xref: /freebsd/sys/dev/xen/netback/netback.c (revision ff0ba87247820afbdfdc1b307c803f7923d0e4d3)
1 /*-
2  * Copyright (c) 2009-2011 Spectra Logic Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions, and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    substantially similar to the "NO WARRANTY" disclaimer below
13  *    ("Disclaimer") and any redistribution must be conditioned upon
14  *    including a substantially similar Disclaimer requirement for further
15  *    binary redistribution.
16  *
17  * NO WARRANTY
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
27  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGES.
29  *
30  * Authors: Justin T. Gibbs     (Spectra Logic Corporation)
31  *          Alan Somers         (Spectra Logic Corporation)
32  *          John Suykerbuyk     (Spectra Logic Corporation)
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 /**
39  * \file netback.c
40  *
41  * \brief Device driver supporting the vending of network access
42  * 	  from this FreeBSD domain to other domains.
43  */
44 #include "opt_inet.h"
45 #include "opt_inet6.h"
46 #include "opt_global.h"
47 
48 #include "opt_sctp.h"
49 
50 #include <sys/param.h>
51 #include <sys/kernel.h>
52 
53 #include <sys/bus.h>
54 #include <sys/module.h>
55 #include <sys/rman.h>
56 #include <sys/socket.h>
57 #include <sys/sockio.h>
58 #include <sys/sysctl.h>
59 
60 #include <net/if.h>
61 #include <net/if_var.h>
62 #include <net/if_arp.h>
63 #include <net/ethernet.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_types.h>
67 
68 #include <netinet/in.h>
69 #include <netinet/ip.h>
70 #include <netinet/if_ether.h>
71 #if __FreeBSD_version >= 700000
72 #include <netinet/tcp.h>
73 #endif
74 #include <netinet/ip_icmp.h>
75 #include <netinet/udp.h>
76 #include <machine/in_cksum.h>
77 
78 #include <vm/vm.h>
79 #include <vm/pmap.h>
80 #include <vm/vm_extern.h>
81 #include <vm/vm_kern.h>
82 
83 #include <machine/_inttypes.h>
84 
85 #include <xen/xen-os.h>
86 #include <xen/hypervisor.h>
87 #include <xen/xen_intr.h>
88 #include <xen/interface/io/netif.h>
89 #include <xen/xenbus/xenbusvar.h>
90 
91 #include <machine/xen/xenvar.h>
92 
93 /*--------------------------- Compile-time Tunables --------------------------*/
94 
95 /*---------------------------------- Macros ----------------------------------*/
96 /**
97  * Custom malloc type for all driver allocations.
98  */
99 static MALLOC_DEFINE(M_XENNETBACK, "xnb", "Xen Net Back Driver Data");
100 
101 #define	XNB_SG	1	/* netback driver supports feature-sg */
102 #define	XNB_GSO_TCPV4 1	/* netback driver supports feature-gso-tcpv4 */
103 #define	XNB_RX_COPY 1	/* netback driver supports feature-rx-copy */
104 #define	XNB_RX_FLIP 0	/* netback driver does not support feature-rx-flip */
105 
106 #undef XNB_DEBUG
107 #define	XNB_DEBUG /* hardcode on during development */
108 
109 #ifdef XNB_DEBUG
110 #define	DPRINTF(fmt, args...) \
111 	printf("xnb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args)
112 #else
113 #define	DPRINTF(fmt, args...) do {} while (0)
114 #endif
115 
116 /* Default length for stack-allocated grant tables */
117 #define	GNTTAB_LEN	(64)
118 
119 /* Features supported by all backends.  TSO and LRO can be negotiated */
120 #define	XNB_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
121 
122 #define	NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE)
123 #define	NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE)
124 
125 /**
126  * Two argument version of the standard macro.  Second argument is a tentative
127  * value of req_cons
128  */
129 #define	RING_HAS_UNCONSUMED_REQUESTS_2(_r, cons) ({                     \
130 	unsigned int req = (_r)->sring->req_prod - cons;          	\
131 	unsigned int rsp = RING_SIZE(_r) -                              \
132 	(cons - (_r)->rsp_prod_pvt);                          		\
133 	req < rsp ? req : rsp;                                          \
134 })
135 
136 #define	virt_to_mfn(x) (vtomach(x) >> PAGE_SHIFT)
137 #define	virt_to_offset(x) ((x) & (PAGE_SIZE - 1))
138 
139 /**
140  * Predefined array type of grant table copy descriptors.  Used to pass around
141  * statically allocated memory structures.
142  */
143 typedef struct gnttab_copy gnttab_copy_table[GNTTAB_LEN];
144 
145 /*--------------------------- Forward Declarations ---------------------------*/
146 struct xnb_softc;
147 struct xnb_pkt;
148 
149 static void	xnb_attach_failed(struct xnb_softc *xnb,
150 				  int err, const char *fmt, ...)
151 				  __printflike(3,4);
152 static int	xnb_shutdown(struct xnb_softc *xnb);
153 static int	create_netdev(device_t dev);
154 static int	xnb_detach(device_t dev);
155 static int	xnb_ifmedia_upd(struct ifnet *ifp);
156 static void	xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
157 static void 	xnb_intr(void *arg);
158 static int	xnb_send(netif_rx_back_ring_t *rxb, domid_t otherend,
159 			 const struct mbuf *mbufc, gnttab_copy_table gnttab);
160 static int	xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend,
161 			 struct mbuf **mbufc, struct ifnet *ifnet,
162 			 gnttab_copy_table gnttab);
163 static int	xnb_ring2pkt(struct xnb_pkt *pkt,
164 			     const netif_tx_back_ring_t *tx_ring,
165 			     RING_IDX start);
166 static void	xnb_txpkt2rsp(const struct xnb_pkt *pkt,
167 			      netif_tx_back_ring_t *ring, int error);
168 static struct mbuf *xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp);
169 static int	xnb_txpkt2gnttab(const struct xnb_pkt *pkt,
170 				 const struct mbuf *mbufc,
171 				 gnttab_copy_table gnttab,
172 				 const netif_tx_back_ring_t *txb,
173 				 domid_t otherend_id);
174 static void	xnb_update_mbufc(struct mbuf *mbufc,
175 				 const gnttab_copy_table gnttab, int n_entries);
176 static int	xnb_mbufc2pkt(const struct mbuf *mbufc,
177 			      struct xnb_pkt *pkt,
178 			      RING_IDX start, int space);
179 static int	xnb_rxpkt2gnttab(const struct xnb_pkt *pkt,
180 				 const struct mbuf *mbufc,
181 				 gnttab_copy_table gnttab,
182 				 const netif_rx_back_ring_t *rxb,
183 				 domid_t otherend_id);
184 static int	xnb_rxpkt2rsp(const struct xnb_pkt *pkt,
185 			      const gnttab_copy_table gnttab, int n_entries,
186 			      netif_rx_back_ring_t *ring);
187 static void	xnb_stop(struct xnb_softc*);
188 static int	xnb_ioctl(struct ifnet*, u_long, caddr_t);
189 static void	xnb_start_locked(struct ifnet*);
190 static void	xnb_start(struct ifnet*);
191 static void	xnb_ifinit_locked(struct xnb_softc*);
192 static void	xnb_ifinit(void*);
193 #ifdef XNB_DEBUG
194 static int	xnb_unit_test_main(SYSCTL_HANDLER_ARGS);
195 static int	xnb_dump_rings(SYSCTL_HANDLER_ARGS);
196 #endif
197 #if defined(INET) || defined(INET6)
198 static void	xnb_add_mbuf_cksum(struct mbuf *mbufc);
199 #endif
200 /*------------------------------ Data Structures -----------------------------*/
201 
202 
203 /**
204  * Representation of a xennet packet.  Simplified version of a packet as
205  * stored in the Xen tx ring.  Applicable to both RX and TX packets
206  */
207 struct xnb_pkt{
208 	/**
209 	 * Array index of the first data-bearing (eg, not extra info) entry
210 	 * for this packet
211 	 */
212 	RING_IDX	car;
213 
214 	/**
215 	 * Array index of the second data-bearing entry for this packet.
216 	 * Invalid if the packet has only one data-bearing entry.  If the
217 	 * packet has more than two data-bearing entries, then the second
218 	 * through the last will be sequential modulo the ring size
219 	 */
220 	RING_IDX	cdr;
221 
222 	/**
223 	 * Optional extra info.  Only valid if flags contains
224 	 * NETTXF_extra_info.  Note that extra.type will always be
225 	 * XEN_NETIF_EXTRA_TYPE_GSO.  Currently, no known netfront or netback
226 	 * driver will ever set XEN_NETIF_EXTRA_TYPE_MCAST_*
227 	 */
228 	netif_extra_info_t extra;
229 
230 	/** Size of entire packet in bytes.       */
231 	uint16_t	size;
232 
233 	/** The size of the first entry's data in bytes */
234 	uint16_t	car_size;
235 
236 	/**
237 	 * Either NETTXF_ or NETRXF_ flags.  Note that the flag values are
238 	 * not the same for TX and RX packets
239 	 */
240 	uint16_t	flags;
241 
242 	/**
243 	 * The number of valid data-bearing entries (either netif_tx_request's
244 	 * or netif_rx_response's) in the packet.  If this is 0, it means the
245 	 * entire packet is invalid.
246 	 */
247 	uint16_t	list_len;
248 
249 	/** There was an error processing the packet */
250 	uint8_t		error;
251 };
252 
253 /** xnb_pkt method: initialize it */
254 static inline void
255 xnb_pkt_initialize(struct xnb_pkt *pxnb)
256 {
257 	bzero(pxnb, sizeof(*pxnb));
258 }
259 
260 /** xnb_pkt method: mark the packet as valid */
261 static inline void
262 xnb_pkt_validate(struct xnb_pkt *pxnb)
263 {
264 	pxnb->error = 0;
265 };
266 
267 /** xnb_pkt method: mark the packet as invalid */
268 static inline void
269 xnb_pkt_invalidate(struct xnb_pkt *pxnb)
270 {
271 	pxnb->error = 1;
272 };
273 
274 /** xnb_pkt method: Check whether the packet is valid */
275 static inline int
276 xnb_pkt_is_valid(const struct xnb_pkt *pxnb)
277 {
278 	return (! pxnb->error);
279 }
280 
281 #ifdef XNB_DEBUG
282 /** xnb_pkt method: print the packet's contents in human-readable format*/
283 static void __unused
284 xnb_dump_pkt(const struct xnb_pkt *pkt) {
285 	if (pkt == NULL) {
286 	  DPRINTF("Was passed a null pointer.\n");
287 	  return;
288 	}
289 	DPRINTF("pkt address= %p\n", pkt);
290 	DPRINTF("pkt->size=%d\n", pkt->size);
291 	DPRINTF("pkt->car_size=%d\n", pkt->car_size);
292 	DPRINTF("pkt->flags=0x%04x\n", pkt->flags);
293 	DPRINTF("pkt->list_len=%d\n", pkt->list_len);
294 	/* DPRINTF("pkt->extra");	TODO */
295 	DPRINTF("pkt->car=%d\n", pkt->car);
296 	DPRINTF("pkt->cdr=%d\n", pkt->cdr);
297 	DPRINTF("pkt->error=%d\n", pkt->error);
298 }
299 #endif /* XNB_DEBUG */
300 
301 static void
302 xnb_dump_txreq(RING_IDX idx, const struct netif_tx_request *txreq)
303 {
304 	if (txreq != NULL) {
305 		DPRINTF("netif_tx_request index =%u\n", idx);
306 		DPRINTF("netif_tx_request.gref  =%u\n", txreq->gref);
307 		DPRINTF("netif_tx_request.offset=%hu\n", txreq->offset);
308 		DPRINTF("netif_tx_request.flags =%hu\n", txreq->flags);
309 		DPRINTF("netif_tx_request.id    =%hu\n", txreq->id);
310 		DPRINTF("netif_tx_request.size  =%hu\n", txreq->size);
311 	}
312 }
313 
314 
315 /**
316  * \brief Configuration data for a shared memory request ring
317  *        used to communicate with the front-end client of this
318  *        this driver.
319  */
320 struct xnb_ring_config {
321 	/**
322 	 * Runtime structures for ring access.  Unfortunately, TX and RX rings
323 	 * use different data structures, and that cannot be changed since it
324 	 * is part of the interdomain protocol.
