref, &info->rx.sring); 2180 2181 xen_intr_unbind(&info->xen_intr_handle); 2182 } 2183 2184 static void 2185 free_ring(int *ref, void *ring_ptr_ref) 2186 { 2187 void **ring_ptr_ptr = ring_ptr_ref; 2188 2189 if (*ref != GRANT_REF_INVALID) { 2190 /* This API frees the associated storage. */ 2191 gnttab_end_foreign_access(*ref, *ring_ptr_ptr); 2192 *ref = GRANT_REF_INVALID; 2193 } 2194 *ring_ptr_ptr = NULL; 2195 } 2196 2197 static int 2198 xn_ifmedia_upd(struct ifnet *ifp) 2199 { 2200 return (0); 2201 } 2202 2203 static void 2204 xn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2205 { 2206 ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE; 2207 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; 2208 } 2209 2210 /* ** Driver registration ** */ 2211 static device_method_t netfront_methods[] = { 2212 /* Device interface */ 2213 DEVMETHOD(device_probe, netfront_probe), 2214 DEVMETHOD(device_attach, netfront_attach), 2215 DEVMETHOD(device_detach, netfront_detach), 2216 DEVMETHOD(device_shutdown, bus_generic_shutdown), 2217 DEVMETHOD(device_suspend, netfront_suspend), 2218 DEVMETHOD(device_resume, netfront_resume), 2219 2220 /* Xenbus interface */ 2221 DEVMETHOD(xenbus_otherend_changed, netfront_backend_changed), 2222 2223 DEVMETHOD_END 2224 }; 2225 2226 static driver_t netfront_driver = { 2227 "xn", 2228 netfront_methods, 2229 sizeof(struct netfront_info), 2230 }; 2231 devclass_t netfront_devclass; 2232 2233 DRIVER_MODULE(xe, xenbusb_front, netfront_driver, netfront_devclass, NULL, 2234 NULL); 2235