325 	 */
326 	union{
327 		netif_rx_back_ring_t	  rx_ring;
328 		netif_tx_back_ring_t	  tx_ring;
329 	} back_ring;
330 
331 	/**
332 	 * The device bus address returned by the hypervisor when
333 	 * mapping the ring and required to unmap it when a connection
334 	 * is torn down.
335 	 */
336 	uint64_t	bus_addr;
337 
338 	/** The pseudo-physical address where ring memory is mapped.*/
339 	uint64_t	gnt_addr;
340 
341 	/** KVA address where ring memory is mapped. */
342 	vm_offset_t	va;
343 
344 	/**
345 	 * Grant table handles, one per-ring page, returned by the
346 	 * hyperpervisor upon mapping of the ring and required to
347 	 * unmap it when a connection is torn down.
348 	 */
349 	grant_handle_t	handle;
350 
351 	/** The number of ring pages mapped for the current connection. */
352 	unsigned	ring_pages;
353 
354 	/**
355 	 * The grant references, one per-ring page, supplied by the
356 	 * front-end, allowing us to reference the ring pages in the
357 	 * front-end's domain and to map these pages into our own domain.
358 	 */
359 	grant_ref_t	ring_ref;
360 };
361 
362 /**
363  * Per-instance connection state flags.
364  */
365 typedef enum
366 {
367 	/** Communication with the front-end has been established. */
368 	XNBF_RING_CONNECTED    = 0x01,
369 
370 	/**
371 	 * Front-end requests exist in the ring and are waiting for
372 	 * xnb_xen_req objects to free up.
373 	 */
374 	XNBF_RESOURCE_SHORTAGE = 0x02,
375 
376 	/** Connection teardown has started. */
377 	XNBF_SHUTDOWN          = 0x04,
378 
379 	/** A thread is already performing shutdown processing. */
380 	XNBF_IN_SHUTDOWN       = 0x08
381 } xnb_flag_t;
382 
383 /**
384  * Types of rings.  Used for array indices and to identify a ring's control
385  * data structure type
386  */
387 typedef enum{
388 	XNB_RING_TYPE_TX = 0,	/* ID of TX rings, used for array indices */
389 	XNB_RING_TYPE_RX = 1,	/* ID of RX rings, used for array indices */
390 	XNB_NUM_RING_TYPES
391 } xnb_ring_type_t;
392 
393 /**
394  * Per-instance configuration data.
395  */
396 struct xnb_softc {
397 	/** NewBus device corresponding to this instance. */
398 	device_t		dev;
399 
400 	/* Media related fields */
401 
402 	/** Generic network media state */
403 	struct ifmedia		sc_media;
404 
405 	/** Media carrier info */
406 	struct ifnet 		*xnb_ifp;
407 
408 	/** Our own private carrier state */
409 	unsigned carrier;
410 
411 	/** Device MAC Address */
412 	uint8_t			mac[ETHER_ADDR_LEN];
413 
414 	/* Xen related fields */
415 
416 	/**
417 	 * \brief The netif protocol abi in effect.
418 	 *
419 	 * There are situations where the back and front ends can
420 	 * have a different, native abi (e.g. intel x86_64 and
421 	 * 32bit x86 domains on the same machine).  The back-end
422 	 * always accomodates the front-end's native abi.  That
423 	 * value is pulled from the XenStore and recorded here.
424 	 */
425 	int			abi;
426 
427 	/**
428 	 * Name of the bridge to which this VIF is connected, if any
429 	 * This field is dynamically allocated by xenbus and must be free()ed
430 	 * when no longer needed
431 	 */
432 	char			*bridge;
433 
434 	/** The interrupt driven even channel used to signal ring events. */
435 	evtchn_port_t		evtchn;
436 
437 	/** Xen device handle.*/
438 	long 			handle;
439 
440 	/** Handle to the communication ring event channel. */
441 	xen_intr_handle_t	xen_intr_handle;
442 
443 	/**
444 	 * \brief Cached value of the front-end's domain id.
445 	 *
446 	 * This value is used at once for each mapped page in
447 	 * a transaction.  We cache it to avoid incuring the
448 	 * cost of an ivar access every time this is needed.
449 	 */
450 	domid_t			otherend_id;
451 
452 	/**
453 	 * Undocumented frontend feature.  Has something to do with
454 	 * scatter/gather IO
455 	 */
456 	uint8_t			can_sg;
457 	/** Undocumented frontend feature */
458 	uint8_t			gso;
459 	/** Undocumented frontend feature */
460 	uint8_t			gso_prefix;
461 	/** Can checksum TCP/UDP over IPv4 */
462 	uint8_t			ip_csum;
463 
464 	/* Implementation related fields */
465 	/**
466 	 * Preallocated grant table copy descriptor for RX operations.
467 	 * Access must be protected by rx_lock
468 	 */
469 	gnttab_copy_table	rx_gnttab;
470 
471 	/**
472 	 * Preallocated grant table copy descriptor for TX operations.
473 	 * Access must be protected by tx_lock
474 	 */
475 	gnttab_copy_table	tx_gnttab;
476 
477 #ifdef XENHVM
478 	/**
479 	 * Resource representing allocated physical address space
480 	 * associated with our per-instance kva region.
481 	 */
482 	struct resource		*pseudo_phys_res;
483 
484 	/** Resource id for allocated physical address space. */
485 	int			pseudo_phys_res_id;
486 #endif
487 
488 	/** Ring mapping and interrupt configuration data. */
489 	struct xnb_ring_config	ring_configs[XNB_NUM_RING_TYPES];
490 
491 	/**
492 	 * Global pool of kva used for mapping remote domain ring
493 	 * and I/O transaction data.
494 	 */
495 	vm_offset_t		kva;
496 
497 	/** Psuedo-physical address corresponding to kva. */
498 	uint64_t		gnt_base_addr;
499 
500 	/** Various configuration and state bit flags. */
501 	xnb_flag_t		flags;
502 
503 	/** Mutex protecting per-instance data in the receive path. */
504 	struct mtx		rx_lock;
505 
506 	/** Mutex protecting per-instance data in the softc structure. */
507 	struct mtx		sc_lock;
508 
509 	/** Mutex protecting per-instance data in the transmit path. */
510 	struct mtx		tx_lock;
511 
512 	/** The size of the global kva pool. */
513 	int			kva_size;
514 
515 	/** Name of the interface */
516 	char			 if_name[IFNAMSIZ];
517 };
518 
519 /*---------------------------- Debugging functions ---------------------------*/
520 #ifdef XNB_DEBUG
521 static void __unused
522 xnb_dump_gnttab_copy(const struct gnttab_copy *entry)
523 {
524 	if (entry == NULL) {
525 		printf("NULL grant table pointer\n");
526 		return;
527 	}
528 
529 	if (entry->flags & GNTCOPY_dest_gref)
530 		printf("gnttab dest ref=\t%u\n", entry->dest.u.ref);
531 	else
532 		printf("gnttab dest gmfn=\t%lu\n", entry->dest.u.gmfn);
533 	printf("gnttab dest offset=\t%hu\n", entry->dest.offset);
534 	printf("gnttab dest domid=\t%hu\n", entry->dest.domid);
535 	if (entry->flags & GNTCOPY_source_gref)
536 		printf("gnttab source ref=\t%u\n", entry->source.u.ref);
537 	else
538 		printf("gnttab source gmfn=\t%lu\n", entry->source.u.gmfn);
539 	printf("gnttab source offset=\t%hu\n", entry->source.offset);
540 	printf("gnttab source domid=\t%hu\n", entry->source.domid);
541 	printf("gnttab len=\t%hu\n", entry->len);
542 	printf("gnttab flags=\t%hu\n", entry->flags);
543 	printf("gnttab status=\t%hd\n", entry->status);
544 }
545 
546 static int
547 xnb_dump_rings(SYSCTL_HANDLER_ARGS)
548 {
549 	static char results[720];
550 	struct xnb_softc const* xnb = (struct xnb_softc*)arg1;
551 	netif_rx_back_ring_t const* rxb =
552 		&xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
553 	netif_tx_back_ring_t const* txb =
554 		&xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
555 
556 	/* empty the result strings */
557 	results[0] = 0;
558 
559 	if ( !txb || !txb->sring || !rxb || !rxb->sring )
560 		return (SYSCTL_OUT(req, results, strnlen(results, 720)));
561 
562 	snprintf(results, 720,
563 	    "\n\t%35s %18s\n"	/* TX, RX */
564 	    "\t%16s %18d %18d\n"	/* req_cons */
565 	    "\t%16s %18d %18d\n"	/* nr_ents */
566 	    "\t%16s %18d %18d\n"	/* rsp_prod_pvt */
567 	    "\t%16s %18p %18p\n"	/* sring */
568 	    "\t%16s %18d %18d\n"	/* req_prod */
569 	    "\t%16s %18d %18d\n"	/* req_event */
570 	    "\t%16s %18d %18d\n"	/* rsp_prod */
571 	    "\t%16s %18d %18d\n",	/* rsp_event */
572 	    "TX", "RX",
573 	    "req_cons", txb->req_cons, rxb->req_cons,
574 	    "nr_ents", txb->nr_ents, rxb->nr_ents,
575 	    "rsp_prod_pvt", txb->rsp_prod_pvt, rxb->rsp_prod_pvt,
576 	    "sring", txb->sring, rxb->sring,
577 	    "sring->req_prod", txb->sring->req_prod, rxb->sring->req_prod,
578 	    "sring->req_event", txb->sring->req_event, rxb->sring->req_event,
579 	    "sring->rsp_prod", txb->sring->rsp_prod, rxb->sring->rsp_prod,
580 	    "sring->rsp_event", txb->sring->rsp_event, rxb->sring->rsp_event);
581 
582 	return (SYSCTL_OUT(req, results, strnlen(results, 720)));
583 }
584 
585 static void __unused
586 xnb_dump_mbuf(const struct mbuf *m)
587 {
588 	int len;
589 	uint8_t *d;
590 	if (m == NULL)
591 		return;
592 
593 	printf("xnb_dump_mbuf:\n");
594 	if (m->m_flags & M_PKTHDR) {
595 		printf("    flowid=%10d, csum_flags=%#8x, csum_data=%#8x, "
596 		       "tso_segsz=%5hd\n",
597 		       m->m_pkthdr.flowid, (int)m->m_pkthdr.csum_flags,
598 		       m->m_pkthdr.csum_data, m->m_pkthdr.tso_segsz);
599 		printf("    rcvif=%16p,  len=%19d\n",
600 		       m->m_pkthdr.rcvif, m->m_pkthdr.len);
601 	}
602 	printf("    m_next=%16p, m_nextpk=%16p, m_data=%16p\n",
603 	       m->m_next, m->m_nextpkt, m->m_data);
604 	printf("    m_len=%17d, m_flags=%#15x, m_type=%18u\n",
605 	       m->m_len, m->m_flags, m->m_type);
606 
607 	len = m->m_len;
608 	d = mtod(m, uint8_t*);
609 	while (len > 0) {
610 		int i;
611 		printf("                ");
612 		for (i = 0; (i < 16) && (len > 0); i++, len--) {
613 			printf("%02hhx ", *(d++));
614 		}
615 		printf("\n");
616 	}
617 }
618 #endif /* XNB_DEBUG */
619 
620 /*------------------------ Inter-Domain Communication ------------------------*/
621 /**
622  * Free dynamically allocated KVA or pseudo-physical address allocations.
623  *
624  * \param xnb  Per-instance xnb configuration structure.
625  */
626 static void
627 xnb_free_communication_mem(struct xnb_softc *xnb)
628 {
629 	if (xnb->kva != 0) {
630 #ifndef XENHVM
631 		kva_free(xnb->kva, xnb->kva_size);
632 #else
633 		if (xnb->pseudo_phys_res != NULL) {
634 			bus_release_resource(xnb->dev, SYS_RES_MEMORY,
635 			    xnb->pseudo_phys_res_id,
636 			    xnb->pseudo_phys_res);
637 			xnb->pseudo_phys_res = NULL;
638 		}
639 #endif /* XENHVM */
640 	}
641 	xnb->kva = 0;
642 	xnb->gnt_base_addr = 0;
643 }
644 
645 /**
646  * Cleanup all inter-domain communication mechanisms.
647  *
648  * \param xnb  Per-instance xnb configuration structure.
649  */
650 static int
651 xnb_disconnect(struct xnb_softc *xnb)
652 {
653 	struct gnttab_unmap_grant_ref gnts[XNB_NUM_RING_TYPES];
654 	int error;
655 	int i;
656 
657 	if (xnb->xen_intr_handle != NULL)
658 		xen_intr_unbind(&xnb->xen_intr_handle);
659 
660 	/*
661 	 * We may still have another thread currently processing requests.  We
662 	 * must acquire the rx and tx locks to make sure those threads are done,
663 	 * but we can release those locks as soon as we acquire them, because no
664 	 * more interrupts will be arriving.
665 	 */
666 	mtx_lock(&xnb->tx_lock);
667 	mtx_unlock(&xnb->tx_lock);
668 	mtx_lock(&xnb->rx_lock);
669 	mtx_unlock(&xnb->rx_lock);
670 
671 	/* Free malloc'd softc member variables */
672 	if (xnb->bridge != NULL) {
673 		free(xnb->bridge, M_XENSTORE);
674 		xnb->bridge = NULL;
675 	}
676 
677 	/* All request processing has stopped, so unmap the rings */
678 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
679 		gnts[i].host_addr = xnb->ring_configs[i].gnt_addr;
680 		gnts[i].dev_bus_addr = xnb->ring_configs[i].bus_addr;
681 		gnts[i].handle = xnb->ring_configs[i].handle;
682 	}
683 	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, gnts,
684 					  XNB_NUM_RING_TYPES);
685 	KASSERT(error == 0, ("Grant table unmap op failed (%d)", error));
686 
687 	xnb_free_communication_mem(xnb);
688 	/*
689 	 * Zero the ring config structs because the pointers, handles, and
690 	 * grant refs contained therein are no longer valid.
691 	 */
692 	bzero(&xnb->ring_configs[XNB_RING_TYPE_TX],
693 	    sizeof(struct xnb_ring_config));
694 	bzero(&xnb->ring_configs[XNB_RING_TYPE_RX],
695 	    sizeof(struct xnb_ring_config));
696 
697 	xnb->flags &= ~XNBF_RING_CONNECTED;
698 	return (0);
699 }
700 
701 /**
702  * Map a single shared memory ring into domain local address space and
703  * initialize its control structure
704  *
705  * \param xnb	Per-instance xnb configuration structure
706  * \param ring_type	Array index of this ring in the xnb's array of rings
707  * \return 	An errno
708  */
709 static int
710 xnb_connect_ring(struct xnb_softc *xnb, xnb_ring_type_t ring_type)
711 {
712 	struct gnttab_map_grant_ref gnt;
713 	struct xnb_ring_config *ring = &xnb->ring_configs[ring_type];
714 	int error;
715 
716 	/* TX ring type = 0, RX =1 */
717 	ring->va = xnb->kva + ring_type * PAGE_SIZE;
718 	ring->gnt_addr = xnb->gnt_base_addr + ring_type * PAGE_SIZE;
719 
720 	gnt.host_addr = ring->gnt_addr;
721 	gnt.flags     = GNTMAP_host_map;
722 	gnt.ref       = ring->ring_ref;
723 	gnt.dom       = xnb->otherend_id;
724 
725 	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, &gnt, 1);
726 	if (error != 0)
727 		panic("netback: Ring page grant table op failed (%d)", error);
728 
729 	if (gnt.status != 0) {
730 		ring->va = 0;
731 		error = EACCES;
732 		xenbus_dev_fatal(xnb->dev, error,
733 				 "Ring shared page mapping failed. "
734 				 "Status %d.", gnt.status);
735 	} else {
736 		ring->handle = gnt.handle;
737 		ring->bus_addr = gnt.dev_bus_addr;
738 
739 		if (ring_type == XNB_RING_TYPE_TX) {
740 			BACK_RING_INIT(&ring->back_ring.tx_ring,
741 			    (netif_tx_sring_t*)ring->va,
742 			    ring->ring_pages * PAGE_SIZE);
743 		} else if (ring_type == XNB_RING_TYPE_RX) {
744 			BACK_RING_INIT(&ring->back_ring.rx_ring,
745 			    (netif_rx_sring_t*)ring->va,
746 			    ring->ring_pages * PAGE_SIZE);
747 		} else {
748 			xenbus_dev_fatal(xnb->dev, error,
749 				 "Unknown ring type %d", ring_type);
750 		}
751 	}
752 
753 	return error;
754 }
755 
756 /**
757  * Setup the shared memory rings and bind an interrupt to the event channel
758  * used to notify us of ring changes.
759  *
760  * \param xnb  Per-instance xnb configuration structure.
761  */
762 static int
763 xnb_connect_comms(struct xnb_softc *xnb)
764 {
765 	int	error;
766 	xnb_ring_type_t i;
767 
768 	if ((xnb->flags & XNBF_RING_CONNECTED) != 0)
769 		return (0);
770 
771 	/*
772 	 * Kva for our rings are at the tail of the region of kva allocated
773 	 * by xnb_alloc_communication_mem().
774 	 */
775 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
776 		error = xnb_connect_ring(xnb, i);
777 		if (error != 0)
778 	  		return error;
779 	}
780 
781 	xnb->flags |= XNBF_RING_CONNECTED;
782 
783 	error = xen_intr_bind_remote_port(xnb->dev,
784 					  xnb->otherend_id,
785 					  xnb->evtchn,
786 					  /*filter*/NULL,
787 					  xnb_intr, /*arg*/xnb,
788 					  INTR_TYPE_BIO | INTR_MPSAFE,
789 					  &xnb->xen_intr_handle);
790 	if (error != 0) {
791 		(void)xnb_disconnect(xnb);
792 		xenbus_dev_fatal(xnb->dev, error, "binding event channel");
793 		return (error);
794 	}
795 
796 	DPRINTF("rings connected!\n");
797 
798 	return (0);
799 }
800 
801 /**
802  * Size KVA and pseudo-physical address allocations based on negotiated
803  * values for the size and number of I/O requests, and the size of our
804  * communication ring.
805  *
806  * \param xnb  Per-instance xnb configuration structure.
807  *
808  * These address spaces are used to dynamically map pages in the
809  * front-end's domain into our own.
810  */
811 static int
812 xnb_alloc_communication_mem(struct xnb_softc *xnb)
813 {
814 	xnb_ring_type_t i;
815 
816 	xnb->kva_size = 0;
817 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
818 		xnb->kva_size += xnb->ring_configs[i].ring_pages * PAGE_SIZE;
819 	}
820 #ifndef XENHVM
821 	xnb->kva = kva_alloc(xnb->kva_size);
822 	if (xnb->kva == 0)
823 		return (ENOMEM);
824 	xnb->gnt_base_addr = xnb->kva;
825 #else /* defined XENHVM */
826 	/*
827 	 * Reserve a range of pseudo physical memory that we can map
828 	 * into kva.  These pages will only be backed by machine
829 	 * pages ("real memory") during the lifetime of front-end requests
830 	 * via grant table operations.  We will map the netif tx and rx rings
831 	 * into this space.
832 	 */
833 	xnb->pseudo_phys_res_id = 0;
834 	xnb->pseudo_phys_res = bus_alloc_resource(xnb->dev, SYS_RES_MEMORY,
835 						  &xnb->pseudo_phys_res_id,
836 						  0, ~0, xnb->kva_size,
837 						  RF_ACTIVE);
838 	if (xnb->pseudo_phys_res == NULL) {
839 		xnb->kva = 0;
840 		return (ENOMEM);
841 	}
842 	xnb->kva = (vm_offset_t)rman_get_virtual(xnb->pseudo_phys_res);
843 	xnb->gnt_base_addr = rman_get_start(xnb->pseudo_phys_res);
844 #endif /* !defined XENHVM */
845 	return (0);
846 }
847 
848 /**
849  * Collect information from the XenStore related to our device and its frontend
850  *
851  * \param xnb  Per-instance xnb configuration structure.
852  */
853 static int
854 xnb_collect_xenstore_info(struct xnb_softc *xnb)
855 {
856 	/**
857 	 * \todo Linux collects the following info.  We should collect most
858 	 * of this, too:
859 	 * "feature-rx-notify"
860 	 */
861 	const char *otherend_path;
862 	const char *our_path;
863 	int err;
864 	unsigned int rx_copy, bridge_len;
865 	uint8_t no_csum_offload;
866 
867 	otherend_path = xenbus_get_otherend_path(xnb->dev);
868 	our_path = xenbus_get_node(xnb->dev);
869 
870 	/* Collect the critical communication parameters */
871 	err = xs_gather(XST_NIL, otherend_path,
872 	    "tx-ring-ref", "%l" PRIu32,
873 	    	&xnb->ring_configs[XNB_RING_TYPE_TX].ring_ref,
874 	    "rx-ring-ref", "%l" PRIu32,
875 	    	&xnb->ring_configs[XNB_RING_TYPE_RX].ring_ref,
876 	    "event-channel", "%" PRIu32, &xnb->evtchn,
877 	    NULL);
878 	if (err != 0) {
879 		xenbus_dev_fatal(xnb->dev, err,
880 				 "Unable to retrieve ring information from "
881 				 "frontend %s.  Unable to connect.",
882 				 otherend_path);
883 		return (err);
884 	}
885 
886 	/* Collect the handle from xenstore */
887 	err = xs_scanf(XST_NIL, our_path, "handle", NULL, "%li", &xnb->handle);
888 	if (err != 0) {
889 		xenbus_dev_fatal(xnb->dev, err,
890 		    "Error reading handle from frontend %s.  "
891 		    "Unable to connect.", otherend_path);
892 	}
893 
894 	/*
895 	 * Collect the bridgename, if any.  We do not need bridge_len; we just
896 	 * throw it away
897 	 */
898 	err = xs_read(XST_NIL, our_path, "bridge", &bridge_len,
899 		      (void**)&xnb->bridge);
900 	if (err != 0)
901 		xnb->bridge = NULL;
902 
903 	/*
904 	 * Does the frontend request that we use rx copy?  If not, return an
905 	 * error because this driver only supports rx copy.
906 	 */
907 	err = xs_scanf(XST_NIL, otherend_path, "request-rx-copy", NULL,
908 		       "%" PRIu32, &rx_copy);
909 	if (err == ENOENT) {
910 		err = 0;
911 	 	rx_copy = 0;
912 	}
913 	if (err < 0) {
914 		xenbus_dev_fatal(xnb->dev, err, "reading %s/request-rx-copy",
915 				 otherend_path);
916 		return err;
917 	}
918 	/**
919 	 * \todo: figure out the exact meaning of this feature, and when
920 	 * the frontend will set it to true.  It should be set to true
921 	 * at some point
922 	 */
923 /*        if (!rx_copy)*/
924 /*          return EOPNOTSUPP;*/
925 
926 	/** \todo Collect the rx notify feature */
927 
928 	/*  Collect the feature-sg. */
929 	if (xs_scanf(XST_NIL, otherend_path, "feature-sg", NULL,
930 		     "%hhu", &xnb->can_sg) < 0)
931 		xnb->can_sg = 0;
932 
933 	/* Collect remaining frontend features */
934 	if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4", NULL,
935 		     "%hhu", &xnb->gso) < 0)
936 		xnb->gso = 0;
937 
938 	if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4-prefix", NULL,
939 		     "%hhu", &xnb->gso_prefix) < 0)
940 		xnb->gso_prefix = 0;
941 
942 	if (xs_scanf(XST_NIL, otherend_path, "feature-no-csum-offload", NULL,
943 		     "%hhu", &no_csum_offload) < 0)
944 		no_csum_offload = 0;
945 	xnb->ip_csum = (no_csum_offload == 0);
946 
947 	return (0);
948 }
949 
950 /**
951  * Supply information about the physical device to the frontend
952  * via XenBus.
953  *
954  * \param xnb  Per-instance xnb configuration structure.
955  */
956 static int
957 xnb_publish_backend_info(struct xnb_softc *xnb)
958 {
959 	struct xs_transaction xst;
960 	const char *our_path;
961 	int error;
962 
963 	our_path = xenbus_get_node(xnb->dev);
964 
965 	do {
966 		error = xs_transaction_start(&xst);
967 		if (error != 0) {
968 			xenbus_dev_fatal(xnb->dev, error,
969 					 "Error publishing backend info "
970 					 "(start transaction)");
971 			break;
972 		}
973 
974 		error = xs_printf(xst, our_path, "feature-sg",
975 				  "%d", XNB_SG);
976 		if (error != 0)
977 			break;
978 
979 		error = xs_printf(xst, our_path, "feature-gso-tcpv4",
980 				  "%d", XNB_GSO_TCPV4);
981 		if (error != 0)
982 			break;
983 
984 		error = xs_printf(xst, our_path, "feature-rx-copy",
985 				  "%d", XNB_RX_COPY);
986 		if (error != 0)
987 			break;
988 
989 		error = xs_printf(xst, our_path, "feature-rx-flip",
990 				  "%d", XNB_RX_FLIP);
991 		if (error != 0)
992 			break;
993 
994 		error = xs_transaction_end(xst, 0);
995 		if (error != 0 && error != EAGAIN) {
996 			xenbus_dev_fatal(xnb->dev, error, "ending transaction");
997 			break;
998 		}
999 
1000 	} while (error == EAGAIN);
1001 
1002 	return (error);
1003 }
1004 
1005 /**
1006  * Connect to our netfront peer now that it has completed publishing
1007  * its configuration into the XenStore.
1008  *
1009  * \param xnb  Per-instance xnb configuration structure.
1010  */
1011 static void
1012 xnb_connect(struct xnb_softc *xnb)
1013 {
1014 	int	error;
1015 
1016 	if (xenbus_get_state(xnb->dev) == XenbusStateConnected)
1017 		return;
1018 
1019 	if (xnb_collect_xenstore_info(xnb) != 0)
1020 		return;
1021 
1022 	xnb->flags &= ~XNBF_SHUTDOWN;
1023 
1024 	/* Read front end configuration. */
1025 
1026 	/* Allocate resources whose size depends on front-end configuration. */
1027 	error = xnb_alloc_communication_mem(xnb);
1028 	if (error != 0) {
1029 		xenbus_dev_fatal(xnb->dev, error,
1030 				 "Unable to allocate communication memory");
1031 		return;
1032 	}
1033 
1034 	/*
1035 	 * Connect communication channel.
1036 	 */
1037 	error = xnb_connect_comms(xnb);
1038 	if (error != 0) {
1039 		/* Specific errors are reported by xnb_connect_comms(). */
1040 		return;
1041 	}
1042 	xnb->carrier = 1;
1043 
1044 	/* Ready for I/O. */
1045 	xenbus_set_state(xnb->dev, XenbusStateConnected);
1046 }
1047 
1048 /*-------------------------- Device Teardown Support -------------------------*/
1049 /**
1050  * Perform device shutdown functions.
1051  *
1052  * \param xnb  Per-instance xnb configuration structure.
1053  *
1054  * Mark this instance as shutting down, wait for any active requests
1055  * to drain, disconnect from the front-end, and notify any waiters (e.g.
1056  * a thread invoking our detach method) that detach can now proceed.
1057  */
1058 static int
1059 xnb_shutdown(struct xnb_softc *xnb)
1060 {
1061 	/*
1062 	 * Due to the need to drop our mutex during some
1063 	 * xenbus operations, it is possible for two threads
1064 	 * to attempt to close out shutdown processing at
1065 	 * the same time.  Tell the caller that hits this
1066 	 * race to try back later.
1067 	 */
1068 	if ((xnb->flags & XNBF_IN_SHUTDOWN) != 0)
1069 		return (EAGAIN);
1070 
1071 	xnb->flags |= XNBF_SHUTDOWN;
1072 
1073 	xnb->flags |= XNBF_IN_SHUTDOWN;
1074 
1075 	mtx_unlock(&xnb->sc_lock);
1076 	/* Free the network interface */
1077 	xnb->carrier = 0;
1078 	if (xnb->xnb_ifp != NULL) {
1079 		ether_ifdetach(xnb->xnb_ifp);
1080 		if_free(xnb->xnb_ifp);
1081 		xnb->xnb_ifp = NULL;
1082 	}
1083 	mtx_lock(&xnb->sc_lock);
1084 
1085 	xnb_disconnect(xnb);
1086 
1087 	mtx_unlock(&xnb->sc_lock);
1088 	if (xenbus_get_state(xnb->dev) < XenbusStateClosing)
1089 		xenbus_set_state(xnb->dev, XenbusStateClosing);
1090 	mtx_lock(&xnb->sc_lock);
1091 
1092 	xnb->flags &= ~XNBF_IN_SHUTDOWN;
1093 
1094 
1095 	/* Indicate to xnb_detach() that is it safe to proceed. */
1096 	wakeup(xnb);
1097 
1098 	return (0);
1099 }
1100 
1101 /**
1102  * Report an attach time error to the console and Xen, and cleanup
1103  * this instance by forcing immediate detach processing.
1104  *
1105  * \param xnb  Per-instance xnb configuration structure.
1106  * \param err  Errno describing the error.
1107  * \param fmt  Printf style format and arguments
1108  */
1109 static void
1110 xnb_attach_failed(struct xnb_softc *xnb, int err, const char *fmt, ...)
1111 {
1112 	va_list ap;
1113 	va_list ap_hotplug;
1114 
1115 	va_start(ap, fmt);
1116 	va_copy(ap_hotplug, ap);
1117 	xs_vprintf(XST_NIL, xenbus_get_node(xnb->dev),
1118 		  "hotplug-error", fmt, ap_hotplug);
1119 	va_end(ap_hotplug);
1120 	xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1121 		  "hotplug-status", "error");
1122 
1123 	xenbus_dev_vfatal(xnb->dev, err, fmt, ap);
1124 	va_end(ap);
1125 
1126 	xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1127 		  "online", "0");
1128 	xnb_detach(xnb->dev);
1129 }
1130 
1131 /*---------------------------- NewBus Entrypoints ----------------------------*/
1132 /**
1133  * Inspect a XenBus device and claim it if is of the appropriate type.
1134  *
1135  * \param dev  NewBus device object representing a candidate XenBus device.
1136  *
1137  * \return  0 for success, errno codes for failure.
1138  */
1139 static int
1140 xnb_probe(device_t dev)
1141 {
1142 	 if (!strcmp(xenbus_get_type(dev), "vif")) {
1143 		DPRINTF("Claiming device %d, %s\n", device_get_unit(dev),
1144 		    devclass_get_name(device_get_devclass(dev)));
1145 		device_set_desc(dev, "Backend Virtual Network Device");
1146 		device_quiet(dev);
1147 		return (0);
1148 	}
1149 	return (ENXIO);
1150 }
1151 
1152 /**
1153  * Setup sysctl variables to control various Network Back parameters.
1154  *
1155  * \param xnb  Xen Net Back softc.
1156  *
1157  */
1158 static void
1159 xnb_setup_sysctl(struct xnb_softc *xnb)
1160 {
1161 	struct sysctl_ctx_list *sysctl_ctx = NULL;
1162 	struct sysctl_oid      *sysctl_tree = NULL;
1163 
1164 	sysctl_ctx = device_get_sysctl_ctx(xnb->dev);
1165 	if (sysctl_ctx == NULL)
1166 		return;
1167 
1168 	sysctl_tree = device_get_sysctl_tree(xnb->dev);
1169 	if (sysctl_tree == NULL)
1170 		return;
1171 
1172 #ifdef XNB_DEBUG
1173 	SYSCTL_ADD_PROC(sysctl_ctx,
1174 			SYSCTL_CHILDREN(sysctl_tree),
1175 			OID_AUTO,
1176 			"unit_test_results",
1177 			CTLTYPE_STRING | CTLFLAG_RD,
1178 			xnb,
1179 			0,
1180 			xnb_unit_test_main,
1181 			"A",
1182 			"Results of builtin unit tests");
1183 
1184 	SYSCTL_ADD_PROC(sysctl_ctx,
1185 			SYSCTL_CHILDREN(sysctl_tree),
1186 			OID_AUTO,
1187 			"dump_rings",
1188 			CTLTYPE_STRING | CTLFLAG_RD,
1189 			xnb,
1190 			0,
1191 			xnb_dump_rings,
1192 			"A",
1193 			"Xennet Back Rings");
1194 #endif /* XNB_DEBUG */
1195 }
1196 
1197 /**
1198  * Create a network device.
1199  * @param handle device handle
1200  */
1201 int
1202 create_netdev(device_t dev)
1203 {
1204 	struct ifnet *ifp;
1205 	struct xnb_softc *xnb;
1206 	int err = 0;
1207 	uint32_t handle;
1208 
1209 	xnb = device_get_softc(dev);
1210 	mtx_init(&xnb->sc_lock, "xnb_softc", "xen netback softc lock", MTX_DEF);
1211 	mtx_init(&xnb->tx_lock, "xnb_tx", "xen netback tx lock", MTX_DEF);
1212 	mtx_init(&xnb->rx_lock, "xnb_rx", "xen netback rx lock", MTX_DEF);
1213 
1214 	xnb->dev = dev;
1215 
1216 	ifmedia_init(&xnb->sc_media, 0, xnb_ifmedia_upd, xnb_ifmedia_sts);
1217 	ifmedia_add(&xnb->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
1218 	ifmedia_set(&xnb->sc_media, IFM_ETHER|IFM_MANUAL);
1219 
1220 	/*
1221 	 * Set the MAC address to a dummy value (00:00:00:00:00),
1222 	 * if the MAC address of the host-facing interface is set
1223 	 * to the same as the guest-facing one (the value found in
1224 	 * xenstore), the bridge would stop delivering packets to
1225 	 * us because it would see that the destination address of
1226 	 * the packet is the same as the interface, and so the bridge
1227 	 * would expect the packet has already been delivered locally
1228 	 * (and just drop it).
1229 	 */
1230 	bzero(&xnb->mac[0], sizeof(xnb->mac));
1231 
1232 	/* The interface will be named using the following nomenclature:
1233 	 *
1234 	 * xnb<domid>.<handle>
1235 	 *
1236 	 * Where handle is the oder of the interface referred to the guest.
1237 	 */
1238 	err = xs_scanf(XST_NIL, xenbus_get_node(xnb->dev), "handle", NULL,
1239 		       "%" PRIu32, &handle);
1240 	if (err != 0)
1241 		return (err);
1242 	snprintf(xnb->if_name, IFNAMSIZ, "xnb%" PRIu16 ".%" PRIu32,
1243 	    xenbus_get_otherend_id(dev), handle);
1244 
1245 	if (err == 0) {
1246 		/* Set up ifnet structure */
1247 		ifp = xnb->xnb_ifp = if_alloc(IFT_ETHER);
1248 		ifp->if_softc = xnb;
1249 		if_initname(ifp, xnb->if_name,  IF_DUNIT_NONE);
1250 		ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1251 		ifp->if_ioctl = xnb_ioctl;
1252 		ifp->if_output = ether_output;
1253 		ifp->if_start = xnb_start;
1254 #ifdef notyet
1255 		ifp->if_watchdog = xnb_watchdog;
1256 #endif
1257 		ifp->if_init = xnb_ifinit;
1258 		ifp->if_mtu = ETHERMTU;
1259 		ifp->if_snd.ifq_maxlen = NET_RX_RING_SIZE - 1;
1260 
1261 		ifp->if_hwassist = XNB_CSUM_FEATURES;
1262 		ifp->if_capabilities = IFCAP_HWCSUM;
1263 		ifp->if_capenable = IFCAP_HWCSUM;
1264 
1265 		ether_ifattach(ifp, xnb->mac);
1266 		xnb->carrier = 0;
1267 	}
1268 
1269 	return err;
1270 }
1271 
1272 /**
1273  * Attach to a XenBus device that has been claimed by our probe routine.
1274  *
1275  * \param dev  NewBus device object representing this Xen Net Back instance.
1276  *
1277  * \return  0 for success, errno codes for failure.
1278  */
1279 static int
1280 xnb_attach(device_t dev)
1281 {
1282 	struct xnb_softc *xnb;
1283 	int	error;
1284 	xnb_ring_type_t	i;
1285 
1286 	error = create_netdev(dev);
1287 	if (error != 0) {
1288 		xenbus_dev_fatal(dev, error, "creating netdev");
1289 		return (error);
1290 	}
1291 
1292 	DPRINTF("Attaching to %s\n", xenbus_get_node(dev));
1293 
1294 	/*
1295 	 * Basic initialization.
1296 	 * After this block it is safe to call xnb_detach()
1297 	 * to clean up any allocated data for this instance.
1298 	 */
1299 	xnb = device_get_softc(dev);
1300 	xnb->otherend_id = xenbus_get_otherend_id(dev);
1301 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
1302 		xnb->ring_configs[i].ring_pages = 1;
1303 	}
1304 
1305 	/*
1306 	 * Setup sysctl variables.
1307 	 */
1308 	xnb_setup_sysctl(xnb);
1309 
1310 	/* Update hot-plug status to satisfy xend. */
1311 	error = xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1312 			  "hotplug-status", "connected");
1313 	if (error != 0) {
1314 		xnb_attach_failed(xnb, error, "writing %s/hotplug-status",
1315 				  xenbus_get_node(xnb->dev));
1316 		return (error);
1317 	}
1318 
1319 	if ((error = xnb_publish_backend_info(xnb)) != 0) {
1320 		/*
1321 		 * If we can't publish our data, we cannot participate
1322 		 * in this connection, and waiting for a front-end state
1323 		 * change will not help the situation.
1324 		 */
1325 		xnb_attach_failed(xnb, error,
1326 		    "Publishing backend status for %s",
1327 				  xenbus_get_node(xnb->dev));
1328 		return error;
1329 	}
1330 
1331 	/* Tell the front end that we are ready to connect. */
1332 	xenbus_set_state(dev, XenbusStateInitWait);
1333 
1334 	return (0);
1335 }
1336 
1337 /**
1338  * Detach from a net back device instance.
1339  *
1340  * \param dev  NewBus device object representing this Xen Net Back instance.
1341  *
1342  * \return  0 for success, errno codes for failure.
1343  *
1344  * \note A net back device may be detached at any time in its life-cycle,
1345  *       including part way through the attach process.  For this reason,
1346  *       initialization order and the intialization state checks in this
1347  *       routine must be carefully coupled so that attach time failures
1348  *       are gracefully handled.
1349  */
1350 static int
1351 xnb_detach(device_t dev)
1352 {
1353 	struct xnb_softc *xnb;
1354 
1355 	DPRINTF("\n");
1356 
1357 	xnb = device_get_softc(dev);
1358 	mtx_lock(&xnb->sc_lock);
1359 	while (xnb_shutdown(xnb) == EAGAIN) {
1360 		msleep(xnb, &xnb->sc_lock, /*wakeup prio unchanged*/0,
1361 		       "xnb_shutdown", 0);
1362 	}
1363 	mtx_unlock(&xnb->sc_lock);
1364 	DPRINTF("\n");
1365 
1366 	mtx_destroy(&xnb->tx_lock);
1367 	mtx_destroy(&xnb->rx_lock);
1368 	mtx_destroy(&xnb->sc_lock);
1369 	return (0);
1370 }
1371 
1372 /**
1373  * Prepare this net back device for suspension of this VM.
1374  *
1375  * \param dev  NewBus device object representing this Xen net Back instance.
1376  *
1377  * \return  0 for success, errno codes for failure.
1378  */
1379 static int
1380 xnb_suspend(device_t dev)
1381 {
1382 	return (0);
1383 }
1384 
1385 /**
1386  * Perform any processing required to recover from a suspended state.
1387  *
1388  * \param dev  NewBus device object representing this Xen Net Back instance.
1389  *
1390  * \return  0 for success, errno codes for failure.
1391  */
1392 static int
1393 xnb_resume(device_t dev)
1394 {
1395 	return (0);
1396 }
1397 
1398 /**
1399  * Handle state changes expressed via the XenStore by our front-end peer.
1400  *
1401  * \param dev             NewBus device object representing this Xen
1402  *                        Net Back instance.
1403  * \param frontend_state  The new state of the front-end.
1404  *
1405  * \return  0 for success, errno codes for failure.
1406  */
1407 static void
1408 xnb_frontend_changed(device_t dev, XenbusState frontend_state)
1409 {
1410 	struct xnb_softc *xnb;
1411 
1412 	xnb = device_get_softc(dev);
1413 
1414 	DPRINTF("frontend_state=%s, xnb_state=%s\n",
1415 	        xenbus_strstate(frontend_state),
1416 		xenbus_strstate(xenbus_get_state(xnb->dev)));
1417 
1418 	switch (frontend_state) {
1419 	case XenbusStateInitialising:
1420 		break;
1421 	case XenbusStateInitialised:
1422 	case XenbusStateConnected:
1423 		xnb_connect(xnb);
1424 		break;
1425 	case XenbusStateClosing:
1426 	case XenbusStateClosed:
1427 		mtx_lock(&xnb->sc_lock);
1428 		xnb_shutdown(xnb);
1429 		mtx_unlock(&xnb->sc_lock);
1430 		if (frontend_state == XenbusStateClosed)
1431 			xenbus_set_state(xnb->dev, XenbusStateClosed);
1432 		break;
1433 	default:
1434 		xenbus_dev_fatal(xnb->dev, EINVAL, "saw state %d at frontend",
1435 				 frontend_state);
1436 		break;
1437 	}
1438 }
1439 
1440 
1441 /*---------------------------- Request Processing ----------------------------*/
1442 /**
1443  * Interrupt handler bound to the shared ring's event channel.
1444  * Entry point for the xennet transmit path in netback
1445  * Transfers packets from the Xen ring to the host's generic networking stack
1446  *
1447  * \param arg  Callback argument registerd during event channel
1448  *             binding - the xnb_softc for this instance.
1449  */
1450 static void
1451 xnb_intr(void *arg)
1452 {
1453 	struct xnb_softc *xnb;
1454 	struct ifnet *ifp;
1455 	netif_tx_back_ring_t *txb;
1456 	RING_IDX req_prod_local;
1457 
1458 	xnb = (struct xnb_softc *)arg;
1459 	ifp = xnb->xnb_ifp;
1460 	txb = &xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
1461 
1462 	mtx_lock(&xnb->tx_lock);
1463 	do {
1464 		int notify;
1465 		req_prod_local = txb->sring->req_prod;
1466 		xen_rmb();
1467 
1468 		for (;;) {
1469 			struct mbuf *mbufc;
1470 			int err;
1471 
1472 			err = xnb_recv(txb, xnb->otherend_id, &mbufc, ifp,
1473 			    	       xnb->tx_gnttab);
1474 			if (err || (mbufc == NULL))
1475 				break;
1476 
1477 			/* Send the packet to the generic network stack */
1478 			(*xnb->xnb_ifp->if_input)(xnb->xnb_ifp, mbufc);
1479 		}
1480 
1481 		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(txb, notify);
1482 		if (notify != 0)
1483 			xen_intr_signal(xnb->xen_intr_handle);
1484 
1485 		txb->sring->req_event = txb->req_cons + 1;
1486 		xen_mb();
1487 	} while (txb->sring->req_prod != req_prod_local) ;
1488 	mtx_unlock(&xnb->tx_lock);
1489 
1490 	xnb_start(ifp);
1491 }
1492 
1493 
1494 /**
1495  * Build a struct xnb_pkt based on netif_tx_request's from a netif tx ring.
1496  * Will read exactly 0 or 1 packets from the ring; never a partial packet.
1497  * \param[out]	pkt	The returned packet.  If there is an error building
1498  * 			the packet, pkt.list_len will be set to 0.
1499  * \param[in]	tx_ring	Pointer to the Ring that is the input to this function
1500  * \param[in]	start	The ring index of the first potential request
1501  * \return		The number of requests consumed to build this packet
1502  */
1503 static int
1504 xnb_ring2pkt(struct xnb_pkt *pkt, const netif_tx_back_ring_t *tx_ring,
1505 	     RING_IDX start)
1506 {
1507 	/*
1508 	 * Outline:
1509 	 * 1) Initialize pkt
1510 	 * 2) Read the first request of the packet
1511 	 * 3) Read the extras
1512 	 * 4) Set cdr
1513 	 * 5) Loop on the remainder of the packet
1514 	 * 6) Finalize pkt (stuff like car_size and list_len)
1515 	 */
1516 	int idx = start;
1517 	int discard = 0;	/* whether to discard the packet */
1518 	int more_data = 0;	/* there are more request past the last one */
1519 	uint16_t cdr_size = 0;	/* accumulated size of requests 2 through n */
1520 
1521 	xnb_pkt_initialize(pkt);
1522 
1523 	/* Read the first request */
1524 	if (RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1525 		netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1526 		pkt->size = tx->size;
1527 		pkt->flags = tx->flags & ~NETTXF_more_data;
1528 		more_data = tx->flags & NETTXF_more_data;
1529 		pkt->list_len++;
1530 		pkt->car = idx;
1531 		idx++;
1532 	}
1533 
1534 	/* Read the extra info */
1535 	if ((pkt->flags & NETTXF_extra_info) &&
1536 	    RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1537 		netif_extra_info_t *ext =
1538 		    (netif_extra_info_t*) RING_GET_REQUEST(tx_ring, idx);
1539 		pkt->extra.type = ext->type;
1540 		switch (pkt->extra.type) {
1541 			case XEN_NETIF_EXTRA_TYPE_GSO:
1542 				pkt->extra.u.gso = ext->u.gso;
1543 				break;
1544 			default:
1545 				/*
1546 				 * The reference Linux netfront driver will
1547 				 * never set any other extra.type.  So we don't
1548 				 * know what to do with it.  Let's print an
1549 				 * error, then consume and discard the packet
1550 				 */
1551 				printf("xnb(%s:%d): Unknown extra info type %d."
1552 				       "  Discarding packet\n",
1553 				       __func__, __LINE__, pkt->extra.type);
1554 				xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring,
1555 				    start));
1556 				xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring,
1557 				    idx));
1558 				discard = 1;
1559 				break;
1560 		}
1561 
1562 		pkt->extra.flags = ext->flags;
1563 		if (ext->flags & XEN_NETIF_EXTRA_FLAG_MORE) {
1564 			/*
1565 			 * The reference linux netfront driver never sets this
1566 			 * flag (nor does any other known netfront).  So we
1567 			 * will discard the packet.
1568 			 */
1569 			printf("xnb(%s:%d): Request sets "
1570 			    "XEN_NETIF_EXTRA_FLAG_MORE, but we can't handle "
1571 			    "that\n", __func__, __LINE__);
1572 			xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1573 			xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1574 			discard = 1;
1575 		}
1576 
1577 		idx++;
1578 	}
1579 
1580 	/* Set cdr.  If there is not more data, cdr is invalid */
1581 	pkt->cdr = idx;
1582 
1583 	/* Loop on remainder of packet */
1584 	while (more_data && RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1585 		netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1586 		pkt->list_len++;
1587 		cdr_size += tx->size;
1588 		if (tx->flags & ~NETTXF_more_data) {
1589 			/* There should be no other flags set at this point */
1590 			printf("xnb(%s:%d): Request sets unknown flags %d "
1591 			    "after the 1st request in the packet.\n",
1592 			    __func__, __LINE__, tx->flags);
1593 			xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1594 			xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1595 		}
1596 
1597 		more_data = tx->flags & NETTXF_more_data;
1598 		idx++;
1599 	}
1600 
1601 	/* Finalize packet */
1602 	if (more_data != 0) {
1603 		/* The ring ran out of requests before finishing the packet */
1604 		xnb_pkt_invalidate(pkt);
1605 		idx = start;	/* tell caller that we consumed no requests */
1606 	} else {
1607 		/* Calculate car_size */
1608 		pkt->car_size = pkt->size - cdr_size;
1609 	}
1610 	if (discard != 0) {
1611 		xnb_pkt_invalidate(pkt);
1612 	}
1613 
1614 	return idx - start;
1615 }
1616 
1617 
1618 /**
1619  * Respond to all the requests that constituted pkt.  Builds the responses and
1620  * writes them to the ring, but doesn't push them to the shared ring.
1621  * \param[in] pkt	the packet that needs a response
1622  * \param[in] error	true if there was an error handling the packet, such
1623  * 			as in the hypervisor copy op or mbuf allocation
1624  * \param[out] ring	Responses go here
1625  */
1626 static void
1627 xnb_txpkt2rsp(const struct xnb_pkt *pkt, netif_tx_back_ring_t *ring,
1628 	      int error)
1629 {
1630 	/*
1631 	 * Outline:
1632 	 * 1) Respond to the first request
1633 	 * 2) Respond to the extra info reques
1634 	 * Loop through every remaining request in the packet, generating
1635 	 * responses that copy those requests' ids and sets the status
1636 	 * appropriately.
1637 	 */
1638 	netif_tx_request_t *tx;
1639 	netif_tx_response_t *rsp;
1640 	int i;
1641 	uint16_t status;
1642 
1643 	status = (xnb_pkt_is_valid(pkt) == 0) || error ?
1644 		NETIF_RSP_ERROR : NETIF_RSP_OKAY;
1645 	KASSERT((pkt->list_len == 0) || (ring->rsp_prod_pvt == pkt->car),
1646 	    ("Cannot respond to ring requests out of order"));
1647 
1648 	if (pkt->list_len >= 1) {
1649 		uint16_t id;
1650 		tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1651 		id = tx->id;
1652 		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1653 		rsp->id = id;
1654 		rsp->status = status;
1655 		ring->rsp_prod_pvt++;
1656 
1657 		if (pkt->flags & NETRXF_extra_info) {
1658 			rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1659 			rsp->status = NETIF_RSP_NULL;
1660 			ring->rsp_prod_pvt++;
1661 		}
1662 	}
1663 
1664 	for (i=0; i < pkt->list_len - 1; i++) {
1665 		uint16_t id;
1666 		tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1667 		id = tx->id;
1668 		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1669 		rsp->id = id;
1670 		rsp->status = status;
1671 		ring->rsp_prod_pvt++;
1672 	}
1673 }
1674 
1675 /**
1676  * Create an mbuf chain to represent a packet.  Initializes all of the headers
1677  * in the mbuf chain, but does not copy the data.  The returned chain must be
1678  * free()'d when no longer needed
1679  * \param[in]	pkt	A packet to model the mbuf chain after
1680  * \return	A newly allocated mbuf chain, possibly with clusters attached.
1681  * 		NULL on failure
1682  */
1683 static struct mbuf*
1684 xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp)
1685 {
1686 	/**
1687 	 * \todo consider using a memory pool for mbufs instead of
1688 	 * reallocating them for every packet
1689 	 */
1690 	/** \todo handle extra data */
1691 	struct mbuf *m;
1692 
1693 	m = m_getm(NULL, pkt->size, M_NOWAIT, MT_DATA);
1694 
1695 	if (m != NULL) {
1696 		m->m_pkthdr.rcvif = ifp;
1697 		if (pkt->flags & NETTXF_data_validated) {
1698 			/*
1699 			 * We lie to the host OS and always tell it that the
1700 			 * checksums are ok, because the packet is unlikely to
1701 			 * get corrupted going across domains.
1702 			 */
1703 			m->m_pkthdr.csum_flags = (
1704 				CSUM_IP_CHECKED |
1705 				CSUM_IP_VALID   |
1706 				CSUM_DATA_VALID |
1707 				CSUM_PSEUDO_HDR
1708 				);
1709 			m->m_pkthdr.csum_data = 0xffff;
1710 		}
1711 	}
1712 	return m;
1713 }
1714 
1715 /**
1716  * Build a gnttab_copy table that can be used to copy data from a pkt
1717  * to an mbufc.  Does not actually perform the copy.  Always uses gref's on
1718  * the packet side.
1719  * \param[in]	pkt	pkt's associated requests form the src for
1720  * 			the copy operation
1721  * \param[in]	mbufc	mbufc's storage forms the dest for the copy operation
1722  * \param[out]  gnttab	Storage for the returned grant table
1723  * \param[in]	txb	Pointer to the backend ring structure
1724  * \param[in]	otherend_id	The domain ID of the other end of the copy
1725  * \return 		The number of gnttab entries filled
1726  */
1727 static int
1728 xnb_txpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc,
1729 		 gnttab_copy_table gnttab, const netif_tx_back_ring_t *txb,
1730 		 domid_t otherend_id)
1731 {
1732 
1733 	const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1734 	int gnt_idx = 0;		/* index into grant table */
1735 	RING_IDX r_idx = pkt->car;	/* index into tx ring buffer */
1736 	int r_ofs = 0;	/* offset of next data within tx request's data area */
1737 	int m_ofs = 0;	/* offset of next data within mbuf's data area */
1738 	/* size in bytes that still needs to be represented in the table */
1739 	uint16_t size_remaining = pkt->size;
1740 
1741 	while (size_remaining > 0) {
1742 		const netif_tx_request_t *txq = RING_GET_REQUEST(txb, r_idx);
1743 		const size_t mbuf_space = M_TRAILINGSPACE(mbuf) - m_ofs;
1744 		const size_t req_size =
1745 			r_idx == pkt->car ? pkt->car_size : txq->size;
1746 		const size_t pkt_space = req_size - r_ofs;
1747 		/*
1748 		 * space is the largest amount of data that can be copied in the
1749 		 * grant table's next entry
1750 		 */
1751 		const size_t space = MIN(pkt_space, mbuf_space);
1752 
1753 		/* TODO: handle this error condition without panicking */
1754 		KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
1755 
1756 		gnttab[gnt_idx].source.u.ref = txq->gref;
1757 		gnttab[gnt_idx].source.domid = otherend_id;
1758 		gnttab[gnt_idx].source.offset = txq->offset + r_ofs;
1759 		gnttab[gnt_idx].dest.u.gmfn = virt_to_mfn(
1760 		    mtod(mbuf, vm_offset_t) + m_ofs);
1761 		gnttab[gnt_idx].dest.offset = virt_to_offset(
1762 		    mtod(mbuf, vm_offset_t) + m_ofs);
1763 		gnttab[gnt_idx].dest.domid = DOMID_SELF;
1764 		gnttab[gnt_idx].len = space;
1765 		gnttab[gnt_idx].flags = GNTCOPY_source_gref;
1766 
1767 		gnt_idx++;
1768 		r_ofs += space;
1769 		m_ofs += space;
1770 		size_remaining -= space;
1771 		if (req_size - r_ofs <= 0) {
1772 			/* Must move to the next tx request */
1773 			r_ofs = 0;
1774 			r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
1775 		}
1776 		if (M_TRAILINGSPACE(mbuf) - m_ofs <= 0) {
1777 			/* Must move to the next mbuf */
1778 			m_ofs = 0;
1779 			mbuf = mbuf->m_next;
1780 		}
1781 	}
1782 
1783 	return gnt_idx;
1784 }
1785 
1786 /**
1787  * Check the status of the grant copy operations, and update mbufs various
1788  * non-data fields to reflect the data present.
1789  * \param[in,out] mbufc	mbuf chain to update.  The chain must be valid and of
1790  * 			the correct length, and data should already be present
1791  * \param[in] gnttab	A grant table for a just completed copy op
1792  * \param[in] n_entries The number of valid entries in the grant table
1793  */
1794 static void
1795 xnb_update_mbufc(struct mbuf *mbufc, const gnttab_copy_table gnttab,
1796     		 int n_entries)
1797 {
1798 	struct mbuf *mbuf = mbufc;
1799 	int i;
1800 	size_t total_size = 0;
1801 
1802 	for (i = 0; i < n_entries; i++) {
1803 		KASSERT(gnttab[i].status == GNTST_okay,
1804 		    ("Some gnttab_copy entry had error status %hd\n",
1805 		    gnttab[i].status));
1806 
1807 		mbuf->m_len += gnttab[i].len;
1808 		total_size += gnttab[i].len;
1809 		if (M_TRAILINGSPACE(mbuf) <= 0) {
1810 			mbuf = mbuf->m_next;
1811 		}
1812 	}
1813 	mbufc->m_pkthdr.len = total_size;
1814 
1815 #if defined(INET) || defined(INET6)
1816 	xnb_add_mbuf_cksum(mbufc);
1817 #endif
1818 }
1819 
1820 /**
1821  * Dequeue at most one packet from the shared ring
1822  * \param[in,out] txb	Netif tx ring.  A packet will be removed from it, and
1823  * 			its private indices will be updated.  But the indices
1824  * 			will not be pushed to the shared ring.
1825  * \param[in] ifnet	Interface to which the packet will be sent
1826  * \param[in] otherend	Domain ID of the other end of the ring
1827  * \param[out] mbufc	The assembled mbuf chain, ready to send to the generic
1828  * 			networking stack
1829  * \param[in,out] gnttab Pointer to enough memory for a grant table.  We make
1830  * 			this a function parameter so that we will take less
1831  * 			stack space.
1832  * \return		An error code
1833  */
1834 static int
1835 xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend, struct mbuf **mbufc,
1836 	 struct ifnet *ifnet, gnttab_copy_table gnttab)
1837 {
1838 	struct xnb_pkt pkt;
1839 	/* number of tx requests consumed to build the last packet */
1840 	int num_consumed;
1841 	int nr_ents;
1842 
1843 	*mbufc = NULL;
1844 	num_consumed = xnb_ring2pkt(&pkt, txb, txb->req_cons);
1845 	if (num_consumed == 0)
1846 		return 0;	/* Nothing to receive */
1847 
1848 	/* update statistics independent of errors */
1849 	if_inc_counter(ifnet, IFCOUNTER_IPACKETS, 1);
1850 
1851 	/*
1852 	 * if we got here, then 1 or more requests was consumed, but the packet
1853 	 * is not necessarily valid.
1854 	 */
1855 	if (xnb_pkt_is_valid(&pkt) == 0) {
1856 		/* got a garbage packet, respond and drop it */
1857 		xnb_txpkt2rsp(&pkt, txb, 1);
1858 		txb->req_cons += num_consumed;
1859 		DPRINTF("xnb_intr: garbage packet, num_consumed=%d\n",
1860 				num_consumed);
1861 		if_inc_counter(ifnet, IFCOUNTER_IERRORS, 1);
1862 		return EINVAL;
1863 	}
1864 
1865 	*mbufc = xnb_pkt2mbufc(&pkt, ifnet);
1866 
1867 	if (*mbufc == NULL) {
1868 		/*
1869 		 * Couldn't allocate mbufs.  Respond and drop the packet.  Do
1870 		 * not consume the requests
1871 		 */
1872 		xnb_txpkt2rsp(&pkt, txb, 1);
1873 		DPRINTF("xnb_intr: Couldn't allocate mbufs, num_consumed=%d\n",
1874 		    num_consumed);
1875 		if_inc_counter(ifnet, IFCOUNTER_IQDROPS, 1);
1876 		return ENOMEM;
1877 	}
1878 
1879 	nr_ents = xnb_txpkt2gnttab(&pkt, *mbufc, gnttab, txb, otherend);
1880 
1881 	if (nr_ents > 0) {
1882 		int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
1883 		    gnttab, nr_ents);
1884 		KASSERT(hv_ret == 0,
1885 		    ("HYPERVISOR_grant_table_op returned %d\n", hv_ret));
1886 		xnb_update_mbufc(*mbufc, gnttab, nr_ents);
1887 	}
1888 
1889 	xnb_txpkt2rsp(&pkt, txb, 0);
1890 	txb->req_cons += num_consumed;
1891 	return 0;
1892 }
1893 
1894 /**
1895  * Create an xnb_pkt based on the contents of an mbuf chain.
1896  * \param[in] mbufc	mbuf chain to transform into a packet
1897  * \param[out] pkt	Storage for the newly generated xnb_pkt
1898  * \param[in] start	The ring index of the first available slot in the rx
1899  * 			ring
1900  * \param[in] space	The number of free slots in the rx ring
1901  * \retval 0		Success
1902  * \retval EINVAL	mbufc was corrupt or not convertible into a pkt
1903  * \retval EAGAIN	There was not enough space in the ring to queue the
1904  * 			packet
1905  */
1906 static int
1907 xnb_mbufc2pkt(const struct mbuf *mbufc, struct xnb_pkt *pkt,
1908 	      RING_IDX start, int space)
1909 {
1910 
1911 	int retval = 0;
1912 
1913 	if ((mbufc == NULL) ||
1914 	     ( (mbufc->m_flags & M_PKTHDR) == 0) ||
1915 	     (mbufc->m_pkthdr.len == 0)) {
1916 		xnb_pkt_invalidate(pkt);
1917 		retval = EINVAL;
1918 	} else {
1919 		int slots_required;
1920 
1921 		xnb_pkt_validate(pkt);
1922 		pkt->flags = 0;
1923 		pkt->size = mbufc->m_pkthdr.len;
1924 		pkt->car = start;
1925 		pkt->car_size = mbufc->m_len;
1926 
1927 		if (mbufc->m_pkthdr.csum_flags & CSUM_TSO) {
1928 			pkt->flags |= NETRXF_extra_info;
1929 			pkt->extra.u.gso.size = mbufc->m_pkthdr.tso_segsz;
1930 			pkt->extra.u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
1931 			pkt->extra.u.gso.pad = 0;
1932 			pkt->extra.u.gso.features = 0;
1933 			pkt->extra.type = XEN_NETIF_EXTRA_TYPE_GSO;
1934 			pkt->extra.flags = 0;
1935 			pkt->cdr = start + 2;
1936 		} else {
1937 			pkt->cdr = start + 1;
1938 		}
1939 		if (mbufc->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_DELAY_DATA)) {
1940 			pkt->flags |=
1941 			    (NETRXF_csum_blank | NETRXF_data_validated);
1942 		}
1943 
1944 		/*
1945 		 * Each ring response can have up to PAGE_SIZE of data.
1946 		 * Assume that we can defragment the mbuf chain efficiently
1947 		 * into responses so that each response but the last uses all
1948 		 * PAGE_SIZE bytes.
1949 		 */
1950 		pkt->list_len = (pkt->size + PAGE_SIZE - 1) / PAGE_SIZE;
1951 
1952 		if (pkt->list_len > 1) {
1953 			pkt->flags |= NETRXF_more_data;
1954 		}
1955 
1956 		slots_required = pkt->list_len +
1957 			(pkt->flags & NETRXF_extra_info ? 1 : 0);
1958 		if (slots_required > space) {
1959 			xnb_pkt_invalidate(pkt);
1960 			retval = EAGAIN;
1961 		}
1962 	}
1963 
1964 	return retval;
1965 }
1966 
1967 /**
1968  * Build a gnttab_copy table that can be used to copy data from an mbuf chain
1969  * to the frontend's shared buffers.  Does not actually perform the copy.
1970  * Always uses gref's on the other end's side.
1971  * \param[in]	pkt	pkt's associated responses form the dest for the copy
1972  * 			operatoin
1973  * \param[in]	mbufc	The source for the copy operation
1974  * \param[out]	gnttab	Storage for the returned grant table
1975  * \param[in]	rxb	Pointer to the backend ring structure
1976  * \param[in]	otherend_id	The domain ID of the other end of the copy
1977  * \return 		The number of gnttab entries filled
1978  */
1979 static int
1980 xnb_rxpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc,
1981 		 gnttab_copy_table gnttab, const netif_rx_back_ring_t *rxb,
1982 		 domid_t otherend_id)
1983 {
1984 
1985 	const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1986 	int gnt_idx = 0;		/* index into grant table */
1987 	RING_IDX r_idx = pkt->car;	/* index into rx ring buffer */
1988 	int r_ofs = 0;	/* offset of next data within rx request's data area */
1989 	int m_ofs = 0;	/* offset of next data within mbuf's data area */
1990 	/* size in bytes that still needs to be represented in the table */
1991 	uint16_t size_remaining;
1992 
1993 	size_remaining = (xnb_pkt_is_valid(pkt) != 0) ? pkt->size : 0;
1994 
1995 	while (size_remaining > 0) {
1996 		const netif_rx_request_t *rxq = RING_GET_REQUEST(rxb, r_idx);
1997 		const size_t mbuf_space = mbuf->m_len - m_ofs;
1998 		/* Xen shared pages have an implied size of PAGE_SIZE */
1999 		const size_t req_size = PAGE_SIZE;
2000 		const size_t pkt_space = req_size - r_ofs;
2001 		/*
2002 		 * space is the largest amount of data that can be copied in the
2003 		 * grant table's next entry
2004 		 */
2005 		const size_t space = MIN(pkt_space, mbuf_space);
2006 
2007 		/* TODO: handle this error condition without panicing */
2008 		KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
2009 
2010 		gnttab[gnt_idx].dest.u.ref = rxq->gref;
2011 		gnttab[gnt_idx].dest.domid = otherend_id;
2012 		gnttab[gnt_idx].dest.offset = r_ofs;
2013 		gnttab[gnt_idx].source.u.gmfn = virt_to_mfn(
2014 		    mtod(mbuf, vm_offset_t) + m_ofs);
2015 		gnttab[gnt_idx].source.offset = virt_to_offset(
2016 		    mtod(mbuf, vm_offset_t) + m_ofs);
2017 		gnttab[gnt_idx].source.domid = DOMID_SELF;
2018 		gnttab[gnt_idx].len = space;
2019 		gnttab[gnt_idx].flags = GNTCOPY_dest_gref;
2020 
2021 		gnt_idx++;
2022 
2023 		r_ofs += space;
2024 		m_ofs += space;
2025 		size_remaining -= space;
2026 		if (req_size - r_ofs <= 0) {
2027 			/* Must move to the next rx request */
2028 			r_ofs = 0;
2029 			r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
2030 		}
2031 		if (mbuf->m_len - m_ofs <= 0) {
2032 			/* Must move to the next mbuf */
2033 			m_ofs = 0;
2034 			mbuf = mbuf->m_next;
2035 		}
2036 	}
2037 
2038 	return gnt_idx;
2039 }
2040 
2041 /**
2042  * Generates responses for all the requests that constituted pkt.  Builds
2043  * responses and writes them to the ring, but doesn't push the shared ring
2044  * indices.
2045  * \param[in] pkt	the packet that needs a response
2046  * \param[in] gnttab	The grant copy table corresponding to this packet.
2047  * 			Used to determine how many rsp->netif_rx_response_t's to
2048  * 			generate.
2049  * \param[in] n_entries	Number of relevant entries in the grant table
2050  * \param[out] ring	Responses go here
2051  * \return		The number of RX requests that were consumed to generate
2052  * 			the responses
2053  */
2054 static int
2055 xnb_rxpkt2rsp(const struct xnb_pkt *pkt, const gnttab_copy_table gnttab,
2056     	      int n_entries, netif_rx_back_ring_t *ring)
2057 {
2058 	/*
2059 	 * This code makes the following assumptions:
2060 	 *	* All entries in gnttab set GNTCOPY_dest_gref
2061 	 *	* The entries in gnttab are grouped by their grefs: any two
2062 	 *	   entries with the same gref must be adjacent
2063 	 */
2064 	int error = 0;
2065 	int gnt_idx, i;
2066 	int n_responses = 0;
2067 	grant_ref_t last_gref = GRANT_REF_INVALID;
2068 	RING_IDX r_idx;
2069 
2070 	KASSERT(gnttab != NULL, ("Received a null granttable copy"));
2071 
2072 	/*
2073 	 * In the event of an error, we only need to send one response to the
2074 	 * netfront.  In that case, we musn't write any data to the responses
2075 	 * after the one we send.  So we must loop all the way through gnttab
2076 	 * looking for errors before we generate any responses
2077 	 *
2078 	 * Since we're looping through the grant table anyway, we'll count the
2079 	 * number of different gref's in it, which will tell us how many
2080 	 * responses to generate
2081 	 */
2082 	for (gnt_idx = 0; gnt_idx < n_entries; gnt_idx++) {
2083 		int16_t status = gnttab[gnt_idx].status;
2084 		if (status != GNTST_okay) {
2085 			DPRINTF(
2086 			    "Got error %d for hypervisor gnttab_copy status\n",
2087 			    status);
2088 			error = 1;
2089 			break;
2090 		}
2091 		if (gnttab[gnt_idx].dest.u.ref != last_gref) {
2092 			n_responses++;
2093 			last_gref = gnttab[gnt_idx].dest.u.ref;
2094 		}
2095 	}
2096 
2097 	if (error != 0) {
2098 		uint16_t id;
2099 		netif_rx_response_t *rsp;
2100 
2101 		id = RING_GET_REQUEST(ring, ring->rsp_prod_pvt)->id;
2102 		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
2103 		rsp->id = id;
2104 		rsp->status = NETIF_RSP_ERROR;
2105 		n_responses = 1;
2106 	} else {
2107 		gnt_idx = 0;
2108 		const int has_extra = pkt->flags & NETRXF_extra_info;
2109 		if (has_extra != 0)
2110 			n_responses++;
2111 
2112 		for (i = 0; i < n_responses; i++) {
2113 			netif_rx_request_t rxq;
2114 			netif_rx_response_t *rsp;
2115 
2116 			r_idx = ring->rsp_prod_pvt + i;
2117 			/*
2118 			 * We copy the structure of rxq instead of making a
2119 			 * pointer because it shares the same memory as rsp.
2120 			 */
2121 			rxq = *(RING_GET_REQUEST(ring, r_idx));
2122 			rsp = RING_GET_RESPONSE(ring, r_idx);
2123 			if (has_extra && (i == 1)) {
2124 				netif_extra_info_t *ext =
2125 					(netif_extra_info_t*)rsp;
2126 				ext->type = XEN_NETIF_EXTRA_TYPE_GSO;
2127 				ext->flags = 0;
2128 				ext->u.gso.size = pkt->extra.u.gso.size;
2129 				ext->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
2130 				ext->u.gso.pad = 0;
2131 				ext->u.gso.features = 0;
2132 			} else {
2133 				rsp->id = rxq.id;
2134 				rsp->status = GNTST_okay;
2135 				rsp->offset = 0;
2136 				rsp->flags = 0;
2137 				if (i < pkt->list_len - 1)
2138 					rsp->flags |= NETRXF_more_data;
2139 				if ((i == 0) && has_extra)
2140 					rsp->flags |= NETRXF_extra_info;
2141 				if ((i == 0) &&
2142 					(pkt->flags & NETRXF_data_validated)) {
2143 					rsp->flags |= NETRXF_data_validated;
2144 					rsp->flags |= NETRXF_csum_blank;
2145 				}
2146 				rsp->status = 0;
2147 				for (; gnttab[gnt_idx].dest.u.ref == rxq.gref;
2148 				    gnt_idx++) {
2149 					rsp->status += gnttab[gnt_idx].len;
2150 				}
2151 			}
2152 		}
2153 	}
2154 
2155 	ring->req_cons += n_responses;
2156 	ring->rsp_prod_pvt += n_responses;
2157 	return n_responses;
2158 }
2159 
2160 #if defined(INET) || defined(INET6)
2161 /**
2162  * Add IP, TCP, and/or UDP checksums to every mbuf in a chain.  The first mbuf
2163  * in the chain must start with a struct ether_header.
2164  *
2165  * XXX This function will perform incorrectly on UDP packets that are split up
2166  * into multiple ethernet frames.
2167  */
2168 static void
2169 xnb_add_mbuf_cksum(struct mbuf *mbufc)
2170 {
2171 	struct ether_header *eh;
2172 	struct ip *iph;
2173 	uint16_t ether_type;
2174 
2175 	eh = mtod(mbufc, struct ether_header*);
2176 	ether_type = ntohs(eh->ether_type);
2177 	if (ether_type != ETHERTYPE_IP) {
2178 		/* Nothing to calculate */
2179 		return;
2180 	}
2181 
2182 	iph = (struct ip*)(eh + 1);
2183 	if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2184 		iph->ip_sum = 0;
2185 		iph->ip_sum = in_cksum_hdr(iph);
2186 	}
2187 
2188 	switch (iph->ip_p) {
2189 	case IPPROTO_TCP:
2190 		if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2191 			size_t tcplen = ntohs(iph->ip_len) - sizeof(struct ip);
2192 			struct tcphdr *th = (struct tcphdr*)(iph + 1);
2193 			th->th_sum = in_pseudo(iph->ip_src.s_addr,
2194 			    iph->ip_dst.s_addr, htons(IPPROTO_TCP + tcplen));
2195 			th->th_sum = in_cksum_skip(mbufc,
2196 			    sizeof(struct ether_header) + ntohs(iph->ip_len),
2197 			    sizeof(struct ether_header) + (iph->ip_hl << 2));
2198 		}
2199 		break;
2200 	case IPPROTO_UDP:
2201 		if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2202 			size_t udplen = ntohs(iph->ip_len) - sizeof(struct ip);
2203 			struct udphdr *uh = (struct udphdr*)(iph + 1);
2204 			uh->uh_sum = in_pseudo(iph->ip_src.s_addr,
2205 			    iph->ip_dst.s_addr, htons(IPPROTO_UDP + udplen));
2206 			uh->uh_sum = in_cksum_skip(mbufc,
2207 			    sizeof(struct ether_header) + ntohs(iph->ip_len),
2208 			    sizeof(struct ether_header) + (iph->ip_hl << 2));
2209 		}
2210 		break;
2211 	default:
2212 		break;
2213 	}
2214 }
2215 #endif /* INET || INET6 */
2216 
2217 static void
2218 xnb_stop(struct xnb_softc *xnb)
2219 {
2220 	struct ifnet *ifp;
2221 
2222 	mtx_assert(&xnb->sc_lock, MA_OWNED);
2223 	ifp = xnb->xnb_ifp;
2224 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2225 	if_link_state_change(ifp, LINK_STATE_DOWN);
2226 }
2227 
2228 static int
2229 xnb_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2230 {
2231 	struct xnb_softc *xnb = ifp->if_softc;
2232 	struct ifreq *ifr = (struct ifreq*) data;
2233 #ifdef INET
2234 	struct ifaddr *ifa = (struct ifaddr*)data;
2235 #endif
2236 	int error = 0;
2237 
2238 	switch (cmd) {
2239 		case SIOCSIFFLAGS:
2240 			mtx_lock(&xnb->sc_lock);
2241 			if (ifp->if_flags & IFF_UP) {
2242 				xnb_ifinit_locked(xnb);
2243 			} else {
2244 				if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2245 					xnb_stop(xnb);
2246 				}
2247 			}
2248 			/*
2249 			 * Note: netfront sets a variable named xn_if_flags
2250 			 * here, but that variable is never read
2251 			 */
2252 			mtx_unlock(&xnb->sc_lock);
2253 			break;
2254 		case SIOCSIFADDR:
2255 		case SIOCGIFADDR:
2256 #ifdef INET
2257 			mtx_lock(&xnb->sc_lock);
2258 			if (ifa->ifa_addr->sa_family == AF_INET) {
2259 				ifp->if_flags |= IFF_UP;
2260 				if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2261 					ifp->if_drv_flags &= ~(IFF_DRV_RUNNING |
2262 							IFF_DRV_OACTIVE);
2263 					if_link_state_change(ifp,
2264 							LINK_STATE_DOWN);
2265 					ifp->if_drv_flags |= IFF_DRV_RUNNING;
2266 					ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2267 					if_link_state_change(ifp,
2268 					    LINK_STATE_UP);
2269 				}
2270 				arp_ifinit(ifp, ifa);
2271 				mtx_unlock(&xnb->sc_lock);
2272 			} else {
2273 				mtx_unlock(&xnb->sc_lock);
2274 #endif
2275 				error = ether_ioctl(ifp, cmd, data);
2276 #ifdef INET
2277 			}
2278 #endif
2279 			break;
2280 		case SIOCSIFCAP:
2281 			mtx_lock(&xnb->sc_lock);
2282 			if (ifr->ifr_reqcap & IFCAP_TXCSUM) {
2283 				ifp->if_capenable |= IFCAP_TXCSUM;
2284 				ifp->if_hwassist |= XNB_CSUM_FEATURES;
2285 			} else {
2286 				ifp->if_capenable &= ~(IFCAP_TXCSUM);
2287 				ifp->if_hwassist &= ~(XNB_CSUM_FEATURES);
2288 			}
2289 			if ((ifr->ifr_reqcap & IFCAP_RXCSUM)) {
2290 				ifp->if_capenable |= IFCAP_RXCSUM;
2291 			} else {
2292 				ifp->if_capenable &= ~(IFCAP_RXCSUM);
2293 			}
2294 			/*
2295 			 * TODO enable TSO4 and LRO once we no longer need
2296 			 * to calculate checksums in software
2297 			 */
2298 #if 0
2299 			if (ifr->if_reqcap |= IFCAP_TSO4) {
2300 				if (IFCAP_TXCSUM & ifp->if_capenable) {
2301 					printf("xnb: Xen netif requires that "
2302 						"TXCSUM be enabled in order "
2303 						"to use TSO4\n");
2304 					error = EINVAL;
2305 				} else {
2306 					ifp->if_capenable |= IFCAP_TSO4;
2307 					ifp->if_hwassist |= CSUM_TSO;
2308 				}
2309 			} else {
2310 				ifp->if_capenable &= ~(IFCAP_TSO4);
2311 				ifp->if_hwassist &= ~(CSUM_TSO);
2312 			}
2313 			if (ifr->ifreqcap |= IFCAP_LRO) {
2314 				ifp->if_capenable |= IFCAP_LRO;
2315 			} else {
2316 				ifp->if_capenable &= ~(IFCAP_LRO);
2317 			}
2318 #endif
2319 			mtx_unlock(&xnb->sc_lock);
2320 			break;
2321 		case SIOCSIFMTU:
2322 			ifp->if_mtu = ifr->ifr_mtu;
2323 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2324 			xnb_ifinit(xnb);
2325 			break;
2326 		case SIOCADDMULTI:
2327 		case SIOCDELMULTI:
2328 		case SIOCSIFMEDIA:
2329 		case SIOCGIFMEDIA:
2330 			error = ifmedia_ioctl(ifp, ifr, &xnb->sc_media, cmd);
2331 			break;
2332 		default:
2333 			error = ether_ioctl(ifp, cmd, data);
2334 			break;
2335 	}
2336 	return (error);
2337 }
2338 
2339 static void
2340 xnb_start_locked(struct ifnet *ifp)
2341 {
2342 	netif_rx_back_ring_t *rxb;
2343 	struct xnb_softc *xnb;
2344 	struct mbuf *mbufc;
2345 	RING_IDX req_prod_local;
2346 
2347 	xnb = ifp->if_softc;
2348 	rxb = &xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
2349 
2350 	if (!xnb->carrier)
2351 		return;
2352 
2353 	do {
2354 		int out_of_space = 0;
2355 		int notify;
2356 		req_prod_local = rxb->sring->req_prod;
2357 		xen_rmb();
2358 		for (;;) {
2359 			int error;
2360 
2361 			IF_DEQUEUE(&ifp->if_snd, mbufc);
2362 			if (mbufc == NULL)
2363 				break;
2364 			error = xnb_send(rxb, xnb->otherend_id, mbufc,
2365 			    		 xnb->rx_gnttab);
2366 			switch (error) {
2367 				case EAGAIN:
2368 					/*
2369 					 * Insufficient space in the ring.
2370 					 * Requeue pkt and send when space is
2371 					 * available.
2372 					 */
2373 					IF_PREPEND(&ifp->if_snd, mbufc);
2374 					/*
2375 					 * Perhaps the frontend missed an IRQ
2376 					 * and went to sleep.  Notify it to wake
2377 					 * it up.
2378 					 */
2379 					out_of_space = 1;
2380 					break;
2381 
2382 				case EINVAL:
2383 					/* OS gave a corrupt packet.  Drop it.*/
2384 					if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2385 					/* FALLTHROUGH */
2386 				default:
2387 					/* Send succeeded, or packet had error.
2388 					 * Free the packet */
2389 					if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2390 					if (mbufc)
2391 						m_freem(mbufc);
2392 					break;
2393 			}
2394 			if (out_of_space != 0)
2395 				break;
2396 		}
2397 
2398 		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(rxb, notify);
2399 		if ((notify != 0) || (out_of_space != 0))
2400 			xen_intr_signal(xnb->xen_intr_handle);
2401 		rxb->sring->req_event = req_prod_local + 1;
2402 		xen_mb();
2403 	} while (rxb->sring->req_prod != req_prod_local) ;
2404 }
2405 
2406 /**
2407  * Sends one packet to the ring.  Blocks until the packet is on the ring
2408  * \param[in]	mbufc	Contains one packet to send.  Caller must free
2409  * \param[in,out] rxb	The packet will be pushed onto this ring, but the
2410  * 			otherend will not be notified.
2411  * \param[in]	otherend The domain ID of the other end of the connection
2412  * \retval	EAGAIN	The ring did not have enough space for the packet.
2413  * 			The ring has not been modified
2414  * \param[in,out] gnttab Pointer to enough memory for a grant table.  We make
2415  * 			this a function parameter so that we will take less
2416  * 			stack space.
2417  * \retval EINVAL	mbufc was corrupt or not convertible into a pkt
2418  */
2419 static int
2420 xnb_send(netif_rx_back_ring_t *ring, domid_t otherend, const struct mbuf *mbufc,
2421 	 gnttab_copy_table gnttab)
2422 {
2423 	struct xnb_pkt pkt;
2424 	int error, n_entries, n_reqs;
2425 	RING_IDX space;
2426 
2427 	space = ring->sring->req_prod - ring->req_cons;
2428 	error = xnb_mbufc2pkt(mbufc, &pkt, ring->rsp_prod_pvt, space);
2429 	if (error != 0)
2430 		return error;
2431 	n_entries = xnb_rxpkt2gnttab(&pkt, mbufc, gnttab, ring, otherend);
2432 	if (n_entries != 0) {
2433 		int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
2434 		    gnttab, n_entries);
2435 		KASSERT(hv_ret == 0, ("HYPERVISOR_grant_table_op returned %d\n",
2436 		    hv_ret));
2437 	}
2438 
2439 	n_reqs = xnb_rxpkt2rsp(&pkt, gnttab, n_entries, ring);
2440 
2441 	return 0;
2442 }
2443 
2444 static void
2445 xnb_start(struct ifnet *ifp)
2446 {
2447 	struct xnb_softc *xnb;
2448 
2449 	xnb = ifp->if_softc;
2450 	mtx_lock(&xnb->rx_lock);
2451 	xnb_start_locked(ifp);
2452 	mtx_unlock(&xnb->rx_lock);
2453 }
2454 
2455 /* equivalent of network_open() in Linux */
2456 static void
2457 xnb_ifinit_locked(struct xnb_softc *xnb)
2458 {
2459 	struct ifnet *ifp;
2460 
2461 	ifp = xnb->xnb_ifp;
2462 
2463 	mtx_assert(&xnb->sc_lock, MA_OWNED);
2464 
2465 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2466 		return;
2467 
2468 	xnb_stop(xnb);
2469 
2470 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2471 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2472 	if_link_state_change(ifp, LINK_STATE_UP);
2473 }
2474 
2475 
2476 static void
2477 xnb_ifinit(void *xsc)
2478 {
2479 	struct xnb_softc *xnb = xsc;
2480 
2481 	mtx_lock(&xnb->sc_lock);
2482 	xnb_ifinit_locked(xnb);
2483 	mtx_unlock(&xnb->sc_lock);
2484 }
2485 
2486 /**
2487  * Callback used by the generic networking code to tell us when our carrier
2488  * state has changed.  Since we don't have a physical carrier, we don't care
2489  */
2490 static int
2491 xnb_ifmedia_upd(struct ifnet *ifp)
2492 {
2493 	return (0);
2494 }
2495 
2496 /**
2497  * Callback used by the generic networking code to ask us what our carrier
2498  * state is.  Since we don't have a physical carrier, this is very simple
2499  */
2500 static void
2501 xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2502 {
2503 	ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2504 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2505 }
2506 
2507 
2508 /*---------------------------- NewBus Registration ---------------------------*/
2509 static device_method_t xnb_methods[] = {
2510 	/* Device interface */
2511 	DEVMETHOD(device_probe,		xnb_probe),
2512 	DEVMETHOD(device_attach,	xnb_attach),
2513 	DEVMETHOD(device_detach,	xnb_detach),
2514 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
2515 	DEVMETHOD(device_suspend,	xnb_suspend),
2516 	DEVMETHOD(device_resume,	xnb_resume),
2517 
2518 	/* Xenbus interface */
2519 	DEVMETHOD(xenbus_otherend_changed, xnb_frontend_changed),
2520 
2521 	{ 0, 0 }
2522 };
2523 
2524 static driver_t xnb_driver = {
2525 	"xnb",
2526 	xnb_methods,
2527 	sizeof(struct xnb_softc),
2528 };
2529 devclass_t xnb_devclass;
2530 
2531 DRIVER_MODULE(xnb, xenbusb_back, xnb_driver, xnb_devclass, 0, 0);
2532 
2533 
2534 /*-------------------------- Unit Tests -------------------------------------*/
2535 #ifdef XNB_DEBUG
2536 #include "netback_unit_tests.c"
2537 #endif
2538